1
|
Gouw BHT, Oliveira FCM, Kooistra HS, Spee B, van Uden L, Penning LC. Improved Differentiation Towards Insulin Producing Beta-Cells Derived from Healthy Canine Pancreatic Ductal Organoids. Vet Sci 2025; 12:362. [PMID: 40284864 PMCID: PMC12030824 DOI: 10.3390/vetsci12040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a common potentially life-threatening endocrine disorder in pets and humans. Since only symptomatic treatment is available, a more sustainable treatment is urgently needed. OBJECTIVE The aim of this study is to establish functional differentiated canine pancreatic β-cells that release insulin upon glucose stimulus. METHODS Pancreatic tissue was obtained from surplus material of healthy dogs (n = 4), euthanized for non-pancreatic related research. Ductal cells were isolated and expanded in dog pancreas expansion media (dpEM) and differentiated and maturated in five sequentially added pancreas differentiation media (PDMs). Gene expression was analyzed by reversed transcriptase qPCR (RT-qPCR), and insulin release was analyzed with a canine-specific ELISA. RESULTS Canine pancreatic ductal cells (LGR5 and SOX9 expression) were differentiated into β-cells expressing key β-cell-related genes: Pancreatic and duodenal homeobox 1 (PDX1), NK6 Homeobox 1 (NKX6.1), Glucose Transporter Type 2 (GLUT2), Proprotein convertase subtilisin/kexin type 1 (PCSK1), and low levels of insulin. Neither Glucagon (α-cells) nor LGR5 and SOX9 were expressed, and somatostatin was expressed at low levels. The differentiated cells released insulin upon glucose stimulation. CONCLUSION AND IMPLICATIONS The step-by-step differentiation protocol, mimicking pancreatic organogenesis, resulted in β-cells secreting insulin levels suitable for β-cell disease modelling. It remains to be seen if stem cells from diseased animals behave similarly.
Collapse
Affiliation(s)
- Boyd H. T. Gouw
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
| | - Flavia C. M. Oliveira
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
- Health and Animal Production in Amazônia Program, Universidade Federal Rural da Amazônia, Belém 66077-830, Brazil
| | - Hans S. Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
| | - Lisa van Uden
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
| | - Louis C. Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
| |
Collapse
|
2
|
Cui LH, Noh JM, Kim DH, Seo HR, Joo HJ, Choi SC, Song MH, Kim KS, Huang LH, Na JE, Rhyu IJ, Qu XK, Lee KB, Lim DS. Nanotopography promotes cardiogenesis of pluripotent stem cell-derived embryoid bodies through focal adhesion kinase signaling. Biochem Biophys Res Commun 2024; 735:150796. [PMID: 39427377 DOI: 10.1016/j.bbrc.2024.150796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Controlling the microenvironment surrounding the pluripotent stem cells (PSCs) is a pivotal strategy for regulating cellular differentiation. Surface nanotopography is one of the key factors influencing the lineage-specific differentiation of PSCs. However, much of the underlying mechanism remains unknown. In this study, we focused on the effects of gradient nanotopography on the differentiation of embryoid bodies (EBs). EBs were cultured on three differently sized nanopillar surfaces (Large, 280-360; Medium, 200-280; Small, 120-200 nm) for spontaneous cardiomyocyte differentiation without chemical stimuli. The large nanotopography significantly promoted cardiogenesis, with increased expression of cardiac markers such as α-MHC, cTnT, and cTnI, and redistributed vinculin expression to the contact area. In addition, the small and medium nanotopographies also influenced EB differentiation, affecting both cardiogenesis and hematopoiesis to varying degrees. The phosphorylation of focal adhesion kinase (FAK) decreased in the EBs on the large nanotopography compared to that in the EBs cultured on the flat surface. The gradient nanotopography with 280-360 nm nanopillars is beneficial for the cardiogenesis of EBs in a FAK-dependent manner. This study provides valuable insights into controlling stem cell differentiation through nanotopographical cues, thereby advancing our understanding of the microenvironmental regulation in stem cell-based cardiac tissue engineering.
Collapse
Affiliation(s)
- Long-Hui Cui
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Dae Hwan Kim
- Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; BK21 Four R&E Center for Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ha-Rim Seo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; Division of Drug Efficacy Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheonju-si, 28160, South Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; R&D Center for Companion Diagnosis, SOL Bio Corporation, Suite 510, 27, Seongsui-ro7-gil, Seongdong-gu, Seoul, 04780, South Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Kyung-Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Li-Hua Huang
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Xin-Kai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Kyu Back Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
3
|
Ma R, Bi H, Wang Y, Wang J, Zhang J, Yu X, Chen Z, Wang J, Lu C, Zheng J, Li Y, Ding X. Low concentrations of saracatinib promote definitive endoderm differentiation through inhibition of FAK-YAP signaling axis. Cell Commun Signal 2024; 22:300. [PMID: 38816763 PMCID: PMC11140888 DOI: 10.1186/s12964-024-01679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024] Open
Abstract
Optimizing the efficiency of definitive endoderm (DE) differentiation is necessary for the generation of diverse organ-like structures. In this study, we used the small molecule inhibitor saracatinib (SAR) to enhance DE differentiation of human embryonic stem cells and induced pluripotent stem cells. SAR significantly improved DE differentiation efficiency at low concentrations. The interaction between SAR and Focal Adhesion Kinase (FAK) was explored through RNA-seq and molecular docking simulations, which further supported the inhibition of DE differentiation by p-FAK overexpression in SAR-treated cells. In addition, we found that SAR inhibited the nuclear translocation of Yes-associated protein (YAP), a downstream effector of FAK, which promoted DE differentiation. Moreover, the addition of SAR enabled a significant reduction in activin A (AA) from 50 to 10 ng/mL without compromising DE differentiation efficiency. For induction of the pancreatic lineage, 10 ng/ml AA combined with SAR at the DE differentiation stage yielded a comparative number of PDX1+/NKX6.1+ pancreatic progenitor cells to those obtained by 50 ng/ml AA treatment. Our study highlights SAR as a potential modulator that facilitates the cost-effective generation of DE cells and provides insight into the orchestration of cell fate determination.
Collapse
Affiliation(s)
- Ruiyang Ma
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China
| | - Huanjing Bi
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China
| | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China
| | - Jingwen Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China
| | - Jiangwei Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China
| | - Xiaoyang Yu
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China
| | - Zuhan Chen
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China
| | - Jiale Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China
| | - Cuinan Lu
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China
| | - Yang Li
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China
| | - Xiaoming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi Province, 710061, China.
| |
Collapse
|
4
|
Zhu Y, Yang M, Xu W, Zhang Y, Pan L, Wang L, Wang F, Lu Y. The collagen matrix regulates the survival and function of pancreatic islets. Endocrine 2024; 83:537-547. [PMID: 37999835 DOI: 10.1007/s12020-023-03592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
The extracellular matrix (ECM) provides an appropriate microenvironment for many kinds of cells, including pancreatic cells. Collagens are the most abundant components of the ECM. Type I, IV, V and VI collagen has been detected in pancreatic islets, and each type plays important role in the proliferation, survival, function and differentiation of pancreatic cells. In some cases, collagens show behaviours similar to those of growth factors and regulate the biological behaviour of β cells by binding with certain growth factors, including IGFs, EGFs and FGFs. The transcriptional coactivator YAP/TAZ has been widely recognised as a mechanosensor that senses changes in the physical characteristics of the ECM and inhibition of YAP/TAZ enhances insulin production and secretion. Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterised by the destruction of insulin-producing β cells. The crosstalk between collagens and immune cells plays a key role in the development and differentiation of immune cells. Further, Supplementation with collagens during islet transplantation is a promising strategy for improving the quality of the islets. But, excessive collagen deposition results in pancreatic fibrosis and pancreatic carcinoma. Targeting inhibit Piezo, autophagy or IL-6 may reduce excessive collagen deposition-induced pancreatic fibrosis and pancreatic carcinoma. This review provides insights into the treatment of T1DM to prolong life expectancy and provides the potential targets for treating collagen deposition-induced pancreatic fibrosis and pancreatic carcinoma.
Collapse
Affiliation(s)
- Yingying Zhu
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Mei Yang
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Wanli Xu
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Yun Zhang
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Linlin Pan
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Lina Wang
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Furong Wang
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China.
| | - Yanting Lu
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China.
| |
Collapse
|
5
|
Rodriguez UA, Dahiya S, Raymond ML, Gao C, Martins-Cargill CP, Piganelli JD, Gittes GK, Hu J, Esni F. Focal adhesion kinase-mediated signaling controls the onset of pancreatic cell differentiation. Development 2022; 149:dev200761. [PMID: 36017799 PMCID: PMC9482336 DOI: 10.1242/dev.200761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
Signals from the endothelium play a pivotal role in pancreatic lineage commitment. As such, the fate of the epithelial cells relies heavily on the spatiotemporal recruitment of the endothelial cells to the embryonic pancreas. Although it is known that VEGFA secreted by the epithelium recruits the endothelial cells to the specific domains within the developing pancreas, the mechanism that controls the timing of such recruitment is poorly understood. Here, we have assessed the role of focal adhesion kinase (FAK) in mouse pancreatic development based on our observation that the presence of the enzymatically active form of FAK (pFAK) in the epithelial cells is inversely correlated with vessel recruitment. To study the role of FAK in the pancreas, we conditionally deleted the gene encoding focal adhesion kinase in the developing mouse pancreas. We found that homozygous deletion of Fak (Ptk2) during embryogenesis resulted in ectopic epithelial expression of VEGFA, abnormal endothelial recruitment and a delay in endocrine and acinar cell differentiation. The heterozygous mutants were born with no pancreatic phenotype but displayed gradual acinar atrophy due to cell polarity defects in exocrine cells. Together, our findings imply a role for FAK in controlling the timing of pancreatic lineage commitment and/or differentiation in the embryonic pancreas by preventing endothelial recruitment to the embryonic pancreatic epithelium.
Collapse
Affiliation(s)
- Uylissa A. Rodriguez
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - Shakti Dahiya
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - Michelle L. Raymond
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - Chenxi Gao
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15244, USA
| | - Christina P. Martins-Cargill
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - Jon D. Piganelli
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - George K. Gittes
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
| | - Jing Hu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15244, USA
| | - Farzad Esni
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15244, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15123, USA
| |
Collapse
|
6
|
Mandal P, De D, Yun K, Kim KK. Improved differentiation of human adipose stem cells to insulin-producing β-like cells using PDFGR kinase inhibitor Tyrphostin9. Biochem Biophys Res Commun 2020; 533:132-138. [PMID: 32933751 DOI: 10.1016/j.bbrc.2020.08.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus (DM) is a metabolic syndrome where insulin secretion or the response to insulin produced by the body is compromised. The only available long-term treatment is the transplantation of pancreas or islet for procuring β-cells. However, due to the shortage of β-cell sources from the tissues, differentiation of pluripotent stem cells or terminally differentiated cells into β-cell is proposed as an alternative strategy. Previously, human adipose-derived stem cells (ADSCs) were reported to be converted into β-like cells by a stepwise treatment of chemicals and growth factors. However, due to the low conversion efficiency, the clinical application was not feasible. In this study, we developed a modified conversion protocol with improved yield and functionality, which is achieved by changing the culture method and addition of Tyrphostin9, a platelet-derived growth factor receptor (PDGFR) kinase inhibitor. Tyrphostin9 was identified from a cell-based chemical screening using the mCherry reporter under the control of the Pdx1 promoter. The β-like cells differentiated under the new protocol showed a 3.6-fold increase in the expression of Pdx1, a marker for pancreatic differentiation, as compared to the previous protocol. We propose that Tyrphostin9 contributes to the β-like cell differentiation by playing a dual role; enhancing the definitive endoderm generation by inhibiting the PI3K signaling and suppressing the taurine-mediated proliferation of definitive endoderm. Importantly, these differentiated cells responded well to low and high glucose stimulations compared to cells differentiated by the previous protocol, as confirmed by the 2.0-fold increase in the C-peptide release. As ADSCs are abundant, easily isolated, and autologous in nature, improved differentiation approaches to generate β-like cells from ADSCs would provide a better opportunity for treating diabetes.
Collapse
Affiliation(s)
- Paulami Mandal
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Debojyoti De
- Department of Biotechnology, National Institute of Technology Durgapur, 713209, India
| | - Kyunghee Yun
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Enhanced differentiation of human pluripotent stem cells into pancreatic endocrine cells in 3D culture by inhibition of focal adhesion kinase. Stem Cell Res Ther 2020; 11:488. [PMID: 33198821 PMCID: PMC7667734 DOI: 10.1186/s13287-020-02003-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Generation of insulin-producing cells from human pluripotent stem cells (hPSCs) in vitro would be useful for drug discovery and cell therapy in diabetes. Three-dimensional (3D) culture is important for the acquisition of mature insulin-producing cells from hPSCs, but the mechanism by which it promotes β cell maturation is poorly understood. Methods We established a stepwise method to induce high-efficiency differentiation of human embryonic stem cells (hESCs) into mature monohormonal pancreatic endocrine cells (PECs), with the last maturation stage in 3D culture. To comprehensively compare two-dimensional (2D) and 3D cultures, we examined gene expression, pancreas-specific markers, and functional characteristics in 2D culture-induced PECs and 3D culture-induced PECs. The mechanisms were considered from the perspectives of cell–cell and cell–extracellular matrix interactions which are fundamentally different between 2D and 3D cultures. Results The expression of the pancreatic endocrine-specific transcription factors PDX1, NKX6.1, NGN3, ISL1, and PAX6 and the hormones INS, GCG, and SST was significantly increased in 3D culture-induced PECs. 3D culture yielded monohormonal endocrine cells, while 2D culture-induced PECs co-expressed INS and GCG or INS and SST or even expressed all three hormones. We found that focal adhesion kinase (FAK) phosphorylation was significantly downregulated in 3D culture-induced PECs, and treatment with the selective FAK inhibitor PF-228 improved the expression of β cell-specific transcription factors in 2D culture-induced PECs. We further demonstrated that 3D culture may promote endocrine commitment by limiting FAK-dependent activation of the SMAD2/3 pathway. Moreover, the expression of the gap junction protein Connexin 36 was much higher in 3D culture-induced PECs than in 2D culture-induced PECs, and inhibition of the FAK pathway in 2D culture increased Connexin 36 expression. Conclusion We developed a strategy to induce differentiation of monohormonal mature PECs from hPSCs and found limited FAK-dependent activation of the SMAD2/3 pathway and unregulated expression of Connexin 36 in 3D culture-induced PECs. This study has important implications for the generation of mature, functional β cells for drug discovery and cell transplantation therapy for diabetes and sheds new light on the signaling events that regulate endocrine specification. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02003-z.
Collapse
|
8
|
Medfai H, Khalil A, Rousseau A, Nuyens V, Paumann-Page M, Sevcnikar B, Furtmüller PG, Obinger C, Moguilevsky N, Peulen O, Herfs M, Castronovo V, Amri M, Van Antwerpen P, Vanhamme L, Zouaoui Boudjeltia K. Human peroxidasin 1 promotes angiogenesis through ERK1/2, Akt, and FAK pathways. Cardiovasc Res 2020; 115:463-475. [PMID: 29982533 DOI: 10.1093/cvr/cvy179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
Aims The term angiogenesis refers to sprouting of new blood vessels from pre-existing ones. The angiogenic process involves cell migration and tubulogenesis requiring interaction between endothelial cells and the extracellular matrix. Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase found embedded in the basement membranes. As it promotes the stabilization of extracellular matrix, we investigated its possible role in angiogenesis both in vitro and in vivo. Methods and results We analysed the effects of peroxidasin 1 gene silencing and supplementation by recombinant hsPxd01 in TeloHAEC endothelial cells on cell migration, tubulogenesis in matrigel, and intracellular signal transduction as assessed by kinase phosphorylation and expression of pro-angiogenic genes as measured by qRT-PCR. We further evaluated the angiogenic potential of recombinant peroxidasin in a chicken chorioallantoic membrane model. RNA silencing of endogenous hsPxd01 significantly reduced tube formation and cell migration, whereas supplementation by the recombinant peroxidase promoted tube formation in vitro and stimulated vascularization in vivo through its catalytic activity. Moreover, recombinant hsPxd01 promoted phosphorylation of Extracellular signal-Regulated Kinases (ERK1/2), Protein kinase B (Akt), and Focal Adhesion Kinase (FAK), and induced the expression of pro-angiogenic downstream genes: Platelet Derived Growth Factor Subunit B (PDGFB), endothelial-derived Heparin Binding EGF-like growth factor (HB-EGF), CXCL-1, Hairy-Related Transcription Factor 1 (HEY-1), DNA-binding protein inhibitor (ID-2), Snail Family Zinc Finger 1 (SNAI-1), as well as endogenous hsPxd01. However, peroxidasin silencing significantly reduced Akt and FAK phosphorylation but induced ERK1/2 activation after supplementation by recombinant hsPxd01. While hsPxd01 silencing significantly reduced expression of HEY-1, ID-2, and PDGFB, it did not affect expression of SNAI-1, HB-EGF, and CXCL-1 after supplementation by recombinant hsPxd01. Conclusion Our findings suggest a role of enzymatically active peroxidasin 1 as a pro-angiogenic peroxidase and a modulator of ERK1/2, Akt and FAK signalling.
Collapse
Affiliation(s)
- Hayfa Medfai
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium.,Department of Biological Sciences, Laboratory of Functional Neurophysiology and Pathology, UR/11ES09, Université de Tunis El Manar, Faculté des Sciences de Tunis, 20 Rue de Tolède, 2092 Manar II, Tunis,Tunisia
| | - Alia Khalil
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Alexandre Rousseau
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Martina Paumann-Page
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Benjamin Sevcnikar
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Nicole Moguilevsky
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, Giga-Cancer, University of Liege, Quartier Hopital, Avenue de l'Hopital, 11, 4000 Liège, Belgium
| | - Michael Herfs
- Department of Pathology, Laboratory of Experimental Pathology, Giga-Cancer, University of Liege, Quartier Hopital, Avenue de l'Hopital, 11, 4000 Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, Giga-Cancer, University of Liege, Quartier Hopital, Avenue de l'Hopital, 11, 4000 Liège, Belgium
| | - Mohamed Amri
- Department of Biological Sciences, Laboratory of Functional Neurophysiology and Pathology, UR/11ES09, Université de Tunis El Manar, Faculté des Sciences de Tunis, 20 Rue de Tolède, 2092 Manar II, Tunis,Tunisia
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Campus de la plaine CP205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium; and
| | - Luc Vanhamme
- Laboratory of Molecular Parasitology, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| |
Collapse
|
9
|
Townsend SE, Gannon M. Extracellular Matrix-Associated Factors Play Critical Roles in Regulating Pancreatic β-Cell Proliferation and Survival. Endocrinology 2019; 160:1885-1894. [PMID: 31271410 PMCID: PMC6656423 DOI: 10.1210/en.2019-00206] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
This review describes formation of the islet basement membrane and the function of extracellular matrix (ECM) components in β-cell proliferation and survival. Implications for islet transplantation are discussed. The insulin-producing β-cell is key for maintaining glucose homeostasis. The islet microenvironment greatly influences β-cell survival and proliferation. Within the islet, β-cells contact the ECM, which is deposited primarily by intraislet endothelial cells, and this interaction has been shown to modulate proliferation and survival. ECM-localized growth factors, such as vascular endothelial growth factor and cellular communication network 2, signal through specific receptors and integrins on the β-cell surface. Further understanding of how the ECM functions to influence β-cell proliferation and survival will provide targets for enhancing functional β-cell mass for the treatment of diabetes.
Collapse
Affiliation(s)
- Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Correspondence: Maureen Gannon, PhD, Vanderbilt University Medical Center, 2213 Garland Avenue, MRB IV 7465, Nashville, Tennessee 37232. E-mail:
| |
Collapse
|
10
|
Koblas T, Leontovyc I, Loukotová S, Saudek F. Reprogramming of Human Pancreatic Organoid Cells into Insulin-Producing β-Like Cells by Small Molecules and in Vitro Transcribed Modified mRNA Encoding Neurogenin 3 Transcription Factor. Folia Biol (Praha) 2019; 65:109-123. [PMID: 31638558 DOI: 10.14712/fb2019065030109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Reprogramming of non-endocrine pancreatic cells into insulin-producing cells represents a promising therapeutic approach for the restoration of endogenous insulin production in diabetic patients. In this paper, we report that human organoid cells derived from the pancreatic tissue can be reprogrammed into the insulin-producing cells (IPCs) by the combination of in vitro transcribed modified mRNA encoding transcription factor neurogenin 3 and small molecules modulating the epigenetic state and signalling pathways. Upon the reprogramming, IPCs formed 4.6 ± 1.2 % of the total cells and expressed typical markers (insulin, glucokinase, ABCC8, KCNJ11, SLC2A2, SLC30A8) and transcription factors (PDX1, NEUROD1, MAFA, NKX2.2, NKX6.1, PAX4, PAX6) needed for the proper function of pancreatic β-cells. Additionally, we have revealed a positive effect of ALK5 inhibitor RepSox on the overall reprogramming efficiency. However, the reprogrammed IPCs possessed only a partial insulin-secretory capacity, as they were not able to respond to the changes in the extracellular glucose concentration by increasing insulin secretion. Based on the achieved results we conclude that due to the incomplete reprogramming, the IPCs have immature character and only partial properties of native human β-cells.
Collapse
Affiliation(s)
- T Koblas
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - I Leontovyc
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - S Loukotová
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - F Saudek
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
11
|
Mamidi A, Prawiro C, Seymour PA, de Lichtenberg KH, Jackson A, Serup P, Semb H. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 2018; 564:114-118. [DOI: 10.1038/s41586-018-0762-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
|
12
|
Abstract
PURPOSE OF REVIEW Human pluripotent stem cells (hPSCs) are anchorage-dependent cells that can be cultured on a variety of matrices and express integrins and the machinery for integrin signaling. Until recently, there has been limited understanding of exactly how integrin signaling regulates pluripotent stem cell (PSC) behavior. This review summarizes our knowledge of how integrins and focal adhesion kinase (FAK) regulate different aspects of hPSC biology. RECENT FINDINGS The latest research suggests that mouse and human embryonic stem cells utilize similar integrin signaling players but with different biological outcomes, reflecting the known developmental difference in their pluripotent status. Notably, attachment cues via FAK signaling are crucial for hPSCs survival and pluripotency maintenance. FAK may be found cortically but also in the nucleus of hPSCs intersecting core pluripotency networks. SUMMARY Integrins and FAK have been consigned to the conventional role of cell adhesion receptor systems in PSCs. This review highlights data indicating that they are firmly integrated in pluripotency circuits, with implications for both research PSC culture and scale up and use in clinical applications.
Collapse
Affiliation(s)
- Loriana Vitillo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, Michael Smith Building, Oxford Rd, Manchester, M13 9PT UK
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, Michael Smith Building, Oxford Rd, Manchester, M13 9PT UK
| |
Collapse
|
13
|
Ma X, Zhu S. Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration. Acta Biochim Biophys Sin (Shanghai) 2017; 49:289-301. [PMID: 28338772 DOI: 10.1093/abbs/gmx008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 12/13/2022] Open
Abstract
Generation of unlimited functional pancreatic β cells is critical for the study of pancreatic biology and treatment of diabetes mellitus. Recent advances have suggested several promising directions, including directed differentiation of pancreatic β cells from pluripotent stem cells, reprogramming of pancreatic β cells from other types of somatic cells, and stimulated proliferation and enhanced functions of existing pancreatic β cells. Small molecules are useful in generating unlimited numbers of functional pancreatic cells in vitro and could be further developed as drugs to stimulate endogenous pancreatic regeneration. Here, we provide an updated summary of recent major achievements in pancreatic β cell differentiation, reprogramming, proliferation, and function. These studies will eventually lead to significant advances in the field of pancreatic biology and regeneration.
Collapse
Affiliation(s)
- Xiaojie Ma
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Saiyong Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Yamashita-Sugahara Y, Matsumoto M, Ohtaka M, Nishimura K, Nakanishi M, Mitani K, Okazaki Y. An inhibitor of fibroblast growth factor receptor-1 (FGFR1) promotes late-stage terminal differentiation from NGN3+ pancreatic endocrine progenitors. Sci Rep 2016; 6:35908. [PMID: 27786288 PMCID: PMC5081516 DOI: 10.1038/srep35908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) provide a potential resource for regenerative medicine. To identify the signalling pathway(s) contributing to the development of functional β cells, we established a tracing model consisting of dual knock-in hiPSCs (INS-Venus/NGN3-mCherry) (hIveNry) expressing the fluorescent proteins Venus and mCherry under the control of intrinsic insulin (INS) and neurogenin 3 (NGN3) promoters, respectively. hIveNry iPSCs differentiated into NGN3- and mCherry-positive endocrine progenitors and then into Venus-positive β cells expressing INS, PDX1, NKX6.1, and glucokinase (GCK). Using these cells, we conducted high-throughput screening of chemicals and identified a specific kinase inhibitor of fibroblast growth factor receptor 1 (FGFR1) that acted in a stage-dependent manner to promote the terminal differentiation of pancreatic endocrine cells, including β cells, from the intermediate stage of pancreatic endocrine progenitors while blocking the early development of pancreatic progenitors. This FGFR1 inhibitor augmented the expression of functional β cell markers (SLC30A8 and ABCC8) and improved glucose-stimulated INS secretion. Our findings indicate that the hIveNry model could provide further insights into the mechanisms of hiPS-derived β cell differentiation controlled by FGFR1-mediated regulatory pathways in a temporal-dependent fashion.
Collapse
Affiliation(s)
- Yzumi Yamashita-Sugahara
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Masahito Matsumoto
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Manami Ohtaka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kohnosuke Mitani
- Division of Gene Therapy, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
15
|
Richardson T, Barner S, Candiello J, Kumta PN, Banerjee I. Capsule stiffness regulates the efficiency of pancreatic differentiation of human embryonic stem cells. Acta Biomater 2016; 35:153-65. [PMID: 26911881 DOI: 10.1016/j.actbio.2016.02.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/24/2015] [Accepted: 02/17/2016] [Indexed: 12/14/2022]
Abstract
Encapsulation of donor islets using a hydrogel material is a well-studied strategy for islet transplantation, which protects donor islets from the host immune response. Replacement of donor islets by human embryonic stem cell (hESC) derived islets will also require a means of immune-isolating hESCs by encapsulation. However, a critical consideration of hESC differentiation is the effect of surrounding biophysical environment, in this case capsule biophysical properties, on differentiation. The objective of this study, thus, was to evaluate the effect of capsule properties on growth, viability, and differentiation of encapsulated hESCs throughout pancreatic induction. It was observed that even in the presence of soluble chemical cues for pancreatic induction, substrate properties can significantly modulate pancreatic differentiation, hence necessitating careful tuning of capsule properties. Capsules in the range of 4-7kPa supported cell growth and viability, whereas capsules of higher stiffness suppressed cell growth. While an increase in capsule stiffness enhanced differentiation at the intermediate definitive endoderm (DE) stage, increased stiffness strongly suppressed pancreatic progenitor (PP) induction. Signaling pathway analysis indicated an increase in pSMAD/pAKT levels with substrate stiffness likely the cause of enhancement of DE differentiation. In contrast, sonic hedgehog inhibition was more efficient under softer gel conditions, which is necessary for successful PP differentiation. STATEMENT OF SIGNIFICANCE Cell replacement therapy for type 1 diabetes (T1D), affecting millions of people worldwide, requires the immunoisolation of insulin-producing islets by encapsulation with a semi-impermeable material. Due to the shortage of donor islets, human pluripotent stem cell (hPSC) derived islets are an attractive alternative. However, properties of the encapsulating substrate are known to influence hPSC cell fate. In this work, we determine the effect of substrate stiffness on growth and pancreatic fate of encapsulated hPSCs. We precisely identify the range of substrate properties conducive for pancreatic cell fate, and also the mechanism by which substrate properties modify the cell signaling pathways and hence cell fate. Such information will be critical in driving regenerative cell therapy for long term treatment of T1D.
Collapse
Affiliation(s)
- Thomas Richardson
- Department of Chemical Engineering, University of Pittsburgh, United States
| | - Sierra Barner
- Department of Chemical Engineering, University of Pittsburgh, United States
| | - Joseph Candiello
- Department of Bioengineering, University of Pittsburgh, United States
| | - Prashant N Kumta
- Department of Chemical Engineering, University of Pittsburgh, United States; McGowan Institute of Regenerative Medicine, University of Pittsburgh, United States; Department of Bioengineering, University of Pittsburgh, United States; Department of Mechanical and Materials Science, University of Pittsburgh, United States; Department of Oral Biology, University of Pittsburgh, United States
| | - Ipsita Banerjee
- Department of Chemical Engineering, University of Pittsburgh, United States; McGowan Institute of Regenerative Medicine, University of Pittsburgh, United States; Department of Bioengineering, University of Pittsburgh, United States.
| |
Collapse
|
16
|
Kim JH, Kim HW, Cha KJ, Han J, Jang YJ, Kim DS, Kim JH. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. ACS NANO 2016; 10:3342-55. [PMID: 26900863 DOI: 10.1021/acsnano.5b06985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Hyung Woo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Kyoung Je Cha
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jiyou Han
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Yu Jin Jang
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
17
|
Takahashi Y, Takebe T, Taniguchi H. Engineering pancreatic tissues from stem cells towards therapy. Regen Ther 2016; 3:15-23. [PMID: 31245468 PMCID: PMC6581807 DOI: 10.1016/j.reth.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/17/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Pancreatic islet transplantation is performed as a potential treatment for type 1 diabetes mellitus. However, this approach is significantly limited due to the critical shortage of islet sources. Recently, a number of publications have developed protocols for directed β-cell differentiation of pluripotent cells, such as embryonic stem (ES) or induced pluripotent stem (iPS) cells. Decades of studies have led to the development of modified protocols that recapitulate molecular developmental cues by combining various growth factors and small molecules with improved efficiency. However, the later step of pancreatic differentiation into functional β-cells has yet to be satisfactory in vitro, highlighting alternative approach by recapitulating spatiotemporal multicellular interaction in three-dimensional (3D) culture. Here, we summarize recent progress in the directed differentiation into pancreatic β-cells with a focus on both two-dimensional (2D) and 3D differentiation settings. We also discuss the potential transplantation strategies in combination with current bioengineering approaches towards diabetes therapy. Transplantation of stem cell derived pancreatic progenitors is a possible approach for generating mature β-cell in vivo. Promise of 3-D (or 4-D) culture has started to be explored by reconstituting pancreatic tissue structures. Self-condensation culture is a basic technique of integrating multiple heterotypic lineages including vasculatures. Bioengineering approach has been combined for developing effective transplant strategies.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- BMP, bone morphogenic protein
- Diabetes
- ES, embryonic stem
- FGF, fibroblast growth factors
- Heterotypic cellular interaction
- IBMIR, instant blood-mediated reaction
- ILV, indolactam V
- Ngn3, neurogenin 3
- PEG, polyethylene glycol
- PI3K, phosphatidylinositol-3 kinase
- PIPAAm, poly-N-isopropylacrylamide
- PVA, polyvinyl alcohol
- Pancreas
- Pdx1, pancreatic and duodenal homeobox 1
- Ptf1a, pancreatic transcription factor 1a
- Regenerative medicine
- VEGF, vascular endothelial growth factor
- Vascularization
- iPS, induced pluripotent stem
- iPS/ES cell
Collapse
Affiliation(s)
- Yoshinobu Takahashi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.,Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229- 3039, USA
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.,Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
18
|
Guo T, Landsman L, Li N, Hebrok M. Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hESCs. Diabetes 2013; 62:1581-92. [PMID: 23305648 PMCID: PMC3636645 DOI: 10.2337/db12-0167] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Islet transplantation has proven to be a successful strategy to restore normoglycemia in patients with type 1 diabetes (T1D). However, the dearth of cadaveric islets available for transplantation hampers the widespread application of this treatment option. Although human embryonic stem cells and induced pluripotent stem cells are capable of generating insulin-producing cells in vitro when provided with the appropriate inductive cues, the insulin-expressing cells that develop behave more like immature β-cells with minimal sensitivity to glucose stimulation. Here, we identify a set of signaling factors expressed in mouse embryonic mesenchyme during the time when foregut and pancreatic progenitors are specified and test their activities during in vitro differentiation of human embryonic stem cells. Several of the identified factors work in concert to expand the pancreatic progenitor pool. Interestingly, transforming growth factor (TGF)-β ligands, most potent in inducing pancreatic progenitors, display strong inhibitory effects on subsequent endocrine cell differentiation. Treatment with TGF-β ligands, followed by the addition of a TGF-β receptor antagonist, dramatically increased the number of insulin-producing cells in vitro, demonstrating the need for dynamic temporal regulation of TGF-β signaling during in vitro differentiation. These studies illustrate the need to precisely mimic the in vivo conditions to fully recapitulate pancreatic lineage specification in vitro.
Collapse
|
19
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2013; 20:156-60. [PMID: 23434800 DOI: 10.1097/med.0b013e32835f8a71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Afrikanova I, Kayali A, Lopez A, Hayek A. Is stage-specific embryonic antigen 4 a marker for human ductal stem/progenitor cells? Biores Open Access 2013; 1:184-91. [PMID: 23515456 PMCID: PMC3559232 DOI: 10.1089/biores.2012.0235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The presence of pancreatic stem cells (PnSCs) has not been firmly demonstrated in the human or animal pancreas. Previous reports have suggested that ductal and acinar structures in the exocrine pancreas can be a potential source of progenitor cells. More recently, immature insulin precursors in the periphery of human islets have been found to self-replicate and differentiate to endocrine cells in vitro. Transplantation of these cells under the kidney capsule improves the diabetic state in mice. The controversy surrounding where PnSCs reside could be resolved if a specific marker were to be found that allowed their identification, purification, and directed differentiation to endocrine cells. We have identified in human pancreas cells positive for the stage-specific embryonic antigen 4 (SSEA4), a stem cell marker. These cells also express ductal, pancreatic progenitor, and stem cell protein markers. Interestingly, some of the SSEA4(+) cells scattered in the ducts do not show a ductal cell phenotype. SSEA4(+)-sorted cells formed aggregate-like spheres in culture and robustly differentiated to pancreatic hormone-expressing cells in conditions of high glucose concentration and B27 supplementation. We hypothesize that SSEA4(+) cells or a subpopulation of those cells residing in the pancreatic ducts may be the elusive PnSCs, and in this case, SSEA4 may represent a potential surface antigen marker for human PnSCs. The discovery of specific markers for the identification and purification of human PnSCs would greatly facilitate studies aimed at the expansion of these cells and the development of targeting tools for their potential induction to insulin-producing cells.
Collapse
Affiliation(s)
- Ivka Afrikanova
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California , San Diego, California
| | | | | | | |
Collapse
|
21
|
Lian X, Selekman J, Bao X, Hsiao C, Zhu K, Palecek SP. A small molecule inhibitor of SRC family kinases promotes simple epithelial differentiation of human pluripotent stem cells. PLoS One 2013; 8:e60016. [PMID: 23527294 PMCID: PMC3603942 DOI: 10.1371/journal.pone.0060016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/20/2013] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) provide unprecedented opportunities to study the earliest stages of human development in vitro and have the potential to provide unlimited new sources of cells for regenerative medicine. Although previous studies have reported cytokeratin 14+/p63+ keratinocyte generation from hPSCs, the multipotent progenitors of epithelial lineages have not been described and the developmental pathways regulating epithelial commitment remain largely unknown. Here we report membrane localization of β-catenin during retinoic acid (RA)--induced epithelial differentiation. In addition hPSC treatment with the Src family kinase inhibitor SU6656 modulated β-catenin localization and produced an enriched population of simple epithelial cells under defined culture conditions. SU6656 strongly upregulated expression of cytokeratins 18 and 8 (K18/K8), which are expressed in simple epithelial cells, while repressing expression of the pluripotency gene Oct4. This homogeneous population of K18+K8+Oct4- simple epithelial precursor cells can further differentiate into cells expressing keratinocyte or corneal-specific markers. These enriched hPSC-derived simple epithelial cells may provide a ready source for development and toxicology cell models and may serve as a progenitor for epithelial cell transplantation applications.
Collapse
Affiliation(s)
- Xiaojun Lian
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Joshua Selekman
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Xiaoping Bao
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Cheston Hsiao
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kexian Zhu
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sean P. Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ho B, Olson G, Figel S, Gelman I, Cance WG, Golubovskaya VM. Nanog increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated. J Biol Chem 2012; 287:18656-73. [PMID: 22493428 DOI: 10.1074/jbc.m111.322883] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nanog and FAK were shown to be overexpressed in cancer cells. In this report, the Nanog overexpression increased FAK expression in 293, SW480, and SW620 cancer cells. Nanog binds the FAK promoter and up-regulates its activity, whereas Nanog siRNA decreases FAK promoter activity and FAK mRNA. The FAK promoter contains four Nanog-binding sites. The site-directed mutagenesis of these sites significantly decreased up-regulation of FAK promoter activity by Nanog. EMSA showed the specific binding of Nanog to each of the four sites, and binding was confirmed by ChIP assay. Nanog directly binds the FAK protein by pulldown and immunoprecipitation assays, and proteins co-localize by confocal microscopy. Nanog binds the N-terminal domain of FAK. In addition, FAK directly phosphorylates Nanog in a dose-dependent manner by in vitro kinase assay and in cancer cells in vivo. The site-directed mutagenesis of Nanog tyrosines, Y35F and Y174F, blocked phosphorylation and binding by FAK. Moreover, overexpression of wild type Nanog increased filopodia/lamellipodia formation, whereas mutant Y35F and Y174F Nanog did not. The wild type Nanog increased cell invasion that was inhibited by the FAK inhibitor and increased by FAK more significantly than with the mutants Y35F and Y174F Nanog. Down-regulation of Nanog with siRNA decreased cell growth reversed by FAK overexpression. Thus, these data demonstrate the regulation of the FAK promoter by Nanog, the direct binding of the proteins, the phosphorylation of Nanog by FAK, and the effect of FAK and Nanog cross-regulation on cancer cell morphology, invasion, and growth that plays a significant role in carcinogenesis.
Collapse
Affiliation(s)
- Baotran Ho
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
23
|
Woodford C, Zandstra PW. Tissue engineering 2.0: guiding self-organization during pluripotent stem cell differentiation. Curr Opin Biotechnol 2012; 23:810-9. [PMID: 22444525 DOI: 10.1016/j.copbio.2012.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/03/2012] [Accepted: 03/05/2012] [Indexed: 01/16/2023]
Abstract
Human pluripotent stem cell (hPSC) differentiation aims to mimic development using growth factors or small molecules in a time-dependent and dose-dependent manner. However, the cell types produced using this approach are predominantly fetal-like in phenotype and function, limiting their use in regenerative medicine. This is particularly true in current efforts to produce pancreatic beta cells, wherein robust pancreatic progenitor maturation can only be accomplished upon transplantation into mice. Recent studies have suggested that hPSC-derived cells are capable of self-organizing in vitro, revealing a new paradigm for creating mature cells and tissues. Tissue engineering strategies that provide subtle and dynamic signals to developmentally naïve cells may be applied to mimic in vitro the self-organization aspects of pancreatic development.
Collapse
Affiliation(s)
- Curtis Woodford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | | |
Collapse
|