1
|
Kim J, Lim CM, Kim N, Kim HG, Hong JT, Yang Y, Yoon DY. Mutated IL-32θ (A94V) inhibits COX2, GM-CSF and CYP1A1 through AhR/ARNT and MAPKs/NF-κB/AP-1 in keratinocytes exposed to PM 10. Sci Rep 2025; 15:1994. [PMID: 39814789 PMCID: PMC11735608 DOI: 10.1038/s41598-024-83159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025] Open
Abstract
Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter's (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory responses. This study revealed that one-point mutated IL-32θ (A94V) plays an important role in attenuating skin inflammation. IL-32θ (A94V) inhibited PM-induced COX-2, a pro-inflammatory cytokine GM-CSF and CYP1A1 in PM-exposed human keratinocytes HaCaT cells. IL-32θ (A94V) modulating effects were mediated via down-regulating ERK/p38/NF-κB/ AP-1 and AhR/ARNT signaling pathways. Our study indicates that PM triggers skin inflammation by upregulating COX-2, GM-CSF and CYP1A1 expression. IL-32θ (A94V) suppresses the expressions of COX-2, GM-CSF, and CYP1A1 by blocking the nuclear translocation of NF-κB and AP-1, as well as inhibiting the activation of the AhR/ARNT signaling pathway. Our findings offer valuable insights into developing therapeutic strategies and potential drugs to mitigate PM-induced skin inflammation by inhibiting the ERK/p38/NF-κB/AP-1 and AhR/ARNT signaling pathways.
Collapse
Affiliation(s)
- Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Nahyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hong-Gyum Kim
- Boson Bioscience, Cheongju, 28161, Chungbuk, Republic of Korea
| | - Jin-Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Young Yang
- Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Park HM, Park JY, Kim NY, Kim J, Pham TH, Hong JT, Yoon DY. Modulatory effects of point-mutated IL-32θ (A94V) on tumor progression in triple-negative breast cancer cells. Biofactors 2024; 50:294-310. [PMID: 37658685 DOI: 10.1002/biof.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Breast cancer is a frequently diagnosed cancer and the leading cause of death among women worldwide. Tumor-associated macrophages stimulate cytokines and chemokines, which induce angiogenesis, metastasis, proliferation, and tumor-infiltrating immune cells. Although interleukin-32 (IL-32) has been implicated in the development and modulation of several cancers, its function in breast cancer remains elusive. Mutation of interleukin-32θ (IL-32θ) in the tissues of patients with breast cancer was detected by Sanger sequencing. RT-qPCR was used to detect the mRNA levels of inflammatory cytokines, chemokines, and mediators. The secreted proteins were detected using respective enzyme-linked immunosorbent assays. Evaluation of the inhibitory effect of mutant IL-32θ on proliferation, migration, epithelial-mesenchymal transition (EMT), and cell cycle arrest in breast cancer cells was conducted using MTS assays, migration assays, and Western blotting. A point mutation (281C>T, Ala94Val) was detected in IL-32θ in both breast tumors and adjacent normal tissues, which suppressed the expression of pro-inflammatory factors, EMT factors, and cell cycle related factors. Mutated IL-32θ inhibited the expression of inflammatory factors by regulating the NF-κB pathway. Furthermore, mutated IL-32θ suppressed EMT markers and cell cycle related factors through the FAK/PI3K/AKT pathway. It was inferred that mutated IL-32θ modulates breast cancer progression. Mutated IL-32θ (A94V) inhibited inflammation, EMT, and proliferation in breast cancer by regulating the NF-κB (p65/p50) and FAK-PI3K-GSK3 pathways.
Collapse
Affiliation(s)
- Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jae-Young Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Meng D, Dong H, Wang C, Zang R, Wang J. Role of interleukin‑32 in cancer progression (Review). Oncol Lett 2024; 27:54. [PMID: 38192653 PMCID: PMC10773214 DOI: 10.3892/ol.2023.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024] Open
Abstract
Interleukin (IL)-32 is induced by pro-inflammatory cytokines and promotes the release of inflammatory cytokines. Therefore, it can promote inflammatory responses. The present review article summarized the role of the receptors required for IL-32 action, the biological function of IL-32 and its mechanism of action in tumors. Moreover, it assessed the significance of aberrant IL-32 expression in associated diseases and analyzed the effects of IL-32 on four key types of cancer: Colorectal, gastric, breast and lung. However, the mechanism of action of IL-32 needs to be further demonstrated by assessing the role of this cytokine in cancer to elucidate novel and reliable targets for future cancer treatments.
Collapse
Affiliation(s)
- Danyang Meng
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Hang Dong
- Department of Hematology, Shenzhen Yantian District People's Hospital, Shenzhen, Guangdong 518081, P.R. China
| | - Chennan Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Rongjia Zang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Jianjie Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
4
|
Park JY, Park HM, Kim S, Jeon KB, Lim CM, Hong JT, Yoon DY. Human IL-32θA94V mutant attenuates monocyte-endothelial adhesion by suppressing the expression of ICAM-1 and VCAM-1 via binding to cell surface receptor integrin αVβ3 and αVβ6 in TNF-α-stimulated HUVECs. Front Immunol 2023; 14:1160301. [PMID: 37228610 PMCID: PMC10203490 DOI: 10.3389/fimmu.2023.1160301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Interleukin-32 (IL-32), first reported in 2005, and its isoforms have been the subject of numerous studies investigating their functions in virus infection, cancer, and inflammation. IL-32θ, one of the IL-32 isoforms, has been shown to modulate cancer development and inflammatory responses. A recent study identified an IL-32θ mutant with a cytosine to thymine replacement at position 281 in breast cancer tissues. It means that alanine was also replaced to valine at position 94 in amino acid sequence (A94V). In this study, we investigated the cell surface receptors of IL-32θA94V and evaluated their effect on human umbilical vein endothelial cells (HUVECs). Recombinant human IL-32θA94V was expressed, isolated, and purified using Ni-NTA and IL-32 mAb (KU32-52)-coupled agarose columns. We observed that IL-32θA94V could bind to the integrins αVβ3 and αVβ6, suggesting that integrins act as cell surface receptors for IL-32θA94V. IL-32θA94V significantly attenuated monocyte-endothelial adhesion by inhibiting the expression of Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor (TNF)-α-stimulated HUVECs. IL-32θA94V also reduced the TNF-α-induced phosphorylation of protein kinase B (AKT) and c-jun N-terminal kinases (JNK) by inhibiting phosphorylation of focal adhesion kinase (FAK). Additionally, IL-32θA94V regulated the nuclear translocation of nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which are involved in ICAM-1 and VCAM-1 expression. Monocyte-endothelial adhesion mediated by ICAM-1 and VCAM-1 is an important early step in atherosclerosis, which is a major cause of cardiovascular disease. Our findings suggest that IL-32θA94V binds to the cell surface receptors, integrins αVβ3 and αVβ6, and attenuates monocyte-endothelial adhesion by suppressing the expression of ICAM-1 and VCAM-1 in TNF-α-stimulated HUVECs. These results demonstrate that IL-32θA94V can act as an anti-inflammatory cytokine in a chronic inflammatory disease such as atherosclerosis.
Collapse
Affiliation(s)
- Jae-Young Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seonhwa Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Kyeong-Bae Jeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Hough JT, Zhao L, Lequio M, Heslin AJ, Xiao H, Lewis CC, Zhang J, Bai Q, Wakefield MR, Fang Y. IL-32 and its Paradoxical Role in Neoplasia. Crit Rev Oncol Hematol 2023; 186:104011. [PMID: 37105370 DOI: 10.1016/j.critrevonc.2023.104011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Interleukin-32 (IL-32) is an interleukin cytokine usually linked to inflammation. In recent years, it has been found that IL-32 exhibits both pro- and anti-tumor effects. Although most of those effects from IL-32 appear to favor tumor growth, some isoforms have shown to favor tumor suppression. This suggests that the role of IL-32 in neoplasia is very complex. Thus, the role of IL-32 in these various cancers and protein pathways makes it a very crucial component to consider when looking at potential therapeutic options in tumor treatment. In this review, we will explore what is currently known about IL-32, including its relationship with tumorigenesis and the potential for IL-32 to enhance local and systemic anti-tumor immune responses. Such a study might be helpful to accelerate the development of IL-32-based immunotherapies.
Collapse
Affiliation(s)
- Jacob T Hough
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, 50312; Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Lei Zhao
- The Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Marco Lequio
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Aidan J Heslin
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, 50312; Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902
| | - Cade C Lewis
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Justin Zhang
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, 50312; Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212.
| |
Collapse
|
6
|
Numasaki M, Ito K, Takagi K, Nagashima K, Notsuda H, Ogino H, Ando R, Tomioka Y, Suzuki T, Okada Y, Nishioka Y, Unno M. Diverse and divergent functions of IL-32β and IL-32γ isoforms in the regulation of malignant pleural mesothelioma cell growth and the production of VEGF-A and CXCL8. Cell Immunol 2023; 383:104652. [PMID: 36516653 DOI: 10.1016/j.cellimm.2022.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
In this study, we sought to elucidate the roles of the interleukin (IL)-32β and IL-32γ in mesothelioma cell growth, and vascular endothelial growth factor (VEGF)-A and C-X-C motif chemokine ligand 8 (CXCL8) expression. IL-32 elicited a growth-promoting effect against one of the six mesotheliomas lines and exerted diverse regulatory functions in VEGF-A and CXCL8 secretion from mesotheliomas stimulated with or without IL-17A. Retroviral-mediated transduction of mesothelioma lines with IL-32γ resulted in enhanced IL-32β expression, which facilitated or suppressed the in vitro growth, and VEGF-A and CXCL8 expression. Overexpressed IL-32β-augmented growth and VEGF-A and CXCL8 production were mainly mediated through the phosphatidylinositol-3 kinase (PI3K) signaling pathway. On the other hand, overexpressed IL-32β-deceased growth was mediated through mitogen-activated protein kinase (MAPK) pathway. NCI-H2373IL-32γ tumors grew faster than NCI-H2373Neo tumors in a xenograft model, which was associated with increased vascularity. These findings indicate that IL-32 are involved in the regulation of growth and angiogenic factor production in mesotheliomas.
Collapse
Affiliation(s)
- Muneo Numasaki
- Laboratory of Clinical Science and Biomedicine, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan; Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan; Laboratory of Clinical Science and Biomedicine, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Koyu Ito
- Department of Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Tokyo, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Rika Ando
- Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Cayrol F, Revuelta MV, Debernardi M, Paulazo A, Phillip JM, Zamponi N, Sterle HA, Díaz Flaqué MC, Magro CM, Marullo R, Mulvey E, Ruan J, Cremaschi GA, Cerchietti L. Inhibition of integrin αVβ3 signaling improves the antineoplastic effect of bexarotene in cutaneous T-cell lymphoma. Mol Cancer Ther 2022; 21:1485-1496. [PMID: 35793463 DOI: 10.1158/1535-7163.mct-22-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Bexarotene is a specific RXR agonist that has been used for the treatment of cutaneous T-cell lymphoma (CTCL). Since bexarotene causes hypothyroidism, it requires the administration of levothyroxine. However, levothyroxine, in addition to its ubiquitous nuclear receptors, can activate the αVβ3 integrin that is overexpressed in CTCL, potentially interfering the antineoplastic effect of bexarotene. We thus investigated the biological effect of levothyroxine in relation to bexarotene treatment. Although in isolated CTCL cells levothyroxine decreased, in an αVβ3 -dependent manner, the antineoplastic effect of bexarotene; levothyroxine supplementation in pre-clinical models was necessary to avoid suppression of lymphoma immunity. Accordingly, selective genetic and pharmacologic inhibition of integrin αVβ3 3 improved the antineoplastic effect of bexarotene plus levothyroxine replacement while maintaining lymphoma immunity. Our results provide a mechanistic rationale for clinical testing of integrin αVβ3 inhibitors as part of CTCL regimens based on bexarotene administration.
Collapse
Affiliation(s)
- Florencia Cayrol
- Instituto de Investigaciones Biomédicas (BIOMED)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | | | - Mercedes Debernardi
- Instituto de Investigaciones Biomédicas (BIOMED)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Católica Argentina (UCA), Buenos Aires, CABA, Argentina
| | - Alejandra Paulazo
- Instituto de Investigaciones Biomédicas (BIOMED)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Jude M Phillip
- Johns Hopkins University, Baltimore, Maryland, United States
| | - Nahuel Zamponi
- Weill Cornell Medical College and New York Presbyterian Hospital, New York, New York, United States
| | - Helena A Sterle
- Instituto de Investigaciones Biomédicas (BIOMED)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Maria C Díaz Flaqué
- Instituto de Investigaciones Biomédicas (BIOMED)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Cynthia M Magro
- Weill Medical College of Cornell University, New York, New York, United States
| | | | - Erin Mulvey
- Weill Cornell Medical College and New York Presbyterian Hospital, New York, New York, United States
| | - Jia Ruan
- Weill Cornell Medicine, New York, New York, United States
| | - Graciela A Cremaschi
- Instituto de Investigaciones Biomédicas (BIOMED)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Leandro Cerchietti
- Weill Cornell Medical College and New York Presbyterian Hospital, New York, New York, United States
| |
Collapse
|
8
|
Extracellular vesicle IL-32 promotes the M2 macrophage polarization and metastasis of esophageal squamous cell carcinoma via FAK/STAT3 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:145. [PMID: 35428295 PMCID: PMC9013041 DOI: 10.1186/s13046-022-02348-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/26/2022] [Indexed: 01/02/2023]
Abstract
Background Metastasis is the leading cause of mortality in human cancers, including esophageal squamous cell carcinoma (ESCC). As a pro-inflammatory cytokine, IL-32 was reported to be a poor prognostic factor in many cancers. However, the role of IL-32 in ESCC metastasis remains unknown. Methods ESCC cells with ectopic expression or knockdown of IL-32 were established and their effects on cell motility were detected. Ultracentrifugation, Transmission electron microscopy and Western blot were used to verify the existence of extracellular vesicle IL-32 (EV-IL-32). Coculture assay, immunofluorescence, flow cytometry, and in vivo lung metastasis model were performed to identify how EV-IL-32 regulated the crosstalk between ESCC cells and macrophages. Results Here, we found that IL-32 was overexpressed and positively correlated to lymph node metastasis of ESCC. IL-32 was significantly higher in the tumor nest compared with the non-cancerous tissue. We found that IL-32β was the main isoform and loaded in EV derived from ESCC cells. The shuttling of EV-IL-32 derived from ESCC cells into macrophages could promote the polarization of M2 macrophages via FAK-STAT3 pathway. IL-32 overexpression facilitated lung metastasis and was positively correlated with the proportion of M2 macrophages in tumor microenvironment. Conclusions Taken together, our results indicated that EV-IL-32 derived from ESCC cell line could be internalized by macrophages and lead to M2 macrophage polarization via FAK-STAT3 pathway, thus promoting the metastasis of ESCC. These findings indicated that IL-32 could serve as a potential therapeutic target in patients with ESCC. Supplementary information The online version contains supplementary material available at 10.1186/s13046-022-02348-8.
Collapse
|
9
|
Ribeiro-Dias F, Oliveira I. A Critical Overview of Interleukin 32 in Leishmaniases. Front Immunol 2022; 13:849340. [PMID: 35309341 PMCID: PMC8927017 DOI: 10.3389/fimmu.2022.849340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022] Open
Abstract
Interleukin-32 (IL-32) has several immune regulatory properties, which have driven its investigation in the context of various diseases. IL-32 expression is reported to be induced in the lesions of patients with American tegumentary leishmaniasis (ATL) by the New World Leishmania spp. that are responsible for causing ATL and visceral leishmaniasis (VL). IL-32 expression may elevate the inflammatory process through the induction of pro-inflammatory cytokines and also via mechanisms directed to kill the parasites. The genetic variants of IL-32 might be associated with the resistance or susceptibility to ATL, while different isoforms of IL-32 could be associated with distinct T helper lymphocyte profiles. IL-32 also determines the transcriptional profile in the bone marrow progenitor cells to mediate the trained immunity induced by β-glucan and BCG, thereby contributing to the resistance against Leishmania. IL-32γ is essential for the vitamin D-dependent microbicidal pathway for parasite control. In this context, the present review report briefly discusses the data retrieved from the studies conducted on IL-32 in leishmaniasis in humans and mice to highlight the current challenges to understanding the role of IL-32 in leishmaniasis.
Collapse
Affiliation(s)
- Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
10
|
Shim S, Lee S, Hisham Y, Kim S, Nguyen TT, Taitt AS, Hwang J, Jhun H, Park HY, Lee Y, Yeom SC, Kim SY, Kim YG, Kim S. Comparison of the Seven Interleukin-32 Isoforms’ Biological Activities: IL-32θ Possesses the Most Dominant Biological Activity. Front Immunol 2022; 13:837588. [PMID: 35281066 PMCID: PMC8914309 DOI: 10.3389/fimmu.2022.837588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Cytokines are significantly associated with the homeostasis of immune responses in health and disease. Interleukin-32 (IL-32) is a cytokine originally discovered in natural killer cell transcript 4. IL-32 with different disorders has been described in terms of pathogenesis and the progression of diseases. Clinical studies have investigated IL-32 under various conditions, such as viral infection, autoimmune diseases, inflammatory diseases, certain types of cancer, vascular disease, and pulmonary diseases. The high expression of IL-32 was identified in different tissues with various diseases and found to have multiple transcripts of up to seven isoforms. However, the purification and biological activities of these isoforms have not been investigated yet. Therefore, in this study, we purified and compared the biological activity of recombinant IL-32 (rIL-32) isoforms. This is the first time for seven rIL-32 isoforms (α, β, δ, γ, ϵ, ζ, and θ) to be cloned and purified using an Escherichia coli expression system. Next, we evaluate the biological activities of these seven rIL-32 isoforms, which were used to treat different types of cells by assessing the levels of inflammatory cytokine production. The results revealed that rIL-32θ possessed the most dominant biological activity in both immune and non-immune cells.
Collapse
Affiliation(s)
- Saerok Shim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Siyoung Lee
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Yasmin Hisham
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Sinae Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Tam T. Nguyen
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Afeisha S. Taitt
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Jihyeong Hwang
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, Wanju, South Korea
| | - Ho-Young Park
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, South Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, Collage of Medicine, Inje University, Busan, South Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- *Correspondence: Yong-Gil Kim, ; Soohyun Kim,
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- *Correspondence: Yong-Gil Kim, ; Soohyun Kim,
| |
Collapse
|
11
|
Prognostic Value of Interleukin-32 Expression and Its Correlation with the Infiltration of Natural Killer Cells in Cutaneous Melanoma. J Clin Med 2021; 10:jcm10204691. [PMID: 34682815 PMCID: PMC8538574 DOI: 10.3390/jcm10204691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin-32 (IL-32) is well known as a proinflammatory cytokine that is expressed in various immune cells and cancers. However, the clinical relevance of IL-32 expression in cutaneous melanoma has not been comprehensively studied. Here, we identified the prognostic value of IL32 expression using various systematic multiomic analyses. The IL32 expressions were significantly higher in cutaneous melanoma than in normal tissue, and Kaplan-Meier survival analysis showed a correlation between IL32 expression and good prognosis in cutaneous melanoma patients. In addition, we analyzed the correlation between IL32 expression and the infiltration of natural killer (NK) cells to identify a relevant mechanism between IL32 expression and prognosis in cutaneous melanoma (p = 0.00031). In the relationship between IL32 expression and the infiltration of NK cells, a negative correlation was found in resting NK cells (rho = -0.38, p = 3.95 × 10-17) whereas a strong positive correlation was observed only in active NK cells (rho = 0.374, p = 1.23 × 10-16). Moreover, IL32 expression was markedly positively correlated with the cytolytic molecules, such as granzyme and perforin. These data suggest that IL32 expression may increase patient survival through the infiltration and activation of NK cells, representative anticancer effector cells, in cutaneous melanoma. Collectively, this study provides the prognostic value of IL32 expression and its potential role as an effective predictive biomarker for NK cell infiltration in cutaneous melanoma.
Collapse
|
12
|
Boreika R, Sitkauskiene B. Interleukin-32 in Pathogenesis of Atopic Diseases: Proinflammatory or Anti-Inflammatory Role? J Interferon Cytokine Res 2021; 41:235-243. [PMID: 34280028 DOI: 10.1089/jir.2020.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Atopic diseases, such as atopic dermatitis (AD), allergic asthma (AA), and allergic rhinitis (AR), are increasingly becoming a worldwide issue. This atopic triad originates at an early age and on a multifactorial basis, causing significant discomfort to susceptible individuals. The global case number is now reaching new highs, so exploring immune system regulation and its components is becoming critical. One cytokine, interleukin-32 (IL-32), is involved in inflammation and regulation of the immune system. It has nine isoforms that show varying degrees of expression, both intracellularly and extracellularly. IL-32 is secreted by immune cells, such as monocytes, macrophages, natural killer cells, and T cells, and by nonimmune cells, including fibroblasts, keratinocytes, and endothelial cells. Its production is regulated and augmented by microorganisms, mitogens, and other cytokines. Early studies demonstrated that IL-32 was an immune regulator that functioned to protect against inflammatory diseases, including AD, AA, and AR, and proposed a proinflammatory role for IL-32 in immune regulation and symptom exacerbation. However, several later reports suggested that IL-32 is downregulated in inflammatory diseases and exerts an anti-inflammatory effect. This review article focuses on recent findings regarding the detrimental and protective roles of IL-32 in development and management of inflammatory diseases. The exact role of IL-32 in AD, AA, and AR still remains to be elucidated. Future research should explore new avenues of IL-32 functionality in human inflammatory diseases.
Collapse
Affiliation(s)
- Rytis Boreika
- Department of Immunology and Allergology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
13
|
IL32: The multifaceted and unconventional cytokine. Hum Immunol 2021; 82:659-667. [PMID: 34024634 DOI: 10.1016/j.humimm.2021.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Interleukin 32 is a unique intracellular cytokine which affects many cellular and physiological functions like cell death and survival, inflammation and response to pathogens. With numerous transcripts, more than one biologically active isoforms, IL32 drives its effect in diverse cellular functions. A cytokine restricted to higher mammals, it is known to fine tune multiple pathways involved in metabolic processes or infection. It modulates the immune response against diverse pathogens like Leishmania, Mycobacterium and HIV. IL32 has been associated with cancers of inflammatory nature too. It also plays an important role in chronic inflammatory diseases like RA, lung and airway disease like COPD. In this review we have discussed about identification and characterization of this non classical cytokine IL32, its structure and function at gene as well as at protein level, isoforms and their diverse functions. Role of IL32 in multiple diseases and particularly mycobacterial disease has been highlighted here. We have also summarised the genetic variants present in the IL32 gene and it's promoter region. Association of these variants, with cellular phenotype, patho-physiological conditions in different disease have also been discussed here.
Collapse
|
14
|
Placenta-derived IL-32β activates neutrophils to promote preeclampsia development. Cell Mol Immunol 2021; 18:979-991. [PMID: 33707686 PMCID: PMC8115232 DOI: 10.1038/s41423-021-00636-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/03/2021] [Indexed: 12/16/2022] Open
Abstract
Immune activation at the maternal-fetal interface is a main pathogenic factor of preeclampsia (PE). Neutrophils (PMNs) are activated in PE patients, but the mechanism and consequences of PMN activation need to be further explored. Here, we demonstrated that interleukin-32 (IL-32) expression was significantly upregulated in syncytiotrophoblasts (STBs) and that IL-32β was the major isoform with increased expression in the placenta of severe PE (sPE) patients. Furthermore, the level of IL-32 expression in the placenta was correlated with its level in the serum of sPE patients, indicating that IL-32 in the serum is derived mainly from the placenta. Then, in vitro experiments showed that IL-32β could highly activate PMNs and that these IL-32β-activated PMNs were better able to adhere to endothelial cells (HUVECs) and enhance the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) in HUVECs, which could be reversed by preincubation with the NADPH oxidase inhibitor VAS 2870. In addition, we showed that IL-32β mainly activated PMNs by binding to proteinase 3. Finally, IL-32β administration induced a PE-like phenotype in a pregnant mouse model. This study provides evidence of the involvement of IL-32β in the pathogenesis of PE.
Collapse
|
15
|
de Albuquerque R, Komsi E, Starskaia I, Ullah U, Lahesmaa R. The role of Interleukin-32 in autoimmunity. Scand J Immunol 2021; 93:e13012. [PMID: 33336406 DOI: 10.1111/sji.13012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 01/10/2023]
Abstract
Interleukin-32 (IL-32) is a pro-inflammatory cytokine that induces other cytokines involved in inflammation, including tumour necrosis factor (TNF)-α, IL-6 and IL-1β. Recent evidence suggests that IL-32 has a crucial role in host defence against pathogens, as well as in the pathogenesis of chronic inflammation. Abnormal IL-32 expression has been linked to several autoimmune diseases, such as rheumatoid arthritis and inflammatory bowel diseases, and a recent study suggested the importance of IL-32 in the pathogenesis of type 1 diabetes. However, despite accumulating evidence, many molecular characteristics of this cytokine, including the secretory route and the receptor for IL-32, remain largely unknown. In addition, the IL-32 gene is found in higher mammals but not in rodents. In this review, we outline the current knowledge of IL-32 biological functions, properties, and its role in autoimmune diseases. We particularly highlight the role of IL-32 in rheumatoid arthritis and type 1 diabetes.
Collapse
Affiliation(s)
- Rafael de Albuquerque
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elina Komsi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ubaid Ullah
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
16
|
Interleukin 32: A novel player in perioperative neurocognitive disorders. Med Hypotheses 2020; 144:110158. [PMID: 33254483 DOI: 10.1016/j.mehy.2020.110158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/26/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
Perioperative neurocognitive disorders (PND) are highly prevalent after surgery, especially in aged patients. PND results in long-term morbidity and mortality with unclear pathophysiologic mechanisms. As a key hallmark of PND, surgery-induced neuroinflammation resulted from the invading of exogenous tracers into the cerebral parenchyma, causing hippocampal neuroinflammation and cognitive impairment. IL-32, with different isoforms, played a significant regulatory role in various inflammatory diseases. Its prevalence in peripheral circulating blood was closely associated with the central nervous system (CNS) diseases. Beyond that, specific subtype of IL-32 was reported to involve in the neuroinflammation regulation in cerebral ischemia impairment, multiple sclerosis, Alzheimer's Disease, and so on. Thus, we speculate that IL-32 may participate in the regulation of the surgery-induced neuroinflammation during the parthenogenesis of PND. The isoforms, spatio-temporal regulation of IL-32 may determine its pro- or anti-inflammation properties in parthenogenesis of PND. Therefore, IL-32 could be a putative therapeutic target for the prevention and reversal of PND in the future.
Collapse
|
17
|
Associations between Interleukin-32 Gene Polymorphisms rs12934561 and rs28372698 and Susceptibilities to Bladder Cancer and the Prognosis in Chinese Han Population. DISEASE MARKERS 2020; 2020:8860445. [PMID: 33204366 PMCID: PMC7661138 DOI: 10.1155/2020/8860445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 10/24/2020] [Indexed: 02/05/2023]
Abstract
The proinflammatory chemokine interleukin-32 is related to various diseases, including cancer. However, it has never been associated with bladder cancer (BC). To detect whether there is a relationship between the IL-32 gene polymorphisms (rs12934561 C/T and rs28372698 T/A) and BC, the study enrolled 170 non-muscle-invasive bladder cancer (NMIBC) patients, 151 muscle-invasive bladder cancer (MIBC) patients, and 437 healthy controls. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for the IL-32 single-nucleotide polymorphism (SNP) genotyping. Statistical analysis was performed using SNPstats online analysis software and SPSS software. Our data revealed that the CC homozygous genotype of rs12934561 in BC patients was significantly higher than that in controls (P = 0.03, OR = 1.47, 95%CI = 1.04‐2.08), and the percentage of TC genotype carriers was relatively less than that of controls (P = 0.001, OR = 0.61, 95%CI = 0.45‐0.82). Furthermore, the TT homozygous genotype of rs28372698 was associated with a significantly lower overall survival rate in MIBC patients (P = 0.028, OR = 2.77, 95%CI = 1.11‐6.90). The IL-32 gene polymorphism rs12934561 might be associated with increased BC risk, and the rs28372698 might participate in the prognosis of BC patients. Therefore, they could be potential forecasting factors for the prognosis of MIBC patients.
Collapse
|
18
|
Aass KR, Kastnes MH, Standal T. Molecular interactions and functions of IL-32. J Leukoc Biol 2020; 109:143-159. [PMID: 32869391 DOI: 10.1002/jlb.3mr0620-550r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
IL-32 is a multifaceted cytokine associated with several diseases and inflammatory conditions. Its expression is induced in response to cellular stress such as hypoxia, infections, and pro-inflammatory cytokines. IL-32 can be secreted from cells and can induce the production of pro-inflammatory cytokines from several cell types but are also described to have anti-inflammatory functions. The intracellular form of IL-32 is shown to play an important role in various cellular processes, including the defense against intracellular bacteria and viruses and in modulation of cell metabolism. In this review, we discuss current literature on molecular interactions of IL-32 with other proteins. We also review data on the role of intracellular IL-32 as a metabolic regulator and its role in antimicrobial host defense.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Martin H Kastnes
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
19
|
Lin M, Wang F, Zhu Y. Modeled structure-based computational redesign of a glycosyltransferase for the synthesis of rebaudioside D from rebaudioside A. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107626] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Pavlovic M, Jovanovic I, Arsenijevic N. Interleukin-32 in Infection, Inflammation and Cancer Biology. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.1515/sjecr-2016-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Cytokines are small pleiotropic polypeptids secreted dominantly by the cells of the immune system. These polypeptids are main mediators of innate and acquired immunity, responsible for clonal expansion and differentiation of immune cells, initiation of immune response and enhancing of effector functions of leukocytes. Cytokine-related effects are most studied in the fields of inflammation, immunology, and cancer biology. In this review we discuss one of the most intriguing, recently discovered proinflammatory cytokine, interleukin 32.
Collapse
Affiliation(s)
- Mladen Pavlovic
- Department of Surgery, Faculty of Medical Sciences , University of Kragujevac , Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research , Faculty of Medical Sciences , University of Kragujevac , Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research , Faculty of Medical Sciences , University of Kragujevac , Serbia
| |
Collapse
|
21
|
Hu W, Liang YX, Luo JM, Gu XW, Chen ZC, Fu T, Zhu YY, Lin S, Diao HL, Jia B, Yang ZM. Nucleolar stress regulation of endometrial receptivity in mouse models and human cell lines. Cell Death Dis 2019; 10:831. [PMID: 31685803 PMCID: PMC6828743 DOI: 10.1038/s41419-019-2071-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/20/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
Abstract
Embryo implantation is essential to the successful establishment of pregnancy. A previous study has demonstrated that actinomycin D (ActD) could initiate the activation of mouse delayed implantation. However, the mechanism underlying this activation remains to be elucidated. A low dose of ActD is an inducer of nucleolar stress. This study was to examine whether nucleolar stress is involved in embryo implantation. We showed that nucleolar stress occurred when delayed implantation was activated by ActD in mice. ActD treatment also stimulated the Lif-STAT3 pathway. During early pregnancy, nucleolar stress was detected in the luminal epithelial cells during the receptive phase. Blastocyst-derived lactate could induce nucleolar stress in cultured luminal epithelial cells. The inhibition of nucleophosmin1 (NPM1), which was a marker of nucleolar stress, compromised uterine receptivity and decreased the implantation rates in pregnant mice. To translate these mouse data into humans, we examined nucleolar stress in human endometrium. Our data demonstrated that ActD-induced nucleolar stress had positive effects on the embryo attachment by upregulating IL32 expression in non-receptive epithelial cells rather than receptive epithelial cells. Our data should be the first to demonstrate that nucleolar stress is present during early pregnancy and is able to induce embryo implantation in both mice and humans.
Collapse
Affiliation(s)
- Wei Hu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Yu-Xiang Liang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China.,Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, 030001, Taiyuan, China.,Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, 030001, Taiyuan, China
| | - Jia-Mei Luo
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Xiao-Wei Gu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Zi-Cong Chen
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Tao Fu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Yu-Yuan Zhu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Shuai Lin
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Hong-Lu Diao
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Bo Jia
- Jiangxi Provincial Institute of Occupational Medicine, 330006, Nanchang, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
22
|
Paz H, Tsoi J, Kalbasi A, Grasso CS, McBride WH, Schaue D, Butterfield LH, Maurer DM, Ribas A, Graeber TG, Economou JS. Interleukin 32 expression in human melanoma. J Transl Med 2019; 17:113. [PMID: 30953519 PMCID: PMC6449995 DOI: 10.1186/s12967-019-1862-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Various proinflammatory cytokines can be detected within the melanoma tumor microenvironment. Interleukin 32 (IL32) is produced by T cells, NK cells and monocytes/macrophages, but also by a subset of melanoma cells. We sought to better understand the biology of IL32 in human melanoma. Methods We analyzed RNA sequencing data from 53 in-house established human melanoma cell lines and 479 melanoma tumors from The Cancer Genome Atlas dataset. We evaluated global gene expression patterns associated with IL32 expression. We also evaluated the impact of proinflammatory molecules TNFα and IFNγ on IL32 expression and dedifferentiation in melanoma cell lines in vitro. In order to study the transcriptional regulation of IL32 in these cell lines, we cloned up to 10.5 kb of the 5′ upstream region of the human IL32 gene into a luciferase reporter vector. Results A significant proportion of established human melanoma cell lines express IL32, with its expression being highly correlated with a dedifferentiation genetic signature (high AXL/low MITF). Non IL32-expressing differentiated melanoma cell lines exposed to TNFα or IFNγ can be induced to express the three predominant isoforms (α, β, γ) of IL32. Cis-acting elements within this 5′ upstream region of the human IL32 gene appear to govern both induced and constitutive gene expression. In the tumor microenvironment, IL32 expression is highly correlated with genes related to T cell infiltration, and also positively correlates with high AXL/low MITF dedifferentiated gene signature. Conclusions Expression of IL32 in human melanoma can be induced by TNFα or IFNγ and correlates with a treatment-resistant dedifferentiated genetic signature. Constitutive and induced expression are regulated, in part, by cis-acting sequences within the 5′ upstream region. Electronic supplementary material The online version of this article (10.1186/s12967-019-1862-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helicia Paz
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Jennifer Tsoi
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Anusha Kalbasi
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Catherine S Grasso
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Lisa H Butterfield
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA.,Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Deena M Maurer
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Antoni Ribas
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - James S Economou
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. .,Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
23
|
Lee YS, Lee CH, Bae JT, Nam KT, Moon DB, Hwang OK, Choi JS, Kim TH, Jun HO, Jung YS, Hwang DY, Han SB, Yoon DY, Hong JT. Inhibition of skin carcinogenesis by suppression of NF-κB dependent ITGAV and TIMP-1 expression in IL-32γ overexpressed condition. J Exp Clin Cancer Res 2018; 37:293. [PMID: 30486830 PMCID: PMC6263970 DOI: 10.1186/s13046-018-0943-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Interleukin-32 (IL-32) has been associated with various diseases. Previous studies have shown that IL-32 inhibited the development of several tumors. However, the role of IL-32γ, an isotype of IL-32, in skin carcinogenesis remains unknown. METHODS We compared 7,12-Dimethylbenz[a]anthracene/12-O-Tetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis in wild type (WT) and IL-32γ-overexpressing mice to evaluate the role of IL-32γ. We also analyzed cancer stemness and NF-κB signaling in skin cancer cell lines with or without IL-32γ expression by western blotting, quantitative real-time PCR and immunohistochemistry analysis. RESULTS Carcinogen-induced tumor incidence in IL-32γ mice was significantly reduced in comparison to that in WT mice. Infiltration of inflammatory cells and the expression levels of pro-inflammatory mediators were decreased in the skin tumor tissues of IL-32γ mice compared with WT mice. Using a genome-wide association study analysis, we found that IL-32 was associated with integrin αV (ITGAV) and tissue inhibitor of metalloproteinase-1 (TIMP-1), which are critical factor for skin carcinogenesis. Reduced expression of ITGAV and TIMP-1 were identified in DMBA/TPA-induced skin tissues of IL-32γ mice compared to that in WT mice. NF-κB activity was also reduced in DMBA/TPA-induced skin tissues of IL-32γ mice. IL-32γ decreased cancer cell sphere formation and expression of stem cell markers, and increased chemotherapy-induced cancer cell death. IL-32γ also downregulated expression of ITGAV and TIMP-1, accompanied with the inhibition of NF-κB activity. In addition, IL-32γ expression with NF-κB inhibitor treatment further reduced skin inflammation, epidermal hyperplasia, and cancer cell sphere formation and downregulated expression levels of ITGAV and TIMP-1. CONCLUSIONS These findings indicated that IL-32γ suppressed skin carcinogenesis through the inhibition of both stemness and the inflammatory tumor microenvironment by the downregulation of TIMP-1 and ITGAV via inactivation of NF-κB signaling.
Collapse
Affiliation(s)
- Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Chung Hee Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
- Hanbul Co, Ltd. R&D center, 634 Eon Ju-Ro, Gangnam-gu, Seoul, Republic of Korea
| | - Jun Tae Bae
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Kyung Tak Nam
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dae Bong Moon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Ok Kyung Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Jeong Soon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Tae Hoon Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Hyoung Ok Jun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Young Suk Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dae Yeon Hwang
- Department of Biomaterial Science, Pusan National University, Miryang, Kyungnam 50463 Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| |
Collapse
|
24
|
Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling. Cancer Lett 2018; 442:320-332. [PMID: 30391782 DOI: 10.1016/j.canlet.2018.10.015] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022]
Abstract
Metastasis is the leading cause of breast cancer-related deaths. Cancer-associated fibroblasts (CAFs), the predominant stromal cell type in the breast tumour microenvironment, may contribute to cancer progression through interaction with tumour cells. Nonetheless, little is known about the details of the underlying mechanism. Here we found that interaction of interleukin 32 (IL32) with integrin β3 (encoded by ITGB3; a member of the integrin family) mediating the cross-talk between CAFs and breast cancer cells plays a crucial role in CAF-induced breast tumour invasiveness. IL32, an 'RGD' motif-containing cytokine, was found to be abundantly expressed in CAFs. Integrin β3 turned out to be up-regulated in breast cancer cells during epithelial-mesenchymal transition (EMT). CAF-derived IL32 specifically bound to integrin β3 through the RGD motif, thus activating intracellular downstream p38 MAPK signalling in breast cancer cells. This signalling increased the expression of EMT markers (fibronectin, N-cadherin, and vimentin) and promoted tumour cell invasion. Counteracting IL32 activity, a knockdown of IL32 or integrin β3 led to specific inactivation of p38 MAPK signalling in tumour cells. Blockage of the p38 MAPK pathway also diminished IL32-induced expression of EMT markers and breast cancer cell invasion and metastasis. Thus, our data indicate that CAF-secreted IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling.
Collapse
|
25
|
The Biology and Role of Interleukin-32 in Tuberculosis. J Immunol Res 2018; 2018:1535194. [PMID: 30426023 PMCID: PMC6217754 DOI: 10.1155/2018/1535194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of morbidity and mortality globally, with nearly 10.4 million new cases of incidence and over 1.7 million deaths annually. Drug-resistant M. tuberculosis strains, especially multidrug-resistant or extensively drug-resistant strains, have further intensified the problem associated with tuberculosis control. Host-directed therapy is a promising alternative for tuberculosis control. IL-32 is increasingly recognized as an important host molecule against tuberculosis. In this review, we highlight the proinflammatory properties of IL-32 and the mode of action of IL-32 in mycobacterial infections to inspire the development of novel immunity-based countermeasures and host-directed therapies against tuberculosis.
Collapse
|
26
|
Hong GH, Park SY, Kwon HS, Bang BR, Lee J, Kim SY, Pack CG, Kim S, Moon KA, Kim TB, Moon HB, Cho YS. IL-32γ attenuates airway fibrosis by modulating the integrin-FAK signaling pathway in fibroblasts. Respir Res 2018; 19:188. [PMID: 30257681 PMCID: PMC6158920 DOI: 10.1186/s12931-018-0863-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023] Open
Abstract
Background Fibrosis in severe asthma often leads to irreversible organ dysfunction. However, the mechanism that regulates fibrosis remains poorly understood. Interleukin (IL)-32 plays a role in several chronic inflammatory diseases, including severe asthma. In this study, we investigated whether IL-32 is involved in fibrosis progression in the lungs. Methods Murine models of chronic airway inflammation induced by ovalbumin and Aspergillus melleus protease and bleomycin-induced pulmonary fibrosis were employed. We evaluated the degree of tissue fibrosis after treatment with recombinant IL-32γ (rIL-32γ). Expression of fibronectin and α-smooth muscle actin (α-SMA) was examined and the transforming growth factor (TGF)-β-related signaling pathways was evaluated in activated human lung fibroblasts (MRC-5 cells) treated with rIL-32γ. Results rIL-32γ significantly attenuated collagen deposition and α-SMA production in both mouse models. rIL-32γ inhibited the production of fibronectin and α-SMA in MRC-5 cells stimulated with TGF-β. Additionally, rIL-32γ suppressed activation of the integrin-FAK-paxillin signaling axis but had no effect on the Smad and non-Smad signaling pathways. rIL-32γ localized outside of MRC-5 cells and inhibited the interaction between integrins and the extracellular matrix without directly binding to intracellular FAK and paxillin. Conclusions These results demonstrate that IL-32γ has anti-fibrotic effects and is a novel target for preventing fibrosis. Electronic supplementary material The online version of this article (10.1186/s12931-018-0863-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gyong Hwa Hong
- Asan Institute for Life Science, Seoul, Korea.,Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - So-Young Park
- Department of Internal medicine, Division of Allergy and Respiratory Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Hyouk-Soo Kwon
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Bo-Ram Bang
- Asan Institute for Life Science, Seoul, Korea.,Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Jaechun Lee
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Science, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan, Seoul, Korea
| | - Chan-Gi Pack
- Asan Institute for Life Science, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan, Seoul, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Institute of Biomedical Science and Technology, College of Medicine, Konkuk University, Seoul, Korea
| | - Keun-Ai Moon
- Asan Institute for Life Science, Seoul, Korea.,Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Tae-Bum Kim
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Hee-Bom Moon
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - You Sook Cho
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea.
| |
Collapse
|
27
|
Yan H, He D, Huang X, Zhang E, Chen Q, Xu R, Liu X, Zi F, Cai Z. Role of interleukin-32 in cancer biology. Oncol Lett 2018; 16:41-47. [PMID: 29930712 DOI: 10.3892/ol.2018.8649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Interleukin-32 (IL-32), a novel proinflammatory cytokine, is highly expressed in various cancer tissues and in established cancer cell lines. IL-32 has been revealed to serve a crucial role in human cancer development, including tumour initiation, proliferation and maintenance. The expression of IL-32 is regulated by numerous factors, including genetic variations, hypoxia and acidosis in the tumour microenvironment. Understanding the underlying mechanisms of IL-32 expression and its function are critical for the discovery of novel therapeutic strategies that target IL-32. This is a review of the current literature on the regulation and function of IL-32 in cancer progression, focusing on the molecular pathways linking IL-32 and tumour development.
Collapse
Affiliation(s)
- Haimeng Yan
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Donghua He
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xi Huang
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Enfan Zhang
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qingxiao Chen
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ruyi Xu
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinling Liu
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Fuming Zi
- Department of Haematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Zhen Cai
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
28
|
Liu X, Shi Y, Hu Y, Luo K, Guo Y, Meng W, Deng Y, Dai R. Bupleurum marginatum Wall.ex DC in Liver Fibrosis: Pharmacological Evaluation, Differential Proteomics, and Network Pharmacology. Front Pharmacol 2018; 9:524. [PMID: 29867514 PMCID: PMC5968385 DOI: 10.3389/fphar.2018.00524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a common pathological feature of many chronic liver diseases. Bupleurum marginatum Wall.ex DC (ZYCH) is a promising therapeutic for liver fibrosis. In this study, 25 compounds were isolated from ZYCH, and the effects of ZYCH on DMN-induced liver fibrosis in rats were evaluated. The optimal effect group (H-ZYCH group) was selected for further proteomic analysis, and 282 proteins were altered in comparison to the DMN model group (FC > 1.2 or < 0.83, p < 0.05). Based on GO annotation analysis, clusters of drug metabolism, oxidative stress, biomolecular synthesis and metabolism, positive regulation of cell growth, extracellular matrix deposition, and focal adhesion were significantly regulated. Then networks of the altered proteins and compounds was generated by Cytoscape. Importantly, triterpenoid saponins and lignans had possessed high libdock scores, numerous targets, important network positions, and strong inhibitory activity. These findings may suggest that triterpenoid saponins and lignans are important active compounds of ZYCH in liver fibrosis and targeted by proteins involved in liver fibrosis. The combination of network pharmacology with proteomic analysis may provide a forceful tool for exploring the effect mechanism of TCM and identifying bioactive ingredients and their targets.
Collapse
Affiliation(s)
- Xiujie Liu
- School of Life Science, Institute of Space Biology and Medical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Shi
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yinghui Hu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ke Luo
- School of Life Science, Institute of Space Biology and Medical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ying Guo
- School of Life Science, Institute of Space Biology and Medical Engineering, Beijing Institute of Technology, Beijing, China
| | - Weiwei Meng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Institute of Space Biology and Medical Engineering, Beijing Institute of Technology, Beijing, China
| | - Rongji Dai
- School of Life Science, Institute of Space Biology and Medical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
29
|
Abstract
Interleukin 32 (IL-32) is a proinflammatory cytokine involved in the development of several diseases, including cancer. IL-32 is a rather peculiar cytokine because its protein structure does not show resemblance with any of the known cytokines, and an IL-32 receptor to facilitate extracellular signaling has not yet been identified. Thus far, 9 isoforms of IL-32 have been described, all of which show differences in terms of effects and in potency to elicit a specific effect. Since the first report of IL-32 in 2005, there is increasing evidence that IL-32 plays an important role in the pathophysiology of both hematologic malignancies and solid tumors. Some IL-32 isoforms have been linked to disease outcome and were shown to positively influence tumor development and progression in various different malignancies, including gastric, breast and lung cancers. However, there are other reports suggesting a tumor suppressive role for some of IL-32 as well. For example, IL-32γ and IL-32β expression is associated with increased cancer cell death in colon cancer and melanoma, whereas expression of these isoforms is associated with increased invasion and migration in breast cancer cells. Furthermore, IL-32 isoforms α, β and γ also play an important role in regulating the anti-tumor immune response, thus also influencing tumor progression. In this review, we provide an overview of the role of IL-32 and its different isoforms in carcinogenesis, invasion and metastasis, angiogenesis and regulation of the anti-tumor immune response.
Collapse
|
30
|
Dos Santos JC, Damen MSMA, Joosten LAB, Ribeiro-Dias F. Interleukin-32: An endogenous danger signal or master regulator of intracellular pathogen infections-Focus on leishmaniases. Semin Immunol 2018; 38:15-23. [PMID: 29551246 DOI: 10.1016/j.smim.2018.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023]
Abstract
Interleukin 32 (IL-32) is an intracellular cytokine produced by immune and non immune cells after different stimuli. It contributes to inflammation and control of intracellular pathogens mainly by inducing proinflammatory cytokines and microbicidal molecules. Evidence is rising showing that IL-32 can be considered an endogenous danger signal after tissue injury, amplifying the inflammatory process and acquired immune responses. It seems to be a master regulator of intracellular infectious diseases. In this review, first the general properties of IL-32 are described followed by its role in the immunopathogenesis of inflammatory and infectious diseases. Roles of IL-32 in the control of infectious diseases caused by intracellular pathogens are reported, and later a focus on IL-32 in leishmaniases, diseases caused by an intracellular protozoan, is presented.
Collapse
Affiliation(s)
- Jéssica C Dos Santos
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Michelle S M A Damen
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
31
|
Khawar MB, Mukhtar M, Abbasi MH, Sheikh N. IL-32θ: a recently identified anti-inflammatory variant of IL-32 and its preventive role in various disorders and tumor suppressor activity. Am J Transl Res 2017; 9:4726-4737. [PMID: 29218075 PMCID: PMC5714761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Interleukin-32 theta (IL-32θ) is newly identified isoform of IL-32 which plays a vital role in inflammatory responses. Like IL-32α and IL-32β, IL-32θ isoform acts as an intracellular inflammatory modulator. It results in reduction of IL-1β production by attenuating the expression of PU.1 and inhibition of monocytes differentiation into macrophages. IL-32θ hinders TNF-α expression by inhibiting p38 MAPK and inhibitor of κB (IκB) as well. It also reserved STAT3-ZEB1 pathway leading to the inhibition of epithelial-mesenchymal transition (EMT) and stemness. Hence, it can be concluded that IL-32θ is an anti-inflammatory cytokine that can act as a tumor suppressor and can play vital role in colon cancer therapies. IL-32θ also plays a crucial role in immune system responses and cellular differentiation during disease pathogenesis. To our best knowledge this is the first ever review to condense the importance, precise mode of action in disease progression and latent remedial implications of IL-32θ in several inflammatory disorders.
Collapse
Affiliation(s)
| | - Maryam Mukhtar
- Department of Zoology, University of The Punjab, Q-A CampusLahore, 54590, Pakistan
| | | | - Nadeem Sheikh
- Department of Zoology, University of The Punjab, Q-A CampusLahore, 54590, Pakistan
- Centre for Applied Molecular Biology (CAMB), University of The Punjab87-West Canal Bank Road, Thokar Niaz Baig Lahore, Pakistan
| |
Collapse
|
32
|
Semango G, Heinhuis B, Plantinga TS, Blokx WAM, Kibiki G, Sonda T, Mavura D, Masenga EJ, Nyindo M, van der Ven AJAM, Joosten LAB. Exploring the Role of IL-32 in HIV-Related Kaposi Sarcoma. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:196-203. [PMID: 29037857 DOI: 10.1016/j.ajpath.2017.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/17/2022]
Abstract
The intracellular proinflammatory mediator IL-32 is associated with tumor progression; however, the mechanisms remain unknown. We studied IL-32 mRNA expression as well as expression of other proinflammatory cytokines and mediators, including IL-1α, IL-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, the proangiogenic and antiapoptotic enzyme cyclooxygenase-2, the IL-8 receptor C-X-C chemokine receptor (CXCR) 1, and the intracellular kinase focal adhesion kinase-1. The interaction of IL-32 expression with expression of IL-6, TNF-α, IL-8, and cyclooxygenase-2 was also investigated. Biopsy specimens of 11 HIV-related, 7 non-HIV-related Kaposi sarcoma (KS), and 7 normal skin tissues (NSTs) of Dutch origin were analyzed. RNA was isolated from the paraffin material, and gene expression levels of IL-32 α, β, and γ isoforms, IL1a, IL1b, IL6, IL8, TNFA, PTGS2, CXCR1, and PTK2 were determined using real-time quantitative PCR. Significantly higher expression of IL-32β and IL-32γ isoforms was observed in HIV-related KS biopsy specimens compared with non-HIV-related KS and NST. The splicing ratio of the IL-32 isoforms showed IL-32γ as the highest expressed isoform, followed by IL-32β, in HIV-related KS cases compared with non-HIV-related KS and NST. Our data suggest a possible survival mechanism by the splicing of IL-32γ to IL-32β and also IL-6, IL-8, and CXCR1 signaling pathways to reverse the proapoptotic effect of the IL-32γ isoform, leading to tumor cell survival and thus favoring tumor progression.
Collapse
Affiliation(s)
- George Semango
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; School of Life Sciences, Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania.
| | - Bas Heinhuis
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Center of Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Theo S Plantinga
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Willeke A M Blokx
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gibson Kibiki
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Tolbert Sonda
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Daudi Mavura
- Regional Dermatology Training Centre, Moshi, Tanzania
| | | | - Mramba Nyindo
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Andre J A M van der Ven
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Center of Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Center of Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
33
|
Interleukin-32α promotes the proliferation of multiple myeloma cells by inducing production of IL-6 in bone marrow stromal cells. Oncotarget 2017; 8:92841-92854. [PMID: 29190960 PMCID: PMC5696226 DOI: 10.18632/oncotarget.21611] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma disease closely associated with inflammation. In MM bone marrow microenvironment, bone marrow stromal cells (BMSCs) are the primary source of interleukin-6 (IL-6) secretion, which promotes the proliferation and progression of MM cells. However, it is still unknown how the microenvironment stimulates BMSCs to secrete IL-6. Interleukin-32 (IL-32) is a newly identified pro-inflammatory factor. It was reported that in solid tumors, IL-32 induces changes in other inflammatory factors including IL-6, IL-10, and TNF-α. The aim of this study was to investigate the expression of IL-32 and the role of IL-32 in the MM bone marrow microenvironment. Our data illustrate that MM patients have higher expression of IL-32 than healthy individuals in both bone marrow and peripheral blood. We used ELISA and qRT-PCR to find that malignant plasma cells are the primary source of IL-32 production in MM bone marrow. ELISA and Western blot analysis revealed that recombinant IL-32α induces production of IL-6 in BMSCs by activating NF-κB and STAT3 signaling pathways, konckdown of IL-32 receptor PR3 inhibit this process. Knockdown of IL-32 by shRNA decreased the proliferation in MM cells that induced by BMSCs. In conclusion, IL-32 secreted from MM cells has paracrine effect to induce production of IL-6 in BMSCs, thus feedback to promote MM cells growth.
Collapse
|
34
|
Xuan W, Huang W, Wang R, Chen C, Chen Y, Wang Y, Tan X. Elevated circulating IL-32 presents a poor prognostic outcome in patients with heart failure after myocardial infarction. Int J Cardiol 2017; 243:367-373. [PMID: 28747035 DOI: 10.1016/j.ijcard.2017.03.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/20/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Interleukin-32 (IL-32) is a newly discovered proinflammatory cytokine. However, there are limited data regarding IL-32 as a biomarker for heart failure (HF). In this study, we assessed the prognostic value of IL-32 in patients with chronic HF after myocardial infarction (MI). METHODS AND RESULTS Over a period of 1.8years, we prospectively enrolled 100 patients with chronic HF after MI. IL-32, NT-proBNP, Matrix metallopeptidase 9 (MMP-9), procollagen type I (PI) and type III (PIII) were measured at baseline. Study endpoint was adverse cardiac events. High IL-32 levels were associated with numerous factors that are related to deteriorate cardiac function and cardiac fibrosis. Strong expression of IL-32 was detected in human cardiomyocytes from HF tissue. ROC curve revealed the area under the curve of IL-32 for predicting negative outcome of HF was 0.72 (95% CI: 0.60-0.83, P<0.01). Kaplan-Meier statistics showed that the risk of adverse cardiac event was 5.75 fold (hazard ratio 5.75, 95% CI 1.53-21.58, P=0.009), which increased in the highest quartile (>296pg/mL). Cox regression analysis revealed IL-32 was an independent predictor for cardiac events (hazard ratio 2.78, 95% CI 1.02-7.57, P=0.046). Recombinant IL-32 significantly exacerbated infarct size in a mouse model of MI. IL-32 upregulated expression of MMP-9, PIII and transforming growth factor beta in rat fibroblasts. CONCLUSION IL-32 might be a novel predictor of adverse cardiac event in patients with HF after MI. The pro-fibrotic effect of IL-32 may contribute to adverse cardiac remodeling and progression to HF.
Collapse
Affiliation(s)
- Wanling Xuan
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weixing Huang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ruijie Wang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chang Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yequn Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Wang
- Department of Radiology, University of California San Francisco, San Francisco, CA, United States
| | - Xuerui Tan
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
35
|
Damen MS, Popa CD, Netea MG, Dinarello CA, Joosten LA. Interleukin-32 in chronic inflammatory conditions is associated with a higher risk of cardiovascular diseases. Atherosclerosis 2017; 264:83-91. [DOI: 10.1016/j.atherosclerosis.2017.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/09/2017] [Accepted: 07/05/2017] [Indexed: 01/03/2023]
|
36
|
Liu H, Pan X, Cao H, Shu X, Sun H, Lu J, Liang J, Zhang K, Zhu F, Li G, Zhang Q. IL-32γ promotes integrin αvβ6 expression through the activation of NF-κB in HSCs. Exp Ther Med 2017; 14:3880-3886. [PMID: 29042996 DOI: 10.3892/etm.2017.4956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatic stellate cell (HSC) activation is important in the pathogenesis of liver fibrosis. However, the molecular mechanism of HSC activation is not completely understood. In the present study, it was demonstrated that interleukin-32γ (IL-32γ) is capable of enhancing intefgrin αvβ6 expression by inducing integrin αvβ6 promoter activity in a dose-dependent manner in HSCs. Furthermore, it was determined that nuclear factor κB (NF-κB) activation is required for IL-32γ-induced integrin αvβ6 expression. Increased integrin αvβ6 expression is then able to activate HSCs. These results indicate that NF-κB activation is required for IL-32γ to induce integrin αvβ6 expression and consequently promote HSC activation. Therefore, IL-32γ activates HSCs and therefore may be associated with hepatic fibrogenesis. These results may enable the development of novel effective strategies to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Hongcan Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Department of Clinical Laboratory, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xingfei Pan
- Department of Infectious Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Hong Cao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xin Shu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Haixia Sun
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jianxi Lu
- Vaccine Research Institute, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiayin Liang
- Department of Clinical Laboratory, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Fengqin Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Gang Li
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Qi Zhang
- Vaccine Research Institute, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
37
|
Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Ortega VA, Hernández-Lizoain JL, Baixauli J, Becerril S, Rotellar F, Valentí V, Moncada R, Silva C, Salvador J, Frühbeck G. IL-32α-induced inflammation constitutes a link between obesity and colon cancer. Oncoimmunology 2017; 6:e1328338. [PMID: 28811968 DOI: 10.1080/2162402x.2017.1328338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Growing evidence indicates that adipose tissue inflammation is an important mechanism whereby obesity promotes cancer risk and progression. Since IL-32 is an important inflammatory and remodeling factor in obesity and is also related to colon cancer (CC) development, the aim of this study was to explore whether IL-32 could function as an inflammatory factor in human obesity-associated CC promoting a microenvironment favorable for tumor growth. Samples obtained from 84 subjects [27 lean (LN) and 57 obese (OB)] were used in the study. Enrolled subjects were further subclassified according to the established diagnostic protocol for CC (49 without CC and 35 with CC). We show, for the first time, that obesity (p = 0.009) and CC (p = 0.026) increase circulating concentrations of IL-32α. Consistently, we further showed that gene (p < 0.05) and protein (p < 0.01) expression levels of IL-32α were upregulated in VAT from obese patients with CC. Additionally, we revealed that IL32 expression levels are enhanced by hypoxia and inflammation-related factors in HT-29 CC cells as well as that IL-32α is involved in the upregulation of inflammation (IL8, TNF, and CCL2) and extracellular matrix (ECM) remodeling (SPP1 and MMP9) genes in HT-29 cancer cells. Additionally, we also demonstrate that the adipocyte-conditioned medium obtained from obese patients stimulates (p < 0.05) the expression of IL32 in human CC cells. These findings provide evidence of the potential involvement of IL-32 in the development of obesity-associated CC as a pro-inflammatory and ECM remodeling cytokine.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Victor A Ortega
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Fernando Rotellar
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain.,Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain.,Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
38
|
Lee EJ, Choi B, Hwang ES, Chang EJ. Interleukin-32 Gamma as a New Face in Inflammatory Bone Diseases. JOURNAL OF RHEUMATIC DISEASES 2017. [DOI: 10.4078/jrd.2017.24.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eui-Seung Hwang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Jung YY, Katila N, Neupane S, Shadfar S, Ojha U, Bhurtel S, Srivastav S, Son DJ, Park PH, Yoon DY, Hong JT, Choi DY. Enhanced dopaminergic neurotoxicity mediated by MPTP in IL-32β transgenic mice. Neurochem Int 2016; 102:79-88. [PMID: 27956238 DOI: 10.1016/j.neuint.2016.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by prominent loss of the nigral dopaminergic neurons and motor symptoms, such as resting tremor and bradykinesia. Evidence suggests that neuroinflammation may play a critical role in PD pathogenesis. Interleukin (IL)-32 is a newly-identified proinflammatory cytokine, which regulates innate and adaptive immune responses by activating p38 MAPK and NF-κB signaling pathways. The cytokine has been implicated in cancers and autoimmune, inflammatory, and infectious diseases. In this study, we attempted to identify the effects of IL-32β on dopaminergic neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), using IL-32β transgenic mice. Male wild type and IL-32β transgenic mice received intraperitoneal injections of vehicle or MPTP (15 mg/kg × 4). Immunohistochemistry showed that overexpression of IL-32β significantly increased MPTP-mediated loss of dopaminergic neurons in the substantia nigra and deletion of tyrosine hydroxylase-positive fibers in the striatum. Dopamine depletion in the striatum and deficit in locomotor activity were enhanced in IL-32β transgenic mice. These results were accompanied by higher neuroinflammatory responses in the brains of transgenic mice. Finally, we found that IL-32β exaggerated MPTP-mediated activation of p38 MAPK and JNK pathways, which have been shown to be involved in MPTP neurotoxicity. These results suggest that IL-32β exacerbates MPTP neurotoxicity through enhanced neuroinflammatory responses.
Collapse
Affiliation(s)
- Yu Yeon Jung
- Department of Dental Hygiene, Gwang Yang Health College, Gwangyang 57764, Republic of Korea.
| | - Nikita Katila
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sabita Neupane
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sina Shadfar
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Uttam Ojha
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sunil Bhurtel
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sunil Srivastav
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Dong Ju Son
- College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
40
|
Ohmatsu H, Humme D, Gonzalez J, Gulati N, Möbs M, Sterry W, Krueger JG. IL-32 induces indoleamine 2,3-dioxygenase +CD1c + dendritic cells and indoleamine 2,3-dioxygenase +CD163 + macrophages: Relevance to mycosis fungoides progression. Oncoimmunology 2016; 6:e1181237. [PMID: 28344860 PMCID: PMC5353917 DOI: 10.1080/2162402x.2016.1181237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022] Open
Abstract
Mycosis fungoides (MF) progresses from patch to tumor stage by expansion of malignant T-cells that fail to be controlled by protective immune mechanisms. In this study, we focused on IL-32, a cytokine, highly expressed in MF lesions. Depending on the other cytokines (IL-4, GM-CSF) present during in vitro culture of healthy volunteers' monocytes, IL-32 increased the maturation of CD11c+ myeloid dendritic cells (mDC) and/or CD163+ macrophages, but IL-32 alone showed a clear ability to promote dendritic cell (DC) differentiation from monocytes. DCs matured by IL-32 had the phenotype of skin-resident DCs (CD1c+), but more importantly, also had high expression of indoleamine 2,3-dioxygenase. The presence of DCs with these markers was demonstrated in MF skin lesions. At a molecular level, indoleamine 2,3-dioxygenase messenger RNA (mRNA) levels in MF lesions were higher than those in healthy volunteers, and there was a high correlation between indoleamine 2,3-dioxygenase and IL-32 expression. In contrast, Foxp3 mRNA levels decreased from patch to tumor stage. Increasing expression of IL-10 across MF lesions was highly correlated with IL-32 and indoleamine 2,3-dioxygenase, but not with Foxp3 expression. Thus, IL-32 could contribute to progressive immune dysregulation in MF by directly fostering development of immunosuppressive mDC or macrophages, possibly in association with IL-10.
Collapse
Affiliation(s)
- Hanako Ohmatsu
- Laboratory for Investigative Dermatology, The Rockefeller University , New York, NY, USA
| | - Daniel Humme
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité- Universitätsmedizin Berlin , Berlin, Germany
| | - Juana Gonzalez
- Rockefeller University Center for Clinical and Translational Science , New York, NY, USA
| | - Nicholas Gulati
- Laboratory for Investigative Dermatology, The Rockefeller University , New York, NY, USA
| | - Markus Möbs
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité- Universitätsmedizin Berlin , Berlin, Germany
| | - Wolfram Sterry
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité- Universitätsmedizin Berlin , Berlin, Germany
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University , New York, NY, USA
| |
Collapse
|
41
|
IL-32: A Novel Pluripotent Inflammatory Interleukin, towards Gastric Inflammation, Gastric Cancer, and Chronic Rhino Sinusitis. Mediators Inflamm 2016; 2016:8413768. [PMID: 27143819 PMCID: PMC4837279 DOI: 10.1155/2016/8413768] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/23/2016] [Accepted: 03/20/2016] [Indexed: 12/15/2022] Open
Abstract
A vast variety of nonstructural proteins have been studied for their key roles and involvement in a number of biological phenomenona. Interleukin-32 is a novel cytokine whose presence has been confirmed in most of the mammals except rodents. The IL-32 gene was identified on human chromosome 16 p13.3. The gene has eight exons and nine splice variants, namely, IL-32α, IL-32β, IL-32γ, IL-32δ, IL-32ε, IL-32ζ, IL-32η, IL-32θ, and IL-32s. It was found to induce the expression of various inflammatory cytokines including TNF-α, IL-6, and IL-1β as well as macrophage inflammatory protein-2 (MIP-2) and has been reported previously to be involved in the pathogenesis and progression of a number of inflammatory disorders, namely, inflammatory bowel disease (IBD), gastric inflammation and cancer, rheumatoid arthritis, and chronic obstructive pulmonary disease (COPD). In the current review, we have highlighted the involvement of IL-32 in gastric cancer, gastric inflammation, and chronic rhinosinusitis. We have also tried to explore various mechanisms suspected to induce the expression of this extraordinary cytokine as well as various mechanisms of action employed by IL-32 during the mediation and progression of the above said problems.
Collapse
|
42
|
Nicholl MB, Chen X, Qin C, Bai Q, Zhu Z, Davis MR, Fang Y. IL-32α has differential effects on proliferation and apoptosis of human melanoma cell lines. J Surg Oncol 2016; 113:364-9. [DOI: 10.1002/jso.24142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael B. Nicholl
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
- South Texas Veterans Health Care System; San Antonio Texas
| | - Xuhui Chen
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
- Luohu Hospital; Shenzhen China
| | - Chenglu Qin
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
- Luohu Hospital; Shenzhen China
| | - Qian Bai
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
| | - Ziwen Zhu
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
| | - Matthew R. Davis
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
| | - Yujiang Fang
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
- Des Moines University; Des Moines Iowa
| |
Collapse
|
43
|
Heinhuis B, Plantinga TS, Semango G, Küsters B, Netea MG, Dinarello CA, Smit JW, Netea-Maier RT, Joosten LA. Alternatively spliced isoforms of IL-32 differentially influence cell death pathways in cancer cell lines. Carcinogenesis 2015; 37:197-205. [DOI: 10.1093/carcin/bgv172] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/02/2015] [Indexed: 12/14/2022] Open
|
44
|
Kim MS, Kang JW, Jeon JS, Kim JK, Kim JW, Hong J, Yoon DY. IL-32θ gene expression in acute myeloid leukemia suppresses TNF-α production. Oncotarget 2015; 6:40747-61. [PMID: 26516703 PMCID: PMC4747366 DOI: 10.18632/oncotarget.5688] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023] Open
Abstract
The proinflammatory cytokine TNF-α is highly expressed in patients with acute myeloid leukemia (AML) and has been demonstrated to induce rapid proliferation of leukemic blasts. Thus suppressing the production of TNF-α is important because TNF-α can auto-regulate own expression through activation of NF-κB and p38 mitogen-activated protein kinase (MAPK). In this study, we focused on the inhibitory effect of IL-32θ on TNF-α production in acute myeloid leukemia. Approximately 38% of patients with AML express endogenous IL-32θ, which is not expressed in healthy individuals. Furthermore, plasma samples were classified into groups with or without IL-32θ; then, we measured proinflammatory cytokine TNF-α, IL-1β, and IL-6 levels. TNF-α production was not increased in patients with IL-32θ expression than that in the no-IL-32θ group. Using an IL-32θ stable expression system in leukemia cell lines, we found that IL-32θ attenuated phorbol 12-myristate 13-acetate (PMA)-induced TNF-α production. IL-32θ inhibited phosphorylation of p38 MAPK, inhibitor of κB (IκB), and nuclear factor κB (NF-κB), which are key positive regulators of TNF-α expression, and inhibited nuclear translocation of NF-κB. Moreover, the presence of IL-32θ attenuated TNF-α promoter activity and the binding of NF-κB with the TNF-α promoter. In addition, IL-32γ-induced TNF-α production has no correlation with inhibition of TNF-α via IL-32θ expression. Thus, IL-32θ may serve as a potent inhibitor of TNF-α in patients with AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Blotting, Western
- Case-Control Studies
- Chromatin Immunoprecipitation
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Interleukins/genetics
- Interleukins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Phosphorylation
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Young Adult
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Man Sub Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Jeong-Woo Kang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
- Current address: Seegene Inc., Seoul, Korea
| | - Jae-Sik Jeon
- Department of Laboratory Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Jae Kyung Kim
- Dankook University College of Health Sciences, Department of Biomedical Laboratory Science, Cheonan, Korea
| | - Jong Wan Kim
- Department of Laboratory Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Jintae Hong
- College of Pharmacy, Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Bai X, Dinarello CA, Chan ED. The role of interleukin-32 against tuberculosis. Cytokine 2015; 76:585-587. [PMID: 26144292 DOI: 10.1016/j.cyto.2015.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/12/2022]
Abstract
IL-32 is increasingly recognized to be an important host-protective molecule against tuberculosis. In this commentary, we highlight some of the potential mechanisms by which the immunomodulatory effect of IL-32 occurs against mycobacterial infections but also areas where mechanistic clarifications are needed.
Collapse
Affiliation(s)
- Xiyuan Bai
- Denver Veterans Affairs Medical Center, 1055 Clermont St, Denver, CO 80206, United States; Departments of Medicine and Academic Affairs, D509, Neustadt Building, National Jewish Health, 1400 Jackson St, Denver, CO 80206, United States; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045-2539, United States
| | - Charles A Dinarello
- Division of Infectious Diseases, University of Colorado Denver Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045-2539, United States
| | - Edward D Chan
- Denver Veterans Affairs Medical Center, 1055 Clermont St, Denver, CO 80206, United States; Departments of Medicine and Academic Affairs, D509, Neustadt Building, National Jewish Health, 1400 Jackson St, Denver, CO 80206, United States; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045-2539, United States.
| |
Collapse
|
46
|
Maintenance of Epstein-Barr Virus Latent Status by a Novel Mechanism, Latent Membrane Protein 1-Induced Interleukin-32, via the Protein Kinase Cδ Pathway. J Virol 2015; 89:5968-80. [PMID: 25810549 DOI: 10.1128/jvi.00168-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2015] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV), an oncogenic herpesvirus, has the potential to immortalize primary B cells into lymphoblastoid cell lines (LCLs) in vitro. During immortalization, several EBV products induce cytokines or chemokines, and most of these are required for the proliferation of LCLs. Interleukin-32 (IL-32), a recently discovered proinflammatory cytokine, is upregulated after EBV infection, and this upregulation is detectable in all LCLs tested. EBV latent membrane protein 1 (LMP1) is responsible for inducing IL-32 expression at the mRNA and protein levels. Mechanistically, we showed that this LMP1 induction is provided by the p65 subunit of NF-κB, which binds to and activates the IL-32 promoter. Furthermore, the short hairpin RNA (shRNA)-mediated depletion of endogenous LMP1 and p65 in LCLs suppressed IL-32 expression, further suggesting that LMP1 is the key factor that stimulates IL-32 in LCLs via the NF-κB p65 pathway. Functionally, knockdown of IL-32 in LCLs elicits viral reactivation and affects cytokine expression, but it has no impact on cell proliferation and apoptosis. Of note, we reveal the mechanism whereby IL-32 is involved in the maintenance of EBV viral latency by inactivation of Zta promoter activity. This atypical cytoplasmic IL-32 hijacks the Zta activator protein kinase Cδ (PKCδ) and inhibits its translocation from the cytoplasm to the nucleus, where PKCδ binds to the Zta promoter and activates lytic cycle progression. These novel findings reveal that IL-32 is involved in the maintenance of EBV latency in LCLs. This finding may provide new information to explain how EBV maintains latency, in addition to viral chromatin structure and epigenetic modification. IMPORTANCE EBV persists in two states, latency and lytic replication, which is a unique characteristic of human infections. So far, little is known about how herpesviruses maintain latency in particular tissues or cell types. EBV is an excellent model to study this question because more than 90% of people are latently infected. EBV can immortalize primary B cells into lymphoblastoid cell lines in vitro. Expression of IL-32, a novel atypical cytoplasmic proinflammatory cytokine, increased after infection. The expression of IL-32 was controlled by LMP1. In investigating the regulatory mechanism, we demonstrated that the p65 subunit of NF-κB is required for this upregulation. Of note, the important biological activity of IL-32 was to trap protein kinase Cδ in the cytoplasm and prevent it from binding to the Zta promoter, which is the key event for EBV reaction. So, the expression of LMP1-induced IL-32 plays a role in the maintenance of EBV latency.
Collapse
|
47
|
Significant association between IL-32 gene polymorphisms and susceptibility to endometrial cancer in Chinese Han women. Tumour Biol 2015; 36:5265-72. [PMID: 25663496 DOI: 10.1007/s13277-015-3186-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/27/2015] [Indexed: 01/27/2023] Open
Abstract
Interleukin-32 (IL-32), a pro-inflammatory chemokine, has been reported to be involved in inflammatory, infectious diseases and even cancers. This study aimed to investigate whether two genetic variants (rs28372698 and rs12934561) of IL-32 were associated with susceptibility to endometrial cancer (EC) in Chinese Han women by a hospital-based study with 272 EC patients and 337 healthy controls. Our results showed that the frequencies of TT genotype (P = 0.012, OR = 2.37, 95 % CI = 1.32-4.28) and T allele (P = 0.026, OR = 1.320, 95 % CI = 1.036-1.681) of rs28372698 in EC patients were significantly higher than controls. Clinical analyses indicated the TT genotype frequency was relevant to high clinical stage and cervical invasion. Furthermore, the frequencies of CC genotype (P = 0.0077, OR = 1.62, 95 % CI = 1.05-2.50) and C allele (P = 0.043, OR = 1.269, 95 % CI = 1.011-1.592) of rs12934561 were also significantly higher in EC patients than controls. Stratification analyses revealed that CC genotype was more frequent in endometrioid adenocarcinoma or EC without parametrial invasion. This study demonstrates that IL-32 gene polymorphisms are significantly associated with increased EC susceptibility in Chinese Han women.
Collapse
|
48
|
Park YS, Kang JW, Lee DH, Kim MS, Bak Y, Yang Y, Lee HG, Hong J, Yoon DY. Interleukin-32α modulates promyelocytic leukemia zinc finger gene activity by inhibiting protein kinase Cɛ-dependent sumoylation. Int J Biochem Cell Biol 2014; 55:136-43. [DOI: 10.1016/j.biocel.2014.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 07/17/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023]
|
49
|
Kang JW, Park YS, Kim MS, Lee DH, Bak Y, Ham SY, Song YS, Hong JT, Yoon DY. IL-32α down-regulates β2 integrin (CD18) expression by suppressing PU.1 expression in myeloid cells. Cell Signal 2014; 26:1514-22. [DOI: 10.1016/j.cellsig.2014.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/06/2014] [Accepted: 03/25/2014] [Indexed: 11/26/2022]
|
50
|
Kim MS, Kang JW, Lee DH, Bak Y, Park YS, Song YS, Ham SY, Oh DK, Hong J, Yoon DY. IL-32θ negatively regulates IL-1β production through its interaction with PKCδ and the inhibition of PU.1 phosphorylation. FEBS Lett 2014; 588:2822-9. [PMID: 24996056 DOI: 10.1016/j.febslet.2014.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 01/04/2023]
Abstract
It has been well known that IL-32 exerts pro-inflammatory effects on the various inflammatory diseases in clinical studies. Here, we confirmed that IL-32θ, a new isoform of IL-32, decreased the phorbol 12-myristate 13-acetate (PMA)-induced IL-1β expression in THP-1 human myelomonocyte. We previously reported that the IL-32 isoforms control expressions of other cytokines via novel PKCs. Likewise, IL-32θ interacted with PKCδ, and consequently inhibited PKCδ-mediated phosphorylation of PU.1. Moreover, IL-32θ attenuated the localization of PU.1 into the IL-1β promoter region. These findings reveal that IL-32θ reduces PKCδ-mediated phosphorylation of PU.1, resulting in attenuation of IL-1β production.
Collapse
Affiliation(s)
- Man Sub Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Neungdong-ro 120, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jeong-Woo Kang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Neungdong-ro 120, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Dong Hun Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Neungdong-ro 120, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yesol Bak
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Neungdong-ro 120, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yun Sun Park
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Neungdong-ro 120, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yong-Seok Song
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Neungdong-ro 120, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Sun Young Ham
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Neungdong-ro 120, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Deok Kun Oh
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Neungdong-ro 120, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jintae Hong
- College of Pharmacy, Medical Research Center, Chungbuk National University, 12 Gashin-dong, Heungduk-gu, Cheongju, Chungbuk 361-463, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Neungdong-ro 120, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|