1
|
Xu T, Tong L, Zhang Z, Zhou H, Zheng P. Glycosylation in Drosophila S2 cells. Biotechnol Bioeng 2024; 121:3672-3683. [PMID: 39140464 DOI: 10.1002/bit.28827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
In recent years, there has been a remarkable surge in the approval of therapeutic protein drugs, particularly recombinant glycoproteins. Drosophila melanogaster S2 cells have become an appealing platform for the production of recombinant proteins due to their simplicity and low cost in cell culture. However, a significant limitation associated with using the S2 cell expression system is its propensity to introduce simple paucimannosidic glycosylation structures, which differs from that in the mammalian expression system. It is well established that the glycosylation patterns of glycoproteins have a profound impact on the physicochemical properties, bioactivity, and immunogenicity. Therefore, understanding the mechanisms behind these glycosylation modifications and implementing measures to address it has become a subject of considerable interest. This review aims to comprehensively summarize recent advancements in glycosylation modification in S2 cells, with a particular focus on comparing the glycosylation patterns among S2, other insect cells, and mammalian cells, as well as developing strategies for altering the glycosylation patterns of recombinant glycoproteins.
Collapse
Affiliation(s)
- Tingting Xu
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Lixiang Tong
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Zhifu Zhang
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Hairong Zhou
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Peilin Zheng
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
2
|
Thoma J, Grabherr R, Staudacher E. Determination, expression and characterization of an UDP-N-acetylglucosamine:α-1,3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I (GnT-I) from the Pacific oyster, Crassostrea gigas. Glycoconj J 2024; 41:151-162. [PMID: 38557922 PMCID: PMC11065688 DOI: 10.1007/s10719-024-10148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Molluscs are intermediate hosts for several parasites. The recognition processes, required to evade the host's immune response, depend on carbohydrates. Therefore, the investigation of mollusc glycosylation capacities is of high relevance to understand the interaction of parasites with their host. UDP-N-acetylglucosamine:α-1,3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I (GnT-I) is the key enzyme for the biosynthesis of hybrid and complex type N-glycans catalysing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the α-1,3 Man antenna of Man5GlcNAc2. Thereby, the enzyme produces a suitable substrate for further enzymes, such as α-mannosidase II, GlcNAc-transferase II, galactosyltransferases or fucosyltransferases. The sequence of GnT- I from the Pacific oyster, Crassostrea gigas, was obtained by homology search using the corresponding human enzyme as the template. The obtained gene codes for a 445 amino acids long type II transmembrane glycoprotein and shared typical structural elements with enzymes from other species. The enzyme was expressed in insect cells and purified by immunoprecipitation using protein A/G-plus agarose beads linked to monoclonal His-tag antibodies. GnT-I activity was determined towards the substrates Man5-PA, MM-PA and GnM-PA. The enzyme displayed highest activity at pH 7.0 and 30 °C, using Man5-PA as the substrate. Divalent cations were indispensable for the enzyme, with highest activity at 40 mM Mn2+, while the addition of EDTA or Cu2+ abolished the activity completely. The activity was also reduced by the addition of UDP, UTP or galactose. In this study we present the identification, expression and biochemical characterization of the first molluscan UDP-N-acetylglucosamine:α-1,3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I, GnT-I, from the Pacific oyster Crassostrea gigas.
Collapse
Affiliation(s)
- Julia Thoma
- Department of Chemistry (DCH), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology (DBT), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Erika Staudacher
- Department of Chemistry (DCH), University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
3
|
Xiang MH, Lu TT, Gao XD, Wang N. Efficient production and characterization of soluble active human β-1,2-N-acetylglucosaminyltransferase II in bacteria. J Biosci Bioeng 2023; 136:166-172. [PMID: 37393188 DOI: 10.1016/j.jbiosc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
In humans, almost all the cell surface and secreted glycoproteins are modified with complex-type N-glycans. Thus, it is essential to obtain complex-type N-glycans to fully understand the biological properties of glycoproteins. Here, human β-1,2-N-acetylglucosaminyltransferase II (hGnT-II), a Golgi-localized enzyme integral to complex-type N-glycan biosynthesis, was cloned as a truncated transmembrane form (GnT-II-ΔTM) and heterologously overexpressed in Escherichia coli. Our results showed that hGnT-II could be overexpressed in its soluble form by fusing the truncated enzyme with a thioredoxin (Trx)-tag in the Rosetta-Gami 2 strain. Using the optimized induction conditions, the expression level of recombinant protein was enhanced to yield approximately 4 mg per liter culture after affinity purification. The enzyme exhibited appropriate glycosyltransferase activity, and the calculated Km value was 52.4 μM, similar to the protein expressed in mammalian cells. Furthermore, the effect of MGAT2-CDG mutations on enzyme activity was also measured. These results suggested that the E. coli expression system was capable of the large-scale production of bioactive hGnT-II, which can be used for functional study and effective synthesis of complex-type N-glycans.
Collapse
Affiliation(s)
- Meng-Hai Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tian-Tian Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Temporal analysis of N-acetylglucosamine extension of N-glycans in the middle silk gland of silkworm Bombyx mori. J Biosci Bioeng 2022; 133:533-540. [PMID: 35397991 DOI: 10.1016/j.jbiosc.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/30/2022]
Abstract
N-glycosylation of proteins is an important post-translational modification in eukaryotic cells. One of the key modifications in protein N-glycosylation is N-acetylglucosamine (GlcNAc) extension mediated by N-acetylglucosaminyltransferase I (GNTI), which triggers N-glycan maturation from high-mannose-type to hybrid- and complex-type structures in Golgi. However, the temporal contributions of GNTI to GlcNAc extension and the resultant N-glycan structures in insects have not been analyzed. Here, focusing on GlcNAc extension of N-glycan in the silkworm Bombyx mori, we analyzed the temporal N-glycan alterations in the middle silk gland (MSG) and characterized the property of key enzyme for complex-type N-glycan biosynthesis, B. mori GNTI (BmGNTI). N-glycan analysis of N-glycoproteins in the MSG demonstrated that BmGNTI identified and characterized in this study consistently contributed to GlcNAc extension of N-glycans, which led to the accumulation of GlcNAc-extended N-glycans as predominant structures throughout the MSG development. The expression profile of GlcNAc extension-related genes revealed that the enzymes contributing to the hydrolysis of GlcNAc showed stage-specific expressions, thereby resulting in accumulations of the end product N-glycans of the enzyme. These results lead to the speculation that not BmGNTI but rather glycosylhydrolases critically influenced the structural formations and the changes in the ratio of N-glycans with GlcNAc residue(s) in MSG.
Collapse
|
5
|
Mathew C, Weiß RG, Giese C, Lin CW, Losfeld ME, Glockshuber R, Riniker S, Aebi M. Glycan-protein interactions determine kinetics of N-glycan remodeling. RSC Chem Biol 2021; 2:917-931. [PMID: 34212152 PMCID: PMC8207518 DOI: 10.1039/d1cb00019e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A hallmark of N-linked glycosylation in the secretory compartments of eukaryotic cells is the sequential remodeling of an initially uniform oligosaccharide to a site-specific, heterogeneous ensemble of glycostructures on mature proteins. To understand site-specific processing, we used protein disulfide isomerase (PDI), a model protein with five glycosylation sites, for molecular dynamics (MD) simulations and compared the result to a biochemical in vitro analysis with four different glycan processing enzymes. As predicted by an analysis of the accessibility of the N-glycans for their processing enzymes derived from the MD simulations, N-glycans at different glycosylation sites showed different kinetic properties for the processing enzymes. In addition, altering the tertiary structure of the glycoprotein PDI affected its N-glycan remodeling in a site-specific way. We propose that the observed differential N-glycan reactivities depend on the surrounding protein tertiary structure and lead to different glycan structures in the same protein through kinetically controlled processing pathways. Atomistic glycoprotein simulations reveal a site-specific availability of glycan substrates in time-resolved mass spectrometry of maturating enzyme kinetics.![]()
Collapse
Affiliation(s)
- Corina Mathew
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich 8093 Zürich Switzerland
| | - R Gregor Weiß
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich 8093 Zürich Switzerland
| | - Christoph Giese
- Institute of Molecular Biology & Biophysics, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich 8093 Zürich Switzerland
| | - Chia-Wei Lin
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich 8093 Zürich Switzerland .,Functional Genomics Center Zürich 8057 Zürich Switzerland
| | - Marie-Estelle Losfeld
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich 8093 Zürich Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology & Biophysics, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich 8093 Zürich Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich 8093 Zürich Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich 8093 Zürich Switzerland
| |
Collapse
|
6
|
Nakamura S, Miyazaki T, Park EY. α-L-Fucosidase from Bombyx mori has broad substrate specificity and hydrolyzes core fucosylated N-glycans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103427. [PMID: 32561391 DOI: 10.1016/j.ibmb.2020.103427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
N-glycans play a role in physiological functions, including glycoprotein conformation, signal transduction, and antigenicity. Insects display both α-1,6- and α-1,3-linked fucose residues bound to the innermost N-acetylglucosamine of N-glycans whereas core α-1,3-fucosylated N-glycans are not found in mammals. Functions of insect core-fucosylated glycans are not clear, and no α-L-fucosidase related to the N-glycan degradation has been identified. In the genome of the domestic silkworm, Bombyx mori, a gene for a protein, BmFucA, belonging to the glycoside hydrolase family 29 is a candidate for an α-L-fucosidase gene. In this study, BmFucA was cloned and recombinantly expressed as a glutathione-S-transferase tagged protein (GST-BmFucA). Recombinant GST-BmFucA exhibited broad substrate specificity and hydrolyzed p-nitrophenyl α-L-fucopyranoside, 2'-fucosyllactose, 3-fucosyllactose, 3-fucosyl-N,N'-diacetylchitobiose, and 6-fucosyl-N,N'-diacetylchitobiose. Further, GST-BmFucA released fucose from both pyridylaminated complex-type and paucimannose-type glycans that were core-α-1,6-fucosylated. GST-BmFucA also shows hydrolysis activity for core-fucosylated glycans attached to phospholipase A2 from bee venom. BmFucA may be involved in the catabolism of core-fucosylated N-glycans in B. mori.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takatsugu Miyazaki
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Enoch Y Park
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
7
|
Characterization of Bombyx mori N-acetylglucosaminyltransferase II splicing variants. Biochem Biophys Res Commun 2020; 529:404-410. [PMID: 32703443 DOI: 10.1016/j.bbrc.2020.05.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 11/21/2022]
Abstract
N-Acetylglucosaminyltransferase II (GNTII), which catalyzes the transfer of N-acetylglucosamine to N-glycans, plays an essential role in the biosynthesis of branched and complex-type N-glycans. Some characteristics of the GNTIIs from various species have been identified, but not all features have been revealed because some insects have GNTII redundancies due to the possession of splicing variants. In this study, we focused on four splicing variants of silkworm Bombyx mori GNTII (BmGNTII) that differ only in the absence or presence of Exon 2, Exon 9 or both, and we characterized the spatiotemporal transcript levels and enzymatic properties of each. Two of the splicing variants, BmGNTII-B and BmGNTII-D, lack Exon 9, and were expressed more highly in silk glands than any other organs. With respect to the enzymatic properties, optimal temperature and pH were similar among the recombinant BmGNTIIs, but the specific activities and temperature stabilities differed according to the presence or absence of Exon 9 in the splicing variants. These results demonstrate that the B. mori genome encodes splicing variants of GNTII with different enzymatic properties.
Collapse
|
8
|
CRISPR-Cas9 Genome Editing Tool for the Production of Industrial Biopharmaceuticals. Mol Biotechnol 2020; 62:401-411. [PMID: 32749657 DOI: 10.1007/s12033-020-00265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
A broad range of cell lines with characteristic features are used as bio-factories to produce recombinant proteins for basic research and therapeutic purposes. Genetic engineering strategies have been used to manipulate the genome of mammalian cells, insects, and yeasts for heterologous expression. One reason is that the glycosylation pattern of the expression hosts differs somehow from mammalian cells, which may cause immunogenic reactions upon administration in humans. CRISPR-Cas9 is a simple, efficient, and versatile genome engineering tool that can be programmed to precisely make double-stranded breaks at the desired loci. Compared to the classical genome editing methods, a CRISPR-Cas9 system is an ideal tool, providing the opportunity to integrate or delete genes from the target organisms. Besides broadened applications, limited studies have used CRISPR-Cas9 for editing the endogenous pathways in expression systems for biopharmaceutical applications. In the present review, we discuss the use of CRISPR-Cas9 in expression systems to improve host cell lines, increase product yield, and humanize glycosylation pathways by targeting intrinsic genes.
Collapse
|
9
|
Zhang W, Meredith RJ, Oliver AG, Carmichael I, Serianni AS. Glycosidic linkage, N-acetyl side-chain, and other structural properties of methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-β-D-mannopyranoside monohydrate and related compounds. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:287-297. [PMID: 32132287 DOI: 10.1107/s2053229620001515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/03/2020] [Indexed: 11/10/2022]
Abstract
The crystal structure of methyl 2-acetamido-2-deoxy-β-D-glycopyranosyl-(1→4)-β-D-mannopyranoside monohydrate, C15H27NO11·H2O, was determined and its structural properties compared to those in a set of mono- and disaccharides bearing N-acetyl side-chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C-N (amide) and C-O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N-H hydrogen. Relative to N-acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen-bond acceptor display elongated C-O and shortened C-N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C-N and C-O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cis-trans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter-residue hydrogen bonding and some bond angles in or proximal to β-(1→4) O-glycosidic linkages on linkage torsion angles φ and ψ. Hypersurfaces correlating φ and ψ with the linkage C-O-C bond angle and total energy are sufficiently similar to render the former a proxy of the latter.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Reagan J Meredith
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Allen G Oliver
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Ian Carmichael
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Anthony S Serianni
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| |
Collapse
|
10
|
Miyazaki T, Miyashita R, Nakamura S, Ikegaya M, Kato T, Park EY. Biochemical characterization and mutational analysis of silkworm Bombyx mori β-1,4-N-acetylgalactosaminyltransferase and insight into the substrate specificity of β-1,4-galactosyltransferase family enzymes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 115:103254. [PMID: 31655162 DOI: 10.1016/j.ibmb.2019.103254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Silkworm Bombyx mori is one of the insect hosts for recombinant protein production at academic and industrial levels. B. mori and other insect cells can produce mammalian proteins with proper posttranslational modifications, such as N-glycosylation, but the structures of N-glycans in B. mori are mainly high mannose- and paucimannose-type, while mammals also produce hybrid- and complex-type glycans. Recently, complex-type N-glycans whose structures are different from mammalian ones have been identified in some insect cell N-glycomes at very low levels compared with levels of high mannose- and paucimannose-type glycans. However, their functions and the enzymes involved in the biosynthesis of insect complex-type N-glycans are not clear, and complex-type N-glycans, except for N-acetylglucosamine-terminated glycans, are still not identified in the B. mori N-glycome. Here, we focused on the β-1,4-galactosyltransferase family (also known as glycosyltransferase family 7, GT7) that contains mammalian β-1,4-galactosyltransferase and insect β-1,4-N-acetylgalactosaminyltransferase. A gene for a GT7 protein (BmGalNAcT) from B. mori was cloned, expressed in a soluble form using a silkworm expression system, and the gene product showed strict β-1,4-N-acetylgalactosaminyltransferase activity but not β-1,4-galactosyltransferase activity. A mutation in Ile298 or Ile310, which are predicted to be located in the active site, reduced its glycosyltransferase activity, suggesting that these residues and the corresponding residues are responsible for substrate specificity of GT7. These results suggested that BmGalNAcT may be involved in the complex-type N-glycans, and moreover, bioinformatics analysis revealed that B. mori might have an extra gene for a GT7 enzyme with different specificity in addition to the known insect GT7 glycosyltransferases.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Ryunosuke Miyashita
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shuntaro Nakamura
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Marina Ikegaya
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
11
|
Functional analysis of glycosylation using Drosophila melanogaster. Glycoconj J 2019; 37:1-14. [DOI: 10.1007/s10719-019-09892-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
|
12
|
Hykollari A, Malzl D, Stanton R, Eckmair B, Paschinger K. Tissue-specific glycosylation in the honeybee: Analysis of the N-glycomes of Apis mellifera larvae and venom. Biochim Biophys Acta Gen Subj 2019; 1863:129409. [PMID: 31398379 DOI: 10.1016/j.bbagen.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous glycophylogenetic comparisons of dipteran and lepidopteran species revealed variations in the anionic and zwitterionic modifications of their N-glycans; therefore, we wished to explore whether species- and order-specific glycomic variations would extend to the hymenoptera, which include the honeybee Apis mellifera, an agriculturally- and allergologically-significant social species. METHODS In this study, we employed an off-line liquid chromatography/mass spectrometry approach, in combination with enzymatic and chemical treatments, to analyse the N-glycans of male honeybee larvae and honeybee venom in order to facilitate definition of isomeric structures. RESULTS The neutral larval N-glycome was dominated by oligomannosidic and paucimannosidic structures, while the neutral venom N-glycome displayed more processed hybrid and complex forms with antennal N-acetylgalactosamine, galactose and fucose residues including Lewis-like epitopes; the anionic pools from both larvae and venom contained a wide variety of glucuronylated, sulphated and phosphoethanolamine-modified N-glycans with up to three antennae. In comparison to honeybee royal jelly, there were more fucosylated and fewer Man4/5-based hybrid glycans in the larvae and venom samples as well as contrasting antennal lengths. CONCLUSIONS Combining the current data on venom and larvae with that we previously published on royal jelly, a total honeybee N-glycomic repertoire of some 150 compositions can be proposed in addition to the 20 previously identified on specific venom glycoproteins. SIGNIFICANCE Our data are indicative of tissue-specific modification of the core and antennal regions of N-glycans in Apis mellifera and reinforce the concept that insects are capable of extensive processing to result in rather complex anionic oligosaccharide structures.
Collapse
Affiliation(s)
- Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Rhiannon Stanton
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Barbara Eckmair
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Katharina Paschinger
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria.
| |
Collapse
|
13
|
Abstract
Many invertebrates are either parasites themselves or vectors involved in parasite transmission; thereby, the interactions of parasites with final or intermediate hosts are often mediated by glycans. Therefore, it is of interest to compare the glycan structures or motifs present across invertebrate species. While a typical vertebrate modification such as sialic acid is rare in lower animals, antennal and core modifications of N-glycans are highly varied and range from core fucose, galactosylated fucose, fucosylated galactose, methyl groups, glucuronic acid and sulphate through to addition of zwitterionic moieties (phosphorylcholine, phosphoethanolamine and aminoethylphosphonate). Only in some cases are the enzymatic bases and the biological function of these modifications known. We are indeed still in the phase of discovering invertebrate glycomes primarily using mass spectrometry, but molecular biology and microarraying techniques are complementary to the determination of novel glycan structures and their functions.
Collapse
|
14
|
Palomares LA, Srivastava IK, Ramírez OT, Cox MMJ. Glycobiotechnology of the Insect Cell-Baculovirus Expression System Technology. ADVANCES IN GLYCOBIOTECHNOLOGY 2018; 175:71-92. [DOI: 10.1007/10_2018_61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Kato T, Kikuta K, Kanematsu A, Kondo S, Yagi H, Kato K, Park EY. Alteration of a recombinant protein N-glycan structure in silkworms by partial suppression of N-acetylglucosaminidase gene expression. Biotechnol Lett 2017; 39:1299-1308. [PMID: 28547344 DOI: 10.1007/s10529-017-2361-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/16/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To synthesize complex type N-glycans in silkworms, shRNAs against the fused lobe from Bombyx mori (BmFDL), which codes N-acetylglucosaminidase (GlcNAcase) in the Golgi, was expressed by recombinant B. mori nucleopolyhedrovirus (BmNPV) in silkworm larvae. RESULTS Expression was under the control of the actin promoter of B. mori or the U6-2 and i.e.-2 promoters from Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV). The reduction of specific GlcNAcase activity was observed in Bm5 cells and silkworm larvae using the U6-2 promoter. In silkworm larvae, the partial suppression of BmFDL gene expression was observed. When shRNA against BmFDL was expressed under the control of U6-2 promoter, the Man3GlcNAc(Fuc)GlcNAc structure appeared in a main N-glycans of recombinant human IgG. These results suggested that the control of BmFDL expression by its shRNA in silkworms caused the modification of its N-glycan synthetic pathway, which may lead to the alteration of N-glycans in the expressed recombinant proteins. CONCLUSIONS Suppression of BmFDL gene expression by shRNA is not sufficient to synthesize complex N-glycans in silkworm larvae but can modify the N-glycan synthetic pathway.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan.,Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Kotaro Kikuta
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Ayumi Kanematsu
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Sachiko Kondo
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-Ku, Nagoya, 467-8603, Japan.,Medical & Biological Laboratories Co., Ltd., 4-5-3 Sakae, Naka-Ku, Nagoya, 460-0008, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-Ku, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-Ku, Nagoya, 467-8603, Japan.,Medical & Biological Laboratories Co., Ltd., 4-5-3 Sakae, Naka-Ku, Nagoya, 460-0008, Japan.,Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki, 444-8787, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan. .,Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
16
|
Walski T, De Schutter K, Van Damme EJM, Smagghe G. Diversity and functions of protein glycosylation in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:21-34. [PMID: 28232040 DOI: 10.1016/j.ibmb.2017.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 05/28/2023]
Abstract
The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof De Schutter
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
The underestimated N-glycomes of lepidopteran species. Biochim Biophys Acta Gen Subj 2017; 1861:699-714. [PMID: 28077298 DOI: 10.1016/j.bbagen.2017.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Insects are significant to the environment, agriculture, health and biotechnology. Many of these aspects display some relationship to glycosylation, e.g., in case of pathogen binding or production of humanised antibodies; for a long time, it has been considered that insect N-glycosylation potentials are rather similar and simple, but as more species are glycomically analysed in depth, it is becoming obvious that there is indeed a large structural diversity and interspecies variability. METHODS Using an off-line LC-MALDI-TOF MS approach, we have analysed the N-glycomes of two lepidopteran species (the cabbage looper Trichoplusia ni and the gypsy moth Lymantria dispar) as well as of the commonly-used T. ni High Five cell line. RESULTS We detected not only sulphated, glucuronylated, core difucosylated and Lewis-like antennal fucosylated structures, but also the zwitterion phosphorylcholine on antennal GlcNAc residues, a modification otherwise familiar from nematodes; in L. dispar, N-glycans with glycolipid-like antennae containing α-linked N-acetylgalactosamine were also revealed. CONCLUSION The lepidopteran glycomes analysed not only display core α1,3-fucosylation, which is foreign to mammals, but also up to 5% anionic and/or zwitterionic glycans previously not found in these species. SIGNIFICANCE The occurrence of anionic and zwitterionic glycans in the Lepidoptera data is not only of glycoanalytical and evolutionary interest, but is of biotechnological relevance as lepidopteran cell lines are potential factories for recombinant glycoprotein production.
Collapse
|
18
|
Damerow M, Graalfs F, Güther MLS, Mehlert A, Izquierdo L, Ferguson MAJ. A Gene of the β3-Glycosyltransferase Family Encodes N-Acetylglucosaminyltransferase II Function in Trypanosoma brucei. J Biol Chem 2016; 291:13834-45. [PMID: 27189951 PMCID: PMC4919465 DOI: 10.1074/jbc.m116.733246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 11/06/2022] Open
Abstract
The bloodstream form of the human pathogen Trypanosoma brucei expresses oligomannose, paucimannose, and complex N-linked glycans, including some exceptionally large poly-N-acetyllactosamine-containing structures. Despite the presence of complex N-glycans in this organism, no homologues of the canonical N-acetylglucosaminyltransferase I or II genes can be found in the T. brucei genome. These genes encode the activities that initiate the elaboration of the Manα1-3 and Manα1-6 arms, respectively, of the conserved trimannosyl-N-acetylchitobiosyl core of N-linked glycans. Previously, we identified a highly divergent T. brucei N-acetylglucosaminyltransferase I (TbGnTI) among a set of putative T. brucei glycosyltransferase genes belonging to the β3-glycosyltransferase superfamily (Damerow, M., Rodrigues, J. A., Wu, D., Güther, M. L., Mehlert, A., and Ferguson, M. A. (2014) J. Biol. Chem. 289, 9328-9339). Here, we demonstrate that TbGT15, another member of the same β3-glycosyltransferase family, encodes an equally divergent N-acetylglucosaminyltransferase II (TbGnTII) activity. In contrast to multicellular organisms, where GnTII activity is essential, TbGnTII null mutants of T. brucei grow in culture and are still infectious to animals. Characterization of the large poly-N-acetyllactosamine containing N-glycans of the TbGnTII null mutants by methylation linkage analysis suggests that, in wild-type parasites, the Manα1-6 arm of the conserved trimannosyl core may carry predominantly linear poly-N-acetyllactosamine chains, whereas the Manα1-3 arm may carry predominantly branched poly-N-acetyllactosamine chains. These results provide further detail on the structure and biosynthesis of complex N-glycans in an important human pathogen and provide a second example of the adaptation by trypanosomes of β3-glycosyltransferase family members to catalyze β1-2 glycosidic linkages.
Collapse
Affiliation(s)
- Manuela Damerow
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Frauke Graalfs
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - M Lucia S Güther
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Angela Mehlert
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Luis Izquierdo
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Michael A J Ferguson
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
19
|
Harrison RL, Jarvis DL. Transforming Lepidopteran Insect Cells for Improved Protein Processing and Expression. Methods Mol Biol 2016; 1350:359-79. [PMID: 26820868 DOI: 10.1007/978-1-4939-3043-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The lepidopteran insect cells used with the baculovirus expression vector system (BEVS) are capable of synthesizing and accurately processing foreign proteins. However, proteins expressed in baculovirus-infected cells often fail to be completely processed, or are not processed in a manner that meets a researcher's needs. This chapter discusses a metabolic engineering approach that addresses this problem. Basically, this approach involves the addition of new or enhancement of existing protein processing functions in established lepidopteran insect cell lines. In addition to improvements in protein processing, this approach has also been used to improve protein expression levels obtained with the BEVS. Methods for engineering cell lines and assessing their properties as improved hosts for the BEVS are detailed. Examples of lepidopteran insect cell lines engineered for improved protein N-glycosylation, folding/trafficking, and expression are described in detail.
Collapse
Affiliation(s)
- Robert L Harrison
- Invasive Insect Biocontrol & Behavior Laboratory, USDA, ARS, BARC, Building 007, Room 301, BARC-W, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
20
|
Hang I, Lin CW, Grant OC, Fleurkens S, Villiger TK, Soos M, Morbidelli M, Woods RJ, Gauss R, Aebi M. Analysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the Golgi. Glycobiology 2015; 25:1335-49. [PMID: 26240167 PMCID: PMC4634314 DOI: 10.1093/glycob/cwv058] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/14/2015] [Accepted: 07/27/2015] [Indexed: 11/14/2022] Open
Abstract
The hallmark of N-linked protein glycosylation is the generation of diverse glycan structures in the secretory pathway. Dynamic, non-template-driven processes of N-glycan remodeling in the endoplasmic reticulum and the Golgi provide the cellular setting for structural diversity. We applied newly developed mass spectrometry-based analytics to quantify site-specific N-glycan remodeling of the model protein Pdi1p expressed in insect cells. Molecular dynamics simulation, mutational analysis, kinetic studies of in vitro processing events and glycan flux analysis supported the defining role of the protein in N-glycan processing.
Collapse
Affiliation(s)
- Ivan Hang
- Institute of Microbiology, Department of Biology
| | - Chia-wei Lin
- Institute of Microbiology, Department of Biology
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Thomas K Villiger
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Miroslav Soos
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert Gauss
- Institute of Microbiology, Department of Biology
| | - Markus Aebi
- Institute of Microbiology, Department of Biology
| |
Collapse
|
21
|
Mabashi-Asazuma H, Kuo CW, Khoo KH, Jarvis DL. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology. ACS Chem Biol 2015; 10:2199-208. [PMID: 26241388 DOI: 10.1021/acschembio.5b00340] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fused lobes (FDL) is an enzyme that simultaneously catalyzes a key trimming reaction and antagonizes elongation reactions in the insect N-glycan processing pathway. Accordingly, FDL function accounts, at least in part, for major differences in the N-glycosylation patterns of glycoproteins produced by insect and mammalian cells. In this study, we used the CRISPR-Cas9 system to edit the fdl gene in Drosophila melanogaster S2 cells. CRISPR-Cas9 editing produced a high frequency of site-specific nucleotide insertions and deletions, reduced the production of insect-type, paucimannosidic products (Man3GlcNAc2), and led to the production of partially elongated, mammalian-type complex N-glycans (GlcNAc2Man3GlcNAc2) in S2 cells. As CRISPR-Cas9 has not been widely used to analyze or modify protein glycosylation pathways or edit insect cell genes, these results underscore its broad utility as a tool for these purposes. Our results also confirm the key role of FDL at the major branch point distinguishing insect and mammalian N-glycan processing pathways. Finally, the new FDL-deficient S2 cell derivative produced in this study will enable future bottom-up glycoengineering efforts designed to isolate insect cell lines that can efficiently produce recombinant glycoproteins with chemically predefined oligosaccharide side-chain structures.
Collapse
Affiliation(s)
- Hideaki Mabashi-Asazuma
- Department
of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Chu-Wei Kuo
- Institute
of Biological Chemistry, Academia Sinica 128 Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute
of Biological Chemistry, Academia Sinica 128 Nankang, Taipei 115, Taiwan
| | - Donald L. Jarvis
- Department
of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
- GlycoBac,
LLC, Laramie, Wyoming 82072, United States
| |
Collapse
|
22
|
Mabashi-Asazuma H, Sohn BH, Kim YS, Kuo CW, Khoo KH, Kucharski CA, Fraser MJ, Jarvis DL. Targeted glycoengineering extends the protein N-glycosylation pathway in the silkworm silk gland. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:20-7. [PMID: 26163436 PMCID: PMC4628589 DOI: 10.1016/j.ibmb.2015.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 05/12/2023]
Abstract
The silkworm silk glands are powerful secretory organs that can produce and secrete proteins at high levels. As such, it has been suggested that the biosynthetic and secretory power of the silk gland can be harnessed to produce and secrete recombinant proteins in tight or loose association with silk fibers. However, the utility of the silkworm platform is constrained by the fact that it has a relatively primitive protein N-glycosylation pathway, which produces relatively simple insect-type, rather than mammalian-type N-glycans. In this study, we demonstrate for the first time that the silk gland protein N-glycosylation pathway can be glycoengineered. We accomplished this by using a dual piggyBac vector encoding two distinct mammalian glycosyltransferases under the transcriptional control of a posterior silk gland (PSG)-specific promoter. Both mammalian transgenes were expressed and each mammalian N-glycan processing activity was induced in transformed silkworm PSGs. In addition, the transgenic animals produced endogenous glycoproteins containing significant proportions of mammalian-type, terminally galactosylated N-glycans, while the parental animals produced none. This demonstration of the ability to glycoengineer the silkworm extends its potential utility as a recombinant protein production platform.
Collapse
Affiliation(s)
| | - Bong-Hee Sohn
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Young-Soo Kim
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Cheryl A Kucharski
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Malcolm J Fraser
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
23
|
Dragosits M, Yan S, Razzazi-Fazeli E, Wilson IBH, Rendic D. Enzymatic properties and subtle differences in the substrate specificity of phylogenetically distinct invertebrate N-glycan processing hexosaminidases. Glycobiology 2014; 25:448-64. [PMID: 25488985 PMCID: PMC4339880 DOI: 10.1093/glycob/cwu132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fused lobes (FDL) hexosaminidases are the most recently genetically defined glycosidases involved in the biosynthesis of N-glycans in invertebrates, and their narrow specificity is essential for the generation of paucimannosidic N-glycans in insects. In this study, we explored the potential of FDL hexosaminidases in the utilization of different artificial and natural substrates, both as purified, native compounds or generated in vitro using various relevant glycosyltransferases. In addition to the already-known FDL enzyme from Drosophila melanogaster, we now have identified and characterized the Apis mellifera FDL homolog. The enzymatic properties of the soluble forms of the affinity-purified insect FDL enzymes, expressed in both yeast and insect cells, were compared with those of the phylogenetically distinct recombinant Caenorhabditis elegans FDL-like enzymes and the N-acetylgalactosamine (GalNAc)-specific Caenorhabditis hexosaminidase HEX-4. In tests with a range of substrates, including natural N-glycans, we show that the invertebrate FDL(-like) enzymes are highly specific for N-acetylglucosamine attached to the α1,3-mannose, but under extreme conditions also remove other terminal GalNAc and N-acetylglucosamine residues. Recombinant FDL also proved useful in the analysis of complex mixtures of N-glycans originating from wild-type and mutant Caenorhabditis strains, thereby aiding isomeric definition of paucimannosidic and hybrid N-glycans in this organism. Furthermore, differences in activity and specificity were shown for two site-directed mutants of Drosophila FDL, compatible with the high structural similarity of chitinolytic and N-glycan degrading exohexosaminidases in insects. Our studies are another indication for the variety of structural and function aspects in the GH20 hexosaminidase family important for both catabolism and biosynthesis of glycoconjugates in eukaryotes.
Collapse
Affiliation(s)
- Martin Dragosits
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Shi Yan
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna
| | | | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna
| | - Dubravko Rendic
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna
| |
Collapse
|
24
|
Geisler C, Mabashi-Asazuma H, Kuo CW, Khoo KH, Jarvis DL. Engineering β1,4-galactosyltransferase I to reduce secretion and enhance N-glycan elongation in insect cells. J Biotechnol 2014; 193:52-65. [PMID: 25462875 DOI: 10.1016/j.jbiotec.2014.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022]
Abstract
β1,4-galactosyltransferase I (B4GALT1) is a Golgi-resident enzyme that elongates glycoprotein glycans, but a subpopulation of this enzyme is secreted following proteolytic cleavage in its stem domain. We hypothesized that engineering B4GALT1 to block cleavage and secretion would enhance its retention and, therefore, its function. To test this hypothesis, we replaced the cytoplasmic/transmembrane/stem (CTS) domains of B4GALT1 with those from human α1,3-fucosyltransferase 7 (FUT7), which is not cleaved and secreted. Expression of FUT7-CTS-B4GALT1 in insect cells produced lower levels of secreted and higher levels of intracellular B4GALT1 activity than the native enzyme. We also noted that the B4GALT1 used in our study had a leucine at position 282, whereas all other animal B4GALT1 sequences have an aromatic amino acid at this position. Thus, we examined the combined impact of changing the CTS domains and the amino acid at position 282 on intracellular B4GALT1 activity levels and N-glycan processing in insect cells. The results demonstrated a correlation between the levels of intracellular B4GALT1 activity and terminally galactosylated N-glycans, N-glycan branching, the appearance of hybrid structures, and reduced core fucosylation. Thus, engineering B4GALT1 to reduce its cleavage and secretion is an approach that can be used to enhance N-glycan elongation in insect cells.
Collapse
Affiliation(s)
- Christoph Geisler
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA; GlycoBac, LLC, Laramie, WY 82072, USA
| | | | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA; GlycoBac, LLC, Laramie, WY 82072, USA.
| |
Collapse
|
25
|
Juliant S, Harduin-Lepers A, Monjaret F, Catieau B, Violet ML, Cérutti P, Ozil A, Duonor-Cérutti M. The α1,6-fucosyltransferase gene (fut8) from the Sf9 lepidopteran insect cell line: insights into fut8 evolution. PLoS One 2014; 9:e110422. [PMID: 25333276 PMCID: PMC4204859 DOI: 10.1371/journal.pone.0110422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/25/2014] [Indexed: 01/09/2023] Open
Abstract
The core alpha1,6-fucosyltransferase (FUT8) catalyzes the transfer of a fucosyl moiety from GDP-fucose to the innermost asparagine-linked N-acetylglucosamine residue of glycoproteins. In mammals, this glycosylation has an important function in many fundamental biological processes and although no essential role has been demonstrated yet in all animals, FUT8 amino acid (aa) sequence and FUT8 activity are very well conserved throughout the animal kingdom. We have cloned the cDNA and the complete gene encoding the FUT8 in the Sf9 (Spodoptera frugiperda) lepidopteran cell line. As in most animal genomes, fut8 is a single-copy gene organized in different exons. The open reading frame contains 12 exons, a characteristic that seems to be shared by all lepidopteran fut8 genes. We chose to study the gene structure as a way to characterize the evolutionary relationships of the fut8 genes in metazoans. Analysis of the intron-exon organization in 56 fut8 orthologs allowed us to propose a model for fut8 evolution in metazoans. The presence of a highly variable number of exons in metazoan fut8 genes suggests a complex evolutionary history with many intron gain and loss events, particularly in arthropods, but not in chordata. Moreover, despite the high conservation of lepidoptera FUT8 sequences also in vertebrates and hymenoptera, the exon-intron organization of hymenoptera fut8 genes is order-specific with no shared exons. This feature suggests that the observed intron losses and gains may be linked to evolutionary innovations, such as the appearance of new orders.
Collapse
Affiliation(s)
- Sylvie Juliant
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Anne Harduin-Lepers
- CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - François Monjaret
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Béatrice Catieau
- CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
- Laboratoire Français du Fractionnement et des Biotechnologies de Lille, Lille, France
| | - Marie-Luce Violet
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Pierre Cérutti
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Annick Ozil
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | | |
Collapse
|
26
|
Nomura T, Suganuma M, Higa Y, Kataoka Y, Funaguma S, Okazaki H, Suzuki T, Kobayashi I, Sezutsu H, Fujiyama K. Improvement of glycosylation structure by suppression of β-N-acetylglucosaminidases in silkworm. J Biosci Bioeng 2014; 119:131-6. [PMID: 25193875 DOI: 10.1016/j.jbiosc.2014.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/23/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
Abstract
The baculovirus-silkworm recombinant protein expression system is an excellent method for achieving high-level expression and post-translational modifications, especially glycosylation. However, the presence of paucimannosidic-type N-glycan in glycoproteins restricts their clinical use. Paucimannosidic-type N-glycan is produced by insect-specific membrane-binding-type β-N-acetylglucosaminidase (GlcNAcase). In the silkworm, BmGlcNAcase1, BmGlcNAcase2, and BmFDL are membrane-binding-type GlcNAcases. We investigated the localization of these GlcNAcases and found that BmFDL and BmGlcNAcase2 were mainly located in the fat body and hemolymph, respectively. The fat body is the main tissue of recombinant protein expression by baculovirus, and many glycoproteins are secreted into the hemolymph. These results suggest that inhibition of BmFDL and BmGlcNAcase2 could increase GlcNAc-type N-glycan levels. We therefore injected a GlcNAcase inhibitor into silkworms to investigate changes in the N-glycan structure of the glycoprotein expressed by baculovirus; modest levels of GlcNAc-type N-glycan were observed (0.8% of total N-glycan). Next, we generated a transgenic silkworm in which RNA interference (RNAi) reduced the BmFDL transcript level and enzyme activity to 25% and 50%, respectively, of that of the control silkworm. The proportion of GlcNAc-type N-glycan increased to 4.3% in the RNAi-transgenic silkworm. We conclude that the structure of N-glycan can be changed by inhibiting the GlcNAcases in silkworm.
Collapse
Affiliation(s)
- Tsuyoshi Nomura
- Protein Development Center, Sysmex Corporation, 1548 Simo-okudomi, Sayama, Saitama 350-1332, Japan; The International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-8071, Japan.
| | - Masatoshi Suganuma
- Protein Development Center, Sysmex Corporation, 1548 Simo-okudomi, Sayama, Saitama 350-1332, Japan
| | - Yukiko Higa
- Protein Development Center, Sysmex Corporation, 1548 Simo-okudomi, Sayama, Saitama 350-1332, Japan
| | - Yukiko Kataoka
- Protein Development Center, Sysmex Corporation, 1548 Simo-okudomi, Sayama, Saitama 350-1332, Japan
| | - Shunsuke Funaguma
- Protein Development Center, Sysmex Corporation, 1548 Simo-okudomi, Sayama, Saitama 350-1332, Japan
| | - Hironobu Okazaki
- Protein Development Center, Sysmex Corporation, 1548 Simo-okudomi, Sayama, Saitama 350-1332, Japan
| | - Takeo Suzuki
- Protein Development Center, Sysmex Corporation, 1548 Simo-okudomi, Sayama, Saitama 350-1332, Japan
| | - Isao Kobayashi
- Transgenic Silkworm Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Kazuhito Fujiyama
- The International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-8071, Japan
| |
Collapse
|
27
|
A new insect cell glycoengineering approach provides baculovirus-inducible glycogene expression and increases human-type glycosylation efficiency. J Biotechnol 2014; 182-183:19-29. [PMID: 24768688 DOI: 10.1016/j.jbiotec.2014.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/26/2014] [Accepted: 04/14/2014] [Indexed: 12/19/2022]
Abstract
Insect cells are often glycoengineered using DNA constructs encoding foreign glyocoenzymes under the transcriptional control of the baculovirus immediate early promoter, ie1. However, we recently found that the delayed early baculovirus promoter, 39K, provides inducible and higher levels of transgene expression than ie1 after baculovirus infection (Lin and Jarvis, 2013). Thus, the purpose of this study was to assess the utility of the 39K promoter for insect cell glycoengineering. We produced two polyclonal transgenic insect cell populations in parallel using DNA constructs encoding foreign glycoenzymes under either ie1 (Sfie1SWT) or 39K (Sf39KSWT) promoter control. The surface of Sfie1SWT cells was constitutively sialylated, whereas the Sf39KSWT cell surface was only strongly sialylated after baculovirus infection, indicating Sf39KSWT cells were inducibly-glycoengineered. All nine glycogene-related transcript levels were induced by baculovirus infection of Sf39KSWT cells and most reached higher levels in Sf39KSWT than in Sfie1SWT cells at early times after infection. Similarly, galactosyltransferase activity, sialyltransferase activity, and sialic acid levels were induced and reached higher levels in baculovirus-infected Sf39KSWT cells. Finally, two different recombinant glycoproteins produced by baculovirus-infected Sf39KSWT cells had lower proportions of paucimannose-type and higher proportions of sialylated, complex-type N-glycans than those produced by baculovirus-infected Sfie1SWT cells. Thus, the 39K promoter provides baculovirus-inducible expression of foreign glycogenes, higher glycoenzyme activity levels, and higher human-type N-glycan processing efficiencies than the ie1 promoter, indicating that this delayed early baculovirus promoter has great utility for insect cell glycoengineering.
Collapse
|
28
|
Huo Y, Chen L, Qu M, Chen Q, Yang Q. Biochemical characterization of a novel β-N-acetylhexosaminidase from the insect Ostrinia furnacalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:115-126. [PMID: 23703967 DOI: 10.1002/arch.21099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The β-N-acetylhexosaminidase FDL specifically removes the β-1,2-GlcNAc residue conjugated to the α-1,3-mannose residue of the core structure of insect N-glycans, playing significant physiological roles in post-translational modification in the Golgi apparatus. Little is known about its enzymatic properties. We obtained the OfFDL gene from the insect Ostrinia furnacalis by RT-PCR. The full length cDNA of FDL is 2241 bp carrying an opening reading frame of 1923 bp encoding 640 amino acids. The recombinant protein OfFDL in a soluble and active form was obtained with high purity through a two-step purification strategy. The recombinant OfFDL exclusively hydrolyzes the terminal β-1,2-GlcNAc residue from the α-1,3 branch instead of the α-1,6 branch of the substrate GnGn-PA. Several kinetic parameters including kcat/Km values toward four artificial substrates and Ki values of three representative hexosaminidase inhibitors were obtained.
Collapse
Affiliation(s)
- Yamin Huo
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, PR China
| | | | | | | | | |
Collapse
|
29
|
Tsai YM, Hsu SC, Zhang J, Zhou YF, Plunkett B, Huang SK, Gao PS. Functional interaction of cockroach allergens and mannose receptor (CD206) in human circulating fibrocytes. PLoS One 2013; 8:e64105. [PMID: 23734186 PMCID: PMC3667076 DOI: 10.1371/journal.pone.0064105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/09/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The innate pattern recognition C-type-lectin receptors (CLRs), including mannose receptor (MRC1; CD206), have been suggested to functionally interact with allergens and are critical in controlling immune response. Fibrocytes have been considered to play a role in allergic asthma. Here we sought to investigate the functional interaction of cockroach allergens with CD206 in fibrocytes. METHODS Profiling of N-linked glycans from natural purified cockroach allergen Bla g 2 was accomplished by MALDI-MS. The binding activity of cockroach allergens to CD206 was determined by solid-phase binding assays. Levels of CD206 expression on human fibrocytes and CD206 mediated signaling and cytokine production in Bla g 2 treated fibrocytes were determined. RESULTS Profiling of N-linked glycans from Bla g 2 revealed a predominance of small, mannose-terminated glycans with and without fucose. Significant binding of Bla g 2 to CD206 was observed, which was inhibited by yeast mannan (a known CD206 ligand), free mannose, and a blocking antibody (anti-hMR). Flow cytometric analyses of human fibrocytes (CD45(+) and collagen-1(+)) showed selective expression of CD206 on fibrocytes. Functionally, a concentration-dependent uptake of FITC labeled Bla g 2 by fibrocytes was observed, but was significantly inhibited by anti-hMR. Bla g 2 can stimulate up-regulation of inflammatory cytokines including TNF-alpha and IL-6 and activation of nuclear factor kappa B (NF-kB/p65), p38 mitogen-activated protein kinase (p38), ERK, and JNK in cultured fibrocytes. This increased secretion of TNF-alpha and IL-6 and activation of NF-kB, ERK, and JNK was significantly inhibited by the addition of either mannan or mannose. Furthermore, Bla g 2 induced increase in TNF-alpha and IL-6 production was also inhibited by the use of NF-kB, ERK, and JNK inhibitors. CONCLUSION These results provide evidence supporting the existence of a functional cockroach allergen-CD206 axis in human fibrocytes, suggesting a role for CD206 in regulating allergen induced allergic responses in asthma.
Collapse
Affiliation(s)
- Ying-Ming Tsai
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pulmonary and Critical Care Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Chang Hsu
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jian Zhang
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Yu-Feng Zhou
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Beverly Plunkett
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shau-Ku Huang
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Song Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
30
|
Schiller B, Hykollari A, Yan S, Paschinger K, Wilson IBH. Complicated N-linked glycans in simple organisms. Biol Chem 2013; 393:661-73. [PMID: 22944671 DOI: 10.1515/hsz-2012-0150] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/07/2012] [Indexed: 11/15/2022]
Abstract
Although countless genomes have now been sequenced, the glycomes of the vast majority of eukaryotes still present a series of unmapped frontiers. However, strides are being made in a few groups of invertebrate and unicellular organisms as regards their N-glycans and N-glycosylation pathways. Thereby, the traditional classification of glycan structures inevitably approaches its boundaries. Indeed, the glycomes of these organisms are rich in surprises, including a multitude of modifications of the core regions of N-glycans and unusual antennae. From the actually rather limited glycomic information we have, it is nevertheless obvious that the biotechnological, developmental and immunological relevance of these modifications, especially in insect cell lines, model organisms and parasites means that deciphering unusual glycomes is of more than just academic interest.
Collapse
Affiliation(s)
- Birgit Schiller
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | | | | | | |
Collapse
|
31
|
Bojarová P, Rosencrantz RR, Elling L, Křen V. Enzymatic glycosylation of multivalent scaffolds. Chem Soc Rev 2013; 42:4774-97. [DOI: 10.1039/c2cs35395d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Mabashi-Asazuma H, Shi X, Geisler C, Kuo CW, Khoo KH, Jarvis DL. Impact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glycoengineered insect cells. Glycobiology 2012; 23:199-210. [PMID: 23065352 DOI: 10.1093/glycob/cws143] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insect cells are widely used for recombinant glycoprotein production, but they cannot provide the glycosylation patterns required for some biotechnological applications. This problem has been addressed by genetically engineering insect cells to express mammalian genes encoding various glycoprotein glycan processing functions. However, for various reasons, the impact of a mammalian cytosine-5'-monophospho (CMP)-sialic acid transporter has not yet been examined. Thus, we transformed Spodoptera frugiperda (Sf9) cells with six mammalian genes to generate a new cell line, SfSWT-4, that can produce sialylated glycoproteins when cultured with the sialic acid precursor, N-acetylmannosamine. We then super-transformed SfSWT-4 with a human CMP-sialic acid transporter (hCSAT) gene to isolate a daughter cell line, SfSWT-6, which expressed the hCSAT gene in addition to the other mammalian glycogenes. SfSWT-6 cells had higher levels of cell surface sialylation and also supported higher levels of recombinant glycoprotein sialylation, particularly when cultured with low concentrations of N-acetylmannosamine. Thus, hCSAT expression has an impact on glycoprotein sialylation, can reduce the cost of recombinant glycoprotein production and therefore should be included in ongoing efforts to glycoengineer the baculovirus-insect cell system. The results of this study also contributed new insights into the endogenous mechanism and potential mechanisms of CMP-sialic acid accumulation in the Golgi apparatus of lepidopteran insect cells.
Collapse
|
33
|
Geisler C, Kotu V, Sharrow M, Rendić D, Pöltl G, Tiemeyer M, Wilson IBH, Jarvis DL. The Drosophila neurally altered carbohydrate mutant has a defective Golgi GDP-fucose transporter. J Biol Chem 2012; 287:29599-609. [PMID: 22745127 DOI: 10.1074/jbc.m112.379313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studying genetic disorders in model organisms can provide insights into heritable human diseases. The Drosophila neurally altered carbohydrate (nac) mutant is deficient for neural expression of the HRP epitope, which consists of N-glycans with core α1,3-linked fucose residues. Here, we show that a conserved serine residue in the Golgi GDP-fucose transporter (GFR) is substituted by leucine in nac(1) flies, which abolishes GDP-fucose transport in vivo and in vitro. This loss of function is due to a biochemical defect, not to destabilization or mistargeting of the mutant GFR protein. Mass spectrometry and HPLC analysis showed that nac(1) mutants lack not only core α1,3-linked, but also core α1,6-linked fucose residues on their N-glycans. Thus, the nac(1) Gfr mutation produces a previously unrecognized general defect in N-glycan core fucosylation. Transgenic expression of a wild-type Gfr gene restored the HRP epitope in neural tissues, directly demonstrating that the Gfr mutation is solely responsible for the neural HRP epitope deficiency in the nac(1) mutant. These results validate the Drosophila nac(1) mutant as a model for the human congenital disorder of glycosylation, CDG-IIc (also known as LAD-II), which is also the result of a GFR deficiency.
Collapse
Affiliation(s)
- Christoph Geisler
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | | | | | |
Collapse
|