1
|
Bray AS, Broberg CA, Hudson AW, Wu W, Nagpal RK, Islam M, Valencia-Bacca JD, Shahid F, Hernandez GE, Nutter NA, Walker KA, Bennett EF, Young TM, Barnes AJ, Ornelles DA, Miller VL, Zafar MA. Klebsiella pneumoniae employs a type VI secretion system to overcome microbiota-mediated colonization resistance. Nat Commun 2025; 16:940. [PMID: 39843522 PMCID: PMC11754592 DOI: 10.1038/s41467-025-56309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Microbial species must compete for space and nutrients to persist in the gastrointestinal (GI) tract, and our understanding of the complex pathobiont-microbiota interactions is far from complete. Klebsiella pneumoniae, a problematic, often drug-resistant nosocomial pathogen, can colonize the GI tract asymptomatically, serving as an infection reservoir. To provide insight on how K. pneumoniae interacts with the resident gut microbiome, we conduct a transposon mutagenesis screen using a murine model of GI colonization with an intact microbiota. Among the genes identified were those encoding a type VI secretion system (T6SS), which mediates contact-dependent killing of gram-negative bacteria. From several approaches, we demonstrate that the T6SS is critical for K. pneumoniae gut colonization. Metagenomics and in vitro killing assays reveal that K. pneumoniae reduces Betaproteobacteria species in a T6SS-dependent manner, thus identifying specific species targeted by K. pneumoniae. We further show that T6SS gene expression is controlled by several transcriptional regulators and that expression only occurs in vitro under conditions that mimic the gut environment. By enabling K. pneumoniae to thrive in the gut, the T6SS indirectly contributes to the pathogenic potential of this organism. These observations advance our molecular understanding of how K. pneumoniae successfully colonizes the GI tract.
Collapse
Affiliation(s)
- Andrew S Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew W Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | - Ravinder K Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL, USA
| | - Maidul Islam
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Juan D Valencia-Bacca
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Fawaz Shahid
- Wake Forest University, Winston Salem, Winston Salem, NC, USA
| | - Giovanna E Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Noah A Nutter
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Emma F Bennett
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Taylor M Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Andrew J Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Jacobsen KL, Griffin M, Phinney BS, Salemi M, Yazdi Z, Balami S, Older CE, Soto E. Temperature-dependent alterations in the proteome of the emergent fish pathogen Edwardsiella piscicida. JOURNAL OF FISH DISEASES 2024:e14017. [PMID: 39304982 PMCID: PMC11922789 DOI: 10.1111/jfd.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 10/02/2024]
Abstract
Edwardsiella piscicida is an emerging bacterial pathogen and the aetiological agent of edwardsiellosis among cultured and wild fish species globally. The increased frequency of outbreaks of this Gram-negative, facultative intracellular pathogen pose not only a threat to the aquaculture industry but also a possible foodborne/waterborne public health risk due to the ill-defined zoonotic potential. Thus, understanding the role of temperature on the virulence of this emerging pathogen is essential for comprehending the pathogenesis of piscine edwardsiellosis in the context of current warming trends associated with climate change, as well as providing insight into its zoonotic potential. In this study, significant temperature-dependent alterations in bacterial growth patterns were observed, with bacterial isolates grown at 17°C displaying higher peak growth sizes, extended lag times, and slower maximal growth rates than isolates grown at 27or 37°C. When E. piscicida isolates were grown at 37°C compared to 27 and 17°C, mass spectrometry analysis of the E. piscicida proteome revealed significant downregulation of crucial virulence proteins, such as Type VI secretion system proteins and flagellar proteins. Although in vivo models of infection are warranted, this in vitro data suggests possible temperature-associated alterations in the virulence and pathogenic potential of E. piscicida in poikilotherms and homeotherms.
Collapse
Affiliation(s)
- Kim L Jacobsen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Matt Griffin
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, California, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, California, USA
| | - Zeinab Yazdi
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Sujita Balami
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Caitlin E Older
- Warmwater Aquaculture Research Unit, Agricultural Research Service, U.S. Department of Aquaculture, Stoneville, Mississippi, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
3
|
Sun SS, He TT, Zhang SY, Yu XJ, Chen C, Laghari ZA, Nie P, Xie HX. T3SS protein EsrC binds to the lacI-like operator of type 1 fimbrial operon to suppress adhesion of Edwardsiella piscicida. Appl Environ Microbiol 2024; 90:e0086224. [PMID: 39058035 PMCID: PMC11337838 DOI: 10.1128/aem.00862-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Type 1 fimbria, the short hair-like appendage assembled on the bacterial surface, plays a pivotal role in adhesion and invasion in Edwardsiella piscicida. The type III secretion system (T3SS), another bacterial surface appendage, facilitates E. piscicida's replication in vivo by delivering effectors into host cells. Our previous research demonstrated that E. piscicida T3SS protein EseJ inhibits adhesion and invasion of E. piscicida by suppressing type 1 fimbria. However, how EseJ suppresses type 1 fimbria remains elusive. In this study, a lacI-like operator (nt -245 to -1 of fimA) upstream of type 1 fimbrial operon in E. piscicida was identified, and EseJ inhibits type 1 fimbria through the lacI-like operator. Moreover, through DNA pull-down and electrophoretic mobility shift assay, an AraC-type T3SS regulator, EsrC, was screened and verified to bind to nt -145 to -126 and nt -50 to -1 of fimA, suppressing type 1 fimbria. EseJ is almost abolished upon the depletion of EsrC. EsrC and EseJ impede type 1 fimbria expression. Intriguingly, nutrition and microbiota-derived indole activate type 1 fimbria through downregulating T3SS, alleviating EsrC or EseJ's inhibitory effect on lacI-like operator of type 1 fimbrial operon. By this study, it is revealed that upon entering the gastrointestinal tract, rich nutrients and indole downregulate T3SS and thereof upregulate type 1 fimbria, stimulating efficient adhesion and invasion; upon being internalized into epithelium, the limit in indole and nutrition switches on T3SS and thereof switches off type 1 fimbria, facilitating effector delivery to guarantee E. piscicida's survival/replication in vivo.IMPORTANCEIn this work, we identified the lacI-like operator of type 1 fimbrial operon in E. piscicida, which was suppressed by the repressors-T3SS protein EseJ and EsrC. We unveiled that E. piscicida upregulates type 1 fimbria upon sensing rich nutrition and the microbiota-derived indole, thereof promoting the adhesion of E. piscicida. The increase of indole and nutrition promotes type 1 fimbria by downregulating T3SS. The decrease in EseJ and EsrC alleviates their suppression on type 1 fimbria, and vice versa.
Collapse
Affiliation(s)
- Shan Shan Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tian Tian He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shu Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jun Yu
- MRC Center for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
4
|
Manisha Y, Srinivasan M, Jobichen C, Rosenshine I, Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol Rev Camb Philos Soc 2024; 99:837-863. [PMID: 38217090 DOI: 10.1111/brv.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.
Collapse
Affiliation(s)
- Yadav Manisha
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
5
|
Ramamoorthy S, Pena M, Ghosh P, Liao YY, Paret M, Jones JB, Potnis N. Transcriptome profiling of type VI secretion system core gene tssM mutant of Xanthomonas perforans highlights regulators controlling diverse functions ranging from virulence to metabolism. Microbiol Spectr 2024; 12:e0285223. [PMID: 38018859 PMCID: PMC10782981 DOI: 10.1128/spectrum.02852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE T6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here, Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* in X. perforans AL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria.
Collapse
Affiliation(s)
- Sivakumar Ramamoorthy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Michelle Pena
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Palash Ghosh
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Ying-Yu Liao
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Mathews Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
6
|
Song Y, Sun M, Mu G, Tuo Y. Exopolysaccharide produced by Lactiplantibacillus plantarum Y12 exhibits inhibitory effect on the Shigella flexneri genes expression related to biofilm formation. Int J Biol Macromol 2023; 253:127048. [PMID: 37748596 DOI: 10.1016/j.ijbiomac.2023.127048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Shigella is a specific enteric pathogen in humans, causing symptoms of bacterial dysentery. The biofilm formation of S. flexneri contributes to the emergence of multidrug resistance and facilitates the establishment of persistent chronic infections. This study investigated the regulatory effects of Lactiplantibacillus plantarum Y12 exopolysaccharide (L-EPS) on gene expression and its spatial hindrance effects in inhibiting the biofilm formation of S. flexneri. The transcriptome analysis revealed a significant impact of L-EPS on the gene expression profile of S. flexneri, with a total of 968 genes showing significant changes (507 up-regulated and 461 down-regulated). The significantly down-regulated KEGG metabolic pathway enriched in phosphotransferase system, Embden-Meyerhf-Parnas, Citrate cycle, Lipopolysaccharide biosynthesis, Cationic antimicrobial peptide resistance, Two-component system. Moreover, L-EPS significantly down-regulated the gene expression levels of fimbriae synthesis (fimF), lipopolysaccharide synthesis (lptE, lptB), anchor protein repeat domain (arpA), virulence factor (lpp, yqgB), antibiotic resistance (marR, cusB, mdtL, mdlB), heavy metal resistance (zraP), and polysaccharide synthesis (mtgA, mdoB, mdoC). The expression of biofilm regulator factor (bssS) and two-component system suppressor factor (mgrB) were significantly up-regulated. The RT-qPCR results indicated that a major component of L-EPS (L-EPS 2-1) exhibited the gene regulatory effect on the S. flexneri biofilm formation. Furthermore, electrophoresis and isothermal microtitration calorimetry demonstrated that the interaction between L-EPS 2-1 and eDNA is electrostatic dependent on the change in environmental pH, disrupting the stable spatial structure of S. flexneri biofilm. In conclusion, L-EPS inhibited the biofilm formation of S. flexneri through gene regulation and spatial obstruction effects.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
7
|
Kalindamar S, Abdelhamed H, Kordon AO, Tekedar HC, Pinchuk L, Karsi A. Characterization of Type VI secretion system in Edwardsiella ictaluri. PLoS One 2023; 18:e0296132. [PMID: 38153949 PMCID: PMC10754466 DOI: 10.1371/journal.pone.0296132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023] Open
Abstract
Edwardsiella ictaluri is a Gram-negative facultative intracellular fish pathogen causing enteric septicemia of catfish (ESC). While various secretion systems contribute to E. ictaluri virulence, the Type VI secretion system (T6SS) remains poorly understood. In this study, we constructed 13 E. ictaluri T6SS mutants using splicing by overlap extension PCR and characterized them, assessing their uptake and survival in channel catfish (Ictalurus punctatus) peritoneal macrophages, attachment and invasion in channel catfish ovary (CCO) cells, in vitro stress resistance, and virulence and efficacy in channel catfish. Among the mutants, EiΔevpA, EiΔevpH, EiΔevpM, EiΔevpN, and EiΔevpO exhibited reduced replication inside peritoneal macrophages. EiΔevpM, EiΔevpN, and EiΔevpO showed significantly decreased attachment to CCO cells, while EiΔevpN and EiΔevpO also displayed reduced invasion of CCO cells (p < 0.05). Overall, T6SS mutants demonstrated enhanced resistance to oxidative and nitrosative stress in the nutrient-rich medium compared to the minimal medium. However, EiΔevpA, EiΔevpH, EiΔevpM, EiΔevpN, and EiΔevpO were susceptible to oxidative stress in both nutrient-rich and minimal medium. In fish challenges, EiΔevpD, EiΔevpE, EiΔevpG, EiΔevpJ, and EiΔevpK exhibited attenuation and provided effective protection against E. ictaluri wild-type (EiWT) infection in catfish fingerlings. However, their attenuation and protective efficacy were lower in catfish fry. These findings shed light on the role of the T6SS in E. ictaluri pathogenesis, highlighting its significance in intracellular survival, host cell attachment and invasion, stress resistance, and virulence. The attenuated T6SS mutants hold promise as potential candidates for protective immunization strategies in catfish fingerlings.
Collapse
Affiliation(s)
- Safak Kalindamar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, Ordu, Türkiye
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Adef O. Kordon
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Hasan C. Tekedar
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Lesya Pinchuk
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| |
Collapse
|
8
|
Niu M, Sui Z, Jiang G, Wang L, Yao X, Hu Y. The Mutation of the DNA-Binding Domain of Fur Protein Enhances the Pathogenicity of Edwardsiella piscicida via Inducing Overpowering Pyroptosis. Microorganisms 2023; 12:11. [PMID: 38276180 PMCID: PMC10821184 DOI: 10.3390/microorganisms12010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Edwardsiella piscicida is an important fish pathogen with a broad host that causes substantial economic losses in the aquaculture industry. Ferric uptake regulator (Fur) is a global transcriptional regulator and contains two typical domains, the DNA-binding domain and dimerization domain. In a previous study, we obtained a mutant strain of full-length fur of E. piscicida, TX01Δfur, which displayed increased siderophore production and stress resistance factors and decreased pathogenicity. To further reveal the regulatory mechanism of Fur, the DNA-binding domain (N-terminal) of Fur was knocked out in this study and the mutant was named TX01Δfur2. We found that TX01Δfur2 displayed increased siderophore production and enhanced adversity tolerance, including a low pH, manganese, and high temperature stress, which was consistent with the phenotype of TX01Δfur. Contrary to TX01Δfur, whose virulence was weakened, TX01Δfur2 displayed an ascended invasion of nonphagocytic cells and enhanced destruction of phagocytes via inducing overpowering or uncontrollable pyroptosis, which was confirmed by the fact that TX01Δfur2 induced higher levels of cytotoxicity, IL-1β, and p10 in macrophages than TX01. More importantly, TX01Δfur2 displayed an increased global virulence to the host, which was confirmed by the result that TX01Δfur2 caused higher lethality outcomes for healthy tilapias than TX01. These results demonstrate that the mutation of the Fur N-terminal domain augments the resistance level against the stress and pathogenicity of E. piscicida, which is not dependent on the bacterial number in host cells or host tissues, although the capabilities of biofilm formation and the motility of TX01Δfur2 decline. These interesting findings provide a new insight into the functional analysis of Fur concerning the regulation of virulence in E. piscicida and prompt us to explore the subtle regulation mechanism of Fur in the future.
Collapse
Affiliation(s)
- Mimi Niu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Zhihai Sui
- School of Life Science, Linyi University, Linyi 276000, China;
| | - Guoquan Jiang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
| | - Xuemei Yao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China
| | - Yonghua Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
| |
Collapse
|
9
|
Hespanhol JT, Nóbrega-Silva L, Bayer-Santos E. Regulation of type VI secretion systems at the transcriptional, posttranscriptional and posttranslational level. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001376. [PMID: 37552221 PMCID: PMC10482370 DOI: 10.1099/mic.0.001376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Bacteria live in complex polymicrobial communities and are constantly competing for resources. The type VI secretion system (T6SS) is a widespread antagonistic mechanism used by Gram-negative bacteria to gain an advantage over competitors. T6SSs translocate toxic effector proteins inside target prokaryotic cells in a contact-dependent manner. In addition, some T6SS effectors can be secreted extracellularly and contribute to the scavenging scarce metal ions. Bacteria deploy their T6SSs in different situations, categorizing these systems into offensive, defensive and exploitative. The great variety of bacterial species and environments occupied by such species reflect the complexity of regulatory signals and networks that control the expression and activation of the T6SSs. Such regulation is tightly controlled at the transcriptional, posttranscriptional and posttranslational level by abiotic (e.g. pH, iron) or biotic (e.g. quorum-sensing) cues. In this review, we provide an update on the current knowledge about the regulatory networks that modulate the expression and activity of T6SSs across several species, focusing on systems used for interbacterial competition.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Luize Nóbrega-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Ethel Bayer-Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
10
|
Gao ZM, Xu T, Chen HG, Lu R, Tao J, Wang HB, Qiu JW, Wang Y. Early genome erosion and internal phage-symbiont-host interaction in the endosymbionts of a cold-seep tubeworm. iScience 2023; 26:107033. [PMID: 37389180 PMCID: PMC10300362 DOI: 10.1016/j.isci.2023.107033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/11/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Endosymbiosis with chemosynthetic Gammaproteobacteria is widely recognized as an adaptive mechanism of siboglinid tubeworms, yet evolution of these endosymbionts and their driving forces remain elusive. Here, we report a finished endosymbiont genome (HMS1) of the cold-seep tubeworm Sclerolinum annulatum. The HMS1 genome is small in size, with abundant prophages and transposable elements but lacking gene sets coding for denitrification, hydrogen oxidization, oxidative phosphorylation, vitamin biosynthesis, cell pH and/or sodium homeostasis, environmental sensing, and motility, indicative of early genome erosion and adaptive evolution toward obligate endosymbiosis. Unexpectedly, a prophage embedded in the HMS1 genome undergoes lytic cycle. Highly expressed ROS scavenger and LexA repressor genes indicate that the tubeworm host likely activates the lysogenic phage into lytic cycle through the SOS response to regulate endosymbiont population and harvest nutrients. Our findings indicate progressive evolution of Sclerolinum endosymbionts toward obligate endosymbiosis and expand the knowledge about phage-symbiont-host interaction in deep-sea tubeworms.
Collapse
Affiliation(s)
- Zhao-Ming Gao
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China
| | - Ting Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hua-Guan Chen
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Lu
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jun Tao
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
| | - Hong-Bin Wang
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
| | - Jian-Wen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yong Wang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
| |
Collapse
|
11
|
Li J, Wu Z, Hou Y, Zhang YA, Zhou Y. Fur functions as an activator of T6SS-mediated bacterial dominance and virulence in Aeromonas hydrophila. Front Microbiol 2023; 13:1099611. [PMID: 36845974 PMCID: PMC9944043 DOI: 10.3389/fmicb.2022.1099611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Aeromonas hydrophila, a ubiquitous bacterium in aquatic habitats with broad host ranges, has earned the nickname of a 'Jack-of-all-trades'. However, there is still a limited understanding of the mechanism of how this bacterium fit the competition with other species in dynamic surroundings. The type VI secretion system (T6SS) is macromolecular machinery found in Gram-negative bacteria's cell envelope that is responsible for bacterial killing and/or pathogenicity toward different host cells. In this study, the depression of A. hydrophila T6SS under iron-limiting conditions was detected. The ferric uptake regulator (Fur) was then found to act as an activator of T6SS by directly binding to the Fur box region in vipA promoter in the T6SS gene cluster. The transcription of vipA was repressed in Δfur. Moreover, the inactivation of Fur resulted in considerable defects in the interbacterial competition activity and pathogenicity of A. hydrophila in vitro and in vivo. These findings provide the first direct evidence that Fur positively regulates the expression and functional activity of T6SS in Gram-negative bacteria and will help to understand the fascinating mechanism of competitive advantage for A. hydrophila in different ecological niches.
Collapse
Affiliation(s)
- Jihong Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuting Hou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Hubei Hongshan Laboratory, Wuhan, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China,*Correspondence: Yong-An Zhang,
| | - Yang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China,Yang Zhou,
| |
Collapse
|
12
|
Roda-Garcia JJ, Haro-Moreno JM, Rodriguez-Valera F, Almagro-Moreno S, López-Pérez M. Single-amplified genomes reveal most streamlined free-living marine bacteria. Environ Microbiol 2023. [PMID: 36755376 DOI: 10.1111/1462-2920.16348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Evolutionary adaptations of prokaryotes to the environment sometimes result in genome reduction. Our knowledge of this phenomenon among free-living bacteria remains scarce. We address the dynamics and limits of genome reduction by examining one of the most abundant bacteria in the ocean, the SAR86 clade. Despite its abundance, comparative genomics has been limited by the absence of pure cultures and the poor representation in metagenome-assembled genomes. We co-assembled multiple previously available single-amplified genomes to obtain the first complete genomes from members of the four families. All families showed a convergent evolutionary trajectory with characteristic features of streamlined genomes, most pronounced in the TMED112 family. This family has a genome size of ca. 1 Mb and only 1 bp as median intergenic distance, exceeding values found in other abundant microbes such as SAR11, OM43 and Prochlorococcus. This genomic simplification led to a reduction in the biosynthesis of essential molecules, DNA repair-related genes, and the ability to sense and respond to environmental factors, which could suggest an evolutionary dependence on other co-occurring microbes for survival (Black Queen hypothesis). Therefore, these reconstructed genomes within the SAR86 clade provide new insights into the limits of genome reduction in free-living marine bacteria.
Collapse
Affiliation(s)
- Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, Florida, USA
| | - Mario López-Pérez
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
13
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
14
|
Zuo Y, Li C, Yu D, Wang K, Liu Y, Wei Z, Yang Y, Wang Y, Shen X, Zhu L. A Fur-regulated type VI secretion system contributes to oxidative stress resistance and virulence in Yersinia pseudotuberculosis. STRESS BIOLOGY 2023; 3:2. [PMID: 37676351 PMCID: PMC10441874 DOI: 10.1007/s44154-022-00081-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/26/2022] [Indexed: 09/08/2023]
Abstract
The type VI secretion system (T6SS) is a widespread protein secretion apparatus deployed by many Gram-negative bacterial species to interact with competitor bacteria, host organisms, and the environment. Yersinia pseudotuberculosis T6SS4 was recently reported to be involved in manganese acquisition; however, the underlying regulatory mechanism still remains unclear. In this study, we discovered that T6SS4 is regulated by ferric uptake regulator (Fur) in response to manganese ions (Mn2+), and this negative regulation of Fur was proceeded by specifically recognizing the promoter region of T6SS4 in Y. pseudotuberculosis. Furthermore, T6SS4 is induced by low Mn2+ and oxidative stress conditions via Fur, acting as a Mn2+-responsive transcriptional regulator to maintain intracellular manganese homeostasis, which plays important role in the transport of Mn2+ for survival under oxidative stress. Our results provide evidence that T6SS4 can enhance the oxidative stress resistance and virulence for Y. pseudotuberculosis. This study provides new insights into the regulation of T6SS4 via the Mn2+-dependent transcriptional regulator Fur, and expands our knowledge of the regulatory mechanisms and functions of T6SS from Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Yuxin Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Danyang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kenan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Leung KY, Wang Q, Zheng X, Zhuang M, Yang Z, Shao S, Achmon Y, Siame BA. Versatile lifestyles of Edwardsiella: Free-living, pathogen, and core bacterium of the aquatic resistome. Virulence 2022; 13:5-18. [PMID: 34969351 PMCID: PMC9794015 DOI: 10.1080/21505594.2021.2006890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Edwardsiella species in aquatic environments exist either as individual planktonic cells or in communal biofilms. These organisms encounter multiple stresses, include changes in salinity, pH, temperature, and nutrients. Pathogenic species such as E. piscicida, can multiply within the fish hosts. Additionally, Edwardsiella species (E. tarda), can carry antibiotic resistance genes (ARGs) on chromosomes and/or plasmids, that can be transmitted to the microbiome via horizontal gene transfer. E. tarda serves as a core in the aquatic resistome. Edwardsiela uses molecular switches (RpoS and EsrB) to control gene expression for survival in different environments. We speculate that free-living Edwardsiella can transition to host-living and vice versa, using similar molecular switches. Understanding such transitions can help us understand how other similar aquatic bacteria switch from free-living to become pathogens. This knowledge can be used to devise ways to slow down the spread of ARGs and prevent disease outbreaks in aquaculture and clinical settings.
Collapse
Affiliation(s)
- Ka Yin Leung
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel,CONTACT Ka Yin Leung
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China,Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, China,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Xiaochang Zheng
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China
| | - Mei Zhuang
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Zhiyun Yang
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yigal Achmon
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Bupe A. Siame
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada,Bupe A. Siame
| |
Collapse
|
16
|
Cooper B. The Detriment of Salicylic Acid to the Pseudomonas savastanoi pv. phaseolicola Proteome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:814-824. [PMID: 35612310 DOI: 10.1094/mpmi-05-22-0104-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Salicylic acid (SA), a natural product, is the major hormonal regulator of the plant immune system. SA also has antibacterial activity that is not completely elucidated. To gain a better understanding of this, Pseudomonas savastanoi pv. phaseolicola, a bacterial pathogen of beans, was exposed to sub-inhibitory amounts of SA and was then examined using quantitative mass spectrometry. Among the 2,185 proteins quantified, there were pronounced increases in p-hydroxybenzoic acid efflux pumps and multidrug efflux pumps. By contrast there were significant decreases in porin proteins, high-osmolarity response proteins, and protein components of the type VI secretion system. In addition, there were alterations in enzymes likely affecting the production of alginate, which is needed for infection. Furthermore, there was a decrease in an enzyme needed to detoxify methylglyoxal. Assays confirmed a reduction in alginate production and an increase in cellular methylglyoxal concentrations after SA treatment. Culture assays demonstrated that SA altered bacterial growth curves more so than other hydroxylated benzoic acid isomers. These data reveal that SA is antibiotic and that P. savastanoi pv. phaseolicola significantly alters its proteome in response to SA in vitro. Similar alterations to the bacterial proteome occur in beans during an immune reaction when SA increases at the site of infection. Thus, in beans, SA likely deters bacterial infection by adversely altering the bacterial proteome. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, U.S.A
| |
Collapse
|
17
|
Matsumoto H, Qian Y, Fan X, Chen S, Nie Y, Qiao K, Xiang D, Zhang X, Li M, Guo B, Shen P, Wang Q, Yu Y, Cernava T, Wang M. Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. FUNDAMENTAL RESEARCH 2022; 2:198-207. [PMID: 38933150 PMCID: PMC11197535 DOI: 10.1016/j.fmre.2021.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria equipped with virulence systems based on highly bioactive small molecules can circumvent their host's defense mechanisms. Pathogens employing this strategy are currently threatening global rice production. In the present study, variations in the virulence of the highly destructive Burkholderia plantarii were observed in different rice-producing regions. The environment-linked variation was not attributable to any known host-related or external factors. Co-occurrence analyses indicated a connection between reduced virulence and 5-Amino-1,3,4-thiadiazole-2-thiol (ATT), a non-bactericidal organic compound. ATT, which accumulates in rice plants during metabolization of specific agrochemicals, was found to reduce virulence factor secretion by B. plantarii up to 88.8% and inhibit pathogen virulence by hijacking an upstream signaling cascade. Detailed assessment of the newly discovered virulence inhibitor resulted in mechanistic insights into positive effects of ATT accumulation in plant tissues. Mechanisms of virulence alleviation were deciphered by integrating high-throughput data, gene knockout mutants, and molecular interaction assays. TroK, a histidine protein kinase in a two-component system that regulates virulence factor secretion, is likely the molecular target antagonized by ATT. Our findings provide novel insights into virulence modulation in an important plant-pathogen system that relies on the host's metabolic activity and subsequent signaling interference.
Collapse
Affiliation(s)
- Haruna Matsumoto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuan Qian
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Fan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanxia Nie
- Ecology and Environmental Sciences Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kun Qiao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Dandan Xiang
- Key laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Meng Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Bo Guo
- Shanghai International Studies University, Shanghai 200083, China
| | - Peilin Shen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Xiaoshan Agricultural Comprehensive Development Zone & Management Committee, Hangzhou 311200, China
| | - Qiangwei Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
18
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Ma R, Liu Y, Gan J, Qiao H, Ma J, Zhang Y, Bu Y, Shao S, Zhang Y, Wang Q. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3777-3798. [PMID: 35325196 PMCID: PMC9023278 DOI: 10.1093/nar/gkac180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Haoxian Qiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiabao Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifan Bu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- To whom correspondence should be addressed. Tel: +86 21 64253306; Fax: +86 21 64253306;
| |
Collapse
|
20
|
Shao S, Li C, Zhao L, Zhang Y, Yin K, Wang Q. Interplay between ferric uptake regulator Fur and horizontally acquired virulence regulator EsrB coordinates virulence gene expression in Edwardsiella piscicida. Microbiol Res 2021; 253:126892. [PMID: 34673373 DOI: 10.1016/j.micres.2021.126892] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/23/2022]
Abstract
Edwardsiella piscicida mediates hemorrhagic septicemia and is a leading pathogen of fish. E. piscicida invades and colonizes macrophages using type III and VI secretion systems (T3/T6SS) that are controlled by a two-component system (TCS) EsrA-EsrB. Iron acquisition is essential for E. piscicida pathogenesis and coordination between iron and TCS signaling in modulating bacterial virulence is not well understood. Here, we show that iron uptake systems are co-regulated by ferric uptake regulator (Fur) in E. piscicida. Fur bound to 98 genes that harbored conserved Fur-box to globally control the expression of ∼755 genes, including those encoding iron uptake systems, T3/T6SS, and Icc, cAMP phosphodiesterase that represses biofilm formation. Additionally, Fur, in complex with iron, bound to the esrB promoter to repress expression and ultimately attenuated virulence. Conversely, EsrB activated the expression of T3/T6SS and iron uptake systems to mitigate a shortage of intracellular iron during iron scarcity. Furthermore, EsrB directly bound to and activated the fur promoter, leading to Fur-ferrous ion-dependent esrB repression in the presence of iron. Finally, Fur-EsrB interplay was essential for bacterial fitness during in vivo infection and survival in seawater environments. Collectively, we highlight the mechanisms that underlie the reciprocal regulatory networks of iron homeostasis and virulence systems in E. piscicida.
Collapse
Affiliation(s)
- Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Chunli Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Luyao Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, Zhuhai, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Kaiyu Yin
- School of Hospitality Management, Shanghai Business School, Shanghai, 200235, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.
| |
Collapse
|
21
|
Yang X, Liu H, Zhang Y, Shen X. Roles of Type VI Secretion System in Transport of Metal Ions. Front Microbiol 2021; 12:756136. [PMID: 34803980 PMCID: PMC8602904 DOI: 10.3389/fmicb.2021.756136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
The type VI secretion system (T6SS) is a transmembrane protein nanomachine employed by many gram-negative bacteria to directly translocate effectors into adjacent cells or the extracellular milieu, showing multiple functions in both interbacterial competition and bacteria-host interactions. Metal ion transport is a newly discovered T6SS function. This review summarizes the identified T6SS functions and highlights the features of metal ion transport mediated by T6SS and discusses its regulation.
Collapse
Affiliation(s)
- Xiaobing Yang
- College of Applied Engineering, Henan University of Science and Technology (HAUST), Sanmenxia, China.,Medical College, Sanmenxia Vocational Technical School, Sanmenxia, China
| | - Hai Liu
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Yanxiong Zhang
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
22
|
Lin J, Xu L, Yang J, Wang Z, Shen X. Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance. STRESS BIOLOGY 2021; 1:11. [PMID: 37676535 PMCID: PMC10441901 DOI: 10.1007/s44154-021-00008-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/09/2021] [Indexed: 09/08/2023]
Abstract
Bacteria inhabit diverse and dynamic environments, where nutrients may be limited and toxic chemicals can be prevalent. To adapt to these stressful conditions, bacteria have evolved specialized protein secretion systems, such as the type VI secretion system (T6SS) to facilitate their survival. As a molecular syringe, the T6SS expels various effectors into neighboring bacterial cells, eukaryotic cells, or the extracellular environment. These effectors improve the competitive fitness and environmental adaption of bacterial cells. Although primarily recognized as antibacterial weapons, recent studies have demonstrated that T6SSs have functions beyond interspecies competition. Here, we summarize recent research on the role of T6SSs in microbiome modulation, pathogenesis, and stress resistance.
Collapse
Affiliation(s)
- Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Zhuo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
23
|
Tan X, Qiao J, Li H, Huang D, Hu X, Wang X. Global metabolic regulation in Vibrio parahaemolyticus under polymyxin B stimulation. Microb Pathog 2021; 161:105260. [PMID: 34688850 DOI: 10.1016/j.micpath.2021.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/25/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
Vibrio parahaemolyticus is responsible for infection diseases of people who consume the contaminated seafood, but its metabolic regulation profile in response to colistin, the last treatment option for multidrug-resistant Gram-negative bacteria, remains unclear. In this study, the metabolic regulation profile of V. parahaemolyticus ATCC33846 under polymyxin B stimulation has been investigated. V. parahaemolyticus exposed to polymyxin B resulted in 4597 differentially transcribed genes, including 673 significantly up-regulated genes and 569 significantly down-regulated genes. In V. parahaemolyticus under polymyxin B stimulation, the cellular antioxidant systems to prevent bacteria from oxidant stress was activated, the synthesis of some nonessential macromolecules was reduced, and the assembly and modification of lipopolysaccharide and peptidoglycan to resist the attack from other antibiotics were promoted. These findings provide new insights into polymyxin B-related stress response in V. parahaemolyticus which should be useful for developing novel drugs for infection.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
24
|
Complete genome of Pelagovum pacificum SM1903 T isolated from the marine surface oligotrophic environment. Mar Genomics 2021; 59:100874. [PMID: 34493388 DOI: 10.1016/j.margen.2021.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022]
Abstract
Pelagovum pacificum SM1903T, belonging to a novel genus of the family Rhodobacteraceae, was isolated from the surface seawater of the Mariana Trench. Here, we report the first complete genome sequence of the novel genus Pelagovum. The genome of strain SM1903T consists of a circular chromosome of 4,040,866 bp and two plasmids of 41,363 bp and 9705 bp, respectively. Gene annotation and metabolic pathway analyses showed that strain SM1903T possesses a series of genes related to adaptation to marine oligotrophic environments, which are involved in utilization of aromatic compounds, allantoin, and alkylphosphonate, and second messenger signaling in response to the oligotrophic stress. This strain also contains a variety of genes involved in coping with other stresses including osmotic stress, oxidative stress, cold shock, and heat shock. These features would assist this strain to survive under the natural nutrient limitation and other stresses from the environment. The genome of strain SM1903T of the novel genus Pelagovum would deepen our knowledge on marine bacterioplankton and their adaption strategies to marine oligotrophic environments.
Collapse
|
25
|
Sayed M, Ozdemir O, Essa M, Olivier A, Karsi A, Lawrence ML, Abdelhamed H. Virulence and live vaccine potential of Edwardsiella piscicida phoP and phoQ mutants in catfish against edwardsiellosis. JOURNAL OF FISH DISEASES 2021; 44:1463-1474. [PMID: 34037985 DOI: 10.1111/jfd.13453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Edwardsiella piscicida is a Gram-negative facultative intracellular bacterium causing edwardsiellosis in catfish, the largest aquaculture industry in the United States. A safe and effective vaccine is an urgent need to avoid economic losses associated with E. piscicida outbreaks. PhoP/PhoQ is a two-component signal transduction system (TCS) that plays an important role in bacterial pathogenesis through sense and response to environmental and host stress signals. This study aimed to explore the contribution of PhoQ/PhoP in E. piscicida virulence and develop live attenuated vaccines against E. piscicida infection in channel catfish (Ictalurus punctatus) and hybrid catfish (channel catfish ♀ × blue catfish (I. furcatus) ♂). In the current study, two in-frame deletion mutants were constructed by deleting phoP (ETAC_09785) and phoQ (ETAC_09790) genes in E. piscicida strain C07-087, and the virulence and protection efficacy of the constructed strains were evaluated in catfish following intraperitoneal injection. Both EpΔphoP and EpΔphoQ strains had a delayed adaptation to oxidative stress (0.2% H2 O2 ) compared to E. piscicida wild type. The EpΔphoP and EpΔphoQ mutants produced significantly less biofilm compared to wild-type E. piscicida. Notably, EpΔphoP and EpΔphoQ mutants were significantly attenuated in channel catfish compared with wild-type E. piscicida (6.63% and 4.17% versus 49.16% mortalities), and channel catfish vaccinated with EpΔphoP and EpΔphoQ were significantly protected (95.65% and 97.92% survival) against E. piscicida infection at 21 days post-vaccination. In hybrid catfish, EpΔphoP was significantly more attenuated than EpΔphoQ, but EpΔphoQ provided significantly better protection than EpΔphoP. EpΔphoP and EpΔphoQ strains both induced specific antibodies in channel catfish against E. piscicida at 14 and 21 days post-vaccination. This result indicated that EpΔphoP and EpΔphoQ mutants were safe and protective in channel catfish fingerlings, while EpΔphoP was safe in hybrid catfish. Our findings show that PhoP and PhoQ are required for adaptation to oxidative stress and biofilm formation and may help E. piscicida face tough environmental challenges; thus, functional PhoP and PhoQ are critical for a successful infection.
Collapse
Affiliation(s)
- Mohamed Sayed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ozan Ozdemir
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Manal Essa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Alicia Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Mark L Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
26
|
Sarkar P, Issac PK, Raju SV, Elumalai P, Arshad A, Arockiaraj J. Pathogenic bacterial toxins and virulence influences in cultivable fish. AQUACULTURE RESEARCH 2021; 52:2361-2376. [DOI: 10.1111/are.15089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/07/2020] [Indexed: 10/16/2023]
Affiliation(s)
- Purabi Sarkar
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Praveen Kumar Issac
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Stefi V. Raju
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Preetham Elumalai
- Department of Fish Processing Technology Kerala University of Fisheries and Ocean Studies (KUFOS) Kochi India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Negeri Sembilan Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Selangor Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| |
Collapse
|
27
|
Cheung S, Zehr JP, Xia X, Tsurumoto C, Endo H, Nakaoka SI, Mak W, Suzuki K, Liu H. Gamma4: a genetically versatile Gammaproteobacterial nifH phylotype that is widely distributed in the North Pacific Ocean. Environ Microbiol 2021; 23:4246-4259. [PMID: 34046993 DOI: 10.1111/1462-2920.15604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 11/30/2022]
Abstract
Despite the increasing reports of non-cyanobacterial diazotrophs (NCDs) in pelagic waters, only one NCD (GammaA) has been relatively well described, whose genome and physiology are still unclear. Here we present a comprehensive analysis of the biogeography and ecophysiology of a widely distributed NCD, Gamma4. Gamma4 was the most abundant Gammaproteobacterial NCD along transects across the subtropical North Pacific. Using quantitative PCR, Gamma4 was detectable throughout the surface waters of North Pacific (7°N-55°N, 138°E-80°W), whereas GammaA was detected at <2/3 of the stations. Gamma4 was abundant during autumn-winter and positively correlated with chlorophyll a, while GammaA thrived during spring-summer and was positively correlated with temperature. Environmental clones affiliated with Gamma4 were widely detected in pelagic waters, oxygen minimum zones and even dinoflagellate microbiomes. By analysing the metabolic potential of a genome of Gamma4 reconstructed from the Tara Oceans dataset, we suggest that Gamma4 is a versatile heterotrophic NCD equipped with multiple strategies in scavenging phosphate (and iron) and for respiratory protection of nitrogenase. The transcription of nitrogenase genes is putatively regulated by Fnr-NifL-NifA and GlnD-GlnK systems that respond to intracellular oxygen and glutamate concentration. These results provide important implications for the potential life strategies of pelagic NCDs.
Collapse
Affiliation(s)
- Shunyan Cheung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chihiro Tsurumoto
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Shin-Ichiro Nakaoka
- Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Wingkwan Mak
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Koji Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan.,Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
28
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Li DY, Liu YL, Liao XJ, He TT, Sun SS, Nie P, Xie HX. Identification and Characterization of EvpQ, a Novel T6SS Effector Encoded on a Mobile Genetic Element in Edwardsiella piscicida. Front Microbiol 2021; 12:643498. [PMID: 33776977 PMCID: PMC7991086 DOI: 10.3389/fmicb.2021.643498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a hypothetical protein (ORF02740) secreted by Edwardsiella piscicida was identified. We renamed the ORF02740 protein as EvpQ, which is encoded by a mobile genetic element (MGE) in E. piscicida genome. The evpQ gene is spaced by 513 genes from type VI secretion system (T6SS) gene cluster. Low GC content, three tRNA, and three transposase genes nearby evpQ define this MGE that evpQ localizes as a genomic island. Sequence analysis reveals that EvpQ shares a conserved domain of C70 family cysteine protease and shares 23.91% identity with T3SS effector AvrRpt2 of phytopathogenic Erwinia amylovora. Instead, EvpQ of E. piscicida is proved to be secreted at a T6SS-dependent manner, and it can be translocated into host cells. EvpQ is thereof a novel T6SS effector. Significantly decreased competitive index of ΔevpQ strain in blue gourami fish (0.53 ± 0.27 in head kidney and 0.44 ± 0.19 in spleen) indicates that EvpQ contributes to the pathogenesis of E. piscicida. At 8-, 18-, and 24-h post-subculture into DMEM, the transcription of evpQ was found to be negatively regulated by Fur and positively regulated by EsrC, and the steady-state protein levels of EvpQ are negatively controlled by RpoS. Our study lays a foundation for further understanding the pathogenic role of T6SS in edwardsiellosis.
Collapse
Affiliation(s)
- Duan You Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao Jian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tian Tian He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shan Shan Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
30
|
The Role of Phosphorus Limitation in Shaping Soil Bacterial Communities and Their Metabolic Capabilities. mBio 2020; 11:mBio.01718-20. [PMID: 33109755 PMCID: PMC7593963 DOI: 10.1128/mbio.01718-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phosphorus (P) is an essential nutrient that is often in limited supply, with P availability constraining biomass production in many terrestrial ecosystems. Despite decades of work on plant responses to P deficiency and the importance of soil microbes to terrestrial ecosystem processes, how soil microbes respond to, and cope with, P deficiencies remains poorly understood. We studied 583 soils from two independent sample sets that each span broad natural gradients in extractable soil P and collectively represent diverse biomes, including tropical forests, temperate grasslands, and arid shrublands. Phosphorus (P) is an essential nutrient that is often in limited supply, with P availability constraining biomass production in many terrestrial ecosystems. Despite decades of work on plant responses to P deficiency and the importance of soil microbes to terrestrial ecosystem processes, how soil microbes respond to, and cope with, P deficiencies remains poorly understood. We studied 583 soils from two independent sample sets that each span broad natural gradients in extractable soil P and collectively represent diverse biomes, including tropical forests, temperate grasslands, and arid shrublands. We paired marker gene and shotgun metagenomic analyses to determine how soil bacterial and archaeal communities respond to differences in soil P availability and to detect corresponding shifts in functional attributes. We identified microbial taxa that are consistently responsive to extractable soil P, with those taxa found in low P soils being more likely to have traits typical of oligotrophic life history strategies. Using environmental niche modeling of genes and gene pathways, we found an enriched abundance of key genes in low P soils linked to the carbon-phosphorus (C-P) lyase and phosphonotase degradation pathways, along with key components of the high-affinity phosphate-specific transporter (Pst) and phosphate regulon (Pho) systems. Taken together, these analyses suggest that catabolism of phosphonates is an important strategy used by bacteria to scavenge phosphate in P-limited soils. Surprisingly, these same pathways are important for bacterial growth in P-limited marine waters, highlighting the shared metabolic strategies used by both terrestrial and marine microbes to cope with P limitation.
Collapse
|
31
|
Maunders EA, Triniman RC, Western J, Rahman T, Welch M. Global reprogramming of virulence and antibiotic resistance in Pseudomonas aeruginosa by a single nucleotide polymorphism in elongation factor, fusA1. J Biol Chem 2020; 295:16411-16426. [PMID: 32943550 DOI: 10.1074/jbc.ra119.012102] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 09/11/2020] [Indexed: 11/06/2022] Open
Abstract
Clinical isolates of the opportunistic pathogen Pseudomonas aeruginosa from patients with cystic fibrosis (CF) frequently contain mutations in the gene encoding an elongation factor, FusA1. Recent work has shown that fusA1 mutants often display elevated aminoglycoside resistance due to increased expression of the efflux pump, MexXY. However, we wondered whether these mutants might also be affected in other virulence-associated phenotypes. Here, we isolated a spontaneous gentamicin-resistant fusA1 mutant (FusA1P443L) in which mexXY expression was increased. Proteomic and transcriptomic analyses revealed that the fusA1 mutant also exhibited discrete changes in the expression of key pathogenicity-associated genes. Most notably, the fusA1 mutant displayed greatly increased expression of the Type III secretion system (T3SS), widely considered to be the most potent virulence factor in the P. aeruginosa arsenal, and also elevated expression of the Type VI (T6) secretion machinery. This was unexpected because expression of the T3SS is usually reciprocally coordinated with T6 secretion system expression. The fusA1 mutant also displayed elevated exopolysaccharide production, dysregulated siderophore production, elevated ribosome synthesis, and transcriptomic signatures indicative of translational stress. Each of these phenotypes (and almost all of the transcriptomic and proteomic changes associated with the fusA1 mutation) were restored to levels comparable with that in the progenitor strain by expression of the WT fusA1 gene in trans, indicating that the mutant gene is recessive. Our data show that in addition to elevating antibiotic resistance through mexXY expression (and also additional contributory resistance mechanisms), mutations in fusA1 can lead to highly selective dysregulation of virulence gene expression.
Collapse
Affiliation(s)
- Eve A Maunders
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rory C Triniman
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom; Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Joshua Western
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
32
|
Botero D, Monk J, Rodríguez Cubillos MJ, Rodríguez Cubillos A, Restrepo M, Bernal-Galeano V, Reyes A, González Barrios A, Palsson BØ, Restrepo S, Bernal A. Genome-Scale Metabolic Model of Xanthomonas phaseoli pv. manihotis: An Approach to Elucidate Pathogenicity at the Metabolic Level. Front Genet 2020; 11:837. [PMID: 32849823 PMCID: PMC7432306 DOI: 10.3389/fgene.2020.00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/10/2020] [Indexed: 01/05/2023] Open
Abstract
Xanthomonas phaseoli pv. manihotis (Xpm) is the causal agent of cassava bacterial blight, the most important bacterial disease in this crop. There is a paucity of knowledge about the metabolism of Xanthomonas and its relevance in the pathogenic process, with the exception of the elucidation of the xanthan biosynthesis route. Here we report the reconstruction of the genome-scale model of Xpm metabolism and the insights it provides into plant-pathogen interactions. The model, iXpm1556, displayed 1,556 reactions, 1,527 compounds, and 890 genes. Metabolic maps of central amino acid and carbohydrate metabolism, as well as xanthan biosynthesis of Xpm, were reconstructed using Escher (https://escher.github.io/) to guide the curation process and for further analyses. The model was constrained using the RNA-seq data of a mutant of Xpm for quorum sensing (QS), and these data were used to construct context-specific models (CSMs) of the metabolism of the two strains (wild type and QS mutant). The CSMs and flux balance analysis were used to get insights into pathogenicity, xanthan biosynthesis, and QS mechanisms. Between the CSMs, 653 reactions were shared; unique reactions belong to purine, pyrimidine, and amino acid metabolism. Alternative objective functions were used to demonstrate a trade-off between xanthan biosynthesis and growth and the re-allocation of resources in the process of biosynthesis. Important features altered by QS included carbohydrate metabolism, NAD(P)+ balance, and fatty acid elongation. In this work, we modeled the xanthan biosynthesis and the QS process and their impact on the metabolism of the bacterium. This model will be useful for researchers studying host-pathogen interactions and will provide insights into the mechanisms of infection used by this and other Xanthomonas species.
Collapse
Affiliation(s)
- David Botero
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Jonathan Monk
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - María Juliana Rodríguez Cubillos
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Mariana Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Vivian Bernal-Galeano
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Andrés González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Bernhard Ø. Palsson
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes, LIMMA, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
33
|
Li MF, Jia BB, Sun YY, Sun L. The Translocation and Assembly Module (TAM) of Edwardsiella tarda Is Essential for Stress Resistance and Host Infection. Front Microbiol 2020; 11:1743. [PMID: 32793174 PMCID: PMC7393178 DOI: 10.3389/fmicb.2020.01743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022] Open
Abstract
Translocation and assembly module (TAM) is a protein channel known to mediate the secretion of virulence factors during pathogen infection. Edwardsiella tarda is a Gram-negative bacterium that is pathogenic to a wide range of farmed fish and other hosts including humans. In this study, we examined the function of the two components of the TAM, TamA and TamB, of E. tarda (named tamAEt and tamBEt, respectively). TamAEt was found to localize on the surface of E. tarda and be recognizable by TamAEt antibody. Compared to the wild type, the tamA and tamB knockouts, TX01ΔtamA and TX01ΔtamB, respectively, were significantly reduced in motility, flagella formation, invasion into host cells, intracellular replication, dissemination in host tissues, and inducing host mortality. The lost virulence capacities of TX01ΔtamA and TX01ΔtamB were restored by complementation with the tamAEt and tamBEt genes, respectively. Furthermore, TX01ΔtamA and TX01ΔtamB were significantly impaired in the ability to survive under low pH and oxidizing conditions, and were unable to maintain their internal pH balance and cellular structures in acidic environments, which led to increased susceptibility to lysozyme destruction. Taken together, these results indicate that TamAEt and TamBEt are essential for the virulence of E. tarda and required for E. tarda to survive under stress conditions.
Collapse
Affiliation(s)
- Mo-Fei Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bei-Bei Jia
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
34
|
Yin K, Zhang J, Ma J, Jin P, Ma Y, Zhang Y, Liu X, Wang Q. MviN mediates the regulation of environmental osmotic pressure on esrB to control the virulence in the marine fish pathogen Edwardsiella piscicida. Microbiol Res 2020; 239:126528. [PMID: 32622286 DOI: 10.1016/j.micres.2020.126528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/31/2020] [Accepted: 06/13/2020] [Indexed: 11/25/2022]
Abstract
Edwardsiella piscicida is a notorious pathogen infecting diverse kinds of fish and causes substantial economic losses in the global aquaculture industries. The EsrA-EsrB two-component system plays a critical role in the regulation of virulence genes expression, including type III and type VI secretion systems (T3/T6SSs). In this study, the putative regulators of esrB were screened by the transposon insertion sequencing (TIS) technology. As a result, MviN, a lipid II flippase, was identified as a modulator to upregulate esrB and downstream T3/T6SS gene expression in the earlier growth phases while downregulate esrB at the later stages. Complement or overexpression of the mviN restored the esrB as well as T3/T6SS expression in the ΔmviN mutant strain. Moreover, MviN also mediated the regulation of environmental osmotic pressure on the expression of esrB. MviN was also found to significantly influence the in vivo colonization of E. piscicida in turbot. Collectively, this study enhanced our understanding of pathogenesis and virulence regulatory network of E. piscicida.
Collapse
Affiliation(s)
- Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiabao Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| |
Collapse
|
35
|
Shifts in the Bacterial Population and Ecosystem Functions in Response to Vegetation in the Yellow River Delta Wetlands. mSystems 2020; 5:5/3/e00412-20. [PMID: 32518198 PMCID: PMC7289592 DOI: 10.1128/msystems.00412-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vegetation represents probably the most crucial step for the ecosystem functions of wetlands, but it is unclear how microbial populations and functions shift along with vegetation. In this study, we found that the richness and diversity of soil bacteria increased with vegetation levels and that the community composition was distinctly shifted from bare to vegetative places. The bare land displayed an extremely high abundance of Cyanobacteria as a monospecies genus, while a Gemmatimonadetes genus was predominant as multiple species in all the vegetative wetlands, suggesting their important ecosystem functions and potential mechanisms. Expression of the genes related to photosynthesis was enriched exclusively in bare land. Genes involved in biological organic carbon metabolism and the cycling of main elements (C, N, S, and P) were highly expressed in vegetative wetlands and were mostly included in the metagenome-assembled genome (MAG) of Gemmatimonadetes Some compounds identified from soil metabolomic results also corresponded to pathways involving these key active genes. Cyanobacteria is thus responsible for the carbon sink in early infertile wetlands, and Gemmatimonadetes plays a crucial role in ecosystem functions in vegetative wetlands. Our results highlight that the soil microbial populations execute ecosystem functions for wetlands and that vegetation is the determinant for the population and functional shifts in the coastal estuarine wetland of the Yellow River Delta.IMPORTANCE Vegetation probably represents the most crucial step for the ecosystem functions of wetlands, but it is unclear how microbial populations and functions shift in pace with the colonization and succession of vegetation. In this study, we found that a Cyanobacteria monospecies genus and a Gemmatimonadetes multispecies genus are fastidiously predominant in the bare and vegetative wetlands of the Yellow River Delta, respectively. Consistently, photosynthesis genes were enriched exclusively in bare land, while genes involved in biological organic carbon metabolism and the cycling of main elements were highly expressed in vegetative wetlands, were mostly included in the MAG of Gemmatimonadetes, and were consistent with soil metabolomic results. Our results provide insight into the adaptive succession of predominant bacterial species and their ecosystem functions in response to the presence of vegetation.
Collapse
|
36
|
Disruption of Phosphate Homeostasis Sensitizes Staphylococcus aureus to Nutritional Immunity. Infect Immun 2020; 88:IAI.00102-20. [PMID: 32205403 DOI: 10.1128/iai.00102-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
To control infection, mammals actively withhold essential nutrients, including the transition metal manganese, by a process termed nutritional immunity. A critical component of this host response is the manganese-chelating protein calprotectin. While many bacterial mechanisms for overcoming nutritional immunity have been identified, the intersection between metal starvation and other essential inorganic nutrients has not been investigated. Here, we report that overexpression of an operon encoding a highly conserved inorganic phosphate importer, PstSCAB, increases the sensitivity of Staphylococcus aureus to calprotectin-mediated manganese sequestration. Further analysis revealed that overexpression of pstSCAB does not disrupt manganese acquisition or result in overaccumulation of phosphate by S. aureus However, it does reduce the ability of S. aureus to grow in phosphate-replete defined medium. Overexpression of pstSCAB does not aberrantly activate the phosphate-responsive two-component system PhoPR, nor was this two-component system required for sensitivity to manganese starvation. In a mouse model of systemic staphylococcal disease, a pstSCAB-overexpressing strain is significantly attenuated compared to wild-type S. aureus This defect is partially reversed in a calprotectin-deficient mouse, in which manganese is more readily available. Given that expression of pstSCAB is regulated by PhoPR, these findings suggest that overactivation of PhoPR would diminish the ability of S. aureus to resist nutritional immunity and cause infection. As PhoPR is also necessary for bacterial virulence, these findings imply that phosphate homeostasis represents a critical regulatory node whose activity must be precisely controlled in order for S. aureus and other pathogens to cause infection.
Collapse
|
37
|
Trxlp, a thioredoxin-like effector from Edwardsiella piscicida inhibits cellular redox signaling and nuclear translocation of NF-κB. Int J Biol Macromol 2020; 148:89-101. [PMID: 31945434 DOI: 10.1016/j.ijbiomac.2020.01.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 11/23/2022]
Abstract
Redox signaling and homeostasis are essential for cell survival and the immune response. Peroxiredoxin (Prx) modulates the level of H2O2 as a redox signal through H2O2 decomposition. The redox activity of thioredoxin (Trx) is required as a reducing equivalent to regenerate Prx. Edwardsiella piscicida is an opportunistic Gram-negative enteric pathogen that secretes a novel Trx-like effector protein, ETAE_2186 (Trxlp). Trxlp has unique structural properties compared with other Trx proteins. In enzymatic and binding assays, we confirmed Trxlp to be redox-inactive due to the low reactivity and flexibility of the resolving cysteine residue, C35, at the active site motif "31WCXXC35". We identified key residues near the active site that are critical for reactivity and flexibility of C35 by site-directed mutagenesis analysis. NMR titration experiment demonstrated prolong inhibitory interaction of Trxlp with Prx1 resulting in the repression of Prx1-mediated H2O2 decomposition leading to increased ROS accumulation in infected host cells. Increased ROS in turn prevented nuclear translocation of NF-κB and inhibition of NF-κB target genes, leading to bacterial survival and enhanced replication inside host cells. Targeting Trxlp-mediated virulence promises to attenuate E. piscicida infection.
Collapse
|
38
|
Zhang Y, Liu H, Gu D, Lu X, Zhou X, Xia X. Transcriptomic analysis of PhoR reveals its role in regulation of swarming motility and T3SS expression in Vibrio parahaemolyticus. Microbiol Res 2020; 235:126448. [PMID: 32114363 DOI: 10.1016/j.micres.2020.126448] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 01/14/2023]
Abstract
Vibrio parahaemolyticus is a common foodborne pathogen in seafood and represents a major threat to human health worldwide. In this study, we identified that PhoR, a histidine kinase, is involved in the regulation of swarming and flagella assembly. RNA sequencing analysis showed that 1122 genes were differentially expressed in PhoR mutant, including 394 upregulated and 728 downregulated genes. KEGG enrichment and heatmap analysis demonstrated that the bacterial secretion system, flagella assembly and chemotaxis pathways were significantly downregulated in PhoR mutant, while the microbial metabolism in diverse environments and carbon metabolism pathways were upregulated in PhoR mutant. qRT-PCR further confirmed that genes responsible for the type III secretion system (T3SS), swarming and the thermostable direct hemolysin were positively regulated by PhoR. Phosphorylation assays suggested that PhoR was highly activated in BHI medium compared to LB medium. Taken together, these data suggested that activated PhoR contributes to the expression of swarming motility and secretion system genes in Vibrio parahaemolyticus.
Collapse
Affiliation(s)
- Yibei Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089, USA
| | - Huanhuan Liu
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xingxu Lu
- Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089, USA.
| | - Xiaodong Xia
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning, 116034 China.
| |
Collapse
|
39
|
Qin L, Wang X, Gao Y, Bi K, Wang W. Roles of EvpP in Edwardsiella piscicida-Macrophage Interactions. Front Cell Infect Microbiol 2020; 10:53. [PMID: 32117819 PMCID: PMC7033576 DOI: 10.3389/fcimb.2020.00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Edwardsiella piscicida is found to be an important facultative intracellular pathogen with a broad host range. These organisms can replicate and survive within host macrophages to escape from the subversion of the immune defense. E. piscicida-macrophage interaction is very important in determining the outcome of edwardsiellasis. As an effector protein of E. piscicida T6SS, EvpP has been determined to be a very important virulence factor for E. piscicida, although its precise role in E. piscicida-macrophage interactions is not yet clear. In this study, the roles of EvpP in E. piscicida-macrophage interactions were characterized. Here, we constructed the deletion mutants of evpP (ΔevpP) and complementation (ΔevpP-C) by the allelic exchange method. Compared to wild type strain (WT), ΔevpP was found to be attenuated for growth within macrophages. In line with this observation, we found its survival capacity was lower than WT under oxidative and acid stress in vitro, which simulate conditions encountered in host macrophages. Attenuation of ΔevpP also correlated with enhanced activation of macrophages, as reflected by augmented NO production in ΔevpP-treated macrophages. Moreover, compared to WT, ΔevpP induced markedly increased apoptosis of macrophages, characterized by increased Annexin V binding and the activation of cleaved caspase-3. These findings provided strong evidence that EvpP is involved in the process of E. piscicida-macrophage interactions and is required for its survival and replication in macrophages. Thus, we propose that EvpP might be an important factor that controlling the fate of E. piscicida inside macrophages. To further exploring the underlying mechanism of EvpP action, the cDNA library was constructed from E. piscicida-infected macrophages and a yeast two-hybrid screen was performed to search for cellular proteins interacting with EvpP. Ribosomal protein S5 (RPS5) was identified as a target of EvpP. Furthermore, the interaction was validated with co-immunoprecipitation assay. This result implies that the observed effect of EvpP on macrophages might be related to RPS5-mediated regulation, contributing to a better understanding of the mechanisms of EvpP involved in E. piscicida-macrophage interactions.
Collapse
Affiliation(s)
- Lei Qin
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China
| | - Xingqiang Wang
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Yingli Gao
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Keran Bi
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Weixia Wang
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
40
|
Kalindamar S, Kordon AO, Abdelhamed H, Tan W, Pinchuk LM, Karsi A. Edwardsiella ictaluri evpP is required for colonisation of channel catfish ovary cells and necrosis in anterior kidney macrophages. Cell Microbiol 2019; 22:e13135. [PMID: 31742869 DOI: 10.1111/cmi.13135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/10/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022]
Abstract
Edwardsiella ictaluri is a Gram-negative facultative anaerobe that can survive inside channel catfish phagocytes. E. ictaluri can orchestrate Type VI Secretion System (T6SS) for survival in catfish macrophages. evpP encodes one of the T6SS translocated effector proteins. However, the role of evpP in E. ictaluri is still unexplored. In this work, we constructed an E. ictaluri evpP mutant (EiΔevpP) and assessed its survival under complement and oxidative stress. Persistence of EiΔevpP in catfish as well as attachment and invasion in catfish macrophage and ovary cells were determined. Further, virulence of EiΔevpP in catfish and apoptosis it caused in macrophages were explored. EiΔevpP behaved same as wild type (EiWT) under complement and oxidative stress in complex media, whereas oxidative stress affected mutant's survival significantly in minimal media (p < .05). Persistence of EiΔevpP in live catfish and uptake and survival inside peritoneal macrophages were similar. The attachment and invasion capabilities of EiΔevpP in catfish ovary cells were significantly less than that of EiWT (p < .05). Although EiΔevpP showed reduced attenuation in catfish, causing decreased catfish mortality compared with EiWT (44.73% vs. 67.53%), this difference was not significant. The apoptosis assay using anterior kidney macrophages indicated that the number of live macrophages exposed to EiΔevpP was significantly higher compared with EiWT exposed macrophages at 24-hr post-treatment (p < .05). However, there were no significant differences in the early and late apoptosis. Remarkably, necrosis in EiΔevpP exposed macrophages was significantly less than that of EiWT exposed macrophages at 24 hr (p < .05). Our results demonstrated that evpP is required for colonisation of catfish ovary cells and increased apoptosis and necrosis in anterior kidney macrophages.
Collapse
Affiliation(s)
- Safak Kalindamar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey
| | - Adef O Kordon
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Wei Tan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Lesya M Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
41
|
Fang QJ, Han YX, Shi YJ, Huang HQ, Fang ZG, Hu YH. Universal stress proteins contribute Edwardsiella piscicida adversity resistance and pathogenicity and promote blocking host immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 95:248-258. [PMID: 31654767 DOI: 10.1016/j.fsi.2019.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/02/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Universal stress proteins (Usps) exist ubiquitously in bacteria and other organisms. Usps play an important role in adaptation of bacteria to a variety of environmental stresses. There is increasing evidence that Usps facilitate pathogens to adapt host environment and are involved in pathogenicity. Edwardsiella piscicida (formerly included in E. tarda) is a severe fish pathogen and infects various important economic fish including tilapia (Oreochromis niloticus). In E. piscicida, a number of systems and factors that are involved in stress resistance and pathogenesis were identified. However, the function of Usps in E. piscicida is totally unknown. In this study, we examined the expressions of 13 usp genes in E. piscicida and found that most of these usp genes were up-regulated expression under high temperature, oxidative stress, acid stress, and host serum stress. Particularly, among these usp genes, usp13, exhibited dramatically high expression level upon several stress conditions. To investigate the biological role of usp13, a markerless usp13 in-frame mutant strain, TX01Δusp13, was constructed. Compared to the wild type TX01, TX01Δusp13 exhibited markedly compromised tolerance to high temperature, hydrogen peroxide, and low pH. Deletion of usp13 significantly retarded bacterial biofilm growth and decreased resistance against serum killing. Pathogenicity analysis showed that the inactivation of usp13 significantly impaired the ability of E. piscicida to invade into host cell and infect host tissue. Introduction of a trans-expressed usp13 gene restored the lost virulence of TX01Δusp13. In support of these results, host immune response induced by TX01 and TX01Δusp13 was examined, and the results showed reactive oxygen species (ROS) levels in TX01Δusp13-infected macrophages were significantly higher than those in TX01-infected cells. The expression level of several cytokines (IL-6, IL-8, IL-10, TNF-α, and CC2) in TX01Δusp13-infected fish was significantly higher than that in TX01-infected fish. These results suggested that the deletion of usp13 attenuated the ability of bacteria to overcome the host immune response to pathogen infection. Taken together, our study indicated Usp13 of E. piscicida was not only important participant in adversity resistance, but also was essential for E. piscicida pathogenicity and contributed to block host immune response to pathogen infection.
Collapse
Affiliation(s)
- Qing-Jian Fang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Marine Science, Hainan University, Haikou, 570228, China; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yue-Xin Han
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yan-Jie Shi
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hui-Qin Huang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Zai-Guang Fang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Marine Science, Hainan University, Haikou, 570228, China.
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
42
|
Zhou J, Zhang C, Han J, Lu C, Li Y, Ming T, Su X. NMR-based metabolomics reveals the metabolite profiles of Vibrio parahaemolyticus under blood agar stimulation. Arch Microbiol 2019; 202:437-445. [PMID: 31690974 DOI: 10.1007/s00203-019-01759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 11/24/2022]
Abstract
Vibrio parahemolyticus is a halophilic bacterium which causes widespread seafood poisoning pathogenicity. Although the incidence of disease caused by V. parahemolyticus was stepwise increased, the pathogenic mechanism remained unclear. Herein, the difference of V. parahemolyticus's metabonomic which on blood agar and seawater beef extract peptone medium was detected via nuclear magnetic resonance and 55 metabolites were identified. Among them, 40 kinds of metabolites were upregulated in blood agar group, and 12 kinds were downregulated. Nine pathways were verified by enrichment analysis which were predicted involved in amino acids and protein synthesis, energy metabolism, DNA and RNA synthesis and DNA damage repair. We supposed that the metabolic pathway obtained from this study is related to V. parahemolyticus pathogenicity and our findings will aid in the identification of alternative targets or strategies to treat V. parahemolyticus-caused disease.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Chundan Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Ye Li
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Tinghong Ming
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China. .,School of Marine Science, Ningbo University, Ningbo, China.
| |
Collapse
|
43
|
Yin K, Peng Y, Ahmed MAH, Ma J, Xu R, Zhang Y, Ma Y, Wang Q. PepA binds to and negatively regulates esrB to control virulence in the fish pathogen Edwardsiella piscicida. Microbiol Res 2019; 232:126349. [PMID: 31816594 DOI: 10.1016/j.micres.2019.126349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 01/11/2023]
Abstract
As an important marine fish pathogen, Edwardsiella piscicida infects a broad range of fish species and causes substantial economic losses. The EsrA-EsrB two-component system is essential for the expression of type III and type VI secretion systems (T3/T6SSs), the key virulence determinants in the bacterium. In this study, a pull-down assay with the esrB promoter as bait was performed to identify the upstream regulators of esrB. As a result, PepA, a leucyl aminopeptidase, was identified as a repressor of EsrB and T3/T6SS expression. PepA bound to the esrB promoter region and negatively regulated the production of T3/T6SS proteins in early stages. Moreover, PepA was found to affect the in vivo colonization of E. piscicida in turbot livers through the regulation of EsrB expression. Collectively, our results enhance the understanding of the virulence regulatory network and in vivo colonization mechanism of E. piscicida. One sentence summary: PepA regulates EsrB expression in Edwardsiella piscicida.
Collapse
Affiliation(s)
- Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Moamer A H Ahmed
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiabao Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Rongjing Xu
- Yantai Tianyuan Aquatic Co. Ltd., Yantai, Shandong, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
44
|
Hu T, Chen R, Zhang L, Wang Z, Yang D, Zhang Y, Liu X, Liu Q. Balanced role of T3SS and T6SS in contribution to the full virulence of Edwardsiella piscicida. FISH & SHELLFISH IMMUNOLOGY 2019; 93:871-878. [PMID: 31400510 DOI: 10.1016/j.fsi.2019.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Edwardsiella piscicida is an important pathogen that infects a wide range of hosts, from fish to human. Its infection leads to extensive losses in a diverse array of commercially important fish, like Japanese flounder, turbot, and tilapia. During the infection, type III secretion system (T3SS) and type VI secretion system (T6SS) of E. piscicida play significant roles, but how T3SS and T6SS cooperatively contribute to its virulence is still unknown. In this study, we first examined the roles of T3SS and T6SS in different processes during E. piscicida infection of host cells, and revealed that T3SS of E. piscicida is responsible for promoting bacterial invasion, the following intracellular replication and inducing cell death in host cells, while T6SS restrains E. piscicida intracellular replication and cell death in J774A.1 cells, which suggested that T3SS and T6SS antagonistically concert E. piscicida infection. Furthermore, we found an significant decrease in transcription level of IL-1β in zebrafish kidney infected with T3SS mutant and an drastically increase in transcription level of TNF- α infected with T6SS mutant when compared with the wild-type. Interestingly, both T3SS and T6SS mutants showed significant attenuated virulence in the zebrafish infection model when compared with the wild-type. Finally, considering the cooperative role of T3SS and T6SS, we generated a mutant strain WEDΔT6SS based on the existing live attenuated vaccine (LAV) WED which showed improved vaccine safety and comparable immune protection. Therefore, WEDΔT6SS could be used as an optimized LAV in the future. Taken together, this work suggested a bilateral role of T3SS and T6SS which respectively act as spear and shield during E. piscicida infection, together contribute to E. piscicida virulence.
Collapse
Affiliation(s)
- Tianjian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ran Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingzhi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Bio-manufacturing, Shanghai, 200237, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Bio-manufacturing, Shanghai, 200237, China.
| |
Collapse
|
45
|
The Ferric Uptake Regulator Represses Type VI Secretion System Function by Binding Directly to the clpV Promoter in Salmonella enterica Serovar Typhimurium. Infect Immun 2019; 87:IAI.00562-19. [PMID: 31383745 DOI: 10.1128/iai.00562-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Type VI secretion systems (T6SSs) are highly conserved and complex protein secretion systems that deliver effector proteins into eukaryotic hosts or other bacteria. T6SSs are regulated precisely by a variety of regulatory systems, which enables bacteria to adapt to varied environments. A T6SS within Salmonella pathogenicity island 6 (SPI-6) is activated during infection, and it contributes to the pathogenesis, as well as interbacterial competition, of Salmonella enterica serovar Typhimurium (S. Typhimurium). However, the regulation of the SPI-6 T6SS in S. Typhimurium is not well understood. In this study, we found that the SPI-6 T6SS core gene clpV was significantly upregulated in response to the iron-depleted condition and during infection. The global ferric uptake regulator (Fur) was shown to repress the clpV expression in the iron-replete medium. Moreover, electrophoretic mobility shift and DNase I footprinting assays revealed that Fur binds directly to the clpV promoter region at multiple sites spanning the transcriptional start site. We also observed that the relieving of Fur-mediated repression on clpV contributed to the interbacterial competition activity and pathogenicity of S. Typhimurium. These findings provide insights into the direct regulation of Fur in the expression and functional activity of SPI-6 T6SS in S. Typhimurium and thus help to elucidate the mechanisms of bacterial adaptability and virulence.
Collapse
|
46
|
Park EJ, Kwon YM, Lee JW, Kang HY, Oh JI. Dual control of RegX3 transcriptional activity by SenX3 and PknB. J Biol Chem 2019; 294:11023-11034. [PMID: 31160336 DOI: 10.1074/jbc.ra119.008232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
The mycobacterial SenX3-RegX3 two-component system consists of the SenX3 sensor histidine kinase and its cognate RegX3 response regulator. This system is a phosphorelay-based regulatory system involved in sensing environmental Pi levels and induction of genes required for Pi acquisition under Pi-limiting conditions. Here we demonstrate that overexpression of the kinase domain of Mycobacterium tuberculosis PknB (PknB-KDMtb) inhibits the transcriptional activity of RegX3 of both M. tuberculosis and Mycobacterium smegmatis (RegX3Mtb and RegX3Ms, respectively). Mass spectrometry results, along with those of in vitro phosphorylation and complementation analyses, revealed that PknB kinase activity inhibits the transcriptional activity of RegX3Mtb through phosphorylation events at Thr-100, Thr-191, and Thr-217. Electrophoretic mobility shift assays disclosed that phosphorylation of Thr-191 and Thr-217 abolishes the DNA-binding ability of RegX3Mtb and that Thr-100 phosphorylation likely prevents RegX3Mtb from being activated through conformational changes induced by SenX3-mediated phosphorylation. We propose that the convergence of the PknB and SenX3-RegX3 signaling pathways might enable mycobacteria to integrate environmental Pi signals with the cellular replication state to adjust gene expression in response to Pi availability.
Collapse
Affiliation(s)
- Eun-Jin Park
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Yu-Mi Kwon
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea, and; Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Ho-Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea,.
| |
Collapse
|
47
|
A case of necrotizing fasciitis following Edwardsiella tarda septicemia with gastroenteritis. J Infect Chemother 2019; 25:1053-1056. [PMID: 31235349 DOI: 10.1016/j.jiac.2019.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 05/20/2019] [Indexed: 11/21/2022]
Abstract
Edwardsiella tarda is an uncommon pathogen that causes gastroenteritis in humans and is found in the aquatic environment. In rare cases, it also causes fatal infections, including sepsis and necrotizing fasciitis. However, it remains unknown whether E. tarda gastroenteritis could lead to these lethal diseases via hematogenous spread. Here we have reported a previously healthy 64-year-old woman with necrotizing fasciitis consecutively caused by E. tarda septicemia with gastroenteritis. The patient was transferred to the emergency department due to disturbance of consciousness and hypotension after suffering from diarrhea for a month. As whole-body computed tomography (CT) revealed an edematous change in the small intestine, septic shock following gastroenteritis was suspected, and the patient was immediately started on empiric antibiotic therapy and provided critical care. Her general physical conditions gradually began improving, but, on day 7, rapidly appearing blisters on both the lower limbs were noted, and she was accordingly examined again by conducting a CT scan. Based on the results, she was diagnosed with necrotizing fasciitis in both lower extremities, and surgical debridement was rapidly performed. Microbiological analysis of the specimens revealed E. tarda bacteremia, which suggested that E. tarda caused a series of infections in this patient. Finally, she fully recovered and was discharged within 3 months. Cumulatively, we proposed that gastroenteritis by E. tarda could directly result in fatal infections through the blood stream.
Collapse
|
48
|
The Edwardsiella piscicida Type III Effector EseJ Suppresses Expression of Type 1 Fimbriae, Leading to Decreased Bacterial Adherence to Host Cells. Infect Immun 2019; 87:IAI.00187-19. [PMID: 30988056 DOI: 10.1128/iai.00187-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/09/2019] [Indexed: 12/28/2022] Open
Abstract
The type III secretion system (T3SS) of Edwardsiella piscicida plays a crucial role in its pathogenesis. Our previous study indicated that the T3SS effector protein EseJ inhibits the bacterium's adhesion to epithelioma papillosum cyprini (EPC) cells, while the mechanism of the inhibition remains elusive. In this study, we revealed that EseJ negatively regulates the fimA gene, as demonstrated by comparative transcription analysis of ΔeseJ and wild-type (WT) strains. As well, the dramatically increased production of FimA was detected in the absence of EseJ compared to that by the WT strain. The adherence of the ΔeseJ strain decreased far below that of the WT strain in the absence of FimA, demonstrating that FimA plays a pivotal role in the hyperadhesion of the ΔeseJ strain. Adherence analysis with a strain with truncated eseJ demonstrated that the C-terminal region of EseJ (Gly1191 to Ile1359) is necessary to inhibit the transcription of the type 1 fimbrial operon. Binding between the EseJ fragment from amino acid residues 1191 to 1359 and the DNA fragment upstream of fimA was not detected, indicating that EseJ might indirectly regulate the type 1 fimbrial operon. Our study reveals that EseJ controls E. piscicida adherence to EPC cells by negatively regulating the type 1 fimbrial operon.
Collapse
|
49
|
Thioredoxin H (TrxH) contributes to adversity adaptation and pathogenicity of Edwardsiella piscicida. Vet Res 2019; 50:26. [PMID: 30992061 PMCID: PMC6466703 DOI: 10.1186/s13567-019-0645-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Thioredoxins (Trxs) play an important role in defending against oxidative stress and keeping disulfide bonding correct to maintain protein function. Edwardsiella piscicida, a severe fish pathogen, has been shown to encode several thioredoxins including TrxA, TrxC, and TrxH, but their biological roles remain unknown. In this study, we characterized TrxH of E. piscicida (named TrxHEp) and examined its expression and function. TrxHEp is composed of 125 residues and possesses typical thioredoxin H motifs. Expression of trxHEp was upregulated under conditions of oxidative stress, iron starvation, low pH, and during infection of host cells. trxHEp expression was also regulated by ferric uptake regulator (Fur), an important global regulatory of E. piscicida. Compared to the wild type TX01, a markerless trxHEp in-frame mutant strain TX01∆trxH exhibited markedly compromised tolerance of the pathogen to hydrogen peroxide, acid stress, and iron deficiency. Deletion of trxHEp significantly retarded bacterial biofilm growth and decreased resistance against serum killing. Pathogenicity analysis shows that the inactivation of trxHEp significantly impaired the ability of E. piscicida to invade host cells, reproduce in macrophages, and infect host tissues. Introduction of a trans-expressed trxH gene restored the lost virulence of TX01∆trxH. There is likely to be a complex relationship of functional complementation or expression regulation between TrxH and another two thioredoxins, TrxA and TrxC, of E. piscicida. This is the first functional report of TrxH in fish pathogens, and the findings suggest that TrxHEp is essential for coping with adverse circumstances and contributes to host infection of E. piscicida.
Collapse
|
50
|
The Edwardsiella piscicida Type III Translocon Protein EseC Inhibits Biofilm Formation by Sequestering EseE. Appl Environ Microbiol 2019; 85:AEM.02133-18. [PMID: 30770403 DOI: 10.1128/aem.02133-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/04/2019] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) is one of the most important virulence factors of the fish pathogen Edwardsiella piscicida It contains three translocon proteins, EseB, EseC, and EseD, required for translocation of effector proteins into host cells. We have previously shown that EseB forms filamentous appendages on the surface of E. piscicida, and these filamentous structures mediate bacterial cell-cell interactions promoting autoaggregation and biofilm formation. In the present study, we show that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida At 18 h postsubculture, a ΔeseC strain developed strong autoaggregation and mature biofilm formation, accompanied by enhanced formation of EseB filamentous appendages. This is in contrast to the weak autoaggregation and immature biofilm formation seen in the E. piscicida wild-type strain. EseE, a protein that directly binds to EseC and also positively regulates the transcription of the escC-eseE operon, was liberated and showed increased levels in the absence of EseC. This led to augmented transcription of the escC-eseE operon, thereby increasing the steady-state protein levels of intracellular EseB, EseD, and EseE, as well as biofilm formation. Notably, the levels of intracellular EseB and EseD produced by the ΔeseE and ΔeseC ΔeseE strains were similar but remarkably lower than those produced by the wild-type strain at 18 h postsubculture. Taken together, we have shown that the translocon protein EseC inhibits biofilm formation through sequestering EseE, a positive regulator of the escC-eseE operon.IMPORTANCE Edwardsiella piscicida, previously known as Edwardsiella tarda, is a Gram-negative intracellular pathogen that mainly infects fish. The type III secretion system (T3SS) plays a pivotal role in its pathogenesis. The T3SS translocon protein EseB is required for the assembly of filamentous appendages on the surface of E. piscicida The interactions between the appendages facilitate autoaggregation and biofilm formation. In this study, we explored the role of the other two translocon proteins, EseC and EseD, in biofilm formation. We have demonstrated that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida, providing new insights into the regulatory mechanism involved in E. piscicida biofilm formation.
Collapse
|