1
|
Romanova N, Sule K, Issler T, Hebrok D, Persicke M, Thévenod F, Prenner EJ, Lee WK. Cadmium-cardiolipin disruption of respirasome assembly and redox balance through mitochondrial membrane rigidification. J Lipid Res 2025; 66:100750. [PMID: 39880166 PMCID: PMC11905837 DOI: 10.1016/j.jlr.2025.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
The environmental pollutant cadmium (Cd) poses a threat to human health through the consumption of contaminated foodstuffs culminating in chronic nephrotoxicity. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) are key to Cd cellular toxicity. Cd-lipid interactions have been less considered. We hypothesized Cd binding to the inner mitochondrial membrane (IMM) phospholipid cardiolipin (CL) and membrane rigidification underlies defective electron transfer by disrupted respiratory supercomplexes (SCs). In Cd-treated rat kidney cortex (rKC) mitoplasts, laurdan (lipid-water interface), and diphenylhexatriene (hydrophobic core) revealed increased and decreased membrane fluidity, respectively. Laurdan-loaded pure CL or IMM biomimetic (40 mol % POPC, 35 mol % DOPE, 20 mol % TOCL, 5 mol % SAPI) nanoliposomes were rigidified by 25 μM Cd, which was confirmed in live-cell imaging of laurdan or di-4-ANEPPDHQ loaded human proximal convoluted tubule (HPCT) cells. Blue native gel electrophoresis evidenced ∼30% loss of I+III2+IVn SC formation after 5 μM Cd for 6 h in HPCTs, which was reversed by CL-binding drug MTP-131/SS-31/elamipretide (0.1 μM), yet α-tocopherol-insensitive. Moreover, MTP-131 attenuated Cd-induced H2O2 (∼30%) and cytochrome c release (∼25%), but not osmotic swelling, in rKC mitochondria as well as Cd-induced ROS (∼25%) in HPCTs. MTP-131 binding to IMM biomimetic nanoliposomes decreased zeta potential, prevented Cd-induced liposome size increase, and membrane rigidification reported by laurdan. Heterologous CRLS1 expression reversed Cd (5 μM, 24 h) cytotoxicity (∼25%) by MTT assay, Cd (5 μM, 3 h)-induced ROS and mitochondrial membrane rigidification by Cd (1 μM, 1 h) in HPCT cells. In summary, we report a novel mechanism for Cd toxicity in which Cd-CL interactions cause IMM rigidification, thereby disrupting correct SC assembly and increasing ROS.
Collapse
Affiliation(s)
- Nadiya Romanova
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Kevin Sule
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Daniel Hebrok
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Proteomics and Metabolomics Core Facility, Medical School OWL, Bielefeld University, Bielefeld, Germany; Microbial Genomic and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Frank Thévenod
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany; Institute of Physiology and Pathophysiology, ZBAF, Witten/Herdecke University, Witten, Germany
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, Canada.
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
Fogo AB, Harris RC. Crosstalk between glomeruli and tubules. Nat Rev Nephrol 2025; 21:189-199. [PMID: 39643696 DOI: 10.1038/s41581-024-00907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Models of kidney injury have classically concentrated on glomeruli as the primary site of injury leading to glomerulosclerosis or on tubules as the primary site of injury leading to tubulointerstitial fibrosis. However, current evidence on the mechanisms of progression of chronic kidney disease indicates that a complex interplay between glomeruli and tubules underlies progressive kidney injury. Primary glomerular injury can clearly lead to subsequent tubule injury. For example, damage to the glomerular filtration barrier can expose tubular cells to serum proteins, including complement and cytokines, that would not be present in physiological conditions and can promote the development of tubulointerstitial fibrosis and progressive decline in kidney function. In addition, although less well-studied, increasing evidence suggests that tubule injury, whether primary or secondary, can also promote glomerular damage. This feedback from the tubule to the glomerulus might be mediated by changes in the reabsorptive capacity of the tubule, which can affect the glomerular filtration rate, or by mediators released by injured proximal tubular cells that can induce damage in both podocytes and parietal epithelial cells. Examining the crosstalk between the various compartments of the kidney is important for understanding the mechanisms underlying kidney pathology and identifying potential therapeutic interventions.
Collapse
Affiliation(s)
- Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Tennessee Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
3
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2025; 21:97-114. [PMID: 39406927 PMCID: PMC12023896 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Heuzeroth F, Wetterauer C, Boll D, Westhoff TH, Dreher M, Seifert H, Rentsch C, Ebbing J. Exploratory testing of functional blood oxygenation level dependent-MRI to image the renoprotective effect of Remote Ischaemic PreConditioning during partial nephrectomy. Sci Rep 2024; 14:31996. [PMID: 39738435 PMCID: PMC11685923 DOI: 10.1038/s41598-024-83643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Urinary biomarker studies in cardiothoracic and kidney-sparing surgery have demonstrated renal protection by Remote Ischaemic PreConditioning (RIPC). RIPC intervention generates cycles of ischaemia and reperfusion of the limbs before the actual ischaemia of the target organ (e.g. kidney) is initiated. This explorative trial aims to investigate whether Blood Oxygenation Level Dependent-MRI (BOLD-MRI) can be a suitable technique to image and quantify the renoprotective effect of RIPC on ischaemia/reperfusion injury (IRI) after partial nephrectomy (PN). Overall, 15 patients were enrolled in this randomized controlled trial. Randomization was 1:1, with RIPC in the intervention arm. Urinary neutrophil gelatinase-associated lipocalin (NGAL), a sensitive biomarker for renal tubular damage was measured preoperatively and for the first 5 days after surgery. Functional BOLD-MRI was successfully performed preoperatively and 48 h after PN in 11 patients. BOLD-MRI uses ∆R2* to express acute tubular damage induced by IRI. The more the ∆R2* values have decreased postoperatively, the more damage the renal tubuli have taken. The cumulative urinary concentration of NGAL in the first 5 postoperative days was significantly lower in the RIPC group (p = 0.02) as compared to the control arm, indicating that the RIPC maneuver performed was effective. The highest difference was seen 6 h after surgery with NGAL being 65% lower in the RIPC arm. IRI of the operated kidney expressed by ∆R2* in BOLD-MRI was 2.1 times less pronounced in the RIPC group as compared to the noRIPC group (∆R2* in % preop/postop RIPC: 14.73/12.57 vs. noRIPC 16.33/11.82, p = 0.36). We were able to demonstrate the potential of BOLD-MRI in measuring IRI. For the first time, it was shown that the renoprotective effects of RIPC can be visualized and measured using BOLD-MRI. Larger studies are required to validate these initial findings.
Collapse
Affiliation(s)
| | | | - Daniel Boll
- Department of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Maeve Dreher
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Helge Seifert
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Cyrill Rentsch
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Jan Ebbing
- Department of Urology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Cirovic A, Satarug S, Jevtic J, Ivanovski A, Orisakwe OE, Jankovic S, Cirovic A. The overlooked impact of cadmium on the progression of chronic hepatitis and the onset of renal failure in advanced cirrhosis. J Trace Elem Med Biol 2024; 86:127542. [PMID: 39395285 DOI: 10.1016/j.jtemb.2024.127542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The mechanism of hepatocyte destruction in chronic hepatitis is not completely understood, while renal failure in individuals with advanced cirrhosis is a significant concern. It is well known that smokers who are chronically infected with hepatitis B and C viruses (HBV, HCV) have a poor prognosis. In the present review, we propose a novel hypothesis that environmental exposure to a nephrotoxic metal pollutant, cadmium (Cd) may contribute to hepatocyte destruction and, subsequently, affect the duration of chronic hepatitis. The metal binding protein, metallothionein (MT) sequesters cadmium as CdMT complexes, and effectively neutralize its adverse effects. Cadmium can cause the damage to hepatocytes, only when it is in an unbound form. In addition to its ability to bind cadmium, MT can act as a scavenger of reactive oxygen species (ROS). However, the cellular MT levels may decrease, when ROS is excessively produced under the pathologic chronic viral hepatitis conditions, especially while the cellular levels of zinc may also be low. Zinc is an endogenous inducer of MT, and is required for maximal MT expression. High ROS levels in the hepatocytes diminishes MT binding to metals. Consequently, the proportion of unbound Cd is increased and thus there is more hepatic damage. Hepatic damage leads to a copious release of CdMT into the circulation. This significant cadmium load, which occurs after hepatic damage, and in some cases, muscle atrophy, induces kidney damage with resultant renal failure in advanced cirrhosis.
Collapse
Affiliation(s)
- Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, Belgrade 11000, Serbia
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia.
| | - Jovan Jevtic
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Dr Subotica 1, Belgrade 11000, Serbia
| | - Ana Ivanovski
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade 11000, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Choba, Port Harcourt 5323, Nigeria; Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, TR-10, Mersin, Turkey
| | - Sasa Jankovic
- Institute of Meat Hygiene and Technology, Kacanskog 13, Belgrade 11040, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, Belgrade 11000, Serbia.
| |
Collapse
|
6
|
Sakhi IB, De Combiens E, Frachon N, Durussel F, Brideau G, Nemazanyy I, Frère P, Thévenod F, Lee WK, Zeng Q, Klein C, Lourdel S, Bignon Y. A novel transgenic mouse model highlights molecular disruptions involved in the pathogenesis of Dent disease 1. Gene 2024; 928:148766. [PMID: 39019097 DOI: 10.1016/j.gene.2024.148766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Dent disease (DD) is a hereditary renal disorder characterized by low molecular weight (LMW) proteinuria and progressive renal failure. Inactivating mutations of the CLCN5 gene encoding the 2Cl-/H+exchanger ClC-5 have been identified in patients with DD type 1. ClC-5 is essentially expressed in proximal tubules (PT) where it is thought to play a role in maintaining an efficient endocytosis of LMW proteins. However, the exact pathological roles of ClC-5 in progressive dysfunctions observed in DD type 1 are still unclear. To address this issue, we designed a mouse model carrying the most representative type of ClC-5 missense mutations found in DD patients. These mice showed a characteristic DD type 1 phenotype accompanied by altered endo-lysosomal system and autophagy functions. With ageing, KI mice showed increased renal fibrosis, apoptosis and major changes in cell metabolic functions as already suggested in previous DD models. Furthermore, we made the interesting new discovery that the Lipocalin-2-24p3R pathway might be involved in the progression of the disease. These results suggest a crosstalk between the proximal and distal nephron in the pathogenesis mechanisms involved in DD with an initial PT impairment followed by the Lipocalin-2 internalisation and 24p3R overexpression in more distal segments of the nephron. This first animal model of DD carrying a pathogenic mutation of Clcn5 and our findings pave the way aimed at exploring therapeutic strategies to limit the consequences of ClC-5 disruption in patients with DD type 1 developing chronic kidney disease.
Collapse
Affiliation(s)
- Imene Bouchra Sakhi
- University of Zurich - Institute of Anatomy, Zurich CH-8057, Switzerland; Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France.
| | - Elise De Combiens
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Fanny Durussel
- Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Gaelle Brideau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Perrine Frère
- Sorbonne Université, INSERM, Unité mixte de Recherche 1155, Kidney Research Centre, AP-HP, Hôpital Tenon, Paris, France
| | - Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany; Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Qinghe Zeng
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris, France
| | - Christophe Klein
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Stéphane Lourdel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Yohan Bignon
- Department of Biomedical Sciences, University of Lausanne, Switzerland.
| |
Collapse
|
7
|
Frings S, Schmidt-Schippers R, Lee WK. Epigenetic alterations in bioaccumulators of cadmium: Lessons from mammalian kidneys and plants. ENVIRONMENT INTERNATIONAL 2024; 191:109000. [PMID: 39278047 DOI: 10.1016/j.envint.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Faced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure. Even in small amounts, cadmium brings about alterations at the molecular and cellular levels in eukaryotes through mutagenicity, molecular mimicry at metal binding sites and oxidative stress. The epigenome dictates expression of a gene's output through a number of regulatory steps involving chromatin remodeling, nucleosome unwinding, DNA accessibility, or nucleic acid modifications that ultimately impact the transcriptional and translational machinery. Several epigenetic enzymes exhibit zinc-dependence as zinc metalloenzymes and zinc finger proteins thus making them susceptible to deregulation through displacement by cadmium. In this review, we summarize the literature on cadmium-induced epigenetic mechanisms in mammalian kidneys and plants, compare similarities in the epigenetic defense between these bioaccumulators, and explore how future studies could advance our understanding of the cadmium-induced stress response and disruption to biological health.
Collapse
Affiliation(s)
- Stephanie Frings
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
8
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Lee WK, Probst S, Scharner B, Deba T, Dahdouh F, Thévenod F. Distinct concentration-dependent oxidative stress profiles by cadmium in a rat kidney proximal tubule cell line. Arch Toxicol 2024; 98:1043-1059. [PMID: 38289529 PMCID: PMC10944451 DOI: 10.1007/s00204-023-03677-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 03/17/2024]
Abstract
Levels and chemical species of reactive oxygen/nitrogen species (ROS/RNS) determine oxidative eustress and distress. Abundance of uptake pathways and high oxygen consumption for ATP-dependent transport makes the renal proximal tubule particularly susceptible to cadmium (Cd2+)-induced oxidative stress by targeting ROS/RNS generation or antioxidant defence mechanisms, such as superoxide dismutase (SOD) or H2O2-metabolizing catalase (CAT). Though ROS/RNS are well-evidenced, the role of distinct ROS profiles in Cd2+ concentration-dependent toxicity is not clear. In renal cells, Cd2+ (10-50 µM) oxidized dihydrorhodamine 123, reaching a maximum at 2-3 h. Increases (up to fourfold) in lipid peroxidation by TBARS assay and H2O2 by Amplex Red were evident within 30 min. ROS and loss in cell viability by MTT assay with 50 µM Cd2+ could not be fully reversed by SOD mimetics Tempol and MnTBAP nor by SOD1 overexpression, whereas CAT expression and α-tocopherol were effective. SOD and CAT activities were attenuated below controls only with >6 h 50 µM Cd2+, yet augmented by up to 1.5- and 1.2-fold, respectively, by 10 µM Cd2+. Moreover, 10 µM, but not 25-50 µM Cd2+, caused 1.7-fold increase in superoxide anion (O2•-), detected by dihydroethidium, paralled by loss in cell viability, that was abolished by Tempol, MnTBAP, α-tocopherol and SOD1 or CAT overexpression. H2O2-generating NADPH oxidase 4 (NOX4) was attenuated by ~50% with 10 µM Cd2+ at 3 h compared to upregulation by 50 µM Cd2+ (~1.4-fold, 30 min), which was sustained for 24 h. In summary, O2•- predominates with low-moderate Cd2+, driving an adaptive response, whereas oxidative stress by elevated H2O2 at high Cd2+ triggers cell death signaling pathways.Highlights Different levels of reactive oxygen species are generated, depending on cadmium concentration. Superoxide anion predominates and H2O2 is suppressed with low cadmium representing oxidative eustress. High cadmium fosters H2O2 by inhibiting catalase and increasing NOX4 leading to oxidative distress. Superoxide dismutase mimetics and overexpression were less effective with high versus low cadmium. Oxidative stress profile could dictate downstream signalling pathways.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany.
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| | - Stephanie Probst
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
| | - Bettina Scharner
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
| | - Timo Deba
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
- Department of General Paediatrics, Klinik für Kinder- und Jugendmedizin, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Faouzi Dahdouh
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
- Department of Natural Sciences, Higher School of Professors for Technological Education, Skikda, Algeria
| | - Frank Thévenod
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| |
Collapse
|
10
|
Satarug S. Is Environmental Cadmium Exposure Causally Related to Diabetes and Obesity? Cells 2023; 13:83. [PMID: 38201287 PMCID: PMC10778334 DOI: 10.3390/cells13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Cadmium (Cd) is a pervasive toxic metal, present in most food types, cigarette smoke, and air. Most cells in the body will assimilate Cd, as its charge and ionic radius are similar to the essential metals, iron, zinc, and calcium (Fe, Zn, and Ca). Cd preferentially accumulates in the proximal tubular epithelium of the kidney, and is excreted in urine when these cells die. Thus, excretion of Cd reflects renal accumulation (body burden) and the current toxicity of Cd. The kidney is the only organ other than liver that produces and releases glucose into the circulation. Also, the kidney is responsible for filtration and the re-absorption of glucose. Cd is the least recognized diabetogenic substance although research performed in the 1980s demonstrated the diabetogenic effects of chronic oral Cd administration in neonatal rats. Approximately 10% of the global population are now living with diabetes and over 80% of these are overweight or obese. This association has fueled an intense search for any exogenous chemicals and lifestyle factors that could induce excessive weight gain. However, whilst epidemiological studies have clearly linked diabetes to Cd exposure, this appears to be independent of adiposity. This review highlights Cd exposure sources and levels associated with diabetes type 2 and the mechanisms by which Cd disrupts glucose metabolism. Special emphasis is on roles of the liver and kidney, and cellular stress responses and defenses, involving heme oxygenase-1 and -2 (HO-1 and HO-2). From heme degradation, both HO-1 and HO-2 release Fe, carbon monoxide, and a precursor substrate for producing a potent antioxidant, bilirubin. HO-2 appears to have also anti-diabetic and anti-obese actions. In old age, HO-2 deficient mice display a symptomatic spectrum of human diabetes, including hyperglycemia, insulin resistance, increased fat deposition, and hypertension.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
11
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. The pathogenesis of albuminuria in cadmium nephropathy. Curr Res Toxicol 2023; 6:100140. [PMID: 38116328 PMCID: PMC10726218 DOI: 10.1016/j.crtox.2023.100140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Background Urinary cadmium excretion (ECd) rises with renal tissue content of the metal. Whereas glomerulopathies are sometimes associated with massive albuminuria, tubular accumulation of Cd typically causes modest albuminuria. Since β2-microglobulinuria (Eβ2M) is an established marker of proximal tubular dysfunction, we hypothesized that a comparison of albuminuria (Ealb) to Eβ2M in Cd-exposed subjects would provide evidence of similar mishandling of both proteins. Methods To depict excretion rates per functional nephron, ECd, Ealb, and Eβ2M were normalized to creatinine clearance (Ccr), a surrogate for the glomerular filtration rate (GFR). Estimation of GFR itself (eGFR) was accomplished with CKD-EPI formulas (2009). Linear and logistic regression analyses were performed to relate Ealb/Ccr, Eβ2M/Ccr, and eGFR to several independent variables. Simple linear regressions of eGFR, Ealb/Ccr, and Eβ2M/Ccr on ECd/Ccr were examined before and after adjustment of dependent variables for age. All regressions were performed after log-transformation of ratios and standardization of all variables. Increments in Ealb/Ccr and Eβ2M/Ccr and decrements in eGFR were quantified through four quartiles of ECd/Ccr. Results As age or ECd/Ccr rose, Ealb/Ccr and Eβ2M/Ccr also rose, and eGFR fell. In linear regressions, slopes relating Ealb/Ccr and Eβ2M/Ccr to ECd/Ccr were similar. After adjustment of dependent variables for age, coefficients of determination (R2) for all regressions rose by a multiple, and slopes approached unity. Ealb/Ccr and Eβ2M/Ccr were similarly associated with each other. Mean Ealb/Ccr and Eβ2M/Ccr rose and mean eGFR fell in stepwise fashion through quartiles of ECd/Ccr. Whereas Eβ2M/Ccr did not vary with blood pressure, Ealb/Ccr rose in association with hypertension in two of the four quartiles. Conclusions Our data indicate that Cd in renal tissue affected tubular reabsorption of albumin and β2M similarly in a large cohort of exposed subjects. The results suggest that Cd reduced receptor-mediated endocytosis and subsequent lysosomal degradation of each protein by a shared mechanism.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, Australia
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C. Gobe
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Kenneth R. Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
12
|
Thévenod F, Herbrechter R, Schlabs C, Pethe A, Lee WK, Wolff NA, Roussa E. Role of the SLC22A17/lipocalin-2 receptor in renal endocytosis of proteins/metalloproteins: a focus on iron- and cadmium-binding proteins. Am J Physiol Renal Physiol 2023; 325:F564-F577. [PMID: 37589051 DOI: 10.1152/ajprenal.00020.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
The transmembrane protein SLC22A17 [or the neutrophil gelatinase-associated lipocalin/lipocalin-2 (LCN2)/24p3 receptor] is an atypical member of the SLC22 family of organic anion and cation transporters: it does not carry typical substrates of SLC22 transporters but mediates receptor-mediated endocytosis (RME) of LCN2. One important task of the kidney is the prevention of urinary loss of proteins filtered by the glomerulus by bulk reabsorption of multiple ligands via megalin:cubilin:amnionless-mediated endocytosis in the proximal tubule (PT). Accordingly, overflow, glomerular, or PT damage, as in Fanconi syndrome, results in proteinuria. Strikingly, up to 20% of filtered proteins escape the PT under physiological conditions and are reabsorbed by the distal nephron. The renal distal tubule and collecting duct express SLC22A17, which mediates RME of filtered proteins that evade the PT but with limited capacity to prevent proteinuria under pathological conditions. The kidney also prevents excretion of filtered essential and nonessential transition metals, such as iron or cadmium, respectively, that are largely bound to proteins with high affinity, e.g., LCN2, transferrin, or metallothionein, or low affinity, e.g., microglobulins or albumin. Hence, increased uptake of transition metals may cause nephrotoxicity. Here, we assess the literature on SLC22A17 structure, topology, tissue distribution, regulation, and assumed functions, emphasizing renal SLC22A17, which has relevance for physiology, pathology, and nephrotoxicity due to the accumulation of proteins complexed with transition metals, e.g., cadmium or iron. Other putative renal functions of SLC22A17, such as its contribution to osmotic stress adaptation, protection against urinary tract infection, or renal carcinogenesis, are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Robin Herbrechter
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Carolin Schlabs
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Abhishek Pethe
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Natascha A Wolff
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
13
|
Jung BK, Ryu KY. Lipocalin-2: a therapeutic target to overcome neurodegenerative diseases by regulating reactive astrogliosis. Exp Mol Med 2023; 55:2138-2146. [PMID: 37779143 PMCID: PMC10618504 DOI: 10.1038/s12276-023-01098-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023] Open
Abstract
Glial cell activation precedes neuronal cell death during brain aging and the progression of neurodegenerative diseases. Under neuroinflammatory stress conditions, lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin or 24p3, is produced and secreted by activated microglia and reactive astrocytes. Lcn2 expression levels are known to be increased in various cells, including reactive astrocytes, through the activation of the NF-κB signaling pathway. In the central nervous system, as LCN2 exerts neurotoxicity when secreted from reactive astrocytes, many researchers have attempted to identify various strategies to inhibit LCN2 production, secretion, and function to minimize neuroinflammation and neuronal cell death. These strategies include regulation at the transcriptional, posttranscriptional, and posttranslational levels, as well as blocking its functions using neutralizing antibodies or antagonists of its receptor. The suppression of NF-κB signaling is a strategy to inhibit LCN2 production, but it may also affect other cellular activities, raising questions about its effectiveness and feasibility. Recently, LCN2 was found to be a target of the autophagy‒lysosome pathway. Therefore, autophagy activation may be a promising therapeutic strategy to reduce the levels of secreted LCN2 and overcome neurodegenerative diseases. In this review, we focused on research progress on astrocyte-derived LCN2 in the central nervous system.
Collapse
Affiliation(s)
- Byung-Kwon Jung
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
14
|
Satarug S, Vesey DA, Khamphaya T, Pouyfung P, Gobe GC, Yimthiang S. Estimation of the Cadmium Nephrotoxicity Threshold from Loss of Glomerular Filtration Rate and Albuminuria. TOXICS 2023; 11:755. [PMID: 37755765 PMCID: PMC10534899 DOI: 10.3390/toxics11090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Cadmium (Cd) is a pervasive, toxic environmental pollutant that preferentially accumulates in the tubular epithelium of the kidney. Current evidence suggests that the cumulative burden of Cd here leads to the progressive loss of the glomerular filtration rate (GFR). In this study, we have quantified changes in estimated GFR (eGFR) and albumin excretion (Ealb) according to the levels of blood Cd ([Cd]b) and excretion of Cd (ECd) after adjustment for confounders. ECd and Ealb were normalized to creatinine clearance (Ccr) as ECd/Ccr and Ealb/Ccr. Among 482 residents of Cd-polluted and non-polluted regions of Thailand, 8.1% had low eGFR and 16.9% had albuminuria (Ealb/Ccr) × 100 ≥ 20 mg/L filtrate. In the low Cd burden group, (ECd/Ccr) × 100 < 1.44 µg/L filtrate, eGFR did not correlate with ECd/Ccr (β = 0.007) while an inverse association with ECd/Ccr was found in the medium (β = -0.230) and high burden groups (β = -0.349). Prevalence odds ratios (POR) for low eGFR were increased in the medium (POR 8.26) and high Cd burden groups (POR 3.64). Also, eGFR explained a significant proportion of Ealb/Ccr variation among those with middle (η2 0.093) and high [Cd]b tertiles (η2 0.132) but did not with low tertiles (η2 0.001). With an adjustment of eGFR, age and BMI, the POR values for albuminuria were increased in the middle (POR 2.36) and high [Cd]b tertiles (POR 2.74) and those with diabetes (POR 6.02) and hypertension (2.05). These data indicate that (ECd/Ccr) × 100 of 1.44 µg/L filtrate (0.01-0.02 µg/g creatinine) may serve as a Cd threshold level based on which protective exposure guidelines should be formulated.
Collapse
Affiliation(s)
- Soisungwan Satarug
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia; (D.A.V.); (G.C.G.)
| | - David A. Vesey
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia; (D.A.V.); (G.C.G.)
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane 4102, Australia
| | - Tanaporn Khamphaya
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.K.); (P.P.); (S.Y.)
| | - Phisit Pouyfung
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.K.); (P.P.); (S.Y.)
| | - Glenda C. Gobe
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia; (D.A.V.); (G.C.G.)
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - Supabhorn Yimthiang
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.K.); (P.P.); (S.Y.)
| |
Collapse
|
15
|
Schröder SK, Gasterich N, Weiskirchen S, Weiskirchen R. Lipocalin 2 receptors: facts, fictions, and myths. Front Immunol 2023; 14:1229885. [PMID: 37638032 PMCID: PMC10451079 DOI: 10.3389/fimmu.2023.1229885] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The human 25-kDa Lipocalin 2 (LCN2) was first identified and purified as a protein that in part is associated with gelatinase from neutrophils. This protein shows a high degree of sequence similarity with the deduced sequences of rat α2-microglobulin-related protein and the mouse protein 24p3. Based on its typical lipocalin fold, which consists of an eight-stranded, anti-parallel, symmetrical β-barrel fold structure it was initially thought that LCN2 is a circulating protein functioning as a transporter of small lipophilic molecules. However, studies in Lcn2 null mice have shown that LCN2 has bacteriostatic properties and plays a key role in innate immunity by sequestering bacterial iron siderophores. Numerous reports have further shown that LCN2 is involved in the control of cell differentiation, energy expenditure, cell death, chemotaxis, cell migration, and many other biological processes. In addition, important roles for LCN2 in health and disease have been identified in Lcn2 null mice and multiple molecular pathways required for regulation of Lcn2 expression have been identified. Nevertheless, although six putative receptors for LCN2 have been proposed, there is a fundamental lack in understanding of how these cell-surface receptors transmit and amplify LCN2 to the cell. In the present review we summarize the current knowledge on LCN2 receptors and discuss inconsistencies, misinterpretations and false assumptions in the understanding of these potential LCN2 receptors.
Collapse
Affiliation(s)
- Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
16
|
Jung BK, Park Y, Yoon B, Bae JS, Han SW, Heo JE, Kim DE, Ryu KY. Reduced secretion of LCN2 (lipocalin 2) from reactive astrocytes through autophagic and proteasomal regulation alleviates inflammatory stress and neuronal damage. Autophagy 2023; 19:2296-2317. [PMID: 36781380 PMCID: PMC10351455 DOI: 10.1080/15548627.2023.2180202] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
LCN2/neutrophil gelatinase-associated lipocalin/24p3 (lipocalin 2) is a secretory protein that acts as a mammalian bacteriostatic molecule. Under neuroinflammatory stress conditions, LCN2 is produced and secreted by activated microglia and reactive astrocytes, resulting in neuronal apoptosis. However, it remains largely unknown whether inflammatory stress and neuronal loss can be minimized by modulating LCN2 production and secretion. Here, we first demonstrated that LCN2 was secreted from reactive astrocytes, which were stimulated by treatment with lipopolysaccharide (LPS) as an inflammatory stressor. Notably, we found two effective conditions that led to the reduction of induced LCN2 levels in reactive astrocytes: proteasome inhibition and macroautophagic/autophagic flux activation. Mechanistically, proteasome inhibition suppresses NFKB/NF-κB activation through NFKBIA/IκBα stabilization in primary astrocytes, even under inflammatory stress conditions, resulting in the downregulation of Lcn2 expression. In contrast, autophagic flux activation via MTOR inhibition reduced the intracellular levels of LCN2 through its pre-secretory degradation. In addition, we demonstrated that the N-terminal signal peptide of LCN2 is critical for its secretion and degradation, suggesting that these two pathways may be mechanistically coupled. Finally, we observed that LPS-induced and secreted LCN2 levels were reduced in the astrocyte-cultured medium under the above-mentioned conditions, resulting in increased neuronal viability, even under inflammatory stress.Abbreviations: ACM, astrocyte-conditioned medium; ALP, autophagy-lysosome pathway; BAF, bafilomycin A1; BTZ, bortezomib; CHX, cycloheximide; CNS, central nervous system; ER, endoplasmic reticulum; GFAP, glial fibrillary acidic protein; GFP, green fluorescent protein; JAK, Janus kinase; KD, knockdown; LCN2, lipocalin 2; LPS, lipopolysaccharide; MACS, magnetic-activated cell sorting; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MTOR, mechanistic target of rapamycin kinase; NFKB/NF-κB, nuclear factor of kappa light polypeptide gene enhancer in B cells 1, p105; NFKBIA/IκBα, nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha; OVEX, overexpression; SLC22A17, solute carrier family 22 member 17; SP, signal peptide; SQSTM1, sequestosome 1; STAT3, signal transducer and activator of transcription 3; TNF/TNF-α, tumor necrosis factor; TUBA, tubulin, alpha; TUBB3/β3-TUB, tubulin, beta 3 class III; UB, ubiquitin; UPS, ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Byung-Kwon Jung
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Yujin Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Boran Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin-Sil Bae
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Seung-Woo Han
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Ji-Eun Heo
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| |
Collapse
|
17
|
Rawee P, Kremer D, Nolte IM, Leuvenink HGD, Touw DJ, De Borst MH, Bakker SJL, Hanudel MR, Eisenga MF. Iron Deficiency and Nephrotoxic Heavy Metals: A Dangerous Interplay? Int J Mol Sci 2023; 24:5315. [PMID: 36982393 PMCID: PMC10049453 DOI: 10.3390/ijms24065315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Heavy metals are common in our environment, and all individuals are exposed to them to some extent. These toxic metals have several harmful effects on the body, including the kidney, which is a very sensitive organ. Indeed, heavy metal exposure has been linked to an increased risk of chronic kidney disease (CKD) and its progression, which may be explained by the well-established nephrotoxic effects of these metals. In this hypothesis and narrative literature review, we will shed light on the potential role that another highly common problem in patients with CKD, iron deficiency, may play in the damaging effects of heavy metal exposure in this patient group. Iron deficiency has previously been linked with an increased uptake of heavy metals in the intestine due to the upregulation of iron receptors that also take up other metals. Furthermore, recent research suggests a role of iron deficiency in the retention of heavy metals in the kidney. Therefore, we hypothesize that iron deficiency plays a crucial role in the damaging effects of heavy metal exposure in patients with CKD and that iron supplementation might be a strategy to combat these detrimental processes.
Collapse
Affiliation(s)
- Pien Rawee
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Martin H. De Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Mark R. Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michele F. Eisenga
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| |
Collapse
|
18
|
Schellhorn S, Brücher D, Wolff NA, Schröer K, Sallard E, Mese K, Zhang W, Ehrke-Schulz E, Thévenod F, Plückthun A, Ehrhardt A. Targeting Oncolytic Adenoviruses to Cancer Cells Using a Designed Ankyrin Repeat Protein Lipocalin-2 Fusion Protein. Hum Gene Ther 2023; 34:203-216. [PMID: 36802735 DOI: 10.1089/hum.2022.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Oncolytic viruses are a promising technology to attack cancer cells and to recruit immune cells to the tumor site. Since the Lipocalin-2 receptor (LCN2R) is expressed on most cancer cells, we used its ligand LCN2 to target oncolytic adenoviruses (Ads) to cancer cells. Therefore, we fused a Designed Ankyrin Repeat Protein (DARPin) adapter binding the knob of Ad type 5 (knob5) to LCN2 to retarget the virus toward LCN2R with the aim of analyzing the basic characteristics of this novel targeting approach. The adapter was tested in vitro with Chinese Hamster Ovary (CHO) cells stably expressing the LCN2R and on 20 cancer cell lines (CCLs) using an Ad5 vector encoding luciferase and green fluorescent protein. Luciferase assays with the LCN2 adapter (LA) showed 10-fold higher infection compared with blocking adapter (BA) in CHO cells expressing LCN2R and in cells not expressing the LCN2R. Most CCLs showed an increased viral uptake of LA-bound virus compared with BA-bound virus and for five CCLs viral uptake was comparable to unmodified Ad5. Flow cytometry and hexon immunostainings also revealed increased uptake of LA-bound Ads compared with BA-bound Ads in most tested CCLs. Virus spread was studied in 3D cell culture models and nine CCLs showed increased and earlier fluorescence signals for LA-bound virus compared with BA-bound virus. Mechanistically, we show that the LA increases viral uptake only in the absence of its ligand Enterobactin (Ent) and independently of iron. Altogether, we characterized a novel DARPin-based system resulting in enhanced uptake demonstrating potential for future oncolytic virotherapy.
Collapse
Affiliation(s)
- Sebastian Schellhorn
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Dominik Brücher
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Natascha A Wolff
- Institute of Physiology, Pathophysiology, and Toxicology, Center for Biomedical Training and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Katrin Schröer
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Erwan Sallard
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Kemal Mese
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Frank Thévenod
- Institute of Physiology, Pathophysiology, and Toxicology, Center for Biomedical Training and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
19
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
20
|
Cadmium-Induced Proteinuria: Mechanistic Insights from Dose-Effect Analyses. Int J Mol Sci 2023; 24:ijms24031893. [PMID: 36768208 PMCID: PMC9915107 DOI: 10.3390/ijms24031893] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Cadmium (Cd) is a toxic metal that accumulates in kidneys, especially in the proximal tubular epithelial cells, where virtually all proteins in the glomerular ultrafiltrate are reabsorbed. Here, we analyzed archived data on the estimated glomerular filtration rate (eGFR) and excretion rates of Cd (ECd), total protein (EProt), albumin (Ealb), β2-microglobulin (Eβ2M), and α1-microglobulin (Eα1M), which were recorded for residents of a Cd contamination area and a low-exposure control area of Thailand. Excretion of Cd and all proteins were normalized to creatinine clearance (Ccr) as ECd/Ccr and EProt/Ccr to correct for differences among subjects in the number of surviving nephrons. Low eGFR was defined as eGFR ≤ 60 mL/min/1.73 m2, while proteinuria was indicted by EPro/Ccr ≥ 20 mg/L of filtrate. EProt/Ccr varied directly with ECd/Ccr (β = 0.263, p < 0.001) and age (β = 0.252, p < 0.001). In contrast, eGFR values were inversely associated with ECd/Ccr (β = -0.266, p < 0.001) and age (β = -0.558, p < 0.001). At ECd/Ccr > 8.28 ng/L of filtrate, the prevalence odds ratios for proteinuria and low eGFR were increased 4.6- and 5.1-fold, respectively (p < 0.001 for both parameters). Thus, the eGFR and tubular protein retrieval were both simultaneously diminished by Cd exposure. Of interest, ECd/Ccr was more closely correlated with EProt/Ccr (r = 0.507), Eβ2M (r = 0.430), and Eα1M/Ccr (r = 0.364) than with EAlb/Ccr (r = 0.152). These data suggest that Cd may differentially reduce the ability of tubular epithelial cells to reclaim proteins, resulting in preferential reabsorption of albumin.
Collapse
|
21
|
Satarug S, Vesey DA, Gobe GC, Yimthiang S, Buha Đorđević A. Health Risk in a Geographic Area of Thailand with Endemic Cadmium Contamination: Focus on Albuminuria. TOXICS 2023; 11:68. [PMID: 36668794 PMCID: PMC9866753 DOI: 10.3390/toxics11010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
An increased level of cadmium (Cd) in food crops, especially rice is concerning because rice is a staple food for over half of the world’s population. In some regions, rice contributes to more than 50% of the total Cd intake. Low environmental exposure to Cd has been linked to an increase in albumin excretion to 30 mg/g creatinine, termed albuminuria, and a progressive reduction in the estimated glomerular filtration rate (eGFR) to below 60 mL/min/1.73 m2, termed reduced eGFR. However, research into albuminuria in high exposure conditions is limited. Here, we applied benchmark dose (BMD) analysis to the relevant data recorded for the residents of a Cd contamination area and a low-exposure control area. We normalized the excretion rates of Cd (ECd) and albumin (Ealb) to creatinine clearance (Ccr) as ECd/Ccr and Ealb/Ccr to correct for differences among subjects in the number of surviving nephrons. For the first time, we defined the excretion levels of Cd associated with clinically relevant adverse kidney health outcomes. Ealb/Ccr varied directly with ECd/Ccr (β = 0.239, p < 0.001), and age (β = 0.203, p < 0.001), while normotension was associated with lower Ealb/Ccr (β = −0.106, p = 0.009). ECd/Ccr values between 16.5 and 35.5 ng/L of the filtrate were associated with a 10% prevalence of albuminuria, while the ECd/Ccr value of 59 ng/L of the filtrate was associated with a 10% prevalence of reduced eGFR. Thus, increased albumin excretion and eGFR reduction appeared to occur at low body burdens, and they should form toxicity endpoints suitable for the calculation of health risk due to the Cd contamination of food chains.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
| | - David A. Vesey
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane 4102, Australia
| | - Glenda C. Gobe
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - Supabhorn Yimthiang
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Aleksandra Buha Đorđević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| |
Collapse
|
22
|
Zhang J, Wang Z, Zhang H, Li S, Li J, Liu H, Cheng Q. The role of lipocalin 2 in brain injury and recovery after ischemic and hemorrhagic stroke. Front Mol Neurosci 2022; 15:930526. [PMID: 36187347 PMCID: PMC9520288 DOI: 10.3389/fnmol.2022.930526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Ischemic and hemorrhagic stroke (including intracerebral hemorrhage, intraventricular hemorrhage, and subarachnoid hemorrhage) is the dominating cause of disability and death worldwide. Neuroinflammation, blood-brain barrier (BBB) disruption, neuronal death are the main pathological progress, which eventually causes brain injury. Increasing evidence indicated that lipocalin 2 (LCN2), a 25k-Da acute phase protein from the lipocalin superfamily, significantly increased immediately after the stroke and played a vital role in these events. Meanwhile, there exists a close relationship between LCN2 levels and the worse clinical outcome of patients with stroke. Further research revealed that LCN2 elimination is associated with reduced immune infiltrates, infarct volume, brain edema, BBB leakage, neuronal death, and neurological deficits. However, some studies revealed that LCN2 might also act as a beneficial factor in ischemic stroke. Nevertheless, the specific mechanism of LCN2 and its primary receptors (24p3R and megalin) involving in brain injury remains unclear. Therefore, it is necessary to investigate the mechanism of LCN2 induced brain damage after stroke. This review focuses on the role of LCN2 and its receptors in brain injury and aiming to find out possible therapeutic targets to reduce brain damage following stroke.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Shuwang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Satarug S, Gobe GC, Vesey DA. Multiple Targets of Toxicity in Environmental Exposure to Low-Dose Cadmium. TOXICS 2022; 10:toxics10080472. [PMID: 36006151 PMCID: PMC9412446 DOI: 10.3390/toxics10080472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 05/06/2023]
Abstract
Dietary assessment reports and population surveillance programs show that chronic exposure to low levels of environmental cadmium (Cd) is inevitable for most people, and adversely impacts the health of children and adults. Based on a risk assessment model that considers an increase in the excretion of β2-microglobulin (β2M) above 300 μg/g creatinine to be the "critical" toxicity endpoint, the tolerable intake level of Cd was set at 0.83 µg/kg body weight/day, and a urinary Cd excretion rate of 5.24 µg/g creatinine was considered to be the toxicity threshold level. The aim of this review is to draw attention to the many other toxicity endpoints that are both clinically relevant and more appropriate to derive Cd exposure limits than a β2M endpoint. In the present review, we focus on a reduction in the glomerular filtration rate and diminished fecundity because chronic exposure to low-dose Cd, reflected by its excretion levels as low as 0.5 µg/g creatinine, have been associated with dose-dependent increases in risk of these pathological symptoms. Some protective effects of the nutritionally essential elements selenium and zinc are highlighted. Cd-induced mitochondrial dysfunction is discussed as a potential mechanism underlying gonadal toxicities and infertility.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- Correspondence:
| | - Glenda C. Gobe
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - David A. Vesey
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane 4075, Australia
| |
Collapse
|
24
|
Cornelius RJ, Nelson JW, Su XT, Yang CL, Ellison DH. COP9 signalosome deletion promotes renal injury and distal convoluted tubule remodeling. Am J Physiol Renal Physiol 2022; 323:F4-F19. [PMID: 35532068 PMCID: PMC9236871 DOI: 10.1152/ajprenal.00436.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cullin-RING ligases are a family of E3 ubiquitin ligases that control cellular processes through regulated degradation. Cullin 3 targets with-no-lysine kinase 4 (WNK4), a kinase that activates the Na+-Cl- cotransporter (NCC), the main pathway for Na+ reabsorption in the distal convoluted tubule (DCT). Mutations in the cullin 3 gene lead to familial hyperkalemic hypertension by increasing WNK4 abundance. The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) regulates the activity of cullin-RING ligases by removing the ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8. Genetic deletion of the catalytically active CSN subunit, Jab1, along the nephron in mice (KS-Jab1-/-) led to increased WNK4 abundance; however, NCC abundance was substantially reduced. We hypothesized that the reduction in NCC resulted from a cortical injury that led to hypoplasia of the segment, which counteracted WNK4 activation of NCC. To test this, we studied KS-Jab1-/- mice at weekly intervals over a period of 3 wk. The results showed that NCC abundance was unchanged until 3 wk after Jab1 deletion, at which time other DCT-specific proteins were also reduced. The kidney injury markers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin demonstrated kidney injury immediately after Jab1 deletion; however, the damage was initially limited to the medulla. The injury progressed and expanded into the cortex 3 wk after Jab1 deletion coinciding with loss of the DCT. The data indicate that nephron-specific disruption of the cullin-RING ligase system results in a complex progression of tubule injury that leads to hypoplasia of the DCT.NEW & NOTEWORTHY Cullin 3 (CUL3) targets with-no-lysine-kinase 4 (WNK4), which activates Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney. Renal-specific genetic deletion of the constitutive photomorphogenesis 9 signalosome, an upstream regulator of CUL3, resulted in a reduction of NCC due to DCT hypoplasia, which coincided with cortical kidney injury. The data indicate that nephron-specific disruption of the cullin-RING ligase system results in a complex progression of tubule injury leading to hypoplasia of the DCT.
Collapse
Affiliation(s)
- Ryan J. Cornelius
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Jonathan W. Nelson
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Xiao-Tong Su
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Chao-Ling Yang
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - David H. Ellison
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon,2Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
25
|
Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic Implications of Ferroptosis in Renal Fibrosis. Front Mol Biosci 2022; 9:890766. [PMID: 35655759 PMCID: PMC9152458 DOI: 10.3389/fmolb.2022.890766] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan,
| |
Collapse
|
26
|
Barnett AM, Babcock MC, Watso JC, Migdal KU, Gutiérrez OM, Farquhar WB, Robinson AT. High dietary salt intake increases urinary NGAL excretion and creatinine clearance in healthy young adults. Am J Physiol Renal Physiol 2022; 322:F392-F402. [PMID: 35157527 PMCID: PMC8934673 DOI: 10.1152/ajprenal.00240.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
In rodents and older patients with elevated blood pressure (BP), high dietary sodium increases excretion of biomarkers of kidney injury, but it is unclear whether this effect occurs in healthy young adults. The purpose of this study was to determine whether short-term high dietary salt increases urinary excretion of the kidney injury biomarkers neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) in healthy young adults. Twenty participants participated in a double-blind, placebo-controlled, randomized crossover study. For 10 days each, participants were asked to consume salt (3,900 mg sodium) or placebo capsules. We measured BP during each visit, obtained 24-h urine samples for measurements of electrolytes, NGAL, and KIM-1, and assessed creatinine clearance. Compared with placebo, salt loading increased daily urinary sodium excretion (placebo: 130.3 ± 62.4 mmol/24 h vs. salt: 287.2 ± 72.0 mmol/24 h, P < 0.01). There was no difference in mean arterial BP (placebo: 77 ± 7 mmHg vs. salt: 77 ± 6 mmHg, P = 0.83) between conditions. However, salt loading increased the urinary NGAL excretion rate (placebo: 59.8 ± 44.4 ng/min vs. salt: 80.8 ± 49.5 ng/min, P < 0.01) and increased creatinine clearance (placebo: 110.5 ± 32.9 mL/min vs. salt: 145.0 ± 24.9 mL/min, P < 0.01). Urinary KIM-1 excretion was not different between conditions. In conclusion, in healthy young adults 10 days of dietary salt loading increased creatinine clearance and increased urinary excretion of the kidney injury biomarker marker NGAL but not KIM-1.NEW & NOTEWORTHY In healthy young adults, 10 days of dietary salt loading increased creatinine clearance and increased urinary excretion of the kidney injury biomarker marker neutrophil gelatinase-associated lipocalin despite no change in resting blood pressure.
Collapse
Affiliation(s)
- Alex M Barnett
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama
| | - Matthew C Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
- Division of Geriatric Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Joseph C Watso
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kamila U Migdal
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
- War Related Illness and Injury Study Center, Washington DC Department of Veteran Affairs Medical Center, Washington, District of Columbia
| | - Orlando M Gutiérrez
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama
| |
Collapse
|
27
|
Kongtasai T, Paepe D, Meyer E, Mortier F, Marynissen S, Stammeleer L, Defauw P, Daminet S. Renal biomarkers in cats: A review of the current status in chronic kidney disease. J Vet Intern Med 2022; 36:379-396. [PMID: 35218249 PMCID: PMC8965260 DOI: 10.1111/jvim.16377] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022] Open
Abstract
Serum creatinine concentration, the classical biomarker of chronic kidney disease (CKD) in cats, has important limitations that decrease its value as a biomarker of early CKD. Recently, serum symmetric dimethylarginine concentration was introduced as a novel glomerular filtration rate biomarker for the early detection of CKD in cats. However, data on its specificity are still limited. The limitations of conventional biomarkers and the desire for early therapeutic intervention in cats with CKD to improve outcomes have prompted the discovery and validation of novel renal biomarkers to detect glomerular or tubular dysfunction. Changes in the serum or urinary concentrations of these biomarkers may indicate early kidney damage or predict the progression of kidney before changes in conventional biomarkers are detectable. This review summarizes current knowledge on renal biomarkers in CKD in cats, a field that has progressed substantially over the last 5 years.
Collapse
Affiliation(s)
- Thirawut Kongtasai
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium.,Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Dominique Paepe
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Femke Mortier
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Sofie Marynissen
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Lisa Stammeleer
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Pieter Defauw
- Lumbry Park Veterinary Specialists, Alton, United Kingdom
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| |
Collapse
|
28
|
Sacco E, Vittori M, Ferraro PM, Verde P, Scagliusi A, Baroni S, Masola V, Onisto M, Nicosia M, Bassi P. Renal effect of severe hypoxia evaluated By NGAL measurements: An in vivo and in vitro study. Urologia 2022; 89:38-43. [PMID: 33876675 DOI: 10.1177/03915603211009117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate possible renal damage in healthy men exposed to extreme hypobaric hypoxia, using urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL) concentration as biomarker. The value of NGAL as a biomarker of proximal tubular cell damage under hypoxic conditions was also tested in vitro experiments. METHODS NGAL was assayed in a cohort of air cadets (n = 16) exposed to hypobaric hypoxia in a hypobaric chamber during their training program. In all subjects, urine creatinine (Cr) and urinary NGAL levels were measured immediately before, 3, and 24 h after hypobaric environment exposure. Three in vitro experiments using proximal tubular cell cultures were also performed to measure NGAL gene expression, NGAL secretion in the culture medium and to evaluate apoptosis under two cycles of hypoxia and reoxygenation. RESULTS In the in vivo study, geometric means of urinary NGAL/Cr ratio measured 24 h after hypobaric hypoxia in the hypobaric chamber were significantly lower than baseline values (13.4 vs 25.9 ng/mg, p = 0.01). In cell cultures, hypoxia down-regulated NGAL gene expression without significantly changing NGAL secretion in the culture medium. Hypoxia significantly increased the percentage of apoptotic/necrotic cells, especially after the second hypoxia-reoxygenation cycle. CONCLUSIONS Exposure to hypobaric-hypoxic environments does not cause significant and irreversible renal tubular injury in vivo and in vitro, except than in a late stage. The hypoxic insult does not seem to be mirrored by an increase of urinary NGAL in healthy men nor of NGAL gene expression in HK-2 cell culture or secretion in the culture medium in the in vitro conditions reported in the present study.
Collapse
Affiliation(s)
- Emilio Sacco
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Matteo Vittori
- Department of Urology, San Carlo di Nancy Hospital, Rome, Italy
| | - Pietro Manuel Ferraro
- Nephrology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paola Verde
- Italian Air Force, Flight Experimental Center, Aerospace Medicine Department, Pratica di Mare, Italy
| | - Alessandro Scagliusi
- Italian Air Force, Flight Experimental Center, Aerospace Medicine Department, Pratica di Mare, Italy
| | - Silvia Baroni
- Clinical Chemistry, Biochemistry and Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Masola
- Renal Unit, Department of Medicine, Integrated University Hospital of Verona, Verona, Veneto, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padua, Padova, Veneto, Italy
| | - Maria Nicosia
- Clinical Chemistry, Biochemistry and Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - PierFrancesco Bassi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
29
|
Chuang HY, Jeng WY, Wang E, Jiang ST, Hsu CM, Hsieh-Li HM, Chiou YY. Secreted Neutrophil Gelatinase-Associated Lipocalin Shows Stronger Ability to Inhibit Cyst Enlargement of ADPKD Cells Compared with Nonsecreted Form. Cells 2022; 11:cells11030483. [PMID: 35159293 PMCID: PMC8834617 DOI: 10.3390/cells11030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Polycystic kidney disease (PKD) is one of the most common inherited diseases and is characterized by the development of fluid-filled cysts along multiple segments of the nephron. Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of PKD, which is caused by mutations in either PKD1 or PKD2 genes that encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. As ADPKD progresses, cysts enlarge and disrupt normal kidney architecture, eventually leading to kidney failure. Our previous study showed that overexpression of exogenous kidney-specific neutrophil gelatinase-associated lipocalin (NGAL) reduced cyst progression and prolonged the lifespan of ADPKD mice (Pkd1L3/L3, 2L3 for short). In this study, we attempted to explore the underlying mechanism of reduced cyst progression in the presence of NGAL using immortalized 2L3 cells. The results of MTT and BrdU incorporation assays showed that recombinant mouse NGAL (mNGAL) protein significantly decreased the viability and proliferation of 2L3 cells. Flow cytometry and western blot analyses showed that mNGAL inhibited activation of the ERK and AKT pathways and induced apoptosis and autophagy in 2L3 cells. In addition, a 3D cell culture platform was established to identify cyst progression in 2L3 cells and showed that mNGAL significantly inhibited cyst enlargement in 2L3 cells. Overexpression of secreted mNGAL (pN + LS) and nonsecreted mNGAL (pN − LS) repressed cell proliferation and cyst enlargement in 2L3 cells and had effects on markers involved in proliferation, apoptosis, and autophagy. However, secreted mNGAL had a more pronounced and consistent effect than that of nonsecreted form. These results reveal that secreted mNGAL has stronger ability to inhibit cyst enlargement of ADPKD cells than that of nonsecreted form. These findings could help to identify strategies for the future clinical treatment of ADPKD.
Collapse
Affiliation(s)
- Hsin-Yin Chuang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (H.-Y.C.); (C.-M.H.)
| | - Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ellian Wang
- Division of Pediatric Nephrology, Department of Pediatrics, National Cheng Kung University Hospital, Tainan 70403, Taiwan;
| | - Si-Tse Jiang
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 70101, Taiwan;
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 74147, Taiwan
| | - Chen-Ming Hsu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (H.-Y.C.); (C.-M.H.)
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (H.-Y.C.); (C.-M.H.)
- Correspondence: (H.M.H.-L.); (Y.-Y.C.); Tel.: +886-2-77496354 (H.M.H.-L.); +886-6-2353535 (ext. 5286) (Y.-Y.C.)
| | - Yuan-Yow Chiou
- Division of Pediatric Nephrology, Department of Pediatrics, National Cheng Kung University Hospital, Tainan 70403, Taiwan;
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 70101, Taiwan;
- Correspondence: (H.M.H.-L.); (Y.-Y.C.); Tel.: +886-2-77496354 (H.M.H.-L.); +886-6-2353535 (ext. 5286) (Y.-Y.C.)
| |
Collapse
|
30
|
Kidney tubule iron loading in experimental focal segmental glomerulosclerosis. Sci Rep 2022; 12:1199. [PMID: 35075227 PMCID: PMC8786831 DOI: 10.1038/s41598-022-05261-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
Kidney iron deposition may play a role in the progression of tubulointerstitial injury during chronic kidney disease. Here, we studied the molecular mechanisms of kidney iron loading in experimental focal segmental glomerulosclerosis (FSGS) and investigated the effect of iron-reducing interventions on disease progression. Thy-1.1 mice were injected with anti-Thy-1.1 monoclonal antibody (mAb) to induce proteinuria. Urine, blood and tissue were collected at day (D)1, D5, D8, D15 and D22 after mAb injection. Thy-1.1 mice were subjected to captopril (CA), iron-deficient (ID) diet or iron chelation (deferoxamine; DFO). MAb injection resulted in significant albuminuria at all time points (p < 0.01). Kidney iron loading, predominantly in distal tubules, increased in time, along with urinary kidney injury molecule-1 and 24p3 concentration, as well as kidney mRNA expression of Interleukin-6 (Il-6) and Heme oxygenase-1 (Ho-1). Treatment with CA, ID diet or DFO significantly reduced kidney iron deposition at D8 and D22 (p < 0.001) and fibrosis at D22 (p < 0.05), but not kidney Il-6. ID treatment increased kidney Ho-1 (p < 0.001). In conclusion, kidney iron accumulation coincides with progression of tubulointerstitial injury in this model of FSGS. Reduction of iron loading halts disease progression. However, targeted approaches to prevent excessive kidney iron loading are warranted to maintain the delicate systemic and cellular iron balance.
Collapse
|
31
|
Araos P, Amador CA. Neutrophil gelatinase-associated lipocalin as an immunomodulator in endocrine hypertension. Front Endocrinol (Lausanne) 2022; 13:1006790. [PMID: 36387895 PMCID: PMC9640732 DOI: 10.3389/fendo.2022.1006790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022] Open
Abstract
In recent studies, primary aldosteronism (PA) has been reported as the most common etiology for secondary hypertension of endocrine origin, accounting for approximately 10% of cases. In PA, excess aldosterone production can lead to deleterious effects at the cardiovascular (CV) and renal levels by activating mineralocorticoid receptors, which involves an increase in pro-inflammatory and pro-fibrotic mediators. Among these mediators, neutrophil gelatinase-associated lipocalin (NGAL), a secretion glycoprotein belonging to the lipocalin superfamily, has been closely linked to CV and renal damage in several pathological conditions. Because NGAL can be detected in biofluids such as plasma and urine, it has been proposed as a damage biomarker for target tissues and has also been studied for its role in hypertension and associated with PA. NGAL is produced by many different cell types, can be carried on extracellular vesicles, and is modulated by microRNAs, which would support its use as a biomarker for endocrine hypertension due to PA. Over the last decade, studies have shown that NGAL is necessary for the development of aldosterone-induced hypertension and that is associated with end-organ damage. In addition, it has been proposed that some mechanisms are dependent on the activation of immune cells, such as dendritic cells and macrophages, where the release of specific cytokines (i.e., interleukin [IL]-23) or chemokines (i.e., CCL-5) induced by aldosterone would depend on NGAL. Subsequently, this activates the T helper (Th) lymphocytes, such as Th17 and Th2, resulting in CV and renal fibrosis due to the high aldosterone levels. Although the immune system has been closely associated with essential hypertension, its participation in endocrine hypertension has not been fully elucidated. This review discusses the link between NGAL and endocrine hypertension, particularly in the context of PA, and their possible regulators and mechanisms, with a focus on its role as an immunomodulator.
Collapse
Affiliation(s)
- Patricio Araos
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristián A. Amador
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- *Correspondence: Cristián A. Amador,
| |
Collapse
|
32
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
33
|
Agarwal S, Sudhini YR, Polat OK, Reiser J, Altintas MM. Renal cell markers: lighthouses for managing renal diseases. Am J Physiol Renal Physiol 2021; 321:F715-F739. [PMID: 34632812 DOI: 10.1152/ajprenal.00182.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidneys, one of the vital organs in our body, are responsible for maintaining whole body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, and urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the subregions. Recent developments in labeling, tracing, and imaging techniques have enabled us to mark, monitor, and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we summarize different cell types, specific markers that are uniquely associated with those cell types, and their distribution in the kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for the assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in cell type-specific markers. Thus, the term "cell marker" might be imprecise and suboptimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to researchers, we acknowledge that the list may not be necessarily exhaustive.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | | - Onur K Polat
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Jochen Reiser
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | |
Collapse
|
34
|
Mohammed M, Mohammad J, Fathi Z, Al-Hamdany M, Alkazzaz N. Comparative evaluation of cystatin C and neutrophil gelatinase-associated lipocalin in patients with thalassemia major versus thalassemia intermedia. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e71475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Kidney disorders are long-term complications in thalassemia patients, especially with the high life expectancy of these patients. Proper evaluation of kidney impairment in β-thalassemia patients can be difficult due to higher intake of iron chelators, resulting in renal impairment. Early biomarkers of renal disease are used for the diagnosis of tubular and glomerular abnormalities. The current study was conducted on 88 individuals, 25 healthy people and 63 β-thalassemia patients. Circulating levels of urea, creatinine, cystatin C and neutrophil gelatinase-associated lipocalin were measured in all groups. Compared to healthy control, patients with thalassemia major and intermedia showed a significant increase in both cystatin C and NGAL levels, with no effects on creatinine levels. Furthermore, urea levels were markedly higher in patients with thalassemia major compared to control. As early renal dysfunction markers, cystatin C and NGAL should be routinely evaluated in thalassemia patients major and intermedia.
Collapse
|
35
|
The diversity of lipocalin receptors. Biochimie 2021; 192:22-29. [PMID: 34534611 DOI: 10.1016/j.biochi.2021.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/23/2022]
Abstract
Lipocalins are important carriers of preferentially hydrophobic molecules, but they can also bind other ligands, like highly polar siderophores or intact proteins. Consequently, they are involved in a variety of physiological processes in many species. Since lipocalins are mainly extracellular proteins, they have to interact with cell receptors to exert their biological effects. In contrast to the large number of lipocalins identified in the last years, the number of receptors known is still limited. Nevertheless, some novel findings concerning the molecules involved in cellular uptake or signaling effects of lipocalins have been made recently. This review presents a detailed overview of the receptors identified so far. The methods used for isolation or identification are described and structural as well as functional information on these proteins is presented essentially in chronological order of their initial discovery.
Collapse
|
36
|
Liu H, Wan X, Shi Y, Huang F, Shu H, Huang R, Gu L. Neutrophil Gelatinase-Associated Lipocalin Contributes to Increased Risk of Cardiovascular Death After Acute Coronary Syndrome. Int J Gen Med 2021; 14:4887-4895. [PMID: 34475780 PMCID: PMC8407785 DOI: 10.2147/ijgm.s328022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Neutrophil gelatinase-associated lipocalin (NGAL) has been suggested to reflect early renal dysfunction. We investigated the predictive significance of serum NGAL in predicting cardiovascular (CV) death in an old-age population with coronary heart disease (CHD). Methods In total, 633 CHD patients with a stable clinical condition were enrolled. The measurements of serum NGAL and other laboratory indices were performed within 24 hours after admission. Adjusted analysis was used to assess relationships between serum NGAL and CV death during the 10-year follow-up period. Results Multivariate logistic regression analysis demonstrated that elevated NGAL levels were related to a higher prevalence of CV disease history [quartile 4, 2.41 (1.60–4.59), P-trend <0.001]. The Kaplan–Meier curve indicated that patients with high NGAL levels tended to have a higher rate of CV death than patients with low NGAL levels. A multivariate Cox model suggested that increased levels of NGAL were independently linked with elevated risk of CV death (HR=2.62, 95% CI 1.51–4.96, P<0.001) during the 10-year follow-up period, after adjusting for related confounding factors using sensitivity analysis. Furthermore, the receiver operating characteristics (ROC) curve demonstrated that serum NGAL (AUC=0.917, 95% CI 0.895–0.940, P<0.001) had an ideal predictive value in predicting CV death. Conclusion Serum levels of NGAL were elevated in patients with CHD and may be a new parameter that could independently predict CV death in these patients, which may strengthen its potential application in clinical practice.
Collapse
Affiliation(s)
- Huogen Liu
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Xin Wan
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Yundi Shi
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Fengming Huang
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Hailin Shu
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Rijin Huang
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| | - Ling Gu
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an City, Fujian Province, 355000, People's Republic of China
| |
Collapse
|
37
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
38
|
Zavala-Guevara IP, Ortega-Romero MS, Narváez-Morales J, Jacobo-Estrada TL, Lee WK, Arreola-Mendoza L, Thévenod F, Barbier OC. Increased Endocytosis of Cadmium-Metallothionein through the 24p3 Receptor in an In Vivo Model with Reduced Proximal Tubular Activity. Int J Mol Sci 2021; 22:7262. [PMID: 34298880 PMCID: PMC8303618 DOI: 10.3390/ijms22147262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The proximal tubule (PT) is the major target of cadmium (Cd2+) nephrotoxicity. Current dogma postulates that Cd2+ complexed to metallothionein (MT) (CdMT) is taken up through receptor-mediated endocytosis (RME) via the PT receptor megalin:cubilin, which is the predominant pathway for reuptake of filtered proteins in the kidney. Nevertheless, there is evidence that the distal parts of the nephron are also sensitive to damage induced by Cd2+. In rodent kidneys, another receptor for protein endocytosis, the 24p3 receptor (24p3R), is exclusively expressed in the apical membranes of distal tubules (DT) and collecting ducts (CD). Cell culture studies have demonstrated that RME and toxicity of CdMT and other (metal ion)-protein complexes in DT and CD cells is mediated by 24p3R. In this study, we evaluated the uptake of labeled CdMT complex through 24p3R after acute kidney injury (AKI) induced by gentamicin (GM) administration that disrupts PT function. Subcutaneous administration of GM at 10 mg/kg/day for seven days did not alter the structural and functional integrity of the kidney's filtration barrier. However, because of PT injury, the concentration of the renal biomarker Kim-1 increased. When CdMT complex coupled to FITC was administered intravenously, both uptake of the CdMT complex and 24p3R expression in DT increased and also colocalized after PT injury induced by GM. Although megalin decreased in PT after GM administration, urinary protein excretion was not changed, which suggests that the increased levels of 24p3R in the distal nephron could be acting as a compensatory mechanism for protein uptake. Altogether, these results suggest that PT damage increases the uptake of the CdMT complex through 24p3R in DT (and possibly CD) and compensate for protein losses associated with AKI.
Collapse
Affiliation(s)
- Itzel Pamela Zavala-Guevara
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Manolo Sibael Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Tania Libertad Jacobo-Estrada
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, México CP 07340, Mexico;
| | - Wing-Kee Lee
- Department of Physiology, Pathophysiology and Toxicology and ZBAF (Center for Biomedical Education and Research), Faculty of Health-School of Medicine, Witten/Herdecke University, 58448 Witten, Germany; (W.-K.L.); (F.T.)
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Laura Arreola-Mendoza
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, México CP 07340, Mexico;
| | - Frank Thévenod
- Department of Physiology, Pathophysiology and Toxicology and ZBAF (Center for Biomedical Education and Research), Faculty of Health-School of Medicine, Witten/Herdecke University, 58448 Witten, Germany; (W.-K.L.); (F.T.)
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| |
Collapse
|
39
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
40
|
Aztatzi-Aguilar OG, Pardo-Osorio GA, Uribe-Ramírez M, Narváez-Morales J, De Vizcaya-Ruiz A, Barbier OC. Acute kidney damage by PM 2.5 exposure in a rat model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103587. [PMID: 33460805 DOI: 10.1016/j.etap.2021.103587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 exposure is associated with a glomerular filtration rate (GFR) reduction, and renal tissue damage. The goal of this study was demonstrate the acute effect of PM2.5 on the kidney. Male rats were acutely exposed to PM2.5 or filtered air. Blood pressure was mesure and early kidney biomarkers were evaluated in serum and urine samples, and also IL-1β, IL-6 and TNFα were determined. Oxidative biomarkers, angiotensin/bradykinin-related proteins, KIM-1, IL-6 and histology were determined. Blood pressure, GFR, and early kidney damage biomarkers increase together with oxidative biomarkers and angiotensin/bradykinin endocrine-related proteins increased after exposure to PM2.5. Urinary IL-6 increased after exposure to PM2.5, whereas in kidney cortex decreased. Histological changes were observed and accompanied by the induction of KIM-1. Acute exposure to PM2.5 not decline kidney function. However, it can induce early kidney damage biomarkers, oxidative stress, inflammation and angiotensin mediators, which perhabs culminates in a lose of renal function.
Collapse
Affiliation(s)
- Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Investigación en Inmunología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, C.P. 14080, Ciudad de México, CDMX, Mexico.
| | - Gabriela Andrea Pardo-Osorio
- Universidad del Valle de México, Av. Observatorio 400. Col. 16 de Septiembre, C.P. 11810, Ciudad de México, CDMX, Mexico.
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col San Pedro Zacatenco, C.P. 07360, Ciudad de México, CDMX, Mexico.
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col San Pedro Zacatenco, C.P. 07360, Ciudad de México, CDMX, Mexico.
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col San Pedro Zacatenco, C.P. 07360, Ciudad de México, CDMX, Mexico.
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col San Pedro Zacatenco, C.P. 07360, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
41
|
Chiba T, Cerqueira DM, Li Y, Bodnar AJ, Mukherjee E, Pfister K, Phua YL, Shaikh K, Sanders BT, Hemker SL, Pagano PJ, Wu YL, Ho J, Sims-Lucas S. Endothelial-Derived miR-17∼92 Promotes Angiogenesis to Protect against Renal Ischemia-Reperfusion Injury. J Am Soc Nephrol 2021; 32:553-562. [PMID: 33514560 PMCID: PMC7920169 DOI: 10.1681/asn.2020050717] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/21/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Damage to the renal microvasculature is a hallmark of renal ischemia-reperfusion injury (IRI)-mediated AKI. The miR-17∼92 miRNA cluster (encoding miR-17, -18a, -19a, -20a, -19b-1, and -92a-1) regulates angiogenesis in multiple settings, but no definitive role in renal endothelium during AKI pathogenesis has been established. METHODS Antibodies bound to magnetic beads were utilized to selectively enrich for renal endothelial cells from mice. Endothelial-specific miR-17∼92 knockout (miR-17∼92endo-/- ) mice were generated and given renal IRI. Mice were monitored for the development of AKI using serum chemistries and histology and for renal blood flow using magnetic resonance imaging (MRI) and laser Doppler imaging. Mice were treated with miRNA mimics during renal IRI, and therapeutic efficacies were evaluated. RESULTS miR-17, -18a, -20a, -19b, and pri-miR-17∼92 are dynamically regulated in renal endothelial cells after renal IRI. miR-17∼92endo-/- exacerbates renal IRI in male and female mice. Specifically, miR-17∼92endo-/- promotes renal tubular injury, reduces renal blood flow, promotes microvascular rarefaction, increases renal oxidative stress, and promotes macrophage infiltration to injured kidneys. The potent antiangiogenic factor thrombospondin 1 (TSP1) is highly expressed in renal endothelium in miR-17∼92endo-/- after renal IRI and is a target of miR-18a and miR-19a/b. miR-17∼92 is critical in the angiogenic response after renal IRI, which treatment with miR-18a and miR-19b mimics can mitigate. CONCLUSIONS These data suggest that endothelial-derived miR-17∼92 stimulates a reparative response in damaged renal vasculature during renal IRI by regulating angiogenic pathways.
Collapse
Affiliation(s)
- Takuto Chiba
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Débora M. Cerqueira
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yao Li
- Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew J. Bodnar
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Elina Mukherjee
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Katherine Pfister
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yu Leng Phua
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kai Shaikh
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brandon T. Sanders
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shelby L. Hemker
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick J. Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yijen L. Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Cadmium and Lead Exposure, Nephrotoxicity, and Mortality. TOXICS 2020; 8:toxics8040086. [PMID: 33066165 PMCID: PMC7711868 DOI: 10.3390/toxics8040086] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
The present review aims to provide an update on health risks associated with the low-to-moderate levels of environmental cadmium (Cd) and lead (Pb) to which most populations are exposed. Epidemiological studies examining the adverse effects of coexposure to Cd and Pb have shown that Pb may enhance the nephrotoxicity of Cd and vice versa. Herein, the existing tolerable intake levels of Cd and Pb are discussed together with the conventional urinary Cd threshold limit of 5.24 μg/g creatinine. Dietary sources of Cd and Pb and the intake levels reported for average consumers in the U.S., Spain, Korea, Germany and China are summarized. The utility of urine, whole blood, plasma/serum, and erythrocytes to quantify exposure levels of Cd and Pb are discussed. Epidemiological studies that linked one of these measurements to risks of chronic kidney disease (CKD) and mortality from common ailments are reviewed. A Cd intake level of 23.2 μg/day, which is less than half the safe intake stated by the guidelines, may increase the risk of CKD by 73%, and urinary Cd levels one-tenth of the threshold limit, defined by excessive ß2-microglobulin excretion, were associated with increased risk of CKD, mortality from heart disease, cancer of any site and Alzheimer's disease. These findings indicate that the current tolerable intake of Cd and the conventional urinary Cd threshold limit do not provide adequate health protection. Any excessive Cd excretion is probably indicative of tubular injury. In light of the evolving realization of the interaction between Cd and Pb, actions to minimize environmental exposure to these toxic metals are imperative.
Collapse
|
43
|
Meyers K, López M, Ho J, Wills S, Rayalam S, Taval S. Lipocalin-2 deficiency may predispose to the progression of spontaneous age-related adiposity in mice. Sci Rep 2020; 10:14589. [PMID: 32883997 PMCID: PMC7471318 DOI: 10.1038/s41598-020-71249-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023] Open
Abstract
Lipocalin-2 (Lcn2) is an innate immune protein elevated by several orders of magnitude in various inflammatory conditions including aging and obesity. Recent studies have shown that Lcn2 is secreted by adipocytes in response to inflammation and is categorized as a new adipokine cross-linking innate immunity and metabolic disorders including obesity. However, the involvement of Lcn2 and its function during the progression of obesity is largely unknown. Recently, browning of white adipose tissue (WAT) has gained attention as a therapeutic strategy to combat obesity. Herein, we have shown that treatment of mature 3T3-L1 adipocytes with recombinant Lcn2 (rec-Lcn2) resulted in the up-regulation of thermogenic and beige/brown markers (UCP1, PRDM16, ZIC-1 and TBX1) and increased mitochondrial activity. Additionally, global Lcn2 genetic knockout (Lcn2KO) mice exhibited accelerated weight gain and visceral fat deposition with age, when compared to wild type (WT) mice. Taken together, both in vitro and in vivo studies suggest that Lcn2 is a naturally occurring adipokine, and may serve as an anti-obesity agent by upregulating the thermogenic markers resulting in the browning of WAT. Therefore, Lcn2 and its downstream signaling pathways could be a potential therapeutic target for obesity.
Collapse
Affiliation(s)
- Keya Meyers
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA
| | - María López
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA
| | - Joanna Ho
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA
| | - Savannah Wills
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA. .,Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Room 3040, 625 Old Peachtree Road, Suwanee, GA, 30024, USA.
| | - Shashidharamurthy Taval
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA. .,Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Room 3031, 625 Old Peachtree Road, Suwanee, GA, 30024, USA.
| |
Collapse
|
44
|
Thévenod F, Lee WK, Garrick MD. Iron and Cadmium Entry Into Renal Mitochondria: Physiological and Toxicological Implications. Front Cell Dev Biol 2020; 8:848. [PMID: 32984336 PMCID: PMC7492674 DOI: 10.3389/fcell.2020.00848] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Regulation of body fluid homeostasis is a major renal function, occurring largely through epithelial solute transport in various nephron segments driven by Na+/K+-ATPase activity. Energy demands are greatest in the proximal tubule and thick ascending limb where mitochondrial ATP production occurs through oxidative phosphorylation. Mitochondria contain 20-80% of the cell's iron, copper, and manganese that are imported for their redox properties, primarily for electron transport. Redox reactions, however, also lead to reactive, toxic compounds, hence careful control of redox-active metal import into mitochondria is necessary. Current dogma claims the outer mitochondrial membrane (OMM) is freely permeable to metal ions, while the inner mitochondrial membrane (IMM) is selectively permeable. Yet we recently showed iron and manganese import at the OMM involves divalent metal transporter 1 (DMT1), an H+-coupled metal ion transporter. Thus, iron import is not only regulated by IMM mitoferrins, but also depends on the OMM to intermembrane space H+ gradient. We discuss how these mitochondrial transport processes contribute to renal injury in systemic (e.g., hemochromatosis) and local (e.g., hemoglobinuria) iron overload. Furthermore, the environmental toxicant cadmium selectively damages kidney mitochondria by "ionic mimicry" utilizing iron and calcium transporters, such as OMM DMT1 or IMM calcium uniporter, and by disrupting the electron transport chain. Consequently, unraveling mitochondrial metal ion transport may help develop new strategies to prevent kidney injury induced by metals.
Collapse
Affiliation(s)
- Frank Thévenod
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Wing-Kee Lee
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Michael D Garrick
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
45
|
Habeler M, Lindner HH, Redl B. A role of heparan sulphate proteoglycan in the cellular uptake of lipocalins ß-lactoglobulin and allergen Fel d 4. Biol Chem 2020; 401:1081-1092. [PMID: 32229688 DOI: 10.1515/hsz-2020-0132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 01/22/2023]
Abstract
Lipocalins, small extracellular hydrophobic molecule carriers, can be internalized by a variety of different cells. However, to date receptors have only been identified for human lipocalins. Here, we specifically investigated uptake mechanisms for lipocalins ß-lactoglobulin and Fel d 4 in HeLa and Chinese hamster ovary (CHO) cells. We provide evidence that cell surface heparan sulphate proteoglycan is essential for internalization of these lipocalins. In HeLa cells, lipocalin uptake was inhibited by competition with soluble heparin, enzymatic digestion of cellular heparan sulphate by heparinase and inhibition of its biosynthesis by sodium chlorate. Biochemical studies by heparin affinity chromatography and colocalization studies further supported a role of heparan sulphate proteoglycan in lipocalin uptake. Finally, lipocalin uptake was blocked in CHO mutant cells defective in glycosaminoglycan biosynthesis whereas in wild-type cells it was clearly detectable. Thus, cell surface heparan sulphate proteoglycan represents a novel component absolutely participating in the cellular uptake of some lipocalins.
Collapse
Affiliation(s)
- Matthias Habeler
- Institute of Molecular Biology, Medical University Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Herbert H Lindner
- Institute of Clinical Biochemistry, Medical University Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Bernhard Redl
- Institute of Molecular Biology, Medical University Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| |
Collapse
|
46
|
Shu J, Hu Y, Yu X, Chen J, Xu W, Pan J. Elevated serum iron level is a predictor of prognosis in ICU patients with acute kidney injury. BMC Nephrol 2020; 21:303. [PMID: 32711469 PMCID: PMC7382811 DOI: 10.1186/s12882-020-01965-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Accumulation of iron is associated with oxidative stress, inflammation, and regulated cell death processes that contribute to the development of acute kidney injury (AKI). We aimed to investigate the association between serum iron levels and prognosis in intensive care unit (ICU) patients with AKI. METHODS A total of 483 patients with AKI defined as per the Kidney Disease: Improving Global Guidelines were included in this retrospective study. The data was extracted from the single-centre Medical Information Mart for Intensive Care III database. AKI patients with serum iron parameters measured upon ICU admission were included and divided into two groups (low group and high group). The prognostic value of serum iron was analysed using univariate and multivariate Cox regression analysis. RESULTS The optimal cut-off value for serum iron was calculated to be 60 μg/dl. Univariable Cox regression analysis showed that serum iron levels were significantly correlated with prognosis of AKI patients. After adjusting for possible confounding variables, serum iron levels higher than 60 μg/dl were associated with increases in 28-day (hazard [HR] 1.832; P < 0.001) and 90-day (HR 1.741; P < 0.001) mortality, as per multivariable Cox regression analysis. CONCLUSIONS High serum iron levels were associated with increased short- and long-term mortality in ICU patients with AKI. Serum iron levels measured upon admission may be used for predicting prognosis in AKI patients.
Collapse
Affiliation(s)
- Jie Shu
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yufeng Hu
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Xueshu Yu
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jiaxiu Chen
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Wenwei Xu
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jingye Pan
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
47
|
Dendritic cells are crucial for cardiovascular remodeling and modulate neutrophil gelatinase-associated lipocalin expression upon mineralocorticoid receptor activation. J Hypertens 2020; 37:1482-1492. [PMID: 31033725 DOI: 10.1097/hjh.0000000000002067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Adaptive immunity is crucial in cardiovascular and renal inflammation/fibrosis upon hyperactivation of mineralocorticoid receptor. We have previously demonstrated that dendritic cells can respond to mineralocorticoid receptor activation, and the neutrophil gelatinase-associated lipocalin (NGAL) in dendritic cells is highly increased during aldosterone (Aldo)/mineralocorticoid receptor-dependent cardiovascular damage. However, the interrelationship among dendritic cells, target organs inflammation/fibrosis induced by mineralocorticoid receptor, and NGAL-dependence remains unknown. OBJECTIVE We studied the role of dendritic cells in mineralocorticoid receptor-dependent tissue remodeling and whether NGAL can modulate the inflammatory response of dendritic cells after mineralocorticoid receptor activation. METHODS Cardiovascular and renal remodeling induced by Aldo and high-salt diet [nephrectomy-Aldo-salt (NAS) model] were analyzed in CD11c.DOG mice, a model which allows dendritic cells ablation by using diphtheria toxin. In addition, in-vitro studies in NGAL-knock out dendritic cells were performed to determine the immunomodulatory role of NGAL upon Aldo treatment. RESULTS The ablation of dendritic cells prevented the development of cardiac hypertrophy, perivascular fibrosis, and the overexpression of NGAL, brain natriuretic peptide, and two profibrotic factors induced by NAS: collagen 1A1 and connective tissue growth factor. We determined that dendritic cells were not required to prevent renal hypertrophy/fibrosis induced by NAS. Between different immune cells analyzed, we observed that NGAL abundance was higher in antigen-presenting cells, while in-vitro studies showed that mineralocorticoid receptor stimulation in dendritic cells favored NGAL and IL-23 expression (p19 and p40 subunits), which are involved in the development of fibrosis and the Th17-driven response, respectively. CONCLUSION NGAL produced by dendritic cells may play a pivotal role in the activation of adaptive immunity that leads to cardiovascular fibrosis during mineralocorticoids excess.
Collapse
|
48
|
Engelhart DC, Granados JC, Shi D, Saier MH, Baker ME, Abagyan R, Nigam SK. Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs. Int J Mol Sci 2020; 21:E1791. [PMID: 32150922 PMCID: PMC7084758 DOI: 10.3390/ijms21051791] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
The SLC22 family of OATs, OCTs, and OCTNs is emerging as a central hub of endogenous physiology. Despite often being referred to as "drug" transporters, they facilitate the movement of metabolites and key signaling molecules. An in-depth reanalysis supports a reassignment of these proteins into eight functional subgroups, with four new subgroups arising from the previously defined OAT subclade: OATS1 (SLC22A6, SLC22A8, and SLC22A20), OATS2 (SLC22A7), OATS3 (SLC22A11, SLC22A12, and Slc22a22), and OATS4 (SLC22A9, SLC22A10, SLC22A24, and SLC22A25). We propose merging the OCTN (SLC22A4, SLC22A5, and Slc22a21) and OCT-related (SLC22A15 and SLC22A16) subclades into the OCTN/OCTN-related subgroup. Using data from GWAS, in vivo models, and in vitro assays, we developed an SLC22 transporter-metabolite network and similar subgroup networks, which suggest how multiple SLC22 transporters with mono-, oligo-, and multi-specific substrate specificity interact to regulate metabolites. Subgroup associations include: OATS1 with signaling molecules, uremic toxins, and odorants, OATS2 with cyclic nucleotides, OATS3 with uric acid, OATS4 with conjugated sex hormones, particularly etiocholanolone glucuronide, OCT with neurotransmitters, and OCTN/OCTN-related with ergothioneine and carnitine derivatives. Our data suggest that the SLC22 family can work among itself, as well as with other ADME genes, to optimize levels of numerous metabolites and signaling molecules, involved in organ crosstalk and inter-organismal communication, as proposed by the remote sensing and signaling theory.
Collapse
Affiliation(s)
- Darcy C. Engelhart
- Department of Biology, University of California San Diego, San Diego, CA 92093, USA;
| | - Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA;
| | - Da Shi
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA; (D.S.); (R.A.)
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Michael E. Baker
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
| | - Ruben Abagyan
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA; (D.S.); (R.A.)
| | - Sanjay K. Nigam
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
49
|
Scantlebery AML, Ochodnicky P, Kors L, Rampanelli E, Butter LM, El Boumashouli C, Claessen N, Teske GJ, van den Bergh Weerman MA, Leemans JC, Roelofs JJTH, Florquin S. β-Cyclodextrin counteracts obesity in Western diet-fed mice but elicits a nephrotoxic effect. Sci Rep 2019; 9:17633. [PMID: 31776357 PMCID: PMC6881402 DOI: 10.1038/s41598-019-53890-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity has become a worldwide health crisis and is associated with a plethora of comorbidities. The multi-organ effects of obesity have been linked to ectopic lipid accumulation. Thus, there is an urgent need to tackle the obesity crisis by developing effective lipid-lowering therapies. 2-hydroxypropyl-β-Cyclodextrin (2HP-β-CD) has been previously shown to reduce lysosomal cholesterol accumulation in a murine model of Niemann Pick Type C (NPC) disease. Using a murine model of Western diet-induced obesity (DIO), we report the effects of 2HP-β-CD in counteracting weight gain, expansion of adipose tissue mass and ectopic lipid accumulation. Interestingly, DIO caused intracellular storage of neutral lipids in hepatic tissues and of phospholipids in kidneys, both of which were prevented by 2HP-β-CD. Importantly, this report brings attention to the nephrotoxic effects of 2HP-β-CD: renal tubular damage, inflammation and fibrosis. These effects may be overlooked, as they are best appreciated upon assessment of renal histology.
Collapse
Affiliation(s)
- Angelique M L Scantlebery
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands.
| | - Peter Ochodnicky
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Lotte Kors
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Elena Rampanelli
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Loes M Butter
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Chaima El Boumashouli
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Nike Claessen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Gwen J Teske
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | | | - Jaklien C Leemans
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| |
Collapse
|
50
|
Garrido‐Arandia M, Tome‐Amat J, Pazos‐Castro D, Esteban V, Escribese MM, Hernández‐Ramírez G, Yuste‐Montalvo A, Barber D, Pacios LF, Díaz‐Perales A. Interaction of Alt a 1 with SLC22A17 in the airway mucosa. Allergy 2019; 74:2167-2180. [PMID: 31095759 DOI: 10.1111/all.13877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite all the efforts made up to now, the reasons that facilitate a protein becoming an allergen have not been elucidated yet. Alt a 1 protein is the major fungal allergen responsible for chronic asthma, but little is known about its immunological activity. Our main purpose was to investigate the ligand-dependent interactions of Alt a 1 in the human airway epithelium. METHODS Alt a 1 with and without its ligand (holo- and apo- forms) was incubated with the pulmonary epithelial monolayer model, Calu-3 cells. Allergen transport and cytokine production were measured. Pull-down and immunofluorescence assays were employed to identify the receptor of Alt a 1 using the epithelial cell model and mouse tissues. Receptor-allergen-ligand interactions were analyzed by computational modeling. RESULTS The holo-form could activate human monocytes, PBMCs, and polarized airway epithelial (Calu-3) cell lines. The allergen was also transported through the monolayer, without any alteration of the epithelial integrity (TEER). Alt a 1 also induced the production of proinflammatory IL8 and specific epithelial cytokines (IL33 and IL25) by Calu-3 cells. The interaction between epithelial cells and holo-Alt a 1 was found to be mediated by the SLC22A17 receptor, and its recognition of Alt a 1 was explained in structural terms. CONCLUSIONS Our findings identified the Alt a 1 ligand as a central player in the interaction of the allergen with airway mucosa, shedding light into its potential role in the immunological response, while unveiling its potential as a new target for therapy intervention.
Collapse
Affiliation(s)
- María Garrido‐Arandia
- Centre for Plant Biotechnology and Genomics (UPM‐INIA) Universidad Politécnica de Madrid Madrid Spain
| | - Jaime Tome‐Amat
- Centre for Plant Biotechnology and Genomics (UPM‐INIA) Universidad Politécnica de Madrid Madrid Spain
| | - Diego Pazos‐Castro
- Centre for Plant Biotechnology and Genomics (UPM‐INIA) Universidad Politécnica de Madrid Madrid Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology FIIS‐Fundación Jiménez Díaz, UAM Madrid Spain
| | - Maria M. Escribese
- IMMA, Facultad de Medicina Universidad San Pablo CEU Madrid Spain
- Departamento de Ciencias Médicas Básicas Universidad San Pablo CEU Madrid Spain
| | | | - Alma Yuste‐Montalvo
- Department of Allergy and Immunology FIIS‐Fundación Jiménez Díaz, UAM Madrid Spain
| | - Domingo Barber
- IMMA, Facultad de Medicina Universidad San Pablo CEU Madrid Spain
| | - Luis F. Pacios
- Centre for Plant Biotechnology and Genomics (UPM‐INIA) Universidad Politécnica de Madrid Madrid Spain
| | - Araceli Díaz‐Perales
- Centre for Plant Biotechnology and Genomics (UPM‐INIA) Universidad Politécnica de Madrid Madrid Spain
| |
Collapse
|