1
|
Mohamad SF, El Koussa R, Ghosh J, Blosser R, Gunawan A, Layer J, Zhang C, Karnik S, Davé U, Kacena MA, Srour EF. Osteomacs promote maintenance of murine hematopoiesis through megakaryocyte-induced upregulation of Embigin and CD166. Stem Cell Reports 2024; 19:486-500. [PMID: 38458190 PMCID: PMC11096441 DOI: 10.1016/j.stemcr.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/10/2024] Open
Abstract
Maintenance of hematopoietic stem cell (HSC) function in the niche is an orchestrated event. Osteomacs (OM) are key cellular components of the niche. Previously, we documented that osteoblasts, OM, and megakaryocytes interact to promote hematopoiesis. Here, we further characterize OM and identify megakaryocyte-induced mediators that augment the role of OM in the niche. Single-cell mRNA-seq, mass spectrometry, and CyTOF examination of megakaryocyte-stimulated OM suggested that upregulation of CD166 and Embigin on OM augment their hematopoiesis maintenance function. CD166 knockout OM or shRNA-Embigin knockdown OM confirmed that the loss of these molecules significantly reduced the ability of OM to augment the osteoblast-mediated hematopoietic-enhancing activity. Recombinant CD166 and Embigin partially substituted for OM function, characterizing both proteins as critical mediators of OM hematopoietic function. Our data identify Embigin and CD166 as OM-regulated critical components of HSC function in the niche and potential participants in various in vitro manipulations of stem cells.
Collapse
Affiliation(s)
- Safa F Mohamad
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roy El Koussa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joydeep Ghosh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Gunawan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Justin Layer
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sonali Karnik
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Utpal Davé
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward F Srour
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Stavnichuk M, Komarova SV. Megakaryocyte-driven changes in bone health: lessons from mouse models of myelofibrosis and related disorders. Am J Physiol Cell Physiol 2021; 322:C177-C184. [PMID: 34910601 DOI: 10.1152/ajpcell.00328.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the years, numerous studies demonstrated reciprocal communications between processes of bone marrow hematopoiesis and bone remodeling. Megakaryocytes, rare bone marrow cells responsible for platelet production, were demonstrated to be involved in bone homeostasis. Myelofibrosis, characterized by an increase in pleomorphic megakaryocytes in the bone marrow, commonly leads to the development of osteosclerosis. In vivo, an increase in megakaryocyte number was shown to result in osteosclerosis in GATA-1low, NF-E2-/-, TPOhigh, Mpllf/f;PF4cre, Lnk-/-, Mpig6b-/-, Mpig6bfl/fl;Gp1ba-Cr+/KI, Pt-vWD mouse models. In vitro, megakaryocytes stimulate osteoblast proliferation and have variable effects on osteoclast proliferation and activity through soluble factors and direct cell-cell communications. Intriguingly, new studies revealed that the ability of megakaryocytes to communicate with bone cells is affected by the age and sex of animals. This mini-review summarises changes seen in bone architecture and bone cell function in mouse models with an elevated number of megakaryocytes and the effects megakaryocytes have on osteoblasts and osteoclasts in vitro, and discusses potential molecular players that can mediate these effects.
Collapse
Affiliation(s)
- Mariya Stavnichuk
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|
4
|
Myeloproliferative Disorders and its Effect on Bone Homeostasis: The Role of Megakaryocytes. Blood 2021; 139:3127-3137. [PMID: 34428274 DOI: 10.1182/blood.2021011480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Myeloproliferative Neoplasms (MPNs) are a heterogeneous group of chronic hematological diseases that arise from the clonal expansion of abnormal hematopoietic stem cells, of which Polycythemia Vera (PV), Essential Thrombocythemia (ET), and Primary Myelofibrosis (PMF) have been extensively reviewed in context of clonal expansion, fibrosis and other phenotypes. Here, we review current knowledge on the influence of different forms of MPN on bone health. Studies implicated various degrees of effect of different forms of MPN on bone density, and on osteoblast proliferation and differentiation, using murine models and human data. The majority of studies show that bone volume is generally increased in PMF patients, whereas it is slightly decreased or not altered in ET and PV patients, although possible differences between male and female phenotypes were not fully explored in most MPN forms. Osteosclerosis seen in PMF patients is a serious complication that can lead to bone marrow failure, and the loss of bone reported in some ET and PV patients can lead to osteoporotic fractures. Some MPN forms are associated with increased number of megakaryocytes (MKs), and several of the MK-associated factors in MPN are known to affect bone development. Here, we review known mechanisms involved in these processes, with focus on the role of MKs and secreted factors. Understanding MPN-associated changes in bone health could improve early intervention and treatment of this side effect of the pathology.
Collapse
|
5
|
Mohamad SF, Gunawan A, Blosser R, Childress P, Aguilar-Perez A, Ghosh J, Hong JM, Liu J, Kanagasabapathy D, Kacena MA, Srour EF, Bruzzaniti A. Neonatal Osteomacs and Bone Marrow Macrophages Differ in Phenotypic Marker Expression and Function. J Bone Miner Res 2021; 36:1580-1593. [PMID: 33900648 DOI: 10.1002/jbmr.4314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/27/2023]
Abstract
Osteomacs (OM) are specialized bone-resident macrophages that are a component of the hematopoietic niche and support bone formation. Also located in the niche are a second subset of macrophages, namely bone marrow-derived macrophages (BM Mφ). We previously reported that a subpopulation of OM co-express both CD166 and CSF1R, the receptor for macrophage colony-stimulating factor (MCSF), and that OM form more bone-resorbing osteoclasts than BM Mφ. Reported here are single-cell quantitative RT-PCR (qRT-PCR), mass cytometry (CyTOF), and marker-specific functional studies that further identify differences between OM and BM Mφ from neonatal C57Bl/6 mice. Although OM express higher levels of CSF1R and MCSF, they do not respond to MCSF-induced proliferation, in contrast to BM Mφ. Moreover, receptor activator of NF-κB ligand (RANKL), without the addition of MCSF, was sufficient to induce osteoclast formation in OM but not BM Mφ cultures. OM express higher levels of CD166 than BM Mφ, and we found that osteoclast formation by CD166-/- OM was reduced compared with wild-type (WT) OM, whereas CD166-/- BM Mφ showed enhanced osteoclast formation. CD110/c-Mpl, the receptor for thrombopoietin (TPO), was also higher in OM, but TPO did not alter OM-derived osteoclast formation, whereas TPO stimulated BM Mφ osteoclast formation. CyTOF analyses demonstrated OM uniquely co-express CD86 and CD206, markers of M1 and M2 polarized macrophages, respectively. OM performed equivalent phagocytosis in response to LPS or IL-4/IL-10, which induce polarization to M1 and M2 subtypes, respectively, whereas BM Mφ were less competent at phagocytosis when polarized to the M2 subtype. Moreover, in contrast to BM Mφ, LPS treatment of OM led to the upregulation of CD80, an M1 marker, as well as IL-10 and IL-6, known anti-inflammatory cytokines. Overall, these data reveal that OM and BM Mφ are distinct subgroups of macrophages, whose phenotypic and functional differences in proliferation, phagocytosis, and osteoclast formation may contribute physiological specificity during health and disease. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Safa F Mohamad
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Gunawan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandra Aguilar-Perez
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Joydeep Ghosh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jung Min Hong
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Deepa Kanagasabapathy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward F Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| |
Collapse
|
6
|
Lee YS, Kwak MK, Moon SA, Choi YJ, Baek JE, Park SY, Kim BJ, Lee SH, Koh JM. Regulation of bone metabolism by megakaryocytes in a paracrine manner. Sci Rep 2020; 10:2277. [PMID: 32042021 PMCID: PMC7010738 DOI: 10.1038/s41598-020-59250-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/23/2020] [Indexed: 11/10/2022] Open
Abstract
Megakaryocytes (MKs) play key roles in regulating bone metabolism. To test the roles of MK-secreted factors, we investigated whether MK and promegakaryocyte (pro-MK) conditioned media (CM) may affect bone formation and resorption. K562 cell lines were differentiated into mature MKs. Mouse bone marrow macrophages were differentiated into mature osteoclasts, and MC3T3-E1 cells were used for osteoblastic experiments. Bone formation was determined by a calvaria bone formation assay in vivo. Micro-CT analyses were performed in the femurs of ovariectomized female C57B/L6 and Balb/c nude mice after intravenous injections of MK or pro-MK CM. MK CM significantly reduced in vitro bone resorption, largely due to suppressed osteoclastic resorption activity. Compared with pro-MK CM, MK CM suppressed osteoblastic differentiation, but stimulated its proliferation, resulting in stimulation of calvaria bone formation. In ovariectomized mice, treatment with MK CM for 4 weeks significantly increased trabecular bone mass parameters, such as bone volume fraction and trabecular thickness, in nude mice, but not in C57B/L6 mice. In conclusion, MKs may secrete anti-resorptive and anabolic factors that affect bone tissue, providing a novel insight linking MKs and bone cells in a paracrine manner. New therapeutic agents against metabolic bone diseases may be developed from MK-secreted factors.
Collapse
Affiliation(s)
- Young-Sun Lee
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Mi Kyung Kwak
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, 7, Keunjaebong-gil, Hwaseong-Si, Gyeonggi-Do, 445-907, Korea
| | - Sung-Ah Moon
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Young Jin Choi
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Ji Eun Baek
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Suk Young Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
7
|
Alvarez MB, Xu L, Childress PJ, Maupin KA, Mohamad SF, Chitteti BR, Himes E, Olivos DJ, Cheng YH, Conway SJ, Srour EF, Kacena MA. Megakaryocyte and Osteoblast Interactions Modulate Bone Mass and Hematopoiesis. Stem Cells Dev 2019; 27:671-682. [PMID: 29631496 DOI: 10.1089/scd.2017.0178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence demonstrates that megakaryocytes (MK) play key roles in regulating skeletal homeostasis and hematopoiesis. To test if the loss of MK negatively impacts osteoblastogenesis and hematopoiesis, we generated conditional knockout mice where Mpl, the receptor for the main MK growth factor, thrombopoietin, was deleted specifically in MK (Mplf/f;PF4cre). Unexpectedly, at 12 weeks of age, these mice exhibited a 10-fold increase in platelets, a significant expansion of hematopoietic/mesenchymal precursors, and a remarkable 20-fold increase in femoral midshaft bone volume. We then investigated whether MK support hematopoietic stem cell (HSC) function through the interaction of MK with osteoblasts (OB). LSK cells (Lin-Sca1+CD117+, enriched HSC population) were co-cultured with OB+MK for 1 week (1wk OB+MK+LSK) or OB alone (1wk OB+LSK). A significant increase in colony-forming units was observed with cells from 1wk OB+MK cultures. Competitive repopulation studies demonstrated significantly higher engraftment in mice transplanted with cells from 1wk OB+MK+LSK cultures compared to 1wk OB+LSK or LSK cultured alone for 1 week. Furthermore, single-cell expression analysis of OB cultured±MK revealed adiponectin as the most significantly upregulated MK-induced gene, which is required for optimal long-term hematopoietic reconstitution. Understanding the interactions between MK, OB, and HSC can inform the development of novel treatments to enhance both HSC recovery following myelosuppressive injuries, as well as bone loss diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Marta B Alvarez
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - LinLin Xu
- 2 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Paul J Childress
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Kevin A Maupin
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Safa F Mohamad
- 2 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | | | - Evan Himes
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - David J Olivos
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Ying-Hua Cheng
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Simon J Conway
- 3 Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| | - Edward F Srour
- 2 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,3 Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| | - Melissa A Kacena
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
8
|
Posritong S, Flores Chavez R, Chu TMG, Bruzzaniti A. A Pyk2 inhibitor incorporated into a PEGDA-gelatin hydrogel promotes osteoblast activity and mineral deposition. ACTA ACUST UNITED AC 2019; 14:025015. [PMID: 30658347 DOI: 10.1088/1748-605x/aafffa] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pyk2 is a non-receptor tyrosine kinase that belongs to the family of focal adhesion kinases. Studies from our laboratory and others demonstrated that mice lacking the Pyk2 gene (Ptk2B) have high bone mass, which was due to increased osteoblast activity, as well as decreased osteoclast activity. It was previously reported that a chemical inhibitor that targets both Pyk2 and its homolog FAK, led to increased bone formation in ovariectomized rats. In the current study, we developed a hydrogel containing poly(ethylene glycol) diacrylate (PEGDA) and gelatin which was curable by visible-light and was suitable for the delivery of small molecules, including a Pyk2-targeted chemical inhibitor. We characterized several critical properties of the hydrogel, including viscosity, gelation time, swelling, degradation, and drug release behavior. We found that a hydrogel composed of PEGDA1000 plus 10% gelatin (P1000:G10) exhibited Bingham fluid behavior that can resist free flowing before in situ polymerization, making it suitable for use as an injectable carrier in open wound applications. The P1000:G10 hydrogel was cytocompatible and displayed a more delayed drug release behavior than other hydrogels we tested. Importantly, the Pyk2-inhibitor-hydrogel retained its inhibitory activity against the Pyk2 tyrosine kinase, and promoted osteoblast activity and mineral deposition in vitro. Overall, our findings suggest that a Pyk2-inhibitor based hydrogel may be suitable for the treatment of craniofacial and appendicular skeletal defects and targeted bone regeneration.
Collapse
Affiliation(s)
- Sumana Posritong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202, United States of America
| | | | | | | |
Collapse
|
9
|
Deng B, Bruzzaniti A, Cheng GJ. Enhancement of osteoblast activity on nanostructured NiTi/hydroxyapatite coatings on additive manufactured NiTi metal implants by nanosecond pulsed laser sintering. Int J Nanomedicine 2018; 13:8217-8230. [PMID: 30555235 PMCID: PMC6280903 DOI: 10.2147/ijn.s162842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The osteoinductive behaviors of nitinol (NiTi)-based metal implants for bone regeneration are largely dependent on their surface composition and topology. Continuous-mode laser sintering often results in complete melting of the materials and aggregation of particles, which lack control of heat transfer, as well as microstructural changes during sintering of the nanocomposite materials. Methods In the current study, in situ direct laser deposition was used to additively manufacture three-dimensional NiTi structures from Ni and Ti powders. The mechanical property of NiTi has been shown to be similar to bone. Nanosecond pulsed laser sintering process was then utilized to generate a nanoporous composite surface with NiTi alloy and hydroxyapatite (HA) by ultrafast laser heating and cooling of Ni, Ti, and HA nanoparticles mixtures precoated on the 3D NiTi substrates; HA was added in order to improve the biocompatibility of the alloy. We then studied the underlying mechanism in the formation of NiTi/HA nanocomposite, and the synergistic effect of the sintered HA component and the nanoporous topology of the composite coating. In addition, we examined the activity of bone-forming osteoblasts on the NiTi/HA surfaces. For this, osteoblast cell morphology and various biomarkers were examined to evaluate cellular activity and function. Results We found that the nanoscale porosity delivered by nanosecond pulsed laser sintering and the HA component positively contributed to osteoblast differentiation, as indicated by an increase in the expression of collagen and alkaline phosphatase, both of which are necessary for osteoblast mineralization. In addition, we observed topological complexities which appeared to boost the activity of osteoblasts, including an increase in actin cytoskeletal structures and adhesion structures. Conclusion These findings demonstrate that the pulsed laser sintering method is an effective tool to generate biocompatible coatings in complex alloy-composite material systems with desired composition and topology. Our findings also provide a better understanding of the osteoinductive behavior of the sintered nanocomposite coatings for use in orthopedic and bone regeneration applications.
Collapse
Affiliation(s)
- Biwei Deng
- School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA, .,Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA,
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202, USA,
| | - Gary J Cheng
- School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA, .,Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA,
| |
Collapse
|
10
|
Posritong S, Hong JM, Eleniste PP, McIntyre PW, Wu JL, Himes ER, Patel V, Kacena MA, Bruzzaniti A. Pyk2 deficiency potentiates osteoblast differentiation and mineralizing activity in response to estrogen or raloxifene. Mol Cell Endocrinol 2018; 474:35-47. [PMID: 29428397 PMCID: PMC6057828 DOI: 10.1016/j.mce.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Bone remodeling is controlled by the actions of bone-degrading osteoclasts and bone-forming osteoblasts (OBs). Aging and loss of estrogen after menopause affects bone mass and quality. Estrogen therapy, including selective estrogen receptor modulators (SERMs), can prevent bone loss and increase bone mineral density in post-menopausal women. Although investigations of the effects of estrogen on osteoclast activity are well advanced, the mechanism of action of estrogen on OBs is still unclear. The proline-rich tyrosine kinase 2 (Pyk2) is important for bone formation and female mice lacking Pyk2 (Pyk2-KO) exhibit elevated bone mass, increased bone formation rate and reduced osteoclast activity. Therefore, in the current study, we examined the role of estrogen signaling on the mechanism of action of Pyk2 in OBs. As expected, Pyk2-KO OBs showed significantly higher proliferation, matrix formation, and mineralization than WT OBs. In addition we found that Pyk2-KO OBs cultured in the presence of either 17β-estradiol (E2) or raloxifene, a SERM used for the treatment of post-menopausal osteoporosis, showed a further robust increase in alkaline phosphatase (ALP) activity and mineralization. We examined the possible mechanism of action and found that Pyk2 deletion promotes the proteasome-mediated degradation of estrogen receptor α (ERα), but not estrogen receptor β (ERβ). As a consequence, E2 signaling via ERβ was enhanced in Pyk2-KO OBs. In addition, we found that Pyk2 deletion and E2 stimulation had an additive effect on ERK phosphorylation, which is known to stimulate cell differentiation and survival. Our findings suggest that in the absence of Pyk2, estrogen exerts an osteogenic effect on OBs through altered ERα and ERβ signaling. Thus, targeting Pyk2, in combination with estrogen or raloxifene, may be a novel strategy for the prevention and/or treatment of bone loss diseases.
Collapse
Affiliation(s)
- Sumana Posritong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Jung Min Hong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Pierre P Eleniste
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Patrick W McIntyre
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Jennifer L Wu
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Evan R Himes
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Vruti Patel
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Yorgan T, David JP, Amling M, Schinke T. The high bone mass phenotype of Lrp5-mutant mice is not affected by megakaryocyte depletion. Biochem Biophys Res Commun 2018; 497:659-666. [PMID: 29454962 DOI: 10.1016/j.bbrc.2018.02.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 11/18/2022]
Abstract
Bone remodeling is a continuously ongoing process mediated by bone-resorbing osteoclasts and bone-forming osteoblasts. One key regulator of bone formation is the putative Wnt co-receptor Lrp5, where activating mutations in the extracellular domain cause increased bone formation in mice and humans. We have previously reported that megakaryocyte numbers are increased the bone marrow of mice carrying a high bone mass mutation (HBM) of Lrp5 (Lrp5G170V). Since megakaryocytes can promote bone formation, we addressed the question, if the bone remodeling phenotype of Lrp5G170V mice is affected by megakaryocyte depletion. For that purpose we took advantage of a mouse model carrying a mutation of the Mpl gene, encoding the thrombopoietin receptor. These mice (Mplhlb219) were crossed with Lrp5G170V mice to generate animals carrying both mutations in a homozygous state. Using μCT, undecalcified histology and bone-specific histomorphometry of 12 weeks old littermates we observed that megakaryocyte number was remarkably decreased in Mplhlb219/Lrp5G170V mice, yet the high bone mass phenotype of Lrp5G170V mice was not significantly affected by the homozygous Mpl mutation. Finally, when we analyzed 24 weeks old wildtype and Mplhlb219 mice we did not observe a statistically significant alteration of bone remodeling in the latter ones. Taken together, our results demonstrate that an increased number of bone marrow megakaryocytes does not contribute to the increased bone formation caused by Lrp5 activation.
Collapse
Affiliation(s)
- Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany.
| |
Collapse
|
12
|
Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function. Blood Adv 2017; 1:2520-2528. [PMID: 29296903 DOI: 10.1182/bloodadvances.2017011304] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
Networking between hematopoietic stem cells (HSCs) and cells of the hematopoietic niche is critical for stem cell function and maintenance of the stem cell pool. We characterized calvariae-resident osteomacs (OMs) and their interaction with megakaryocytes to sustain HSC function and identified distinguishing properties between OMs and bone marrow (BM)-derived macrophages. OMs, identified as CD45+F4/80+ cells, were easily detectable (3%-5%) in neonatal calvarial cells. Coculture of neonatal calvarial cells with megakaryocytes for 7 days increased OM three- to sixfold, demonstrating that megakaryocytes regulate OM proliferation. OMs were required for the hematopoiesis-enhancing activity of osteoblasts, and this activity was augmented by megakaryocytes. Serial transplantation demonstrated that HSC repopulating potential was best maintained by in vitro cultures containing osteoblasts, OMs, and megakaryocytes. With or without megakaryocytes, BM-derived macrophages were unable to functionally substitute for neonatal calvarial cell-associated OMs. In addition, OMs differentiated into multinucleated, tartrate resistant acid phosphatase-positive osteoclasts capable of bone resorption. Nine-color flow cytometric analysis revealed that although BM-derived macrophages and OMs share many cell surface phenotypic similarities (CD45, F4/80, CD68, CD11b, Mac2, and Gr-1), only a subgroup of OMs coexpressed M-CSFR and CD166, thus providing a unique profile for OMs. CD169 was expressed by both OMs and BM-derived macrophages and therefore was not a distinguishing marker between these 2 cell types. These results demonstrate that OMs support HSC function and illustrate that megakaryocytes significantly augment the synergistic activity of osteoblasts and OMs. Furthermore, this report establishes for the first time that the crosstalk between OMs, osteoblasts, and megakaryocytes is a novel network supporting HSC function.
Collapse
|
13
|
Olivos DJ, Alvarez M, Cheng YH, Hooker RA, Ciovacco WA, Bethel M, McGough H, Yim C, Chitteti BR, Eleniste PP, Horowitz MC, Srour EF, Bruzzaniti A, Fuchs RK, Kacena MA. Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype. J Cell Biochem 2017; 118:2231-2240. [PMID: 28067429 DOI: 10.1002/jcb.25874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 11/11/2022]
Abstract
The Lnk adapter protein negatively regulates the signaling of thrombopoietin (TPO), the main megakaryocyte (MK) growth factor. Lnk-deficient (-/-) mice have increased TPO signaling and increased MK number. Interestingly, several mouse models exist in which increased MK number leads to a high bone mass phenotype. Here we report the bone phenotype of these mice. MicroCT and static histomorphometric analyses at 20 weeks showed the distal femur of Lnk-/- mice to have significantly higher bone volume fraction and trabecular number compared to wild-type (WT) mice. Notably, despite a significant increase in the number of osteoclasts (OC), and decreased bone formation rate in Lnk-/- mice compared to WT mice, Lnk-/- mice demonstrated a 2.5-fold greater BV/TV suggesting impaired OC function in vivo. Additionally, Lnk-/- mouse femurs exhibited non-significant increases in mid-shaft cross-sectional area, yet increased periosteal BFR compared to WT femurs was observed. Lnk-/- femurs also had non-significant increases in polar moment of inertia and decreased cortical bone area and thickness, resulting in reduced bone stiffness, modulus, and strength compared to WT femurs. Of note, Lnk is expressed by OC lineage cells and when Lnk-/- OC progenitors are cultured in the presence of TPO, significantly more OC are observed than in WT cultures. Lnk is also expressed in osteoblast (OB) cells and in vitro reduced alkaline phosphatase activity was observed in Lnk-/- cultures. These data suggest that both direct effects on OB and OC as well as indirect effects of MK in regulating OB contributes to the observed high bone mass. J. Cell. Biochem. 118: 2231-2240, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Olivos
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marta Alvarez
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard Adam Hooker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wendy A Ciovacco
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Monique Bethel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Haley McGough
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher Yim
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Pierre P Eleniste
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Edward F Srour
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Robyn K Fuchs
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indianapolis, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Eleniste PP, Patel V, Posritong S, Zero O, Largura H, Cheng YH, Himes ER, Hamilton M, Ekwealor JTB, Kacena MA, Bruzzaniti A. Pyk2 and Megakaryocytes Regulate Osteoblast Differentiation and Migration Via Distinct and Overlapping Mechanisms. J Cell Biochem 2015; 117:1396-406. [PMID: 26552846 DOI: 10.1002/jcb.25430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 01/08/2023]
Abstract
Osteoblast differentiation and migration are necessary for bone formation during bone remodeling. Mice lacking the proline-rich tyrosine kinase Pyk2 (Pyk2-KO) have increased bone mass, in part due to increased osteoblast proliferation. Megakaryocytes (MKs), the platelet-producing cells, also promote osteoblast proliferation in vitro and bone-formation in vivo via a pathway that involves Pyk2. In the current study, we examined the mechanism of action of Pyk2, and the role of MKs, on osteoblast differentiation and migration. We found that Pyk2-KO osteoblasts express elevated alkaline phosphatase (ALP), type I collagen and osteocalcin mRNA levels as well as increased ALP activity, and mineralization, confirming that Pyk2 negatively regulates osteoblast function. Since Pyk2 Y402 phosphorylation is important for its catalytic activity and for its protein-scaffolding functions, we expressed the phosphorylation-mutant (Pyk2(Y402F) ) and kinase-mutant (Pyk2(K457A) ) in Pyk2-KO osteoblasts. Both Pyk2(Y402F) and Pyk2(K457A) reduced ALP activity, whereas only kinase-inactive Pyk2(K457A) inhibited Pyk2-KO osteoblast migration. Consistent with a role for Pyk2 on ALP activity, co-culture of MKs with osteoblasts led to a decrease in the level of phosphorylated Pyk2 (pY402) as well as a decrease in ALP activity. Although, Pyk2-KO osteoblasts exhibited increased migration compared to wild-type osteoblasts, Pyk2 expression was not required necessary for the ability of MKs to stimulate osteoblast migration. Together, these data suggest that osteoblast differentiation and migration are inversely regulated by MKs via distinct Pyk2-dependent and independent signaling pathways. Novel drugs that distinguish between the kinase-dependent or protein-scaffolding functions of Pyk2 may provide therapeutic specificity for the control of bone-related diseases.
Collapse
Affiliation(s)
- Pierre P Eleniste
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Vruti Patel
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Sumana Posritong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Odette Zero
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Heather Largura
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Evan R Himes
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthew Hamilton
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jenna T B Ekwealor
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| |
Collapse
|
15
|
Meijome TE, Ekwealor JTB, Hooker RA, Cheng YH, Ciovacco WA, Balamohan SM, Srinivasan TL, Chitteti BR, Eleniste PP, Horowitz MC, Srour EF, Bruzzaniti A, Fuchs RK, Kacena MA. C-Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis. J Cell Biochem 2015; 117:959-69. [PMID: 26375403 DOI: 10.1002/jcb.25380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 11/10/2022]
Abstract
C-Mpl is the receptor for thrombopoietin (TPO), the main megakaryocyte (MK) growth factor, and c-Mpl is believed to be expressed on cells of the hematopoietic lineage. As MKs have been shown to enhance bone formation, it may be expected that mice in which c-Mpl was globally knocked out (c-Mpl(-/-) mice) would have decreased bone mass because they have fewer MKs. Instead, c-Mpl(-/-) mice have a higher bone mass than WT controls. Using c-Mpl(-/-) mice we investigated the basis for this discrepancy and discovered that c-Mpl is expressed on both osteoblasts (OBs) and osteoclasts (OCs), an unexpected finding that prompted us to examine further how c-Mpl regulates bone. Static and dynamic bone histomorphometry parameters suggest that c-Mpl deficiency results in a net gain in bone volume with increases in OBs and OCs. In vitro, a higher percentage of c-Mpl(-/-) OBs were in active phases of the cell cycle, leading to an increased number of OBs. No difference in OB differentiation was observed in vitro as examined by real-time PCR and functional assays. In co-culture systems, which allow for the interaction between OBs and OC progenitors, c-Mpl(-/-) OBs enhanced osteoclastogenesis. Two of the major signaling pathways by which OBs regulate osteoclastogenesis, MCSF/OPG/RANKL and EphrinB2-EphB2/B4, were unaffected in c-Mpl(-/-) OBs. These data provide new findings for the role of MKs and c-Mpl expression in bone and may provide insight into the homeostatic regulation of bone mass as well as bone loss diseases such as osteoporosis.
Collapse
Affiliation(s)
- Tomas E Meijome
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Jenna T B Ekwealor
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - R Adam Hooker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Wendy A Ciovacco
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Sanjeev M Balamohan
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Trishya L Srinivasan
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | | | - Pierre P Eleniste
- Department of Oral Biology, Indiana University School of Dentistry, Indiana, Indianapolis
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Edward F Srour
- Department of Medicine, Indiana University School of Medicine, Indiana, Indianapolis
| | - Angela Bruzzaniti
- Department of Oral Biology, Indiana University School of Dentistry, Indiana, Indianapolis
| | - Robyn K Fuchs
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indiana, Indianapolis
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
Bethel M, Barnes CLT, Taylor AF, Cheng YH, Chitteti BR, Horowitz MC, Bruzzaniti A, Srour EF, Kacena MA. A novel role for thrombopoietin in regulating osteoclast development in humans and mice. J Cell Physiol 2015; 230:2142-51. [PMID: 25656774 DOI: 10.1002/jcp.24943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 11/10/2022]
Abstract
Emerging data suggest that megakaryocytes (MKs) play a significant role in skeletal homeostasis. Indeed, osteosclerosis observed in several MK-related disorders may be a result of increased numbers of MKs. In support of this idea, we have previously demonstrated that MKs increase osteoblast (OB) proliferation by a direct cell-cell contact mechanism and that MKs also inhibit osteoclast (OC) formation. As MKs and OCs are derived from the same hematopoietic precursor, in these osteoclastogenesis studies we examined the role of the main MK growth factor, thrombopoietin (TPO) on OC formation and bone resorption. Here we show that TPO directly increases OC formation and differentiation in vitro. Specifically, we demonstrate the TPO receptor (c-mpl or CD110) is expressed on cells of the OC lineage, c-mpl is required for TPO to enhance OC formation in vitro, and TPO activates the mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and nuclear factor-kappaB signaling pathways, but does not activate the PI3K/AKT pathway. Further, we found TPO enhances OC resorption in CD14+CD110+ human OC progenitors derived from peripheral blood mononuclear cells, and further separating OC progenitors based on CD110 expression enriches for mature OC development. The regulation of OCs by TPO highlights a novel therapeutic target for bone loss diseases and may be important to consider in the numerous hematologic disorders associated with alterations in TPO/c-mpl signaling as well as in patients suffering from bone disorders.
Collapse
Affiliation(s)
- Monique Bethel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Calvin L T Barnes
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Amanda F Taylor
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Angela Bruzzaniti
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Edward F Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
17
|
Hooker R, Chitteti B, Egan P, Cheng YH, Himes E, Meijome T, Srour E, Fuchs R, Kacena M. Activated leukocyte cell adhesion molecule (ALCAM or CD166) modulates bone phenotype and hematopoiesis. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2015; 15:83-94. [PMID: 25730656 PMCID: PMC4439374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166), is expressed on osteoblasts (OB) and hematopoietic stem cells (HSC) residing in the hematopoietic niche, and may have important regulatory roles in bone formation. Because HSC numbers are reduced 77% in CD166(-/-) mice, we hypothesized that changes in bone phenotype and consequently the endosteal niche may partially be responsible for this alteration. Therefore, we investigated bone phenotype and OB function in CD166(-/-) mice. Although osteoclastic measures were not affected by loss of CD166, CD166(-/-) mice exhibited a modest increase in trabecular bone fraction (42%), and increases in osteoid deposition (72%), OB number (60%), and bone formation rate (152%). Cortical bone geometry was altered in CD166(-/-) mice resulting in up to 81% and 49% increases in stiffness and ultimate force, respectively. CD166(-/-) OB displayed elevated alkaline phosphatase (ALP) activity and mineralization, and increased mRNA expression of Fra 1, ALP, and osteocalcin. Overall, CD166(-/-) mice displayed modestly elevated trabecular bone volume fraction with increased OB numbers and deposition of osteoid, and increased OB differentiation in vitro, possibly suggesting more mature OB are secreting more osteoid. This may explain the decline in HSC number in vivo because immature OB are mainly responsible for hematopoiesis enhancing activity.
Collapse
Affiliation(s)
- R.A. Hooker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis
| | - B.R. Chitteti
- Department of Medicine, Indiana University School of Medicine, Indianapolis
| | - P.H. Egan
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis
| | - Y-H. Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis
| | - E.R. Himes
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis
| | - T. Meijome
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis
| | - E.F. Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis
| | - R.K. Fuchs
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indianapolis, United States,Robyn K. Fuchs, Ph.D., Associate Professor, Indiana University School of Health and Rehabilitation Sciences, Department of Physical Therapy, 1140 West Michigan St, Coleman Hall 326, Indianapolis, IN 46202, United States E-mail:
| | - M.A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis,Corresponding authors: Melissa Kacena, Ph.D., August M. Watanabe Translational Scholar, Showalter Scholar, Associate Professor, Indiana University School of Medicine, Department of Orthopaedic Surgery, 1120 South Drive, FH 115, Indianapolis, IN 46202, United States E-mail:
| |
Collapse
|
18
|
Cheng YH, Streicher DA, Waning DL, Chitteti BR, Gerard-O'Riley R, Horowitz MC, Bidwell JP, Pavalko FM, Srour EF, Mayo LD, Kacena MA. Signaling pathways involved in megakaryocyte-mediated proliferation of osteoblast lineage cells. J Cell Physiol 2015; 230:578-86. [PMID: 25160801 DOI: 10.1002/jcp.24774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 01/07/2023]
Abstract
Recent studies suggest that megakaryocytes (MKs) may play a significant role in skeletal homeostasis, as evident by the occurrence of osteosclerosis in multiple MK related diseases (Lennert et al., 1975; Thiele et al., 1999; Chagraoui et al., 2006). We previously reported a novel interaction whereby MKs enhanced proliferation of osteoblast lineage/osteoprogenitor cells (OBs) by a mechanism requiring direct cell-cell contact. However, the signal transduction pathways and the downstream effector molecules involved in this process have not been characterized. Here we show that MKs contact with OBs, via beta1 integrin, activate the p38/MAPKAPK2/p90RSK kinase cascade in the bone cells, which causes Mdm2 to neutralizes p53/Rb-mediated check point and allows progression through the G1/S. Interestingly, activation of MAPK (ERK1/2) and AKT, collateral pathways that regulate the cell cycle, remained unchanged with MK stimulation of OBs. The MK-to-OB signaling ultimately results in significant increases in the expression of c-fos and cyclin A, necessary for sustaining the OB proliferation. Overall, our findings show that OBs respond to the presence of MKs, in part, via an integrin-mediated signaling mechanism, activating a novel response axis that de-represses cell cycle activity. Understanding the mechanisms by which MKs enhance OB proliferation will facilitate the development of novel anabolic therapies to treat bone loss associated with osteoporosis and other bone-related diseases.
Collapse
Affiliation(s)
- Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang S, Eleniste PP, Wayakanon K, Mandela P, Eipper BA, Mains RE, Allen MR, Bruzzaniti A. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts. Bone 2014; 60:235-45. [PMID: 24380811 PMCID: PMC3934571 DOI: 10.1016/j.bone.2013.12.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022]
Abstract
Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass.
Collapse
Affiliation(s)
- Su Huang
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Pierre P Eleniste
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Kornchanok Wayakanon
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Prashant Mandela
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Bruzzaniti
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
20
|
Cheng YH, Hooker RA, Nguyen K, Gerard-O'Riley R, Waning DL, Chitteti BR, Meijome TE, Chua HL, Plett AP, Orschell CM, Srour EF, Mayo LD, Pavalko FM, Bruzzaniti A, Kacena MA. Pyk2 regulates megakaryocyte-induced increases in osteoblast number and bone formation. J Bone Miner Res 2013; 28:1434-45. [PMID: 23362087 PMCID: PMC3663900 DOI: 10.1002/jbmr.1876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 01/05/2013] [Accepted: 01/11/2013] [Indexed: 12/20/2022]
Abstract
Preclinical and clinical evidence from megakaryocyte (MK)-related diseases suggests that MKs play a significant role in maintaining bone homeostasis. Findings from our laboratories reveal that MKs significantly increase osteoblast (OB) number through direct MK-OB contact and the activation of integrins. We, therefore, examined the role of Pyk2, a tyrosine kinase known to be regulated downstream of integrins, in the MK-mediated enhancement of OBs. When OBs were co-cultured with MKs, total Pyk2 levels in OBs were significantly enhanced primarily because of increased Pyk2 gene transcription. Additionally, p53 and Mdm2 were both decreased in OBs upon MK stimulation, which would be permissive of cell cycle entry. We then demonstrated that OB number was markedly reduced when Pyk2-/- OBs, as opposed to wild-type (WT) OBs, were co-cultured with MKs. We also determined that MKs inhibit OB differentiation in the presence and absence of Pyk2 expression. Finally, given that MK-replete spleen cells from GATA-1-deficient mice can robustly stimulate OB proliferation and bone formation in WT mice, we adoptively transferred spleen cells from these mice into Pyk2-/- recipient mice. Importantly, GATA-1-deficient spleen cells failed to stimulate an increase in bone formation in Pyk2-/- mice, suggesting in vivo the important role of Pyk2 in the MK-induced increase in bone volume. Further understanding of the signaling pathways involved in the MK-mediated enhancement of OB number and bone formation will facilitate the development of novel anabolic therapies to treat bone loss diseases.
Collapse
Affiliation(s)
- Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Focal adhesion kinases in adhesion structures and disease. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:296450. [PMID: 22888421 PMCID: PMC3409539 DOI: 10.1155/2012/296450] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 01/07/2023]
Abstract
Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases.
Collapse
|