1
|
Muhammad D, Clark NM, Tharp NE, Chatt EC, Vierstra RD, Bartel B. Global impacts of peroxisome and pexophagy dysfunction revealed through multi-omics analyses of lon2 and atg2 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2563-2583. [PMID: 39526456 DOI: 10.1111/tpj.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Peroxisomes house diverse metabolic pathways that are essential for plant and animal survival, including enzymes that produce or inactivate toxic byproducts. Despite the importance of peroxisomes and their collaborations with other organelles, the mechanisms that trigger or prevent peroxisome turnover and the cellular impacts of impaired peroxisomes are incompletely understood. When Arabidopsis thaliana LON2, a peroxisomal protein with chaperone and protease capacity, is disrupted, metabolic dysfunction and protein instability in peroxisomes ensue. Paradoxically, preventing autophagy in lon2 mutants appears to normalize peroxisomal metabolism and stabilize peroxisomal proteins-hinting at a role for autophagy in causing the peroxisomal defects observed in lon2 seedlings. Using a combination of transcriptomics, proteomics, and in silico investigations, we compared wild type to lon2 and autophagy null mutants and double mutants. Through this analysis, we found that impeding autophagy via an atg2 null mutation alleviated several of the global defects observed when LON2 is absent. Moreover, we revealed processes influenced by LON2 that are independent of autophagy, including impacts on lipid droplet and chloroplast protein levels. Finally, we identified and classified potential LON2 substrates, which include proteins that might provide signal(s) for pexophagy.
Collapse
Affiliation(s)
- DurreShahwar Muhammad
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Natalie M Clark
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| | - Nathan E Tharp
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Elizabeth C Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
2
|
Koyano F, Yamano K, Hoshina T, Kosako H, Fujiki Y, Tanaka K, Matsuda N. AAA+ ATPase chaperone p97/VCP FAF2 governs basal pexophagy. Nat Commun 2024; 15:9347. [PMID: 39472561 PMCID: PMC11522385 DOI: 10.1038/s41467-024-53558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Peroxisomes are organelles that are central to lipid metabolism and chemical detoxification. Despite advances in our understanding of peroxisome biogenesis, the mechanisms maintaining peroxisomal membrane proteins remain to be fully elucidated. We show here that mammalian FAF2/UBXD8, a membrane-associated cofactor of p97/VCP, maintains peroxisomal homeostasis by modulating the turnover of peroxisomal membrane proteins such as PMP70. In FAF2-deficient cells, PMP70 accumulation recruits the autophagy adaptor OPTN (Optineurin) to peroxisomes and promotes their autophagic clearance (pexophagy). Pexophagy is also induced by p97/VCP inhibition. FAF2 functions together with p97/VCP to negatively regulate pexophagy rather than as a factor for peroxisome biogenesis. Our results strongly suggest that p97/VCPFAF2-mediated extraction of ubiquitylated peroxisomal membrane proteins (e.g., PMP70) prevents peroxisomes from inducing nonessential autophagy under steady state conditions. These findings provide insight into molecular mechanisms underlying the regulation of peroxisomal integrity by p97/VCP and its associated cofactors.
Collapse
Affiliation(s)
- Fumika Koyano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tomoyuki Hoshina
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Institute for Advanced Study, Kyushu University, Fukuoka, 816-8580, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Noriyuki Matsuda
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
3
|
McWhite CD, Sae-Lee W, Yuan Y, Mallam AL, Gort-Freitas NA, Ramundo S, Onishi M, Marcotte EM. Alternative proteoforms and proteoform-dependent assemblies in humans and plants. Mol Syst Biol 2024; 20:933-951. [PMID: 38918600 PMCID: PMC11297038 DOI: 10.1038/s44320-024-00048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
The variability of proteins at the sequence level creates an enormous potential for proteome complexity. Exploring the depths and limits of this complexity is an ongoing goal in biology. Here, we systematically survey human and plant high-throughput bottom-up native proteomics data for protein truncation variants, where substantial regions of the full-length protein are missing from an observed protein product. In humans, Arabidopsis, and the green alga Chlamydomonas, approximately one percent of observed proteins show a short form, which we can assign by comparison to RNA isoforms as either likely deriving from transcript-directed processes or limited proteolysis. While some detected protein fragments align with known splice forms and protein cleavage events, multiple examples are previously undescribed, such as our observation of fibrocystin proteolysis and nuclear translocation in a green alga. We find that truncations occur almost entirely between structured protein domains, even when short forms are derived from transcript variants. Intriguingly, multiple endogenous protein truncations of phase-separating translational proteins resemble cleaved proteoforms produced by enteroviruses during infection. Some truncated proteins are also observed in both humans and plants, suggesting that they date to the last eukaryotic common ancestor. Finally, we describe novel proteoform-specific protein complexes, where the loss of a domain may accompany complex formation.
Collapse
Affiliation(s)
- Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.
| | - Wisath Sae-Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yaning Yuan
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Anna L Mallam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Silvia Ramundo
- Gregor Mendel Institute of Molecular Plant Biology, 1030, Wien, Austria
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Xiao Y, Liu J, Ren P, Zhou X, Zhang S, Li Z, Gong J, Li R, Zhu M. Identification of potential candidate genes for the Huoyan trait in developing Wulong goose embryos by transcriptomic analysis. Br Poult Sci 2024; 65:273-286. [PMID: 38727584 DOI: 10.1080/00071668.2024.2328686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/16/2024] [Indexed: 07/02/2024]
Abstract
1. The Wulong goose is a Chinese breed and a source of high-quality meat and eggs. A characteristic of the Wulong goose is that a proportion of the birds do not have eyelids, known as the Huoyon trait.2. Wulong geese exhibiting the Huoyan trait at embryonic stages of 9 days (E9), 12 days (E12) and 14 days (E14) were selected alongside those with normal eyelids for comprehensive transcriptome sequencing. Differentially expressed gene (DEG) and functional enrichment analyses were performed and finally, eight DEG were chosen to verify the accuracy of qPCR sequencing.3. Overall, 466, 962 and 550 DEG were obtained from the three control groups, D9 vs. N9, D12 vs. N12 and D14 vs. N14, respectively, by differential analysis (p < 0.05). CDKN1C, CRH, CROCC and TYSND1 were significantly expressed in the three groups. Enrichment analysis revealed the enrichment of CROCC and TYSND1 in pathways of cell cycle process, endocytosis, microtubule-based process, microtubule organising centre organisation, protein processing and protein maturation. CDKN1C and CRH were enriched in the cell cycle and cAMP signalling pathway.4. Some collagen family genes were detected among the DEGs, including COL3A1, COL4A5, COL4A2 and COL4A1. FREM1 and FREM2 genes were detected in both Huoyan and normal eyelids. There was a significant difference (p < 0.01) in FREM1 expression between ED9 and ED14 in female embryos, but this difference was not observed in male embryos.
Collapse
Affiliation(s)
- Y Xiao
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - J Liu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - P Ren
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - X Zhou
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - S Zhang
- Shandong Animal Husbandry General Station, Jinan, China
| | - Z Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - J Gong
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - R Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - M Zhu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Plessner M, Thiele L, Hofhuis J, Thoms S. Tissue-specific roles of peroxisomes revealed by expression meta-analysis. Biol Direct 2024; 19:14. [PMID: 38365851 PMCID: PMC10873952 DOI: 10.1186/s13062-024-00458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Peroxisomes are primarily studied in the brain, kidney, and liver due to the conspicuous tissue-specific pathology of peroxisomal biogenesis disorders. In contrast, little is known about the role of peroxisomes in other tissues such as the heart. In this meta-analysis, we explore mitochondrial and peroxisomal gene expression on RNA and protein levels in the brain, heart, kidney, and liver, focusing on lipid metabolism. Further, we evaluate a potential developmental and heart region-dependent specificity of our gene set. We find marginal expression of the enzymes for peroxisomal fatty acid oxidation in cardiac tissue in comparison to the liver or cardiac mitochondrial β-oxidation. However, the expression of peroxisome biogenesis proteins in the heart is similar to other tissues despite low levels of peroxisomal fatty acid oxidation. Strikingly, peroxisomal targeting signal type 2-containing factors and plasmalogen biosynthesis appear to play a fundamental role in explaining the essential protective and supporting functions of cardiac peroxisomes.
Collapse
Affiliation(s)
- Matthias Plessner
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Leonie Thiele
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Julia Hofhuis
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Sven Thoms
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany.
- Department of Child and Adolescent Health, University Medical Center, Göttingen, Germany.
| |
Collapse
|
6
|
Yamashita A, Ignatenko O, Nguyen M, Lambert R, Watt K, Daneault C, Robillard-Frayne I, Topisirovic I, Rosiers CD, McBride HM. Depletion of LONP2 unmasks differential requirements for peroxisomal function between cell types and in cholesterol metabolism. Biol Direct 2023; 18:60. [PMID: 37736739 PMCID: PMC10515011 DOI: 10.1186/s13062-023-00416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Peroxisomes play a central role in tuning metabolic and signaling programs in a tissue- and cell-type-specific manner. However, the mechanisms by which the status of peroxisomes is communicated and integrated into cellular signaling pathways are not yet understood. Herein, we report the cellular responses to peroxisomal proteotoxic stress upon silencing the peroxisomal protease/chaperone LONP2. Depletion of LONP2 triggered the accumulation of its substrate TYSND1 protease, while the overall expression of peroxisomal proteins, as well as TYSND1-dependent ACOX1 processing appeared normal, reflecting early stages of peroxisomal proteotoxic stress. Consequently, the alteration of peroxisome size and numbers, and luminal protein import failure was coupled with induction of cell-specific cellular stress responses. Specific to COS-7 cells was a strong activation of the integrated stress response (ISR) and upregulation of ribosomal biogenesis gene expression levels. Common changes between COS-7 and U2OS cell lines included repression of the retinoic acid signaling pathway and upregulation of sphingolipids. Cholesterol accumulated in the endomembrane compartments in both cell lines, consistent with evidence that peroxisomes are required for cholesterol flux out of late endosomes. These unexpected consequences of peroxisomal stress provide an important insight into our understanding of the tissue-specific responses seen in peroxisomal disorders.
Collapse
Affiliation(s)
- Akihiro Yamashita
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Olesia Ignatenko
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Mai Nguyen
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Raphaëlle Lambert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Kathleen Watt
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | - Ivan Topisirovic
- Lady Davis Institute, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
7
|
Roles of LonP1 in Oral-Maxillofacial Developmental Defects and Tumors: A Novel Insight. Int J Mol Sci 2022; 23:ijms232113370. [PMID: 36362158 PMCID: PMC9657610 DOI: 10.3390/ijms232113370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Recent studies have indicated a central role for LonP1 in mitochondrial function. Its physiological functions include proteolysis, acting as a molecular chaperone, binding mitochondrial DNA, and being involved in cellular respiration, cellular metabolism, and oxidative stress. Given its vital role in energy metabolism, LonP1 has been suggested to be associated with multi-system neoplasms and developmental disorders. In this study, we investigated the roles, possible mechanisms of action, and therapeutic roles of LonP1 in oral and maxillofacial tumor development. LonP1 was highly expressed in oral-maxillofacial cancers and regulated their development through a sig-naling network. LonP1 may therefore be a promising anticancer therapy target. Mutations in LONP1 have been found to be involved in the etiology of cerebral, ocular, dental, auricular, and skeletal syndrome (CODAS). Only patients carrying specific LONP1 mutations have certain dental abnormalities (delayed eruption and abnormal morphology). LonP1 is therefore a novel factor in the development of oral and maxillofacial tumors. Greater research should therefore be conducted on the diagnosis and therapy of LonP1-related diseases to further define LonP1-associated oral phenotypes and their underlying molecular mechanisms.
Collapse
|
8
|
Kamoshita M, Kumar R, Anteghini M, Kunze M, Islinger M, Martins dos Santos V, Schrader M. Insights Into the Peroxisomal Protein Inventory of Zebrafish. Front Physiol 2022; 13:822509. [PMID: 35295584 PMCID: PMC8919083 DOI: 10.3389/fphys.2022.822509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Peroxisomes are ubiquitous, oxidative subcellular organelles with important functions in cellular lipid metabolism and redox homeostasis. Loss of peroxisomal functions causes severe disorders with developmental and neurological abnormalities. Zebrafish are emerging as an attractive vertebrate model to study peroxisomal disorders as well as cellular lipid metabolism. Here, we combined bioinformatics analyses with molecular cell biology and reveal the first comprehensive inventory of Danio rerio peroxisomal proteins, which we systematically compared with those of human peroxisomes. Through bioinformatics analysis of all PTS1-carrying proteins, we demonstrate that D. rerio lacks two well-known mammalian peroxisomal proteins (BAAT and ZADH2/PTGR3), but possesses a putative peroxisomal malate synthase (Mlsl) and verified differences in the presence of purine degrading enzymes. Furthermore, we revealed novel candidate peroxisomal proteins in D. rerio, whose function and localisation is discussed. Our findings confirm the suitability of zebrafish as a vertebrate model for peroxisome research and open possibilities for the study of novel peroxisomal candidate proteins in zebrafish and humans.
Collapse
Affiliation(s)
- Maki Kamoshita
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marco Anteghini
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Markus Kunze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Markus Islinger
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vítor Martins dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
- *Correspondence: Michael Schrader,
| |
Collapse
|
9
|
Lipopolysaccharide-Induced Transcriptional Changes in LBP-Deficient Rat and Its Possible Implications for Liver Dysregulation during Sepsis. J Immunol Res 2022; 2021:8356645. [PMID: 35005033 PMCID: PMC8739918 DOI: 10.1155/2021/8356645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Sepsis is an organ dysfunction caused by the dysregulated inflammatory response to infection. Lipopolysaccharide-binding protein (LBP) binds to lipopolysaccharide (LPS) and modulates the inflammatory response. A rare systematic study has been reported to detect the effect of LBP gene during LPS-induced sepsis. Herein, we explored the RNA sequencing technology to profile the transcriptomic changes in liver tissue between LBP-deficient rats and WT rats at multiple time points after LPS administration. We proceeded RNA sequencing of liver tissue to search differentially expressed genes (DEGs) and enriched biological processes and pathways between WT and LBP-deficient groups at 0 h, 6 h, and 24 h. In total, 168, 284, and 307 DEGs were identified at 0 h, 6 h, and 24 h, respectively, including Lrp5, Cyp7a1, Nfkbiz, Sigmar1, Fabp7, and Hao1, which are related to the inflammatory or lipid-related process. Functional enrichment analysis revealed that inflammatory response to LPS mediated by Ifng, Cxcl10, Serpine1, and Lbp was enhanced at 6 h, while lipid-related metabolism associated with C5, Cyp4a1, and Eci1 was enriched at 24 h after LPS administration in the WT samples. The inflammatory process was not found when the LBP gene was knocked out; lipid-related metabolic process and peroxisome proliferator-activated receptor (PPAR) signaling pathway mediated by Dhrs7b and Tysnd1 were significantly activated in LBP-deficient samples. Our study suggested that the invading LPS may interplay with LBP to activate the nuclear factor kappa B (NF-κB) signaling pathway and trigger uncontrolled inflammatory response. However, when inhibiting the activity of NF-κB, lipid-related metabolism would make bacteria removal via the effect on the PPAR signaling pathway in the absence of LBP gene. We also compared the serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels using the biochemistry analyzer and analyzed the expression of high mobility group box 1 (HMGB1) and cleaved-caspase 3 with immunohistochemistry, which further validated our conclusion.
Collapse
|
10
|
Dubreuil MM, Morgens DW, Okumoto K, Honsho M, Contrepois K, Lee-McMullen B, Traber GM, Sood RS, Dixon SJ, Snyder MP, Fujiki Y, Bassik MC. Systematic Identification of Regulators of Oxidative Stress Reveals Non-canonical Roles for Peroxisomal Import and the Pentose Phosphate Pathway. Cell Rep 2021; 30:1417-1433.e7. [PMID: 32023459 DOI: 10.1016/j.celrep.2020.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/07/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) play critical roles in metabolism and disease, yet a comprehensive analysis of the cellular response to oxidative stress is lacking. To systematically identify regulators of oxidative stress, we conducted genome-wide Cas9/CRISPR and shRNA screens. This revealed a detailed picture of diverse pathways that control oxidative stress response, ranging from the TCA cycle and DNA repair machineries to iron transport, trafficking, and metabolism. Paradoxically, disrupting the pentose phosphate pathway (PPP) at the level of phosphogluconate dehydrogenase (PGD) protects cells against ROS. This dramatically alters metabolites in the PPP, consistent with rewiring of upper glycolysis to promote antioxidant production. In addition, disruption of peroxisomal import unexpectedly increases resistance to oxidative stress by altering the localization of catalase. Together, these studies provide insights into the roles of peroxisomal matrix import and the PPP in redox biology and represent a rich resource for understanding the cellular response to oxidative stress.
Collapse
Affiliation(s)
- Michael M Dubreuil
- Program in Cancer Biology, Stanford University, Stanford, CA 94305-5120, USA; Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - David W Morgens
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | | | | | - Ria S Sood
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Scott J Dixon
- Program in Cancer Biology, Stanford University, Stanford, CA 94305-5120, USA; Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305-5120, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Michael C Bassik
- Program in Cancer Biology, Stanford University, Stanford, CA 94305-5120, USA; Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305-5120, USA.
| |
Collapse
|
11
|
Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, Ma C, Jiang L, Hu Y, Gong Q, Zhu D, Xu Y, Liu R, Liu L, Yi C, Zhu Y, Ma N, Okamoto K, Xie Z, Liu J, He RR, Feng D. Selective autophagy of intracellular organelles: recent research advances. Theranostics 2021; 11:222-256. [PMID: 33391472 PMCID: PMC7681076 DOI: 10.7150/thno.49860] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (hereafter called autophagy) is a highly conserved physiological process that degrades over-abundant or damaged organelles, large protein aggregates and invading pathogens via the lysosomal system (the vacuole in plants and yeast). Autophagy is generally induced by stress, such as oxygen-, energy- or amino acid-deprivation, irradiation, drugs, etc. In addition to non-selective bulk degradation, autophagy also occurs in a selective manner, recycling specific organelles, such as mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes and lipid droplets (LDs). This capability makes selective autophagy a major process in maintaining cellular homeostasis. The dysfunction of selective autophagy is implicated in neurodegenerative diseases (NDDs), tumorigenesis, metabolic disorders, heart failure, etc. Considering the importance of selective autophagy in cell biology, we systemically review the recent advances in our understanding of this process and its regulatory mechanisms. We emphasize the 'cargo-ligand-receptor' model in selective autophagy for specific organelles or cellular components in yeast and mammals, with a focus on mitophagy and ER-phagy, which are finely described as types of selective autophagy. Additionally, we highlight unanswered questions in the field, helping readers focus on the research blind spots that need to be broken.
Collapse
|
12
|
Mammalian Homologue NME3 of DYNAMO1 Regulates Peroxisome Division. Int J Mol Sci 2020; 21:ijms21218040. [PMID: 33126676 PMCID: PMC7662248 DOI: 10.3390/ijms21218040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Peroxisomes proliferate by sequential processes comprising elongation, constriction, and scission of peroxisomal membrane. It is known that the constriction step is mediated by a GTPase named dynamin-like protein 1 (DLP1) upon efficient loading of GTP. However, mechanism of fuelling GTP to DLP1 remains unknown in mammals. We earlier show that nucleoside diphosphate (NDP) kinase-like protein, termed dynamin-based ring motive-force organizer 1 (DYNAMO1), generates GTP for DLP1 in a red alga, Cyanidioschyzon merolae. In the present study, we identified that nucleoside diphosphate kinase 3 (NME3), a mammalian homologue of DYNAMO1, localizes to peroxisomes. Elongated peroxisomes were observed in cells with suppressed expression of NME3 and fibroblasts from a patient lacking NME3 due to the homozygous mutation at the initiation codon of NME3. Peroxisomes proliferated by elevation of NME3 upon silencing the expression of ATPase family AAA domain containing 1, ATAD1. In the wild-type cells expressing catalytically-inactive NME3, peroxisomes were elongated. These results suggest that NME3 plays an important role in peroxisome division in a manner dependent on its NDP kinase activity. Moreover, the impairment of peroxisome division reduces the level of ether-linked glycerophospholipids, ethanolamine plasmalogens, implying the physiological importance of regulation of peroxisome morphology.
Collapse
|
13
|
Chu KY, Mellet N, Thai LM, Meikle PJ, Biden TJ. Short-term inhibition of autophagy benefits pancreatic β-cells by augmenting ether lipids and peroxisomal function, and by countering depletion of n-3 polyunsaturated fatty acids after fat-feeding. Mol Metab 2020; 40:101023. [PMID: 32504884 PMCID: PMC7322075 DOI: 10.1016/j.molmet.2020.101023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Investigations of autophagy in β-cells have usually focused on its homeostatic function. More dynamic roles in inhibiting glucose-stimulated insulin secretion (GSIS), potentially involving remodelling of cellular lipids, have been suggested from in vitro studies but not evaluated in vivo. METHODS We employed temporally-regulated deletion of the essential autophagy gene, Atg7, in β-cells. Mice were fed chow or high-fat diets (HFD), in conjunction with deletion of Atg7 for the last 3 weeks (short-term model) or 9 weeks (long-term model). Standard in vivo metabolic phenotyping was undertaken, and 450 lipid species in islets quantified ex vivo using mass spectroscopy (MS). MIN6 cells were also employed for lipidomics and secretory interventions. RESULTS β-cell function was impaired by inhibiting autophagy in the longer-term, but conversely improved by 3-week deletion of Atg7, specifically under HFD conditions. This was accompanied by augmented GSIS ex vivo. Surprisingly, the HFD had minimal effect on sphingolipid and neutral lipid species, but modulated >100 phospholipids and ether lipids, and markedly shifted the profile of polyunsaturated fatty acid (PUFA) sidechains from n3 to n6 forms. These changes were partially countered by Atg7 deletion, consistent with an accompanying upregulation of the PUFA elongase enzyme, Elovl5. Loss of Atg7 separately augmented plasmalogens and alkyl lipids, in association with increased expression of Lonp2, a peroxisomal chaperone/protease that facilitates maturation of ether lipid synthetic enzymes. Depletion of PUFAs and ether lipids was also observed in MIN6 cells chronically exposed to oleate (more so than palmitate). GSIS was inhibited by knocking down Dhrs7b, which encodes an enzyme of peroxisomal ether lipid synthesis. Conversely, impaired GSIS due to oleate pre-treatment was selectively reverted by Dhrs7b overexpression. CONCLUSIONS A detrimental increase in n6:n3 PUFA ratios in ether lipids and phospholipids is revealed as a major response of β-cells to high-fat feeding. This is partially reversed by short-term inhibition of autophagy, which results in compensatory changes in peroxisomal lipid metabolism. The short-term phenotype is linked to improved GSIS, in contrast to the impairment seen with the longer-term inhibition of autophagy. The balance between these positive and negative inputs could help determine whether β-cells adapt or fail in response to obesity.
Collapse
Affiliation(s)
- Kwan Yi Chu
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Natalie Mellet
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, Vic, 3004, Australia
| | - Le May Thai
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, Vic, 3004, Australia.
| | - Trevor J Biden
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Abe Y, Honsho M, Kawaguchi R, Matsuzaki T, Ichiki Y, Fujitani M, Fujiwara K, Hirokane M, Oku M, Sakai Y, Yamashita T, Fujiki Y. A peroxisome deficiency-induced reductive cytosol state up-regulates the brain-derived neurotrophic factor pathway. J Biol Chem 2020; 295:5321-5334. [PMID: 32165495 PMCID: PMC7170515 DOI: 10.1074/jbc.ra119.011989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/06/2020] [Indexed: 02/02/2023] Open
Abstract
The peroxisome is a subcellular organelle that functions in essential metabolic pathways, including biosynthesis of plasmalogens, fatty acid β-oxidation of very-long-chain fatty acids, and degradation of hydrogen peroxide. Peroxisome biogenesis disorders (PBDs) manifest as severe dysfunction in multiple organs, including the central nervous system (CNS), but the pathogenic mechanisms in PBDs are largely unknown. Because CNS integrity is coordinately established and maintained by neural cell interactions, we here investigated whether cell-cell communication is impaired and responsible for the neurological defects associated with PBDs. Results from a noncontact co-culture system consisting of primary hippocampal neurons with glial cells revealed that a peroxisome-deficient astrocytic cell line secretes increased levels of brain-derived neurotrophic factor (BDNF), resulting in axonal branching of the neurons. Of note, the BDNF expression in astrocytes was not affected by defects in plasmalogen biosynthesis and peroxisomal fatty acid β-oxidation in the astrocytes. Instead, we found that cytosolic reductive states caused by a mislocalized catalase in the peroxisome-deficient cells induce the elevation in BDNF secretion. Our results suggest that peroxisome deficiency dysregulates neuronal axogenesis by causing a cytosolic reductive state in astrocytes. We conclude that astrocytic peroxisomes regulate BDNF expression and thereby support neuronal integrity and function.
Collapse
Affiliation(s)
- Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Institute of Rheological Functions of Food, Hisayama-machi, Fukuoka 811-2501, Japan
| | - Ryoko Kawaguchi
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Takashi Matsuzaki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yayoi Ichiki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Kazushirou Fujiwara
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masaaki Hirokane
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahide Oku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Institute of Rheological Functions of Food, Hisayama-machi, Fukuoka 811-2501, Japan.
| |
Collapse
|
15
|
Takahashi T, Honsho M, Abe Y, Fujiki Y. Plasmalogen mediates integration of adherens junction. J Biochem 2019; 166:423-432. [PMID: 31236591 DOI: 10.1093/jb/mvz049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Ether glycerolipids, plasmalogens are found in various mammalian cells and tissues. However, physiological role of plasmalogens in epithelial cells remains unknown. We herein show that synthesis of ethanolamine-containing plasmalogens, plasmenylethanolamine (PlsEtn), is deficient in MCF7 cells, an epithelial cell line, with severely reduced expression of alkyl-dihydroxyacetonephosphate synthase (ADAPS), the second enzyme in the PlsEtn biosynthesis. Moreover, expression of ADAPS or supplementation of PlsEtn containing C18-alkenyl residue delays the migration of MCF7 cells as compared to that mock-treated MCF7 and C16-alkenyl-PlsEtn-supplemented MCF7 cells. Localization of E-cadherin to cell-cell junctions is highly augmented in cells containing C18-alkenyl-PlsEtn. Together, these results suggest that PlsEtn containing C18-alkenyl residue plays a distinct role in the integrity of E-cadherin-mediated adherens junction.
Collapse
Affiliation(s)
- Takanori Takahashi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yuichi Abe
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
16
|
Kunze M. The type-2 peroxisomal targeting signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118609. [PMID: 31751594 DOI: 10.1016/j.bbamcr.2019.118609] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.
Collapse
Affiliation(s)
- Markus Kunze
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
17
|
Okumoto K, Miyata N, Fujiki Y. Identification of Peroxisomal Protein Complexes with PTS Receptors, Pex5 and Pex7, in Mammalian Cells. Subcell Biochem 2019; 89:287-298. [PMID: 30378028 DOI: 10.1007/978-981-13-2233-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Pex5 and Pex7 are cytosolic receptors for peroxisome targeting signal type-1 (PTS1) and type-2 (PTS2), respectively, and play a pivotal role in import of peroxisomal matrix proteins. Recent advance in mass spectrometry analysis has facilitated comprehensive analysis of protein-protein interaction network by a combination with immunoprecipitation or biochemical purification. In this chapter, we introduce several findings obtained by these methods applied to mammalian cells. Exploring Pex5-binding partners in mammalian cells revealed core components comprising the import machinery complex of matrix proteins and a number of PTS1-type cargo proteins. Biochemical purification of the Pex5-export stimulating factor from rat liver cytosol fraction identified Awp1, providing further insight into molecular mechanisms of the export step of mono-ubiquitinated Pex5. Identification of DDB1 (damage-specific DNA-binding protein 1), a component of CRL4 (Cullin4A-RING ubiquitin ligase) E3 complex, as a Pex7-interacting protein revealed that quality control of Pex7 by CRL4A is important for PTS2 protein import by preventing the accumulation of dysfunctional Pex7. Furthermore, analysis of binding partners of an intraperoxisomal processing enzyme, trypsin-domain containing 1 (Tysnd1), showed a protein network regulating peroxisomal fatty acid β-oxidation.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
18
|
Liu J, Lu W, Shi B, Klein S, Su X. Peroxisomal regulation of redox homeostasis and adipocyte metabolism. Redox Biol 2019; 24:101167. [PMID: 30921635 PMCID: PMC6434164 DOI: 10.1016/j.redox.2019.101167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/26/2022] Open
Abstract
Peroxisomes are ubiquitous cellular organelles required for specific pathways of fatty acid oxidation and lipid synthesis, and until recently their functions in adipocytes have not been well appreciated. Importantly, peroxisomes host many oxygen-consumption reactions and play a major role in generation and detoxification of reactive oxygen species (ROS) and reactive nitrogen species (RNS), influencing whole cell redox status. Here, we review recent progress in peroxisomal functions in lipid metabolism as related to ROS/RNS metabolism and discuss the roles of peroxisomal redox homeostasis in adipogenesis and adipocyte metabolism. We provide a framework for understanding redox regulation of peroxisomal functions in adipocytes together with testable hypotheses for developing therapies for obesity and the related metabolic diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Tanaka AJ, Okumoto K, Tamura S, Abe Y, Hirsch Y, Deng L, Ekstein J, Chung WK, Fujiki Y. A newly identified mutation in the PEX26 gene is associated with a milder form of Zellweger spectrum disorder. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003483. [PMID: 30446579 PMCID: PMC6371744 DOI: 10.1101/mcs.a003483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Using clinical exome sequencing (ES), we identified an autosomal recessive missense variant, c.153C>A (p.F51L), in the peroxisome biogenesis factor 26 gene (PEX26) in a 19-yr-old female of Ashkenazi Jewish descent who was referred for moderate to severe hearing loss. The proband and three affected siblings are all homozygous for the c.153C>A variant. Skin fibroblasts from this patient show normal morphology in immunostaining of matrix proteins, although the level of catalase was elevated. Import rate of matrix proteins was significantly decreased in the patient-derived fibroblasts. Binding of Pex26-F51L to the AAA ATPase peroxins, Pex1 and Pex6, is severely impaired and affects peroxisome assembly. Moreover, Pex26 in the patient's fibroblasts is reduced to ∼30% of the control, suggesting that Pex26-F51L is unstable in cells. In the patient's fibroblasts, peroxisome-targeting signal 1 (PTS1) proteins, PTS2 protein 3-ketoacyl-CoA thiolase, and catalase are present in a punctate staining pattern at 37°C and in a diffuse pattern at 42°C, suggesting that these matrix proteins are not imported to peroxisomes in a temperature-sensitive manner. Analysis of peroxisomal metabolism in the patient's fibroblasts showed that the level of docosahexaenoic acid (DHA) (C22:6n-3) in ether phospholipids is decreased, whereas other lipid metabolism, including peroxisomal fatty acid β-oxidation, is normal. Collectively, the functional data support the mild phenotype of nonsyndromic hearing loss in patients harboring the F51L variant in PEX26.
Collapse
Affiliation(s)
- Akemi J Tanaka
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Graduate School of Systems Life Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigehiko Tamura
- Graduate School of Systems Life Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Faculty of Arts and Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoel Hirsch
- Dor Yeshorim, The Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York 11211, USA
| | - Liyong Deng
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Joseph Ekstein
- Dor Yeshorim, The Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York 11211, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
20
|
Niwa H, Miyauchi-Nanri Y, Okumoto K, Mukai S, Noi K, Ogura T, Fujiki Y. A newly isolated Pex7-binding, atypical PTS2 protein P7BP2 is a novel dynein-type AAA+ protein. J Biochem 2018; 164:437-447. [PMID: 30204880 DOI: 10.1093/jb/mvy073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
A newly isolated binding protein of peroxisomal targeting signal type 2 (PTS2) receptor Pex7, termed P7BP2, is transported into peroxisomes by binding to the longer isoform of Pex5p, Pex5pL, via Pex7p. The binding to Pex7p and peroxisomal localization of P7BP2 depends on the cleavable PTS2 in the N-terminal region, suggesting that P7BP2 is a new PTS2 protein. By search on human database, three AAA+ domains are found in the N-terminal half of P7BP2. Protein sequence alignment and motif search reveal that in the C-terminal region P7BP2 contains additional structural domains featuring weak but sufficient homology to AAA+ domain. P7BP2 behaves as a monomer in gel-filtration chromatography and the single molecule observed under atomic force microscope shapes a disc-like ring. Collectively, these results suggest that P7BP2 is a novel dynein-type AAA+ family protein, of which domains are arranged into a pseudo-hexameric ring structure.
Collapse
Affiliation(s)
- Hajime Niwa
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yasuhiro Miyauchi-Nanri
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Kentaro Noi
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
21
|
Barros-Barbosa A, Rodrigues TA, Ferreira MJ, Pedrosa AG, Teixeira NR, Francisco T, Azevedo JE. The intrinsically disordered nature of the peroxisomal protein translocation machinery. FEBS J 2018; 286:24-38. [PMID: 30443986 DOI: 10.1111/febs.14704] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Despite having a membrane that is impermeable to all but the smallest of metabolites, peroxisomes acquire their newly synthesized (cytosolic) matrix proteins in an already folded conformation. In some cases, even oligomeric proteins have been reported to translocate the organelle membrane. The protein sorting machinery that accomplishes this feat must be rather flexible and, unsurprisingly, several of its key components have large intrinsically disordered domains. Here, we provide an overview on these domains and their interactions trying to infer their functional roles in this protein sorting pathway.
Collapse
Affiliation(s)
- Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Nélson R Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| |
Collapse
|
22
|
Wu W, Liu F, Wu K, Chen Y, Wu H, Dai G, Zhang W. Lon Peptidase 2, Peroxisomal (LONP2) Contributes to Cervical Carcinogenesis via Oxidative Stress. Med Sci Monit 2018; 24:1310-1320. [PMID: 29502128 PMCID: PMC5846714 DOI: 10.12659/msm.908966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Lon protease is responsible for degrading proteins injured by oxidation, and has 2 isoforms, located in mitochondria and peroxisomes. Recent research showed that Lon protease was upregulated in different types of human cancer, but the role of Lon peptidase 2, peroxisomal (LONP2) in cancer is not well understood. It is known, however, that in cancer biology, reduction-oxidation is one of the molecular mechanisms involved in tumorigenesis. Material/Methods Oncomine databases and tissue microarrays, initially using immunohistochemistry, were used to analyze LONP2 expression in cervical cancer. In order to uncover the biologic functions and mechanism(s) underlying LONP2 in cervical tumorigenesis, we downregulated the expression of LONP2 using 2 siRNAs transduced in HeLa and SiHa cells. CCK8 assays were performed to evaluate cell viability. Cell cycle and apoptosis assays were used to determine cell growth. Cell migration and invasion assays were used to study changes in cell migration and invasion capacity. Immunofluorescence and flow cytometry were performed to analyze the changes in ROS production. Results We found that the expression of LONP2 was significantly upregulated in cervical cancer, and there was a significant association with pathology type, pathology grade, and clinical stage, but not with age or lymph node metastasis. Moreover, we demonstrated that knocking down LONP2 in HeLa and SiHa cells reduced cell proliferation, cell cycle, apoptosis, migration, invasion, and oxidative stress levels. Conclusions Our findings suggest that LONP2 promotes cervical tumorigenesis via oxidative stress and may be a potential biomarker and therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Wanrong Wu
- First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Fulin Liu
- First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Kejia Wu
- Department of Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Yurou Chen
- First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Hanshu Wu
- First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Guo Dai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Wei Zhang
- First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
23
|
Walker CL, Pomatto LCD, Tripathi DN, Davies KJA. Redox Regulation of Homeostasis and Proteostasis in Peroxisomes. Physiol Rev 2018; 98:89-115. [PMID: 29167332 PMCID: PMC6335096 DOI: 10.1152/physrev.00033.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023] Open
Abstract
Peroxisomes are highly dynamic intracellular organelles involved in a variety of metabolic functions essential for the metabolism of long-chain fatty acids, d-amino acids, and many polyamines. A byproduct of peroxisomal metabolism is the generation, and subsequent detoxification, of reactive oxygen and nitrogen species, particularly hydrogen peroxide (H2O2). Because of its relatively low reactivity (as a mild oxidant), H2O2 has a comparatively long intracellular half-life and a high diffusion rate, all of which makes H2O2 an efficient signaling molecule. Peroxisomes also have intricate connections to mitochondria, and both organelles appear to play important roles in regulating redox signaling pathways. Peroxisomal proteins are also subject to oxidative modification and inactivation by the reactive oxygen and nitrogen species they generate, but the peroxisomal LonP2 protease can selectively remove such oxidatively damaged proteins, thus prolonging the useful lifespan of the organelle. Peroxisomal homeostasis must adapt to the metabolic state of the cell, by a combination of peroxisome proliferation, the removal of excess or badly damaged organelles by autophagy (pexophagy), as well as by processes of peroxisome inheritance and motility. More recently the tumor suppressors ataxia telangiectasia mutate (ATM) and tuberous sclerosis complex (TSC), which regulate mTORC1 signaling, have been found to regulate pexophagy in response to variable levels of certain reactive oxygen and nitrogen species. It is now clear that any significant loss of peroxisome homeostasis can have devastating physiological consequences. Peroxisome dysregulation has been implicated in several metabolic diseases, and increasing evidence highlights the important role of diminished peroxisomal functions in aging processes.
Collapse
Affiliation(s)
- Cheryl L Walker
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Laura C D Pomatto
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Durga Nand Tripathi
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Kelvin J A Davies
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| |
Collapse
|
24
|
Kalel VC, Erdmann R. Unraveling of the Structure and Function of Peroxisomal Protein Import Machineries. Subcell Biochem 2018; 89:299-321. [PMID: 30378029 DOI: 10.1007/978-981-13-2233-4_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisomes are dynamic organelles of eukaryotic cells performing a wide range of functions including fatty acid oxidation, peroxide detoxification and ether-lipid synthesis in mammals. Peroxisomes lack their own DNA and therefore have to import proteins post-translationally. Peroxisomes can import folded, co-factor bound and even oligomeric proteins. The involvement of cycling receptors is a special feature of peroxisomal protein import. Complex machineries of peroxin (PEX) proteins mediate peroxisomal matrix and membrane protein import. Identification of PEX genes was dominated by forward genetic techniques in the early 90s. However, recent developments in proteomic techniques has revolutionized the detailed characterization of peroxisomal protein import. Here, we summarize the current knowledge on peroxisomal protein import with emphasis on the contribution of proteomic approaches to our understanding of the composition and function of the peroxisomal protein import machineries.
Collapse
Affiliation(s)
- Vishal C Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
25
|
Honsho M, Fujiki Y. Plasmalogen homeostasis - regulation of plasmalogen biosynthesis and its physiological consequence in mammals. FEBS Lett 2017; 591:2720-2729. [PMID: 28686302 DOI: 10.1002/1873-3468.12743] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/28/2015] [Accepted: 06/29/2016] [Indexed: 11/06/2022]
Abstract
Plasmalogens, mostly ethanolamine-containing alkenyl ether phospholipids, are a major subclass of glycerophospholipids. Plasmalogen synthesis is initiated in peroxisomes and completed in the endoplasmic reticulum. The absence of plasmalogens in several organs of peroxisome biogenesis-defective patients suggests that the de novo synthesis of plasmalogens plays a pivotal role in its homeostasis in tissues. Plasmalogen synthesis is regulated by modulating the stability of fatty acyl-CoA reductase 1 on peroxisomal membranes, a rate-limiting enzyme in plasmalogen synthesis, by sensing plasmalogens in the inner leaflet of plasma membranes. Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis by altering the stability of squalene monooxygenase, a key enzyme in cholesterol biosynthesis, implying physiological consequences of plasmalogen homeostasis with respect to cholesterol metabolism in cells, as well as in organs such as the liver.
Collapse
Affiliation(s)
- Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Bhaskaran S, Unnikrishnan A, Ranjit R, Qaisar R, Pharaoh G, Matyi S, Kinter M, Deepa SS. A fish oil diet induces mitochondrial uncoupling and mitochondrial unfolded protein response in epididymal white adipose tissue of mice. Free Radic Biol Med 2017; 108:704-714. [PMID: 28455142 DOI: 10.1016/j.freeradbiomed.2017.04.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/14/2023]
Abstract
White adipose tissue (WAT) mitochondrial dysfunction is linked to the pathogenesis of obesity driven insulin resistance. Dietary conditions that alter fat mass are known to affect white adipocyte mitochondrial function, however, the impact of high calorie diets on white adipocyte mitochondria is not fully understood. The aim of this study is to assess the effect of a diet rich in saturated or polyunsaturated fat on mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that maintains mitochondrial homeostasis, in epididymal WAT (eWAT). Mice were fed a low fat diet (LFD), saturated fat diet (SFD) or fish oil (unsaturated fat diet, UFD) and assessed changes in eWAT mitochondria. Compared to mice fed a LFD, SFD-fed mice have reduced mitochondrial biogenesis markers, mitochondrial fatty acid oxidation enzymes and TCA cycle enzymes, suggesting an impaired mitochondrial function that could contribute to increased fat mass. In contrast, isocaloric UFD-fed mice have increased expression of mitochondrial uncoupling protein 1 (UCP1) and peroxisomal fatty acid oxidation enzymes suggesting that elevated mitochondrial uncoupling and peroxisomal fatty acid oxidation could contribute to the reduction in fat mass. Interestingly, expression of UPRmt-associated proteins caseinolytic peptidase (ClpP) and heat shock protein 60 (Hsp60) are induced by UFD, whereas SFD reduced the expression of ClpP. Based on our data, we propose that induction of UPRmt helps to preserve a functional mitochondria and efficient utilization of fat by UFD whereas a dampened UPRmt response might impair mitochondrial function and promote fat accumulation by SFD. Thus, our findings suggest a potential role of UPRmt in mediating the beneficial effects of fish oil.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Archana Unnikrishnan
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stephanie Matyi
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sathyaseelan S Deepa
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
27
|
Blue Native PAGE: Applications to Study Peroxisome Biogenesis. Methods Mol Biol 2017. [PMID: 28409463 DOI: 10.1007/978-1-4939-6937-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Blue native polyacrylamide gel electrophoresis (BN-PAGE) is one of the useful methods to isolate protein complexes including membrane proteins under native conditions. In BN-PAGE, Coomassie Brilliant Blue G-250 binds to proteins and provides a negative charge for the electrophoretic separation without denaturing at neutral pH, allowing the analysis of molecular mass, oligomeric state, and composition of native protein complexes. BN-PAGE is widely applied to the characterization of soluble protein complexes as well as isolation of membrane protein complexes from biological membranes such as the complexes I-V of the mitochondrial respiratory chain and subcomplexes of the mitochondrial protein import machinery. BN-PAGE has also been introduced in the field of peroxisome research, for example, analysis of translocation machinery for peroxisomal matrix proteins embedded in the peroxisomal membrane. Here, we describe a basic protocol of BN-PAGE and its application to the study of peroxisome biogenesis.
Collapse
|
28
|
Hosoi KI, Miyata N, Mukai S, Furuki S, Okumoto K, Cheng EH, Fujiki Y. The VDAC2-BAK axis regulates peroxisomal membrane permeability. J Cell Biol 2017; 216:709-722. [PMID: 28174205 PMCID: PMC5350511 DOI: 10.1083/jcb.201605002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/23/2016] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
Peroxisomal biogenesis disorders (PBDs) are fatal genetic diseases consisting of 14 complementation groups (CGs). We previously isolated a peroxisome-deficient Chinese hamster ovary cell mutant, ZP114, which belongs to none of these CGs. Using a functional screening strategy, VDAC2 was identified as rescuing the peroxisomal deficiency of ZP114 where VDAC2 expression was not detected. Interestingly, knockdown of BAK or overexpression of the BAK inhibitors BCL-XL and MCL-1 restored peroxisomal biogenesis in ZP114 cells. Although VDAC2 is not localized to the peroxisome, loss of VDAC2 shifts the localization of BAK from mitochondria to peroxisomes, resulting in peroxisomal deficiency. Introduction of peroxisome-targeted BAK harboring the Pex26p transmembrane region into wild-type cells resulted in the release of peroxisomal matrix proteins to cytosol. Moreover, overexpression of BAK activators PUMA and BIM permeabilized peroxisomes in a BAK-dependent manner. Collectively, these findings suggest that BAK plays a role in peroxisomal permeability, similar to mitochondrial outer membrane permeabilization.
Collapse
Affiliation(s)
- Ken-Ichiro Hosoi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Satomi Furuki
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
29
|
Liu Y, Yagita Y, Fujiki Y. Assembly of Peroxisomal Membrane Proteins via the Direct Pex19p-Pex3p Pathway. Traffic 2016; 17:433-55. [PMID: 26777132 DOI: 10.1111/tra.12376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 02/03/2023]
Abstract
Correct targeting of peroxisomal membrane proteins (PMPs) is essential for the formation and maintenance of functional peroxisomes. Activities of Pex19p to interact with PMPs on one hand and Pex3p on the other, including formation of ternary complexes between Pex19p, PMP and Pex3p, strongly support posttranslational translocation of PMPs via the Pex19p- and Pex3p-dependent direct pathway, termed the class I pathway. However, it remains elusive whether Pex19p-PMP complexes are indeed capable of being imported into peroxisomal membranes through the interaction between Pex19p and Pex3p. We resolve this issue by investigating the targeting process of several topologically distinct PMPs, including multimembrane spanning PMPs. We show here that Pex19p forms cytosolic complexes with PMPs and directly translocates them to peroxisomes. Using a semi-intact mammalian cell-based import assay system, we prove that PMPs in the cytosolic complexes are imported into peroxisomes via the interaction between cargo-loaded Pex19p and Pex3p. Furthermore, we demonstrate for the first time that peroxisomal targeting of ATAD1, an N-terminally signal-anchored protein that resides on both mitochondria and peroxisomes, is also achieved through the Pex19p- and Pex3p-dependent class I pathway. Together, our results suggest that translocation of PMPs via the class I pathway is a common event in mammalian cells.
Collapse
Affiliation(s)
- Yuqiong Liu
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuichi Yagita
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Present address: Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
30
|
Pomatto LCD, Raynes R, Davies KJA. The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev Camb Philos Soc 2016; 92:739-753. [PMID: 26852705 DOI: 10.1111/brv.12253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 01/24/2023]
Abstract
Peroxisomes are ubiquitous eukaryotic organelles with the primary role of breaking down very long- and branched-chain fatty acids for subsequent β-oxidation in the mitochondrion. Like mitochondria, peroxisomes are major sites for oxygen utilization and potential contributors to cellular oxidative stress. The accumulation of oxidatively damaged proteins, which often develop into inclusion bodies (of oxidized, aggregated, and cross-linked proteins) within both mitochondria and peroxisomes, results in loss of organelle function that may contribute to the aging process. Both organelles possess an isoform of the Lon protease that is responsible for degrading proteins damaged by oxidation. While the importance of mitochondrial Lon (LonP1) in relation to oxidative stress and aging has been established, little is known regarding the role of LonP2 and aging-related changes in the peroxisome. Recently, peroxisome dysfunction has been associated with aging-related diseases indicating that peroxisome maintenance is a critical component of 'healthy aging'. Although mitochondria and peroxisomes are both needed for fatty acid metabolism, little work has focused on understanding the relationship between these two organelles including how age-dependent changes in one organelle may be detrimental for the other. Herein, we summarize findings that establish proteolytic degradation of damaged proteins by the Lon protease as a vital mechanism to maintain protein homeostasis within the peroxisome. Due to the metabolic coordination between peroxisomes and mitochondria, understanding the role of Lon in the aging peroxisome may help to elucidate cellular causes for both peroxisome and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| | - Rachel Raynes
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| |
Collapse
|
31
|
Long B, Muhamad R, Yan G, Yu J, Fan Q, Wang Z, Li X, Purnomoadi A, Achmadi J, Yan X. Quantitative proteomics analysis reveals glutamine deprivation activates fatty acid β-oxidation pathway in HepG2 cells. Amino Acids 2016; 48:1297-307. [PMID: 26837383 DOI: 10.1007/s00726-016-2182-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023]
Abstract
Glutamine, a multifunctional amino acid, functions in nutrient metabolism, energy balance, apoptosis, and cell proliferation. Lipid is an important nutrient and controls a broad range of physiological processes. Previous studies have demonstrated that glutamine can affect lipolysis and lipogenesis, but the effect of glutamine on the detailed lipid metabolism remains incompletely understood. Here, we applied the quantitative proteomics approach to estimate the relative abundance of proteins in HepG2 cells treated by glutamine deprivation. The results showed that there were 212 differentially abundant proteins in response to glutamine deprivation, including 150 significantly increased proteins and 62 significantly decreased proteins. Interestingly, functional classification showed that 43 differentially abundant proteins were related to lipid metabolism. Further bioinformatics analysis and western blotting validation revealed that lipid accumulation may be affected by β-oxidation of fatty acid induced by glutamine deprivation in HepG2 cells. Together, our results may provide the potential for regulating lipid metabolism by glutamine in animal production and human nutrition. The MS data have been deposited to the ProteomeXchange Consortium with identifier PXD003387.
Collapse
Affiliation(s)
- Baisheng Long
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Rodiallah Muhamad
- Faculty of Animal and Agricultural Sciences, Diponegoro University, Tembalang Campus, Semarang, 50275, Central Java, Indonesia
| | - Guokai Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Jie Yu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Qiwen Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhichang Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xiuzhi Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Agung Purnomoadi
- Faculty of Animal and Agricultural Sciences, Diponegoro University, Tembalang Campus, Semarang, 50275, Central Java, Indonesia
| | - Joelal Achmadi
- Faculty of Animal and Agricultural Sciences, Diponegoro University, Tembalang Campus, Semarang, 50275, Central Java, Indonesia
| | - Xianghua Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
32
|
Pinti M, Gibellini L, Liu Y, Xu S, Lu B, Cossarizza A. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci 2015; 72:4807-24. [PMID: 26363553 PMCID: PMC11113732 DOI: 10.1007/s00018-015-2039-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
Lon protease is a nuclear DNA-encoded mitochondrial enzyme highly conserved throughout evolution, involved in the degradation of damaged and oxidized proteins of the mitochondrial matrix, in the correct folding of proteins imported in mitochondria, and in the maintenance of mitochondrial DNA. Lon expression is induced by various stimuli, including hypoxia and reactive oxygen species, and provides protection against cell stress. Lon down-regulation is associated with ageing and with cell senescence, while up-regulation is observed in tumour cells, and is correlated with a more aggressive phenotype of cancer. Lon up-regulation contributes to metabolic reprogramming observed in cancer, favours the switch from a respiratory to a glycolytic metabolism, helping cancer cell survival in the tumour microenvironment, and contributes to epithelial to mesenchymal transition. Silencing of Lon, or pharmacological inhibition of its activity, causes cell death in various cancer cells. Thus, Lon can be included in the growing class of proteins that are not responsible for oncogenic transformation, but that are essential for survival and proliferation of cancer cells, and that can be considered as a new target for development of anticancer drugs.
Collapse
Affiliation(s)
- Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy.
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Yongzhang Liu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shan Xu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Bin Lu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
33
|
Camões F, Islinger M, Guimarães SC, Kilaru S, Schuster M, Godinho LF, Steinberg G, Schrader M. New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:111-25. [DOI: 10.1016/j.bbamcr.2014.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/22/2022]
|
34
|
Abstract
Pex7p is the cytosolic receptor for peroxisomal matrix proteins harbouring PTS2 (peroxisome-targeting signal type-2). Mutations in the PEX7 gene cause RCDP (rhizomelic chondrodysplasia punctata) type 1, a distinct PTS2-import-defective phenotype of peroxisome biogenesis disorders. The mechanisms by which the protein level and quality of Pex7p are controlled remain largely unknown. In the present study we show that dysfunctional Pex7p, including mutants from RCDP patients, is degraded by a ubiquitin-dependent proteasomal pathway involving the CRL4A (Cullin4A-RING ubiquitin ligase) complex. Furthermore, we demonstrate that the degradation of dysfunctional Pex7p is essential for maintaining normal PTS2 import, thereby suggesting that CRL4A functions as an E3 ligase in the quality control of Pex7p. Our results define a mechanism underlying Pex7p homoeostasis and highlight its importance for regulating PTS2 import. These findings may lead to a new approach to Pex7p-based therapies for the treatment of peroxisome biogenesis disorders such as RCDP.
Collapse
|
35
|
Williams C. Going against the flow: A case for peroxisomal protein export. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1386-92. [DOI: 10.1016/j.bbamcr.2014.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
36
|
Yamashita SI, Abe K, Tatemichi Y, Fujiki Y. The membrane peroxin PEX3 induces peroxisome-ubiquitination-linked pexophagy. Autophagy 2014; 10:1549-64. [PMID: 25007327 DOI: 10.4161/auto.29329] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peroxisomes are degraded by a selective type of autophagy known as pexophagy. Several different types of pexophagy have been reported in mammalian cells. However, the mechanisms underlying how peroxisomes are recognized by autophagy-related machinery remain elusive. PEX3 is a peroxisomal membrane protein (PMP) that functions in the import of PMPs into the peroxisomal membrane and has been shown to interact with pexophagic receptor proteins during pexophagy in yeast. Thus, PEX3 is important not only for peroxisome biogenesis, but also for peroxisome degradation. However, whether PEX3 is involved in the degradation of peroxisomes in mammalian cells is unclear. Here, we report that high levels of PEX3 expression induce pexophagy. In PEX3-loaded cells, peroxisomes are ubiquitinated, clustered, and degraded in lysosomes. Peroxisome targeting of PEX3 is essential for the initial step of this degradation pathway. The degradation of peroxisomes is inhibited by treatment with autophagy inhibitors or siRNA against NBR1, which encodes an autophagic receptor protein. These results indicate that ubiquitin- and NBR1-mediated pexophagy is induced by increased expression of PEX3 in mammalian cells. In addition, another autophagic receptor protein, SQSTM1/p62, is required only for the clustering of peroxisomes. Expression of a PEX3 mutant with substitution of all lysine and cysteine residues by arginine and alanine, respectively, also induces peroxisome ubiquitination and degradation, hence suggesting that ubiquitination of PEX3 is dispensable for pexophagy and an endogenous, unidentified peroxisomal protein is ubiquitinated on the peroxisomal membrane.
Collapse
Affiliation(s)
- Shun-ichi Yamashita
- Department of Biology; Faculty of Sciences; Kyushu University Graduate School; Fukuoka, Japan
| | - Kakeru Abe
- Graduate School of Systems Life Sciences; Kyushu University Graduate School; Fukuoka, Japan
| | - Yuki Tatemichi
- Graduate School of Systems Life Sciences; Kyushu University Graduate School; Fukuoka, Japan
| | - Yukio Fujiki
- Department of Biology; Faculty of Sciences; Kyushu University Graduate School; Fukuoka, Japan
| |
Collapse
|
37
|
Nordgren M, Fransen M. Peroxisomal metabolism and oxidative stress. Biochimie 2014; 98:56-62. [DOI: 10.1016/j.biochi.2013.07.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/25/2013] [Indexed: 12/25/2022]
|
38
|
Platta HW, Hagen S, Reidick C, Erdmann R. The peroxisomal receptor dislocation pathway: to the exportomer and beyond. Biochimie 2013; 98:16-28. [PMID: 24345375 DOI: 10.1016/j.biochi.2013.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/05/2013] [Indexed: 12/29/2022]
Abstract
The biogenesis of peroxisomes is an ubiquitin-dependent process. In particular, the import of matrix proteins into the peroxisomal lumen requires the modification of import receptors with ubiquitin. The matrix proteins are synthesized on free polyribosomes in the cytosol and are recognized by import receptors via a peroxisomal targeting sequence (PTS). Subsequent to the transport of the receptor/cargo-complex to the peroxisomal membrane and the release of the cargo into the peroxisomal lumen, the PTS-receptors are exported back to the cytosol for further rounds of matrix protein import. The exportomer represents the molecular machinery required for the retrotranslocation of the PTS-receptors. It comprises enzymes for the ubiquitination as well as for the ATP-dependent extraction of the PTS-receptors from the peroxisomal membrane. Furthermore, recent evidence indicates a mechanistic interconnection of the ATP-dependent removal of the PTS-receptors with the translocation of the matrix protein into the organellar lumen. Interestingly, the components of the peroxisomal exportomer seem also to be involved in cellular tasks that are distinct from the ubiquitination and dislocation of the peroxisomal PTS-receptors. This includes work that indicates a central function of this machinery in the export of peroxisomal matrix proteins in plants, while a subset of exportomer components is involved in the meiocyte formation in some fungi, the peroxisome-chloroplast contact during photorespiration in plants and possibly even the selective degradation of peroxisomes via pexophagy. In this review, we want to discuss the central role of the exportomer during matrix protein import, but also highlight distinct roles of exportomer constituents in additional cellular processes. This article is part of a Special Issue entitled: Peroxisomes: biogenesis, functions and diseases.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Stefanie Hagen
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
39
|
Nie X, Li M, Lu B, Zhang Y, Lan L, Chen L, Lu J. Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics. PLoS One 2013; 8:e81084. [PMID: 24260536 PMCID: PMC3834287 DOI: 10.1371/journal.pone.0081084] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/08/2013] [Indexed: 01/14/2023] Open
Abstract
The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA). However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China ; Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | | | | | | | | | | | | |
Collapse
|
40
|
Farmer LM, Rinaldi MA, Young PG, Danan CH, Burkhart SE, Bartel B. Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. THE PLANT CELL 2013; 25:4085-100. [PMID: 24179123 PMCID: PMC3877801 DOI: 10.1105/tpc.113.113407] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/09/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Peroxisomes house critical metabolic reactions that are essential for seedling development. As seedlings mature, metabolic requirements change, and peroxisomal contents are remodeled. The resident peroxisomal protease LON2 is positioned to degrade obsolete or damaged peroxisomal proteins, but data supporting such a role in plants have remained elusive. Arabidopsis thaliana lon2 mutants display defects in peroxisomal metabolism and matrix protein import but appear to degrade matrix proteins normally. To elucidate LON2 functions, we executed a forward-genetic screen for lon2 suppressors, which revealed multiple mutations in key autophagy genes. Disabling core autophagy-related gene (ATG) products prevents autophagy, a process through which cytosolic constituents, including organelles, can be targeted for vacuolar degradation. We found that atg2, atg3, and atg7 mutations suppressed lon2 defects in auxin metabolism and matrix protein processing and rescued the abnormally large size and small number of lon2 peroxisomes. Moreover, analysis of lon2 atg mutants uncovered an apparent role for LON2 in matrix protein turnover. Our data suggest that LON2 facilitates matrix protein degradation during peroxisome content remodeling, provide evidence for the existence of pexophagy in plants, and indicate that peroxisome destruction via autophagy is enhanced when LON2 is absent.
Collapse
|
41
|
Hasan S, Platta HW, Erdmann R. Import of proteins into the peroxisomal matrix. Front Physiol 2013; 4:261. [PMID: 24069002 PMCID: PMC3781343 DOI: 10.3389/fphys.2013.00261] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/03/2013] [Indexed: 12/03/2022] Open
Abstract
Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.
Collapse
Affiliation(s)
- Sohel Hasan
- Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum Bochum, Germany
| | | | | |
Collapse
|
42
|
Itoyama A, Michiyuki S, Honsho M, Yamamoto T, Moser A, Yoshida Y, Fujiki Y. Mff functions with Pex11pβ and DLP1 in peroxisomal fission. Biol Open 2013; 2:998-1006. [PMID: 24167709 PMCID: PMC3798195 DOI: 10.1242/bio.20135298] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/03/2013] [Indexed: 01/24/2023] Open
Abstract
Peroxisomal division comprises three steps: elongation, constriction, and fission. Translocation of dynamin-like protein 1 (DLP1), a member of the large GTPase family, from the cytosol to peroxisomes is a prerequisite for membrane fission; however, the molecular machinery for peroxisomal targeting of DLP1 remains unclear. This study investigated whether mitochondrial fission factor (Mff), which targets DLP1 to mitochondria, may also recruit DLP1 to peroxisomes. Results show that endogenous Mff is localized to peroxisomes, especially at the membrane-constricted regions of elongated peroxisomes, in addition to mitochondria. Knockdown of MFF abrogates the fission stage of peroxisomal division and is associated with failure to recruit DLP1 to peroxisomes, while ectopic expression of MFF increases the peroxisomal targeting of DLP1. Co-expression of MFF and PEX11β, the latter being a key player in peroxisomal elongation, increases peroxisome abundance. Overexpression of MFF also increases the interaction between DLP1 and Pex11pβ, which knockdown of MFF, but not Fis1, abolishes. Moreover, results show that Pex11pβ interacts with Mff in a DLP1-dependent manner. In conclusion, Mff contributes to the peroxisomal targeting of DLP1 and plays a key role in the fission of the peroxisomal membrane by acting in concert with Pex11pβ and DLP1.
Collapse
Affiliation(s)
- Akinori Itoyama
- Graduate School of Systems Life Sciences, Faculty of Sciences, Kyushu University Graduate School , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 , Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Nordgren M, Wang B, Apanasets O, Fransen M. Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Front Physiol 2013; 4:145. [PMID: 23785334 PMCID: PMC3682127 DOI: 10.3389/fphys.2013.00145] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes are remarkably dynamic organelles that participate in a diverse array of cellular processes, including the metabolism of lipids and reactive oxygen species. In order to regulate peroxisome function in response to changing nutritional and environmental stimuli, new organelles need to be formed and superfluous and dysfunctional organelles have to be selectively removed. Disturbances in any of these processes have been associated with the etiology and progression of various congenital neurodegenerative and age-related human disorders. The aim of this review is to critically explore our current knowledge of how peroxisomes are degraded in mammalian cells and how defects in this process may contribute to human disease. Some of the key issues highlighted include the current concepts of peroxisome removal, the peroxisome quality control mechanisms, the initial triggers for peroxisome degradation, the factors for dysfunctional peroxisome recognition, and the regulation of peroxisome homeostasis. We also dissect the functional and mechanistic relationship between different forms of selective organelle degradation and consider how lysosomal dysfunction may lead to defects in peroxisome turnover. In addition, we draw lessons from studies on other organisms and extrapolate this knowledge to mammals. Finally, we discuss the potential pathological implications of dysfunctional peroxisome degradation for human health.
Collapse
Affiliation(s)
- Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Vlaams-Brabant, Belgium
| | | | | | | |
Collapse
|
44
|
Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 2013; 70:1393-411. [PMID: 22983384 PMCID: PMC11113987 DOI: 10.1007/s00018-012-1136-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.
Collapse
Affiliation(s)
- Harald W. Platta
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Stefanie Hagen
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
45
|
Mizuno Y, Ninomiya Y, Nakachi Y, Iseki M, Iwasa H, Akita M, Tsukui T, Shimozawa N, Ito C, Toshimori K, Nishimukai M, Hara H, Maeba R, Okazaki T, Alodaib ANA, Amoudi MA, Jacob M, Alkuraya FS, Horai Y, Watanabe M, Motegi H, Wakana S, Noda T, Kurochkin IV, Mizuno Y, Schönbach C, Okazaki Y. Tysnd1 deficiency in mice interferes with the peroxisomal localization of PTS2 enzymes, causing lipid metabolic abnormalities and male infertility. PLoS Genet 2013; 9:e1003286. [PMID: 23459139 PMCID: PMC3573110 DOI: 10.1371/journal.pgen.1003286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/12/2012] [Indexed: 12/03/2022] Open
Abstract
Peroxisomes are subcellular organelles involved in lipid metabolic processes, including those of very-long-chain fatty acids and branched-chain fatty acids, among others. Peroxisome matrix proteins are synthesized in the cytoplasm. Targeting signals (PTS or peroxisomal targeting signal) at the C-terminus (PTS1) or N-terminus (PTS2) of peroxisomal matrix proteins mediate their import into the organelle. In the case of PTS2-containing proteins, the PTS2 signal is cleaved from the protein when transported into peroxisomes. The functional mechanism of PTS2 processing, however, is poorly understood. Previously we identified Tysnd1 (Trypsin domain containing 1) and biochemically characterized it as a peroxisomal cysteine endopeptidase that directly processes PTS2-containing prethiolase Acaa1 and PTS1-containing Acox1, Hsd17b4, and ScpX. The latter three enzymes are crucial components of the very-long-chain fatty acids β-oxidation pathway. To clarify the in vivo functions and physiological role of Tysnd1, we analyzed the phenotype of Tysnd1(-/-) mice. Male Tysnd1(-/-) mice are infertile, and the epididymal sperms lack the acrosomal cap. These phenotypic features are most likely the result of changes in the molecular species composition of choline and ethanolamine plasmalogens. Tysnd1(-/-) mice also developed liver dysfunctions when the phytanic acid precursor phytol was orally administered. Phyh and Agps are known PTS2-containing proteins, but were identified as novel Tysnd1 substrates. Loss of Tysnd1 interferes with the peroxisomal localization of Acaa1, Phyh, and Agps, which might cause the mild Zellweger syndrome spectrum-resembling phenotypes. Our data established that peroxisomal processing protease Tysnd1 is necessary to mediate the physiological functions of PTS2-containing substrates.
Collapse
Affiliation(s)
- Yumi Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yuichi Ninomiya
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yutaka Nakachi
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Mioko Iseki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Hiroyasu Iwasa
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Masumi Akita
- Division of Morphological Science, Biomedical Research Center, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Tohru Tsukui
- Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Chizuru Ito
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyotaka Toshimori
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Megumi Nishimukai
- Laboratory of Nutritional Biochemistry, Research Group of Food Science, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroshi Hara
- Laboratory of Nutritional Biochemistry, Research Group of Food Science, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryouta Maeba
- Department of Biochemistry, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Ali Nasser Ali Alodaib
- Developmental Genetics Department, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- The National Newborn Screening Laboratory, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Al Amoudi
- Developmental Genetics Department, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- The National Newborn Screening Laboratory, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Minnie Jacob
- Developmental Genetics Department, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- The National Newborn Screening Laboratory, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Fowzan S. Alkuraya
- Developmental Genetics Department, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Yasushi Horai
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Mitsuhiro Watanabe
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
- Graduate School of Media and Governance, Keio University, Tokyo, Japan
- Faculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Hiromi Motegi
- Team for Advanced Development and Evaluation of Human Disease Models, Japan Mouse Clinic, BioResource Center (BRC), Tsukuba, Ibaraki, Japan
| | - Shigeharu Wakana
- The Japan Mouse Clinic, RIKEN BioResource Center (BRC), Tsukuba, Ibaraki, Japan
| | - Tetsuo Noda
- Team for Advanced Development and Evaluation of Human Disease Models, Japan Mouse Clinic, BioResource Center (BRC), Tsukuba, Ibaraki, Japan
- The Cancer Institute of the Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Igor V. Kurochkin
- Genome and Gene Expression Data Analysis Division, Bioinformatics Institute, A*STAR, Singapore, Republic of Singapore
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Christian Schönbach
- Division of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| |
Collapse
|
46
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
47
|
Faust JE, Verma A, Peng C, McNew JA. An inventory of peroxisomal proteins and pathways in Drosophila melanogaster. Traffic 2012; 13:1378-92. [PMID: 22758915 PMCID: PMC3443258 DOI: 10.1111/j.1600-0854.2012.01393.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
Peroxisomes are ubiquitous organelles housing a variety of essential biochemical pathways. Peroxisome dysfunction causes a spectrum of human diseases known as peroxisome biogenesis disorders (PBD). Although much is known regarding the mechanism of peroxisome biogenesis, it is still unclear how peroxisome dysfunction leads to the disease state. Several recent studies have shown that mutations in Drosophila peroxin genes cause phenotypes similar to those seen in humans with PBDs suggesting that Drosophila might be a useful system to model PBDs. We have analyzed the proteome of Drosophila to identify the proteins involved in peroxisomal biogenesis and homeostasis as well as metabolic enzymes that function within the organelle. The subcellular localization of five of these predicted peroxisomal proteins was confirmed. Similar to Caenorhabditis elegans, Drosophila appears to only utilize the peroxisome targeting signal type 1 system for matrix protein import. This work will further our understanding of peroxisomes in Drosophila and add to the usefulness of this emerging model system.
Collapse
Affiliation(s)
- Joseph E. Faust
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS601, Houston, TX 77005
| | - Avani Verma
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS601, Houston, TX 77005
| | - Chengwei Peng
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS601, Houston, TX 77005
| | - James A. McNew
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS601, Houston, TX 77005
| |
Collapse
|
48
|
Bartoszewska M, Williams C, Kikhney A, Opaliński Ł, van Roermund CWT, de Boer R, Veenhuis M, van der Klei IJ. Peroxisomal proteostasis involves a Lon family protein that functions as protease and chaperone. J Biol Chem 2012; 287:27380-95. [PMID: 22733816 DOI: 10.1074/jbc.m112.381566] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins are subject to continuous quality control for optimal proteostasis. The knowledge of peroxisome quality control systems is still in its infancy. Here we show that peroxisomes contain a member of the Lon family of proteases (Pln). We show that Pln is a heptameric protein and acts as an ATP-fueled protease and chaperone. Hence, Pln is the first chaperone identified in fungal peroxisomes. In cells of a PLN deletion strain peroxisomes contain protein aggregates, a major component of which is catalase-peroxidase. We show that this enzyme is sensitive to oxidative damage. The oxidatively damaged, but not the native protein, is a substrate of the Pln protease. Cells of the pln strain contain enhanced levels of catalase-peroxidase protein but reduced catalase-peroxidase enzyme activities. Together with the observation that Pln has chaperone activity in vitro, our data suggest that catalase-peroxidase aggregates accumulate in peroxisomes of pln cells due to the combined absence of Pln protease and chaperone activities.
Collapse
Affiliation(s)
- Magdalena Bartoszewska
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, P. O. Box 11103, 9700CC Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
The influence of ATP-dependent proteases on a variety of nucleoid-associated processes. J Struct Biol 2012; 179:181-92. [PMID: 22683345 DOI: 10.1016/j.jsb.2012.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 01/07/2023]
Abstract
ATP-dependent proteases are crucial components of all living cells and are involved in a variety of responses to physiological and environmental changes. Nucleoids are dynamic nucleoprotein complexes present in bacteria and eukaryotic organelles (mitochondria and plastids) and are the place where the majority of cellular responses to stress begin. These structures are actively remodeled in reaction to changing environmental and physiological conditions. The levels of nucleoid protein components (e.g. DNA-stabilizing proteins, transcription factors, replication proteins) therefore have to be continually regulated. ATP-dependent proteases have all the characteristics needed to fulfill this requirement. Some of them bind nucleic acids, but above all, they control and maintain the level of many DNA-binding proteins. In this review we will discuss the roles of the Lon, ClpAP, ClpXP, HslUV and FtsH proteases in the maintenance, stability, transcription and repair of DNA in eubacterial and mitochondrial nucleoids.
Collapse
|
50
|
The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+. Biochem J 2012; 443:241-7. [PMID: 22185573 DOI: 10.1042/bj20111420] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The essential cofactors CoA, FAD and NAD+ are synthesized outside the peroxisomes and therefore must be transported into the peroxisomal matrix where they are required for important processes. In the present study we have functionally identified and characterized SLC25A17 (solute carrier family 25 member 17), which is the only member of the mitochondrial carrier family that has previously been shown to be localized in the peroxisomal membrane. Recombinant and purified SLC25A17 was reconstituted into liposomes. Its transport properties and kinetic parameters demonstrate that SLC25A17 is a transporter of CoA, FAD, FMN and AMP, and to a lesser extent of NAD+, PAP (adenosine 3',5'-diphosphate) and ADP. SLC25A17 functioned almost exclusively by a counter-exchange mechanism, was saturable and was inhibited by pyridoxal 5'-phosphate and other mitochondrial carrier inhibitors. It was expressed to various degrees in all of the human tissues examined. Its main function is probably to transport free CoA, FAD and NAD+ into peroxisomes in exchange for intraperoxisomally generated PAP, FMN and AMP. The present paper is the first report describing the identification and characterization of a transporter for multiple free cofactors in peroxisomes.
Collapse
|