1
|
Xu G, Xiao W, Sun P, Sun Y, Yang X, Yin X, Liu Y. Lysophosphatidylethanolamine improves diastolic dysfunction by alleviating mitochondrial injury in the aging heart. J Lipid Res 2025; 66:100713. [PMID: 39579983 PMCID: PMC11719853 DOI: 10.1016/j.jlr.2024.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024] Open
Abstract
Diastolic dysfunction in aging mice is linked to mitochondrial abnormalities, including mitochondrial morphology disorders and decreases in membrane potential. Studies also show that aberrant mitochondrial lipid metabolism impairs mitochondrial function in aging cardiomyocytes. Our lipidomic analysis revealed that phosphatidylethanolamine (PE) levels were significantly decreased in aging myocardial mitochondria. Here, we investigated whether a reduction in PE levels in myocardial mitochondria contributes to mitochondrial injury as well as HFpEF pathogenesis and whether modulation of PE levels could ameliorate aging-induced HFpEF. Echocardiography was used to assess cardiac diastolic function in adult and aging mice treated with lysophosphatidylethanolamine (LPE) or saline. Mitochondrial morphologies from tissue samples were evaluated by transmission electron microscopy (TEM), while mitochondrial membrane potential and reactive oxygen species (ROS) levels were assessed using JC-1, MitoSOX, and DCFH-DA detection assays. We performed GO enrichment analysis between adult and aging mice and discovered significant enrichment in transcriptional programs associated with mitochondria and lipid metabolism. Also, mitochondrial PE levels were significantly decreased in aging cardiomyocytes. Treatment with LPE (200 μg/kg) significantly enhanced PE content in aging mice and improved the structure of mitochondria in cardiac cells. Also, LPE treatment protects against aging-induced deterioration of mitochondrial injury, as evidenced by increased mitochondrial membrane potential and decreased mitochondrial ROS. Furthermore, treatment with LPE alleviated severe diastolic dysfunction in aging mice. Taken together, our results suggest that LPE treatment enhances PE levels in mitochondria and ameliorates aging-induced diastolic dysfunction in mice through a mechanism involving improved mitochondrial structure and function.
Collapse
Affiliation(s)
- Guiwen Xu
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Xiao
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengqi Sun
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuanjun Sun
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Yang
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaomeng Yin
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yang Liu
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Junco M, Ventura C, Santiago Valtierra FX, Maldonado EN. Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2024; 13:1563. [PMID: 39765891 PMCID: PMC11673973 DOI: 10.3390/antiox13121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Collapse
Affiliation(s)
- Milagros Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina
| | - Clara Ventura
- Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Buenos Aires, La Plata 1900, Argentina;
| | | | - Eduardo Nestor Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Alimohamadi H, Luo EWC, Yang R, Gupta S, Nolden KA, Mandal T, Blake Hill R, Wong GCL. Dynamins combine mechano-constriction and membrane remodeling to enable two-step mitochondrial fission via a 'snap-through' instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608723. [PMID: 39229060 PMCID: PMC11370335 DOI: 10.1101/2024.08.19.608723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitochondrial fission is controlled by dynamin proteins, the dysregulation of which is correlated with diverse diseases. Fission dynamins are GTP hydrolysis-driven mechanoenzymes that self-oligomerize into helical structures that constrict membrane to achieve fission, but details are not well understood. However, dynamins can also remodel membranes by inducing negative Gaussian curvature, the type of curvature required for completion of fission. Here, we examine how these drastically different mechanisms synergistically exert their influences on a membrane, via a mechanical model calibrated with small-angle X-ray scattering structural data. We find that free dynamin can trigger a "snap-through instability" that enforces a shape transition from an oligomer-confined cylindrical membrane to a drastically narrower catenoid-shaped neck within the spontaneous hemi-fission regime, in a manner that depends critically on the length of the confined tube. These results indicate how the combination of dynamin assembly, and paradoxically disassembly, can lead to diverse pathways to scission.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Elizabeth Wei-Chia Luo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Rena Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Shivam Gupta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Kelsey A Nolden
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - R. Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, CO, 80045, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Boone C, Lewis SC. Bridging lipid metabolism and mitochondrial genome maintenance. J Biol Chem 2024; 300:107498. [PMID: 38944117 PMCID: PMC11326895 DOI: 10.1016/j.jbc.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Mitochondria are the nexus of cellular energy metabolism and major signaling hubs that integrate information from within and without the cell to implement cell function. Mitochondria harbor a distinct polyploid genome, mitochondrial DNA (mtDNA), that encodes respiratory chain components required for energy production. MtDNA mutation and depletion have been linked to obesity and metabolic syndrome in humans. At the cellular and subcellular levels, mtDNA synthesis is coordinated by membrane contact sites implicated in lipid transfer from the endoplasmic reticulum, tying genome maintenance to lipid storage and homeostasis. Here, we examine the relationship between mtDNA and lipid trafficking, the influence of lipotoxicity on mtDNA integrity, and how lipid metabolism may be disrupted in primary mtDNA disease.
Collapse
Affiliation(s)
- Casadora Boone
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Samantha C Lewis
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
| |
Collapse
|
5
|
Alimohamadi H, Luo EWC, Gupta S, de Anda J, Yang R, Mandal T, Wong GCL. Comparing Multifunctional Viral and Eukaryotic Proteins for Generating Scission Necks in Membranes. ACS NANO 2024; 18:15545-15556. [PMID: 38838261 PMCID: PMC11846687 DOI: 10.1021/acsnano.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is M2 viroporin, a proton pump from the influenza A virus that is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging small-angle X-ray scattering structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemifission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Elizabeth Wei-Chia Luo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Shivam Gupta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Rena Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Hachmann M, Gülcan G, Rajendran R, Höring M, Liebisch G, Bachhuka A, Kohlhaas M, Maack C, Ergün S, Dudek J, Karnati S. Tafazzin deficiency causes substantial remodeling in the lipidome of a mouse model of Barth Syndrome cardiomyopathy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1389456. [PMID: 39086433 PMCID: PMC11285559 DOI: 10.3389/fmmed.2024.1389456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 08/02/2024]
Abstract
Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.
Collapse
Affiliation(s)
- Malte Hachmann
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Güntas Gülcan
- Department of Medical Biochemistry, Faculty of Medicine, Atlas University, Istanbul, Turkey
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University, Tarragona, Spain
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Medical Clinic 1, University Hospital Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Shiino H, Tashiro S, Hashimoto M, Sakata Y, Hosoya T, Endo T, Kojima H, Tamura Y. Chemical inhibition of phosphatidylcholine biogenesis reveals its role in mitochondrial division. iScience 2024; 27:109189. [PMID: 38420588 PMCID: PMC10901091 DOI: 10.1016/j.isci.2024.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Phospholipids are major components of biological membranes and play structural and regulatory roles in various biological processes. To determine the biological significance of phospholipids, the use of chemical inhibitors of phospholipid metabolism offers an effective approach; however, the availability of such compounds is limited. In this study, we performed a chemical-genetic screening using yeast and identified small molecules capable of inhibiting phosphatidylcholine (PC) biogenesis, which we designated PC inhibitors 1, 2, 3, and 4 (PCiB-1, 2, 3, and 4). Biochemical analyses indicated that PCiB-2, 3, and 4 inhibited the phosphatidylethanolamine (PE) methyltransferase activity of Cho2, whereas PCiB-1 may inhibit PE transport from mitochondria to the endoplasmic reticulum (ER). Interestingly, we found that PCiB treatment resulted in mitochondrial fragmentation, which was suppressed by expression of a dominant-negative mutant of the mitochondrial division factor Dnm1. These results provide evidence that normal PC biogenesis is important for the regulation of mitochondrial division.
Collapse
Affiliation(s)
- Hiroya Shiino
- Graduate School of Global Symbiotic Sciences, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Shinya Tashiro
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Michiko Hashimoto
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto 603-8555, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| |
Collapse
|
8
|
Alimohamadi H, Luo EWC, Gupta S, de Anda J, Yang R, Mandal T, Wong GCL. Comparing multifunctional viral and eukaryotic proteins for generating scission necks in membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574447. [PMID: 38260291 PMCID: PMC10802413 DOI: 10.1101/2024.01.05.574447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is the M2 viroporin, a proton pump from the influenza A virus which is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging Small-Angle X-ray Scattering (SAXS) structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemi-fission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.
Collapse
|
9
|
Dong J, Chen L, Ye F, Tang J, Liu B, Lin J, Zhou PH, Lu B, Wu M, Lu JH, He JJ, Engelender S, Meng Q, Song Z, He H. Mic19 depletion impairs endoplasmic reticulum-mitochondrial contacts and mitochondrial lipid metabolism and triggers liver disease. Nat Commun 2024; 15:168. [PMID: 38168065 PMCID: PMC10762189 DOI: 10.1038/s41467-023-44057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Endoplasmic reticulum (ER)-mitochondria contacts are critical for the regulation of lipid transport, synthesis, and metabolism. However, the molecular mechanism and physiological function of endoplasmic reticulum-mitochondrial contacts remain unclear. Here, we show that Mic19, a key subunit of MICOS (mitochondrial contact site and cristae organizing system) complex, regulates ER-mitochondria contacts by the EMC2-SLC25A46-Mic19 axis. Mic19 liver specific knockout (LKO) leads to the reduction of ER-mitochondrial contacts, mitochondrial lipid metabolism disorder, disorganization of mitochondrial cristae and mitochondrial unfolded protein stress response in mouse hepatocytes, impairing liver mitochondrial fatty acid β-oxidation and lipid metabolism, which may spontaneously trigger nonalcoholic steatohepatitis (NASH) and liver fibrosis in mice. Whereas, the re-expression of Mic19 in Mic19 LKO hepatocytes blocks the development of liver disease in mice. In addition, Mic19 overexpression suppresses MCD-induced fatty liver disease. Thus, our findings uncover the EMC2-SLC25A46-Mic19 axis as a pathway regulating ER-mitochondria contacts, and reveal that impairment of ER-mitochondria contacts may be a mechanism associated with the development of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Jun Dong
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Li Chen
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Ye
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Junhui Tang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jiacheng Lin
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Pang-Hu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Bin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Wu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing-Jing He
- Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Simone Engelender
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Qingtao Meng
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Zhiyin Song
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - He He
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Vlieghe A, Niort K, Fumat H, Guigner JM, Cohen MM, Tareste D. Role of Lipids and Divalent Cations in Membrane Fusion Mediated by the Heptad Repeat Domain 1 of Mitofusin. Biomolecules 2023; 13:1341. [PMID: 37759741 PMCID: PMC10527301 DOI: 10.3390/biom13091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are highly dynamic organelles that constantly undergo fusion and fission events to maintain their shape, distribution and cellular function. Mitofusin 1 and 2 proteins are two dynamin-like GTPases involved in the fusion of outer mitochondrial membranes (OMM). Mitofusins are anchored to the OMM through their transmembrane domain and possess two heptad repeat domains (HR1 and HR2) in addition to their N-terminal GTPase domain. The HR1 domain was found to induce fusion via its amphipathic helix, which interacts with the lipid bilayer structure. The lipid composition of mitochondrial membranes can also impact fusion. However, the precise mode of action of lipids in mitochondrial fusion is not fully understood. In this study, we examined the role of the mitochondrial lipids phosphatidylethanolamine (PE), cardiolipin (CL) and phosphatidic acid (PA) in membrane fusion induced by the HR1 domain, both in the presence and absence of divalent cations (Ca2+ or Mg2+). Our results showed that PE, as well as PA in the presence of Ca2+, effectively stimulated HR1-mediated fusion, while CL had a slight inhibitory effect. By considering the biophysical properties of these lipids in the absence or presence of divalent cations, we inferred that the interplay between divalent cations and specific cone-shaped lipids creates regions with packing defects in the membrane, which provides a favorable environment for the amphipathic helix of HR1 to bind to the membrane and initiate fusion.
Collapse
Affiliation(s)
- Anaïs Vlieghe
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Kristina Niort
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Hugo Fumat
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Jean-Michel Guigner
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), CNRS UMR 7590, MNHN, IRD UR 206, 75005 Paris, France
| | - Mickaël M. Cohen
- Sorbonne Université, Institut de Biologie Physico-Chimique (IBPC), CNRS UMR 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005 Paris, France
| | - David Tareste
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| |
Collapse
|
11
|
Abstract
Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.
Collapse
Affiliation(s)
- Alaumy Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Travis H. Richard
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M. Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Kaur S, Sharma N, Kumar V, Sharma D, Devi B, Kapil L, Singh C, Singh A. The Role of Mitophagy in Various Neurological Diseases as a Therapeutic Approach. Cell Mol Neurobiol 2023; 43:1849-1865. [PMID: 36326951 PMCID: PMC11412177 DOI: 10.1007/s10571-022-01302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
Mitochondria are critical to multiple cellular processes, from the production of adenosine triphosphate (ATP), maintenance of calcium homeostasis, synthesis of key metabolites, and production of reactive oxygen species (ROS) to maintain necrosis, apoptosis, and autophagy. Therefore, proper clearance and regulation are essential to maintain various physiological processes carried out by the cellular mechanism, including mitophagy and autophagy, by breaking down the damaged intracellular connections under the influence of various genes and proteins and protecting against various neurodegenerative diseases such as Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer disease (AD), and Huntington disease (HD). In this review, we will discuss the role of autophagy, selective macroautophagy, or mitophagy, and its role in neurodegenerative diseases along with normal physiology. In addition, this review will provide a better understanding of the pathways involved in neuron autophagy and mitophagy and how mutations affect these pathways in the various genes involved in neurodegenerative diseases. Various new findings indicate that the pathways that remove dysfunctional mitochondria are impaired in these diseases, leading to the deposition of damaged mitochondria. Apart from that, we have also discussed the therapeutic strategies targeting autophagy and mitophagy in neurodegenerative diseases. The mitophagy cycle results in the degradation of damaged mitochondria and the biogenesis of new healthy mitochondria, also highlighting different stages at which a particular neurodegenerative disease could occur.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Neelam Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Bhawna Devi
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India.
| |
Collapse
|
13
|
Olivar-Villanueva M, Ren M, Schlame M, Phoon CK. The critical role of cardiolipin in metazoan differentiation, development, and maturation. Dev Dyn 2023; 252:691-712. [PMID: 36692477 PMCID: PMC10238668 DOI: 10.1002/dvdy.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Cardiolipins are phospholipids that are central to proper mitochondrial functioning. Because mitochondria play crucial roles in differentiation, development, and maturation, we would also expect cardiolipin to play major roles in these processes. Indeed, cardiolipin has been implicated in the mechanism of three human diseases that affect young infants, implying developmental abnormalities. In this review, we will: (1) Review the biology of cardiolipin; (2) Outline the evidence for essential roles of cardiolipin during organismal development, including embryogenesis and cell maturation in vertebrate organisms; (3) Place the role(s) of cardiolipin during embryogenesis within the larger context of the roles of mitochondria in development; and (4) Suggest avenues for future research.
Collapse
Affiliation(s)
| | - Mindong Ren
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Colin K.L. Phoon
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
14
|
Li J, Xin Y, Li J, Chen H, Li H. Phosphatidylethanolamine N-methyltransferase: from Functions to Diseases. Aging Dis 2023; 14:879-891. [PMID: 37191416 PMCID: PMC10187709 DOI: 10.14336/ad.2022.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Locating on endoplasmic reticulum and mitochondria associated membrane, Phosphatidylethanolamine N-methyltransferase (PEMT), catalyzes phosphatidylethanolamine methylation to phosphatidylcholine. As the only endogenous pathway for choline biosynthesis in mammals, the dysregulation of PEMT can lead to imbalance of phospholipid metabolism. Dysregulation of phospholipid metabolism in the liver or heart can lead to deposition of toxic lipid species that adversely result in dysfunction of hepatocyte/cardiomyocyte. Studies have shown that PEMT-/- mice increased susceptibility of diet-induced fatty liver and steatohepatitis. However, knockout of PEMT protects against diet-induced atherosclerosis, diet-induced obesity, and insulin resistance. Thus, novel insights to the function of PEMT in various organs should be summarized. Here, we reviewed the structural and functional properties of PEMT, highlighting its role in the pathogenesis of obesity, liver diseases, cardiovascular diseases, and other conditions.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hui Chen
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China.
| |
Collapse
|
15
|
Kwarteng DO, Gangoda M, Kooijman EE. The effect of methylated phosphatidylethanolamine derivatives on the ionization properties of signaling phosphatidic acid. Biophys Chem 2023; 296:107005. [PMID: 36934676 DOI: 10.1016/j.bpc.2023.107005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Phosphatidylethanolamine (PE) and Phosphatidylcholine (PC) are the most abundant glycerophospholipids in eukaryotic membranes. The differences in the physicochemical properties of their headgroups have contrasting modulatory effects on their interaction with intracellular macromolecules. As such, their overall impact on membrane structure and function differs significantly. Enzymatic methylation of PE's amine headgroup produces two methylated derivatives namely monomethyl PE (MMPE) and dimethyl PE (DMPE) which have physicochemical properties that generally range between that of PE and PC. Additionally, their influence on membrane properties differs from both PE and PC. Although variations in headgroup methylation have been reported to affect signaling pathways, the direct influence that these differences exert on the ionization properties of signaling phospholipids have not been investigated. Here, we briefly review membrane function and structure that are mediated by the differences in headgroup methylation between PE, MMPE, DMPE and PC. In addition, using 31P MAS NMR, we investigate the effect of these four phospholipids on the ionization properties of the ubiquitous signaling anionic lipid phosphatidic acid (PA). Our results show that PA's ionization properties are differentially affected by changes in phospholipid headgroup methylation. This could have important implications for PA-protein binding and hence physiological functions in cells where signaling events lead to changes in abundance of methylated PE derivatives in the membrane.
Collapse
Affiliation(s)
- Desmond Owusu Kwarteng
- Department of Biological Sciences, Kent State University, P.O. Box 5190, Kent, OH 44242, USA.
| | - Mahinda Gangoda
- Department of Chemistry & Biochemistry, Kent State University, P.O. Box 5190, Kent, OH 44242, USA
| | - Edgar E Kooijman
- Department of Biological Sciences, Kent State University, P.O. Box 5190, Kent, OH 44242, USA.
| |
Collapse
|
16
|
Jagtap YA, Kumar P, Kinger S, Dubey AR, Choudhary A, Gutti RK, Singh S, Jha HC, Poluri KM, Mishra A. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front Cell Dev Biol 2023; 11:1146564. [PMID: 36968195 PMCID: PMC10036443 DOI: 10.3389/fcell.2023.1146564] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The disturbance in mitochondrial functions and homeostasis are the major features of neuron degenerative conditions, like Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Alzheimer’s disease, along with protein misfolding. The aberrantly folded proteins are known to link with impaired mitochondrial pathways, further contributing to disease pathogenesis. Despite their central significance, the implications of mitochondrial homeostasis disruption on other organelles and cellular processes remain insufficiently explored. Here, we have reviewed the dysfunction in mitochondrial physiology, under neuron degenerating conditions. The disease misfolded proteins impact quality control mechanisms of mitochondria, such as fission, fusion, mitophagy, and proteasomal clearance, to the detriment of neuron. The adversely affected mitochondrial functional roles, like oxidative phosphorylation, calcium homeostasis, and biomolecule synthesis as well as its axes and contacts with endoplasmic reticulum and lysosomes are also discussed. Mitochondria sense and respond to multiple cytotoxic stress to make cell adapt and survive, though chronic dysfunction leads to cell death. Mitochondria and their proteins can be candidates for biomarkers and therapeutic targets. Investigation of internetworking between mitochondria and neurodegeneration proteins can enhance our holistic understanding of such conditions and help in designing more targeted therapies.
Collapse
Affiliation(s)
- Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
- *Correspondence: Amit Mishra,
| |
Collapse
|
17
|
Sassano ML, van Vliet AR, Vervoort E, Van Eygen S, Van den Haute C, Pavie B, Roels J, Swinnen JV, Spinazzi M, Moens L, Casteels K, Meyts I, Pinton P, Marchi S, Rochin L, Giordano F, Felipe-Abrio B, Agostinis P. PERK recruits E-Syt1 at ER-mitochondria contacts for mitochondrial lipid transport and respiration. J Cell Biol 2023; 222:e202206008. [PMID: 36821088 PMCID: PMC9998969 DOI: 10.1083/jcb.202206008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
The integrity of ER-mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER-mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER-mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER-plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Alexander R. van Vliet
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ellen Vervoort
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Sofie Van Eygen
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Chris Van den Haute
- Research Group for Neurobiology and Gene Therapy, Department of Neuroscience, Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | | | - Joris Roels
- VIB-bioimaging Center UGent, Ghent, Belgium
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marco Spinazzi
- Neuromuscular Reference Center, CHU Angers, Angers, France
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Kristina Casteels
- Woman and Child, Department for Development and Regeneration, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | | | | | - Blanca Felipe-Abrio
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| |
Collapse
|
18
|
St Germain M, Iraji R, Bakovic M. Phosphatidylethanolamine homeostasis under conditions of impaired CDP-ethanolamine pathway or phosphatidylserine decarboxylation. Front Nutr 2023; 9:1094273. [PMID: 36687696 PMCID: PMC9849821 DOI: 10.3389/fnut.2022.1094273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Phosphatidylethanolamine is the major inner-membrane lipid in the plasma and mitochondrial membranes. It is synthesized in the endoplasmic reticulum from ethanolamine and diacylglycerol (DAG) by the CDP-ethanolamine pathway and from phosphatidylserine by decarboxylation in the mitochondria. Recently, multiple genetic disorders that impact these pathways have been identified, including hereditary spastic paraplegia 81 and 82, Liberfarb syndrome, and a new type of childhood-onset neurodegeneration-CONATOC. Individuals with these diseases suffer from multisystem disorders mainly affecting neuronal function. This indicates the importance of maintaining proper phospholipid homeostasis when major biosynthetic pathways are impaired. This study summarizes the current knowledge of phosphatidylethanolamine metabolism in order to identify areas of future research that might lead to the development of treatment options.
Collapse
|
19
|
Balazova M, Vesela P, Babelova L, Durisova I, Kanovicova P, Zahumensky J, Malinsky J. Two Different Phospholipases C, Isc1 and Pgc1, Cooperate To Regulate Mitochondrial Function. Microbiol Spectr 2022; 10:e0248922. [PMID: 36377885 PMCID: PMC9769635 DOI: 10.1128/spectrum.02489-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The absence of Isc1, the yeast homologue of mammalian neutral sphingomyelinase type 2, leads to severe mitochondrial dysfunction. We show that the deletion of another type C phospholipase, the phosphatidylglycerol (PG)-specific phospholipase Pgc1, rescues this defect. Phosphatidylethanolamine (PE) levels and cytochrome c oxidase activity, which were reduced in isc1Δ cells, were restored to wild-type levels in the pgc1Δ isc1Δ mutant. The Pgc1 substrate PG inhibited the in vitro activities of Isc1 and the phosphatidylserine decarboxylase Psd1, an enzyme crucial for PE biosynthesis. We also identify a mechanism by which the balance between the current demand for PG and its consumption is controlled. We document that the product of PG hydrolysis, diacylglycerol, competes with the substrate of PG-phosphate synthase, Pgs1, and thereby inhibits the biosynthesis of excess PG. This feedback loop does not work in the absence of Pgc1, which catalyzes PG degradation. Finally, Pgc1 activity is partially inhibited by products of Isc1-mediated hydrolysis. The described functional interconnection of the two phospholipases contributes significantly to lipid homeostasis throughout the cellular architecture. IMPORTANCE In eukaryotic cells, mitochondria are constantly adapting to changes in the biological activity of the cell, i.e., changes in nutrient availability and environmental stresses. We propose a model in which this adaptation is mediated by lipids. Specifically, we show that mitochondrial phospholipids regulate the biosynthesis of cellular sphingolipids and vice versa. To do this, lipids move by free diffusion, which does not require energy and works under any condition. This model represents a simple way for the cell to coordinate mitochondrial structure and performance with the actual needs of overall cellular metabolism. Its simplicity makes it a universally applicable principle of cellular regulation.
Collapse
Affiliation(s)
- Maria Balazova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Vesela
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Babelova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivana Durisova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Paulina Kanovicova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jakub Zahumensky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Malinsky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
20
|
The Lipid Profile of the Endomyces magnusii Yeast upon the Assimilation of the Substrates of Different Types and upon Calorie Restriction. J Fungi (Basel) 2022; 8:jof8111233. [PMID: 36422054 PMCID: PMC9698397 DOI: 10.3390/jof8111233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The study analyzes the dynamics in the lipid profile of the Endomyces magnusii yeast during the long-lasting cultivation using the substrates of “enzymatic” or “oxidative” type. Moreover, we studied its changes upon calorie restriction (CR) (0.5% glucose) and glucose depletion (0.2% glucose). Di-(DAGs), triacylglycerides (TAGs) and free fatty acids (FFAs) dominate in the storage lipid fractions. The TAG level was high in all the cultures tested and reached 80% of the total lipid amount. While being cultured on 2% substrates, the level of storage lipids decreased at the four-week stage, whereas upon CR their initially low amount doubled. Phosphatidylethanolamines (PE), sterols (St) (up to 62% of total lipids), phosphatidylcholines (PC), and phosphatidic acids (PA) (more than 40% of total lipids) were dominating in the membrane lipids of E magnusii. Upon CR at the late stationary growth stages (3–4 weeks), the total level of membrane lipid was two-fold higher than those on glycerol and 2% glucose. The palmitic acid C16:0 (from 10 to 23%), the palmitoleic acid C16:1 (from 4.3 to 15.9%), the oleic acid C18:1 (from 23.4 to 59.2%), and the linoleic acid C18:2 (from 10.8 to 49.2%) were the dominant fatty acids (FAs) of phospholipids. Upon glucose depletion (0.2% glucose), the total amount of storage and membrane lipids in the cells was comparable to that in the cells both on 2% and 0.5% glucose. High levels of PC and sphingolipids (SL) at the late stationary growth stages and an increased PA level throughout the whole experiment were typical for the membrane lipids composition upon the substrate depletion. There was shown a crucial role of St, PA, and a high share of the unsaturated FAs in the membrane phospholipids upon the adaptation of the E. magnusii yeast to the long-lasting cultivation upon the substrate restriction is shown. The autophagic processes in some fractions of the cell population provide the support of high level of lipid components at the late stages of cultivation upon substrate depletion under the CR conditions. CR is supposed to play the key role in regulating the lipid synthesis and risen resistance to oxidative stress, as well as its possible biotechnological application.
Collapse
|
21
|
Pokharel M, Konarzewska P, Roberge JY, Han GS, Wang Y, Carman GM, Xue C. The Anticancer Drug Bleomycin Shows Potent Antifungal Activity by Altering Phospholipid Biosynthesis. Microbiol Spectr 2022; 10:e0086222. [PMID: 36036637 PMCID: PMC9602507 DOI: 10.1128/spectrum.00862-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022] Open
Abstract
Invasive fungal infections are difficult to treat with limited drug options, mainly because fungi are eukaryotes and share many cellular mechanisms with the human host. Most current antifungal drugs are either fungistatic or highly toxic. Therefore, there is a critical need to identify important fungal specific drug targets for novel antifungal development. Numerous studies have shown the fungal phosphatidylserine (PS) biosynthetic pathway to be a potential target. It is synthesized from CDP-diacylglycerol and serine, and the fungal PS synthesis route is different from that in mammalian cells, in which preexisting phospholipids are utilized to produce PS in a base-exchange reaction. In this study, we utilized a Saccharomyces cerevisiae heterologous expression system to screen for inhibitors of Cryptococcus PS synthase Cho1, a fungi-specific enzyme essential for cell viability. We identified an anticancer compound, bleomycin, as a positive candidate that showed a phospholipid-dependent antifungal effect. Its inhibition on fungal growth can be restored by ethanolamine supplementation. Further exploration of the mechanism of action showed that bleomycin treatment damaged the mitochondrial membrane in yeast cells, leading to increased generation of reactive oxygen species (ROS), whereas supplementation with ethanolamine helped to rescue bleomycin-induced damage. Our results indicate that bleomycin does not specifically inhibit the PS synthase enzyme; however, it may affect phospholipid biosynthesis through disruption of mitochondrial function, namely, the synthesis of phosphatidylethanolamine (PE) and phosphatidylcholine (PC), which helps cells maintain membrane composition and functionality. IMPORTANCE Invasive fungal pathogens cause significant morbidity and mortality, with over 1.5 million deaths annually. Because fungi are eukaryotes that share much of their cellular machinery with the host, our armamentarium of antifungal drugs is highly limited, with only three classes of antifungal drugs available. Drug toxicity and emerging resistance have limited their use. Hence, targeting fungi-specific enzymes that are important for fungal survival, growth, or virulence poses a strategy for novel antifungal development. In this study, we developed a heterologous expression system to screen for chemical compounds with activity against Cryptococcus phosphatidylserine synthase, Cho1, a fungi-specific enzyme that is essential for viability in C. neoformans. We confirmed the feasibility of this screen method and identified a previously unexplored role of the anticancer compound bleomycin in disrupting mitochondrial function and inhibiting phospholipid synthesis.
Collapse
Affiliation(s)
- Mona Pokharel
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Paulina Konarzewska
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jacques Y. Roberge
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, Piscataway, New Jersey, USA
| | - Gil-Soo Han
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Yina Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - George M. Carman
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
22
|
ORP5/8 and MIB/MICOS link ER-mitochondria and intra-mitochondrial contacts for non-vesicular transport of phosphatidylserine. Cell Rep 2022; 40:111364. [PMID: 36130504 DOI: 10.1016/j.celrep.2022.111364] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are dynamic organelles essential for cell survival whose structural and functional integrity rely on selective and regulated transport of lipids from/to the endoplasmic reticulum (ER) and across the mitochondrial intermembrane space. As they are not connected by vesicular transport, the exchange of lipids between ER and mitochondria occurs at membrane contact sites. However, the mechanisms and proteins involved in these processes are only beginning to emerge. Here, we show that the main physiological localization of the lipid transfer proteins ORP5 and ORP8 is at mitochondria-associated ER membrane (MAM) subdomains, physically linked to the mitochondrial intermembrane space bridging (MIB)/mitochondrial contact sites and cristae junction organizing system (MICOS) complexes that bridge the two mitochondrial membranes. We also show that ORP5/ORP8 mediate non-vesicular transport of phosphatidylserine (PS) lipids from the ER to mitochondria by cooperating with the MIB/MICOS complexes. Overall our study reveals a physical and functional link between ER-mitochondria contacts involved in lipid transfer and intra-mitochondrial membrane contacts maintained by the MIB/MICOS complexes.
Collapse
|
23
|
Wang M, Wan Y, Liu T, Zeng X, Liang X, Wu X, Fu G. Effect of Refining Degree on the Quality Changes and Lipid Oxidation of Camellia ( Camellia oleifera) Oil during Heating. Foods 2022; 11:2232. [PMID: 35954000 PMCID: PMC9367799 DOI: 10.3390/foods11152232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Refining degree has an important influence on the quality of camellia (Camellia oleifera) oil. The deterioration behaviors and lipid oxidation of three kinds of camellia oils, including camellia crude oil (CO), moderate refined oil (MRO), and refined oil (RO), during heating were investigated in this study. The results of deterioration behavior analysis showed that the oxidation degree was RO > CO > MRO. Tocopherol and polyphenolic substances in the oil might help delay oil oxidation. The lipid oxidation results indicated that the heating process had greater effects on CO and MRO than RO; it upregulated neutral lipid content and downregulated phospholipid content in terms of lipid changes and the multiplicity of differences. Glycerophospholipid metabolism was the most remarkable pathway and was important to study the heating process of refined oil. Moderate refining is good for retaining the beneficial lipids in camellia oil. The results of this study would provide a theoretical basis for camellia oil processing.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (M.W.); (Y.W.); (X.L.)
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
- State Center of Quality Testing and Inspection for Camellia Products, Ganzhou 341000, China; (T.L.); (X.Z.)
- Ganzhou General Inspection and Testing Institute, Ganzhou 341000, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (M.W.); (Y.W.); (X.L.)
| | - Ting Liu
- State Center of Quality Testing and Inspection for Camellia Products, Ganzhou 341000, China; (T.L.); (X.Z.)
- Ganzhou General Inspection and Testing Institute, Ganzhou 341000, China
| | - Xiuying Zeng
- State Center of Quality Testing and Inspection for Camellia Products, Ganzhou 341000, China; (T.L.); (X.Z.)
- Ganzhou General Inspection and Testing Institute, Ganzhou 341000, China
| | - Xinmei Liang
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (M.W.); (Y.W.); (X.L.)
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Xiaojiang Wu
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China;
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (M.W.); (Y.W.); (X.L.)
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| |
Collapse
|
24
|
Chu I, Chen YC, Lai RY, Chan JF, Lee YH, Balazova M, Hsu YHH. Phosphatidylglycerol Supplementation Alters Mitochondrial Morphology and Cardiolipin Composition. MEMBRANES 2022; 12:membranes12040383. [PMID: 35448353 PMCID: PMC9028734 DOI: 10.3390/membranes12040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
The pathogenic variant of the TAZ gene is directly associated with Barth syndrome. Because tafazzin in the mitochondria is responsible for cardiolipin (CL) remodeling, all molecules related to the metabolism of CL can affect or be affected by TAZ mutation. In this study, we intend to recover the distortion of the mitochondrial lipid composition, especially CL, for Barth syndrome treatment. The genetically edited TAZ knockout HAP1 cells were demonstrated to be a suitable cellular model, where CL desaturation occurred and monolyso-CL (MLCL) was accumulated. From the species analysis by mass spectrometry, phosphatidylethanolamine showed changed species content after TAZ knockout. TAZ knockout also caused genetic down-regulation of PGS gene and up-regulation of PNPLA8 gene, which may decrease the biosynthesis of CLs and increase the hydrolysis product MLCL. Supplemented phosphatidylglycerol(18:1)2 (PG(18:1)2) was successfully biosynthesized to mature symmetrical CL and drastically decrease the concentration of MLCL to recover the morphology of mitochondria and the cristae shape of inner mitochondria. Newly synthesized mature CL may induce the down-regulation of PLA2G6 and PNPLA8 genes to potentially decrease MLCL production. The excess supplemented PG was further metabolized into phosphatidylcholine and phosphatidylethanolamine.
Collapse
Affiliation(s)
- I Chu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
| | - Ying-Chih Chen
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
| | - Ruo-Yun Lai
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
| | - Jui-Fen Chan
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
| | - Ya-Hui Lee
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
| | - Maria Balazova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
- Correspondence: ; Tel.: +886-4-23590121 (ext. 32230); Fax: +886-4-23590426
| |
Collapse
|
25
|
Murakami A, Nagao K, Sakaguchi R, Kida K, Hara Y, Mori Y, Okabe K, Harada Y, Umeda M. Cell-autonomous control of intracellular temperature by unsaturation of phospholipid acyl chains. Cell Rep 2022; 38:110487. [PMID: 35294880 DOI: 10.1016/j.celrep.2022.110487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/03/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Intracellular temperature affects a wide range of cellular functions in living organisms. However, it remains unclear whether temperature in individual animal cells is controlled autonomously as a response to fluctuations in environmental temperature. Using two distinct intracellular thermometers, we find that the intracellular temperature of steady-state Drosophila S2 cells is maintained in a manner dependent on Δ9-fatty acid desaturase DESAT1, which introduces a double bond at the Δ9 position of the acyl moiety of acyl-CoA. The DESAT1-mediated increase of intracellular temperature is caused by the enhancement of F1Fo-ATPase-dependent mitochondrial respiration, which is coupled with thermogenesis. We also reveal that F1Fo-ATPase-dependent mitochondrial respiration is potentiated by cold exposure through the remodeling of mitochondrial cristae structures via DESAT1-dependent unsaturation of mitochondrial phospholipid acyl chains. Based on these findings, we propose a cell-autonomous mechanism for intracellular temperature control during environmental temperature changes.
Collapse
Affiliation(s)
- Akira Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Reiko Sakaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Keisuke Kida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| |
Collapse
|
26
|
John Peter AT, Schie SNS, Cheung NJ, Michel AH, Peter M, Kornmann B. Rewiring phospholipid biosynthesis reveals resilience to membrane perturbations and uncovers regulators of lipid homeostasis. EMBO J 2022; 41:e109998. [PMID: 35188676 PMCID: PMC8982615 DOI: 10.15252/embj.2021109998] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
The organelles of eukaryotic cells differ in their membrane lipid composition. This heterogeneity is achieved by the localization of lipid synthesizing and modifying enzymes to specific compartments, as well as by intracellular lipid transport that utilizes vesicular and non‐vesicular routes to ferry lipids from their place of synthesis to their destination. For instance, the major and essential phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), can be produced by multiple pathways and, in the case of PE, also at multiple locations. However, the molecular components that underlie lipid homeostasis as well as the routes allowing their distribution remain unclear. Here, we present an approach in which we simplify and rewire yeast phospholipid synthesis by redirecting PE and PC synthesis reactions to distinct subcellular locations using chimeric enzymes fused to specific organelle targeting motifs. In rewired conditions, viability is expected to depend on homeostatic adaptation to the ensuing lipostatic perturbations and on efficient interorganelle lipid transport. We therefore performed genetic screens to identify factors involved in both of these processes. Among the candidates identified, we find genes linked to transcriptional regulation of lipid homeostasis, lipid metabolism, and transport. In particular, we identify a requirement for Csf1—an uncharacterized protein harboring a Chorein‐N lipid transport motif—for survival under certain rewired conditions as well as lipidomic adaptation to cold, implicating Csf1 in interorganelle lipid transport and homeostatic adaptation.
Collapse
Affiliation(s)
| | | | - Ngaam J Cheung
- Department of Biochemistry University of Oxford Oxford UK
| | - Agnès H Michel
- Department of Biochemistry University of Oxford Oxford UK
| | | | | |
Collapse
|
27
|
Gok MO, Speer NO, Henne WM, Friedman JR. ER-localized phosphatidylethanolamine synthase plays a conserved role in lipid droplet formation. Mol Biol Cell 2022; 33:ar11. [PMID: 34818062 PMCID: PMC8886813 DOI: 10.1091/mbc.e21-11-0558-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The asymmetric distribution of phospholipids in membranes is a fundamental principle of cellular compartmentalization and organization. Phosphatidylethanolamine (PE), a nonbilayer phospholipid that contributes to organelle shape and function, is synthesized at several subcellular localizations via semiredundant pathways. Previously, we demonstrated in budding yeast that the PE synthase Psd1, which primarily operates on the mitochondrial inner membrane, is additionally targeted to the ER. While ER-localized Psd1 is required to support cellular growth in the absence of redundant pathways, its physiological function is unclear. We now demonstrate that ER-localized Psd1 sublocalizes on the ER to lipid droplet (LD) attachment sites and show it is specifically required for normal LD formation. We also find that the role of phosphatidylserine decarboxylase (PSD) enzymes in LD formation is conserved in other organisms. Thus we have identified PSD enzymes as novel regulators of LDs and demonstrate that both mitochondria and LDs in yeast are organized and shaped by the spatial positioning of a single PE synthesis enzyme.
Collapse
Affiliation(s)
- Mehmet Oguz Gok
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Natalie Ortiz Speer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jonathan R Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
28
|
Ji J, Greenberg ML. Cardiolipin function in the yeast S. cerevisiae and the lessons learned for Barth syndrome. J Inherit Metab Dis 2022; 45:60-71. [PMID: 34626131 PMCID: PMC8755574 DOI: 10.1002/jimd.12447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Cardiolipin (CL) is the signature phospholipid (PL) of mitochondria and plays a pivotal role in mitochondrial and cellular function. Disruption of the CL remodeling gene tafazzin (TAZ) causes the severe genetic disorder Barth syndrome (BTHS). Our current understanding of the function of CL and the mechanism underlying the disease has greatly benefited from studies utilizing the powerful yeast model Saccharomyces cerevisiae. In this review, we discuss important findings on the function of CL and its remodeling from yeast studies and the implications of these findings for BTHS, highlighting the potential physiological modifiers that may contribute to the disparities in clinical presentation among BTHS patients.
Collapse
Affiliation(s)
- Jiajia Ji
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
29
|
Káňovičová P, Čermáková P, Kubalová D, Bábelová L, Veselá P, Valachovič M, Zahumenský J, Horváth A, Malínský J, Balážová M. Blocking phosphatidylglycerol degradation in yeast defective in cardiolipin remodeling results in a new model of the Barth syndrome cellular phenotype. J Biol Chem 2021; 298:101462. [PMID: 34864056 PMCID: PMC8728584 DOI: 10.1016/j.jbc.2021.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/01/2022] Open
Abstract
Barth syndrome (BTHS) is an inherited mitochondrial disorder characterized by a decrease in total cardiolipin and the accumulation of its precursor monolysocardiolipin due to the loss of the transacylase enzyme tafazzin. However, the molecular basis of BTHS pathology is still not well understood. Here we characterize the double mutant pgc1Δtaz1Δ of Saccharomyces cerevisiae deficient in phosphatidylglycerol-specific phospholipase C and tafazzin as a new yeast model of BTHS. Unlike the taz1Δ mutant used to date, this model accumulates phosphatidylglycerol, thus better approximating the human BTHS cells. We demonstrate that increased phosphatidylglycerol in this strain leads to more pronounced mitochondrial respiratory defects and an increased incidence of aberrant mitochondria compared to the single taz1Δ mutant. We also show that the mitochondria of the pgc1Δtaz1Δ mutant exhibit a reduced rate of respiration due to decreased cytochrome c oxidase and ATP synthase activities. Finally, we determined that the mood-stabilizing anticonvulsant valproic acid has a positive effect on both lipid composition and mitochondrial function in these yeast BTHS models. Overall, our results show that the pgc1Δtaz1Δ mutant better mimics the cellular phenotype of BTHS patients than taz1Δ cells, both in terms of lipid composition and the degree of disruption of mitochondrial structure and function. This favors the new model for use in future studies.
Collapse
Affiliation(s)
- Paulína Káňovičová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Čermáková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Dominika Kubalová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lenka Bábelová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Veselá
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Valachovič
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jakub Zahumenský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jan Malínský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Mária Balážová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
30
|
Abstract
Barth syndrome is a rare and potentially fatal X-linked disease characterized by cardiomyopathy, skeletal muscle weakness, growth delays, and cyclic neutropenia. Patients with Barth syndrome are prone to high risk of mortality in infancy and the development of cardiomyopathy with severe weakening of the immune system. Elamipretide is a water-soluble, aromatic-cationic, mitochondria-targeting tetrapeptide that readily penetrates and transiently localizes to the inner mitochondrial membrane. Therapy with elamipretide facilitates cell health by improving energy production and inhibiting excessive formation of reactive oxygen species, thus alleviating oxidative stress. Elamipretide crosses the outer membrane of the mitochondrion and becomes associated with cardiolipin, a constituent phospholipid of the inner membrane. Elamipretide improves mitochondrial bioenergetics and morphology rapidly in induced pluripotent stem cells from patients with Barth syndrome and other genetically related diseases characterized by pediatric cardiomyopathy. Data with elamipretide across multiple models of disease are especially promising, with results from several studies supporting the use of elamipretide as potential therapy for patients with Barth syndrome, particularly where there is a confirmed diagnosis of cardiomyopathy. This review highlights the challenges and opportunities presented in treating Barth syndrome cardiomyopathy patients with elamipretide and addresses evidence supporting the durability of effect of elamipretide as a therapeutic agent for Barth syndrome, especially its likely durable effects on progression of cardiomyopathy following the cessation of drug treatment and the capability of elamipretide to structurally reverse remodel the failing left ventricle at the global, cellular, and molecular level in a gradual manner through specific targeting of the mitochondrial inner membrane.
Collapse
|
31
|
Adegbuyiro A, Sedighi F, Jain P, Pinti MV, Siriwardhana C, Hollander JM, Legleiter J. Mitochondrial membranes modify mutant huntingtin aggregation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183663. [PMID: 34089719 PMCID: PMC8328955 DOI: 10.1016/j.bbamem.2021.183663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract near the N-terminus of the huntingtin (htt) protein. Expanded polyQ tracts are prone to aggregate into oligomers and insoluble fibrils. Mutant htt (mhtt) localizes to variety of organelles, including mitochondria. Specifically, mitochondrial defects, morphological alteration, and dysfunction are observed in HD. Mitochondrial lipids, cardiolipin (CL) in particular, are essential in mitochondria function and have the potential to directly interact with htt, altering its aggregation. Here, the impact of mitochondrial membranes on htt aggregation was investigated using a combination of mitochondrial membrane mimics and tissue-derived mitochondrial-enriched fractions. The impact of exposure of outer and inner mitochondrial membrane mimics (OMM and IMM respectively) to mhtt was explored. OMM and IMM reduced mhtt fibrillization, with IMM having a larger effect. The role of CL in mhtt aggregation was investigated using a simple PC system with varying molar ratios of CL. Lower molar ratios of CL (<5%) promoted fibrillization; however, increased CL content retarded fibrillization. As revealed by in situ AFM, mhtt aggregation and associated membrane morphological changes at the surface of OMM mimics was markedly different compared to IMM mimics. While globular deposits of mhtt with few fibrillar aggregates were observed on OMM, plateau-like domains were observed on IMM. A similar impact on htt aggregation was observed with exposure to purified mitochondrial-enriched fractions. Collectively, these observations suggest mitochondrial membranes heavily influence htt aggregation with implication for HD.
Collapse
Affiliation(s)
- Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - Pranav Jain
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - Mark V Pinti
- Division of Exercise Physiology, West Virginia School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Chathuranga Siriwardhana
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - John M Hollander
- Division of Exercise Physiology, West Virginia School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States; Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, WV 26505, United States; Department of Neuroscience, West Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, WV 26505, United States.
| |
Collapse
|
32
|
Aung LHH, Jumbo JCC, Wang Y, Li P. Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: A concise review. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:416-443. [PMID: 34484866 PMCID: PMC8405900 DOI: 10.1016/j.omtn.2021.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pathological cardiac hypertrophy begins as an adaptive response to increased workload; however, sustained hemodynamic stress will lead it to maladaptation and eventually cardiac failure. Mitochondria, being the powerhouse of the cells, can regulate cardiac hypertrophy in both adaptive and maladaptive phases; they are dynamic organelles that can adjust their number, size, and shape through a process called mitochondrial dynamics. Recently, several studies indicate that promoting mitochondrial fusion along with preventing mitochondrial fission could improve cardiac function during cardiac hypertrophy and avert its progression toward heart failure. However, some studies also indicate that either hyperfusion or hypo-fission could induce apoptosis and cardiac dysfunction. In this review, we summarize the recent knowledge regarding the effects of mitochondrial dynamics on the development and progression of cardiac hypertrophy with particular emphasis on the regulatory role of mitochondrial dynamics proteins through the genetic, epigenetic, and post-translational mechanisms, followed by discussing the novel therapeutic strategies targeting mitochondrial dynamic pathways.
Collapse
Affiliation(s)
- Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,Center for Bioinformatics, Institute for Translational Medicine, School of Basic Science, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Juan Carlos Cueva Jumbo
- School of Preclinical Medicine, Nanobody Research Center, Guangxi Medical University, Nanning 530021, China
| | - Yin Wang
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,Center for Bioinformatics, Institute for Translational Medicine, School of Basic Science, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
33
|
Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 2021; 9:124. [PMID: 34233766 PMCID: PMC8262011 DOI: 10.1186/s40478-021-01224-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA.
| |
Collapse
|
34
|
Tamura Y, Kawano S, Endo T. Lipid homeostasis in mitochondria. Biol Chem 2021; 401:821-833. [PMID: 32229651 DOI: 10.1515/hsz-2020-0121] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are surrounded by the two membranes, the outer and inner membranes, whose lipid compositions are optimized for proper functions and structural organizations of mitochondria. Although a part of mitochondrial lipids including their characteristic lipids, phosphatidylethanolamine and cardiolipin, are synthesized within mitochondria, their precursor lipids and other lipids are transported from other organelles, mainly the ER. Mitochondrially synthesized lipids are re-distributed within mitochondria and to other organelles, as well. Recent studies pointed to the important roles of inter-organelle contact sites in lipid trafficking between different organelle membranes. Identification of Ups/PRELI proteins as lipid transfer proteins shuttling between the mitochondrial outer and inner membranes established a part of the molecular and structural basis of the still elusive intra-mitochondrial lipid trafficking.
Collapse
Affiliation(s)
- Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
35
|
Isakova EP, Gessler NN, Dergacheva DI, Tereshina VM, Deryabina YI, Kieliszek M. Lipid Remodeling in the Mitochondria upon Ageing during the Long-Lasting Cultivation of Endomyces magnusii. APPLIED SCIENCES 2021; 11:4069. [DOI: 10.3390/app11094069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
In this study, we used Endomyces magnusii yeast with a complete respiratory chain and well-developed mitochondria system. This system is similar to the animal one which makes the yeast species an excellent model for studying ageing mechanisms. Mitochondria membranes play a vital role in the metabolic processes in a yeast cell. Mitochondria participate in the metabolism of several pivotal compounds including fatty acids (FAs) metabolism. The mitochondria respiratory activity, the membrane and storage lipids composition, and morphological changes in the culture during the long-lasting cultivation (for 168 h) were under investigation. High metabolic activity of E. magnusii might be related to the active function of mitochondria increasing in the 96- and 168-h growth phases. Cardiolipin (CL), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and sterols (St) were dominant in the membrane lipids. The St and sphingolipids (SL) shares increased by a lot, whereas the CL and phosphatidylinositol (PI) + PE ones decreased in the membrane lipids. This was the main change in the membrane lipid composition during the cultivation. In contrast, the amount of PE and phosphatidylserine (PS) did not change. Index of Hydrogen Deficiency (IHD) of phospholipids (PL) FAs significantly declined due to a decrease in the linoleic acid share and an increase in the amount of palmitic and oleic acid. There were some storage lipids in the mitochondria where free fatty acids (FFAs) (73–99% of the total) dominated, reaching the highest level in the 96-h phase. Thus, we can conclude that upon long-lasting cultivation, for the yeast assimilating an “oxidative” substrate, the following factors are of great importance in keeping longevity: (1) a decrease in the IHD reduces double bonds and the peroxidation indices of various lipid classes; (2) the amount of long-chain FFAs declines. Moreover, the factor list providing a long lifespan should include some other physiological features in the yeast cell. The alternative oxidase activity induced in the early stationary growth phase and high mitochondria activity maintains intensive oxygen consumption. It determines the ATP production and physiological doses of reactive oxygen species (ROS), which could be regarded as a trend favoring the increased longevity.
Collapse
Affiliation(s)
- Elena P. Isakova
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, bld 33-2, Leninsky Prospect, 119071 Moscow, Russia
| | - Natalya N. Gessler
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, bld 33-2, Leninsky Prospect, 119071 Moscow, Russia
| | - Daria I. Dergacheva
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, bld 33-2, Leninsky Prospect, 119071 Moscow, Russia
| | - Vera M. Tereshina
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, bld 33-2, Leninsky Prospect, 119071 Moscow, Russia
| | - Yulia I. Deryabina
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, bld 33-2, Leninsky Prospect, 119071 Moscow, Russia
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
36
|
Acoba MG, Senoo N, Claypool SM. Phospholipid ebb and flow makes mitochondria go. J Cell Biol 2021; 219:151918. [PMID: 32614384 PMCID: PMC7401802 DOI: 10.1083/jcb.202003131] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondria, so much more than just being energy factories, also have the capacity to synthesize macromolecules including phospholipids, particularly cardiolipin (CL) and phosphatidylethanolamine (PE). Phospholipids are vital constituents of mitochondrial membranes, impacting the plethora of functions performed by this organelle. Hence, the orchestrated movement of phospholipids to and from the mitochondrion is essential for cellular integrity. In this review, we capture recent advances in the field of mitochondrial phospholipid biosynthesis and trafficking, highlighting the significance of interorganellar communication, intramitochondrial contact sites, and lipid transfer proteins in maintaining membrane homeostasis. We then discuss the physiological functions of CL and PE, specifically how they associate with protein complexes in mitochondrial membranes to support bioenergetics and maintain mitochondrial architecture.
Collapse
Affiliation(s)
- Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
37
|
Iadarola DM, Joshi A, Caldwell CB, Gohil VM. Choline restores respiration in Psd1-deficient yeast by replenishing mitochondrial phosphatidylethanolamine. J Biol Chem 2021; 296:100539. [PMID: 33722607 PMCID: PMC8054189 DOI: 10.1016/j.jbc.2021.100539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Phosphatidylethanolamine (PE) is essential for mitochondrial respiration in yeast, Saccharomyces cerevisiae, whereas the most abundant mitochondrial phospholipid, phosphatidylcholine (PC), is largely dispensable. Surprisingly, choline (Cho), which is a biosynthetic precursor of PC, has been shown to rescue the respiratory growth of mitochondrial PE-deficient yeast; however, the mechanism underlying this rescue has remained unknown. Using a combination of yeast genetics, lipid biochemistry, and cell biological approaches, we uncover the mechanism by showing that Cho rescues mitochondrial respiration by partially replenishing mitochondrial PE levels in yeast cells lacking the mitochondrial PE-biosynthetic enzyme Psd1. This rescue is dependent on the conversion of Cho to PC via the Kennedy pathway as well as on Psd2, an enzyme catalyzing PE biosynthesis in the endosome. Metabolic labeling experiments reveal that in the absence of exogenously supplied Cho, PE biosynthesized via Psd2 is mostly directed to the methylation pathway for PC biosynthesis and is unavailable for replenishing mitochondrial PE in Psd1-deleted cells. In this setting, stimulating the Kennedy pathway for PC biosynthesis by Cho spares Psd2-synthesized PE from the methylation pathway and redirects it to the mitochondria. Cho-mediated elevation in mitochondrial PE is dependent on Vps39, which has been recently implicated in PE trafficking to the mitochondria. Accordingly, epistasis experiments placed Vps39 downstream of Psd2 in Cho-based rescue. Our work, thus, provides a mechanism of Cho-based rescue of mitochondrial PE deficiency and uncovers an intricate interorganelle phospholipid regulatory network that maintains mitochondrial PE homeostasis.
Collapse
Affiliation(s)
- Donna M Iadarola
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA
| | - Alaumy Joshi
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA
| | - Cameron B Caldwell
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
38
|
Abstract
Barth syndrome (BTHS) is a rare, X-linked recessive, infantile-onset debilitating disorder characterized by early-onset cardiomyopathy, skeletal muscle myopathy, growth delay, and neutropenia, with a worldwide incidence of 1/300,000-400,000 live births. The high mortality rate throughout infancy in BTHS patients is related primarily to progressive cardiomyopathy and a weakened immune system. BTHS is caused by defects in the TAZ gene that encodes tafazzin, a transacylase responsible for the remodeling and maturation of the mitochondrial phospholipid cardiolipin (CL), which is critical to normal mitochondrial structure and function (i.e., ATP generation). A deficiency in tafazzin results in up to a 95% reduction in levels of structurally mature CL. Because the heart is the most metabolically active organ in the body, with the highest mitochondrial content of any tissue, mitochondrial dysfunction plays a key role in the development of heart failure in patients with BTHS. Changes in mitochondrial oxidative phosphorylation reduce the ability of mitochondria to meet the ATP demands of the human heart as well as skeletal muscle, namely ATP synthesis does not match the rate of ATP consumption. The presence of several cardiomyopathic phenotypes have been described in BTHS, including dilated cardiomyopathy, left ventricular noncompaction, either alone or in conjunction with other cardiomyopathic phenotypes, endocardial fibroelastosis, hypertrophic cardiomyopathy, and an apical form of hypertrophic cardiomyopathy, among others, all of which can be directly attributed to the lack of CL synthesis, remodeling, and maturation with subsequent mitochondrial dysfunction. Several mechanisms by which these cardiomyopathic phenotypes exist have been proposed, thereby identifying potential targets for treatment. Dysfunction of the sarcoplasmic reticulum Ca2+-ATPase pump and inflammation potentially triggered by circulating mitochondrial components have been identified. Currently, treatment modalities are aimed at addressing symptomatology of HF in BTHS, but do not address the underlying pathology. One novel therapeutic approach includes elamipretide, which crosses the mitochondrial outer membrane to localize to the inner membrane where it associates with cardiolipin to enhance ATP synthesis in several organs, including the heart. Encouraging clinical results of the use of elamipretide in treating patients with BTHS support the potential use of this drug for management of this rare disease.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
39
|
Eiyama A, Aaltonen MJ, Nolte H, Tatsuta T, Langer T. Disturbed intramitochondrial phosphatidic acid transport impairs cellular stress signaling. J Biol Chem 2021; 296:100335. [PMID: 33497623 PMCID: PMC7949116 DOI: 10.1016/j.jbc.2021.100335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 01/18/2023] Open
Abstract
Lipid transfer proteins of the Ups1/PRELID1 family facilitate the transport of phospholipids across the intermembrane space of mitochondria in a lipid-specific manner. Heterodimeric complexes of yeast Ups1/Mdm35 or human PRELID1/TRIAP1 shuttle phosphatidic acid (PA) mainly synthesized in the endoplasmic reticulum (ER) to the inner membrane, where it is converted to cardiolipin (CL), the signature phospholipid of mitochondria. Loss of Ups1/PRELID1 proteins impairs the accumulation of CL and broadly affects mitochondrial structure and function. Unexpectedly and unlike yeast cells lacking the CL synthase Crd1, Ups1-deficient yeast cells exhibit glycolytic growth defects, pointing to functions of Ups1-mediated PA transfer beyond CL synthesis. Here, we show that the disturbed intramitochondrial transport of PA in ups1Δ cells leads to altered unfolded protein response (UPR) and mTORC1 signaling, independent of disturbances in CL synthesis. The impaired flux of PA into mitochondria is associated with the increased synthesis of phosphatidylcholine and a reduced phosphatidylethanolamine/phosphatidylcholine ratio in the ER of ups1Δ cells which suppresses the UPR. Moreover, we observed inhibition of target of rapamycin complex 1 (TORC1) signaling in these cells. Activation of either UPR by ER protein stress or of TORC1 signaling by disruption of its negative regulator, the Seh1-associated complex inhibiting TORC1 complex, increased cytosolic protein synthesis, and restored glycolytic growth of ups1Δ cells. These results demonstrate that PA influx into mitochondria is required to preserve ER membrane homeostasis and that its disturbance is associated with impaired glycolytic growth and cellular stress signaling.
Collapse
Affiliation(s)
- Akinori Eiyama
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Mari J Aaltonen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Takashi Tatsuta
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
40
|
Serricchio M, Hierro-Yap C, Schädeli D, Ben Hamidane H, Hemphill A, Graumann J, Zíková A, Bütikofer P. Depletion of cardiolipin induces major changes in energy metabolism in Trypanosoma brucei bloodstream forms. FASEB J 2020; 35:e21176. [PMID: 33184899 DOI: 10.1096/fj.202001579rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane glycerophospholipid cardiolipin (CL) associates with mitochondrial proteins to regulate their activities and facilitate protein complex and supercomplex formation. Loss of CL leads to destabilized respiratory complexes and mitochondrial dysfunction. The role of CL in an organism lacking a conventional electron transport chain (ETC) has not been elucidated. Trypanosoma brucei bloodstream forms use an unconventional ETC composed of glycerol-3-phosphate dehydrogenase and alternative oxidase (AOX), while the mitochondrial membrane potential (ΔΨm) is generated by the hydrolytic action of the Fo F1 -ATP synthase (aka Fo F1 -ATPase). We now report that the inducible depletion of cardiolipin synthase (TbCls) is essential for survival of T brucei bloodstream forms. Loss of CL caused a rapid drop in ATP levels and a decline in the ΔΨm. Unbiased proteomic analyses revealed a reduction in the levels of many mitochondrial proteins, most notably of Fo F1 -ATPase subunits and AOX, resulting in a strong decline of glycerol-3-phosphate-stimulated oxygen consumption. The changes in cellular respiration preceded the observed decrease in Fo F1 -ATPase stability, suggesting that the AOX-mediated ETC is the first pathway responding to the decline in CL. Select proteins and pathways involved in glucose and amino acid metabolism were upregulated to counteract the CL depletion-induced drop in cellular ATP.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Carolina Hierro-Yap
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Johannes Graumann
- Weill Cornell Medicine - Qatar, Doha, State of Qatar.,Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alena Zíková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
41
|
Takagi K, Kikkawa A, Iwama R, Fukuda R, Horiuchi H. Type II phosphatidylserine decarboxylase is crucial for the growth and morphogenesis of the filamentous fungus Aspergillus nidulans. J Biosci Bioeng 2020; 131:139-146. [PMID: 33109479 DOI: 10.1016/j.jbiosc.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022]
Abstract
Phosphatidylserine decarboxylases (PSDs) catalyze the production of phosphatidylethanolamine (PE) from phosphatidylserine (PS) and are crucial for the maintenance of PE levels in fungi. The PSDs are classified into two types; the type I PSDs are conserved from bacteria to humans, while the type II PSDs exist only in fungi and plants. In yeasts, the deletion of type I PSD-encoding genes causes severe growth retardation. In contrast, the deletion of type II PSD-encoding genes has little or no effect. In this study, we found four genes encoding type II PSD orthologs in the filamentous fungus Aspergillus nidulans; these included psdB, psdC, psdD, and psdE. Deletion of psdB caused severe growth defects on minimal medium and these defects were partially restored by the addition of ethanolamine, choline, PE, or phosphatidylcholine into the medium. The conidiation efficiency of the psdB deletion mutant was dramatically decreased and its conidiophore structures were aberrant. In the psdB deletion mutant, the PE content decreased while the PS content increased. We further showed that PsdB had a major PSD activity. Our findings suggest that the type II PSDs exert important roles in the phospholipid homeostasis, and in the growth and morphogenesis of filamentous fungi.
Collapse
Affiliation(s)
- Keiko Takagi
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Akari Kikkawa
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
42
|
Petit PX, Ardilla-Osorio H, Penalvia L, Nathan E. R. Tafazzin Mutation Affecting Cardiolipin Leads to Increased Mitochondrial Superoxide Anions and Mitophagy Inhibition in Barth Syndrome. Cells 2020; 9:cells9102333. [PMID: 33096711 PMCID: PMC7589545 DOI: 10.3390/cells9102333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Tafazzin is a phospholipid transacylase that catalyzes the remodeling of cardiolipin, a mitochondrial phospholipid required for oxidative phosphorylation. Mutations of the tafazzin gene cause Barth syndrome, which is characterized by mitochondrial dysfunction and dilated cardiomyopathy, leading to premature death. However, the molecular mechanisms underlying the cause of mitochondrial dysfunction in Barth syndrome remain poorly understood. We again highlight the fact that the tafazzin deficiency is also linked to defective oxidative phosphorylation associated with oxidative stress. All the mitochondrial events are positioned in a context where mitophagy is a key element in mitochondrial quality control. Here, we investigated the role of tafazzin in mitochondrial homeostasis dysregulation and mitophagy alteration. Using a HeLa cell model of tafazzin deficiency, we show that dysregulation of tafazzin in HeLa cells induces alteration of mitophagy. Our findings provide some additional insights into mitochondrial dysfunction associated with Barth syndrome, but also show that mitophagy inhibition is concomitant with apoptosis dysfunction through the inability of abnormal mitochondrial cardiolipin to assume its role in cytoplasmic signal transduction. Our work raises hope that pharmacological manipulation of the mitophagic pathway together with mitochondrially targeted antioxidants may provide new insights leading to promising treatment for these highly lethal conditions.
Collapse
Affiliation(s)
- Patrice X. Petit
- SSPIN Saints-Pères Paris Institut de Neurosciences, CNRS UMR 8003, “Mitochondria, Apoptosis and Autophagy Signalling” Université de Paris—Campus Saint-Germain, 45 rue des Saints-Pères, 75006 Paris, France; (L.P.); (R.N.E.)
- Correspondence: or ; Tel.: +33(0)6-78-24-80-87
| | - Hector Ardilla-Osorio
- Laboratoire Cellules Souches et Prions, INSERM-S 1124, Université de Paris—Campus Saint-Germain, 45 rue des Saints Pères, 75006 Paris, France;
| | - Lucile Penalvia
- SSPIN Saints-Pères Paris Institut de Neurosciences, CNRS UMR 8003, “Mitochondria, Apoptosis and Autophagy Signalling” Université de Paris—Campus Saint-Germain, 45 rue des Saints-Pères, 75006 Paris, France; (L.P.); (R.N.E.)
| | - Rainey Nathan E.
- SSPIN Saints-Pères Paris Institut de Neurosciences, CNRS UMR 8003, “Mitochondria, Apoptosis and Autophagy Signalling” Université de Paris—Campus Saint-Germain, 45 rue des Saints-Pères, 75006 Paris, France; (L.P.); (R.N.E.)
| |
Collapse
|
43
|
Gao S, Hu J. Mitochondrial Fusion: The Machineries In and Out. Trends Cell Biol 2020; 31:62-74. [PMID: 33092941 DOI: 10.1016/j.tcb.2020.09.008] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 11/15/2022]
Abstract
Mitochondria are highly dynamic organelles that constantly undergo fission and fusion. Disruption of mitochondrial dynamics undermines their function and causes several human diseases. The fusion of the outer (OMM) and inner mitochondrial membranes (IMM) is mediated by two classes of dynamin-like protein (DLP): mitofusin (MFN)/fuzzy onions 1 (Fzo1) and optic atrophy 1/mitochondria genome maintenance 1 (OPA1/Mgm1). Given the lack of structural information on these fusogens, the molecular mechanisms underlying mitochondrial fusion remain unclear, even after 20 years. Here, we review recent advances in structural studies of the mitochondrial fusion machinery, discuss their implication for DLPs, and summarize the pathogenic mechanisms of disease-causing mutations in mitochondrial fusion DLPs.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510530 Guangzhou, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
44
|
Tse BC, Dvoriantchikova G, Tao W, Gallo RA, Lee JY, Ivanov D, Tse DT, Pelaez D. Mitochondrial targeted therapy with elamipretide (MTP-131) as an adjunct to tumor necrosis factor inhibition for traumatic optic neuropathy in the acute setting. Exp Eye Res 2020; 199:108178. [PMID: 32758490 PMCID: PMC7554259 DOI: 10.1016/j.exer.2020.108178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/23/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022]
Abstract
Traumatic optic neuropathy (TON) can occur following blunt trauma to the orbit and can lead to permanent vision loss. In this study, we investigated the effectiveness of elamipretide (MTP-131), a small mitochondrially-targeted tetrapeptide, in conjunction with etanercept, a tumor necrosis factor (TNF) inhibitor, as neuroprotective agents of retinal ganglion cells (RGCs) after optic nerve trauma with sonication-induced TON (SI-TON) in mice. Treatment with intravitreal MTP-131 and subcutaneous etanercept and MTP-131 showed a 21% increase (p < 0.01) in RGC survival rate compared to PBS-treated control eyes. Subcutaneous etanercept and MTP-131 had an 11% increase (p < 0.05) in RGC survival compared to controls. Subcutaneous etanercept only group showed 20% increase (p < 0.01) in RGC survival compared to controls, while subcutaneous MTP-131 alone showed a 17% increase (p < 0.01). Surprisingly, we did not observe a synergistic effect between the two drugs in the group receiving both etanercept and MTP-131. One possible explanation for the absence of a synergistic effect is that MTP-131 and etanercept may be acting on different portions of the same pathway.
Collapse
Affiliation(s)
- Brian C Tse
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA.
| | - Galina Dvoriantchikova
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - Wensi Tao
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - Ryan A Gallo
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - John Y Lee
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - Dmitry Ivanov
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - David T Tse
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - Daniel Pelaez
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, USA.
| |
Collapse
|
45
|
Mukherjee S, Moitra S, Xu W, Hernandez V, Zhang K. Sterol 14-α-demethylase is vital for mitochondrial functions and stress tolerance in Leishmania major. PLoS Pathog 2020; 16:e1008810. [PMID: 32817704 PMCID: PMC7462297 DOI: 10.1371/journal.ppat.1008810] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/01/2020] [Accepted: 07/14/2020] [Indexed: 11/18/2022] Open
Abstract
Sterol 14-α-demethylase (C14DM) is a key enzyme in the biosynthesis of sterols and the primary target of azoles. In Leishmania major, genetic or chemical inactivation of C14DM leads to accumulation of 14-methylated sterol intermediates and profound plasma membrane abnormalities including increased fluidity and failure to maintain ordered membrane microdomains. These defects likely contribute to the hypersensitivity to heat and severely reduced virulence displayed by the C14DM-null mutants (c14dm‾). In addition to plasma membrane, sterols are present in intracellular organelles. In this study, we investigated the impact of C14DM ablation on mitochondria. Our results demonstrate that c14dm‾ mutants have significantly higher mitochondrial membrane potential than wild type parasites. Such high potential leads to the buildup of reactive oxygen species in the mitochondria, especially under nutrient-limiting conditions. Consistent with these mitochondrial alterations, c14dm‾ mutants show impairment in respiration and are heavily dependent on glucose uptake and glycolysis to generate energy. Consequently, these mutants are extremely sensitive to glucose deprivation and such vulnerability can be rescued through the supplementation of glucose or glycerol. In addition, the accumulation of oxidants may also contribute to the heat sensitivity exhibited by c14dm‾. Finally, genetic or chemical ablation of C14DM causes increased susceptibility to pentamidine, an antimicrobial agent with activity against trypanosomatids. In summary, our investigation reveals that alteration of sterol synthesis can negatively affect multiple cellular processes in Leishmania parasites and make them vulnerable to clinically relevant stress conditions.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Veronica Hernandez
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Moon Y, Jun Y. The Effects of Regulatory Lipids on Intracellular Membrane Fusion Mediated by Dynamin-Like GTPases. Front Cell Dev Biol 2020; 8:518. [PMID: 32671068 PMCID: PMC7326814 DOI: 10.3389/fcell.2020.00518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 12/04/2022] Open
Abstract
Membrane fusion mediates a number of fundamental biological processes such as intracellular membrane trafficking, fertilization, and viral infection. Biological membranes are composed of lipids and proteins; while lipids generally play a structural role, proteins mediate specific functions in the membrane. Likewise, although proteins are key players in the fusion of biological membranes, there is emerging evidence supporting a functional role of lipids in various membrane fusion events. Intracellular membrane fusion is mediated by two protein families: SNAREs and membrane-bound GTPases. SNARE proteins are involved in membrane fusion between transport vesicles and their target compartments, as well as in homotypic fusion between organelles of the same type. Membrane-bound GTPases mediate mitochondrial fusion and homotypic endoplasmic reticulum fusion. Certain membrane lipids, known as regulatory lipids, regulate these membrane fusion events by directly affecting the function of membrane-bound GTPases, instead of simply changing the biophysical and biochemical properties of lipid bilayers. In this review, we provide a summary of the current understanding of how regulatory lipids affect GTPase-mediated intracellular membrane fusion by focusing on the functions of regulatory lipids that directly affect fusogenic GTPases.
Collapse
Affiliation(s)
- Yeojin Moon
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Youngsoo Jun
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
47
|
Colina-Tenorio L, Horten P, Pfanner N, Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med 2020; 287:645-664. [PMID: 32012363 DOI: 10.1111/joim.13031] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.
Collapse
Affiliation(s)
- L Colina-Tenorio
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - P Horten
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - N Pfanner
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - H Rampelt
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
48
|
Absolute yeast mitochondrial proteome quantification reveals trade-off between biosynthesis and energy generation during diauxic shift. Proc Natl Acad Sci U S A 2020; 117:7524-7535. [PMID: 32184324 PMCID: PMC7132131 DOI: 10.1073/pnas.1918216117] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This work offers a unique portrayal of yeast mitochondria through the characterization of its absolute proteome. The study of biophysical changes in the mitochondrial network associated with proteome profiling, throughout yeast growth and the transition from fermentative to respiratory metabolism, lays out the crucial role this organelle has in balancing the overall metabolic status of the cell. Using proteomic mass spectrometry, state of the art fluorescence microscopy, and lipidomics analysis, these data provide a highly quantitative description of key mitochondrial processes across three states of metabolism. In particular, the work highlights the significant contribution of functional and structural remodeling occurring during the diauxic shift of this subcellular organelle. Saccharomyces cerevisiae constitutes a popular eukaryal model for research on mitochondrial physiology. Being Crabtree-positive, this yeast has evolved the ability to ferment glucose to ethanol and respire ethanol once glucose is consumed. Its transition phase from fermentative to respiratory metabolism, known as the diauxic shift, is reflected by dramatic rearrangements of mitochondrial function and structure. To date, the metabolic adaptations that occur during the diauxic shift have not been fully characterized at the organelle level. In this study, the absolute proteome of mitochondria was quantified alongside precise parametrization of biophysical properties associated with the mitochondrial network using state-of-the-art optical-imaging techniques. This allowed the determination of absolute protein abundances at a subcellular level. By tracking the transformation of mitochondrial mass and volume, alongside changes in the absolute mitochondrial proteome allocation, we could quantify how mitochondria balance their dual role as a biosynthetic hub as well as a center for cellular respiration. Furthermore, our findings suggest that in the transition from a fermentative to a respiratory metabolism, the diauxic shift represents the stage where major structural and functional reorganizations in mitochondrial metabolism occur. This metabolic transition, initiated at the mitochondria level, is then extended to the rest of the yeast cell.
Collapse
|
49
|
Funai K, Summers SA, Rutter J. Reign in the membrane: How common lipids govern mitochondrial function. Curr Opin Cell Biol 2020; 63:162-173. [PMID: 32106003 DOI: 10.1016/j.ceb.2020.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
The lipids that make up biological membranes tend to be the forgotten molecules of cell biology. The paucity of data on these important entities likely reflects the difficulties of studying and understanding their biological roles, rather than revealing a lack of importance. Indeed, the lipid composition of biological membranes has a profound impact on a diverse array of cellular processes. The focus of this review is on the effects of different lipid classes on the function of mitochondria, particularly bioenergetics, in health and disease.
Collapse
Affiliation(s)
- Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| | - Scott A Summers
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Jared Rutter
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA; Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
50
|
Butler J, Khan MS, Anker SD, Fonarow GC, Kim RJ, Nodari S, O'Connor CM, Pieske B, Pieske-Kraigher E, Sabbah HN, Senni M, Voors AA, Udelson JE, Carr J, Gheorghiade M, Filippatos G. Effects of Elamipretide on Left Ventricular Function in Patients With Heart Failure With Reduced Ejection Fraction: The PROGRESS-HF Phase 2 Trial. J Card Fail 2020; 26:429-437. [PMID: 32068002 DOI: 10.1016/j.cardfail.2020.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Elamipretide, a novel mitochondrial modulating agent, improves myocardial energetics; however, it is unknown whether this mechanistic benefit translates into improved cardiac structure and function in heart failure (HF) with reduced ejection fraction (HFrEF). The objective of this study was to evaluate the effects of multiple subcutaneous doses of elamipretide on left ventricular end systolic volume (LVESV) as assessed by cardiac magnetic resonance imaging. METHODS We randomized 71 patients with HFrEF (LVEF ≤ 40%) in a double-blind, placebo-controlled trial in a 1:1:1 ratio to receive placebo, 4 mg or 40 mg elamipretide once daily for 28 consecutive days. RESULTS The mean age (standard deviation) of the study population was 65 ± 10 years, 24% were females, and the mean EF was 31% ± 7%. The change in LVESV from baseline to week 4 was not significantly different between elamipretide 4 mg (89.4 mL to 85 mL; difference, -4.4 mL) or 40 mg (77.9 mL to 76.6 mL; difference, -1.2 mL) compared with placebo (77.7 mL to 74.6 mL; difference, -3.8 mL) (4 mg vs placebo: difference of means, -0.3; 95% CI, -4.6 to 4.0; P = 0.90; and 40 mg vs placebo: difference of means, 2.3; 95% CI, -1.9 to 6.5; P = 0.28). Also, no significant differences in change in LVESV and LVEF were observed between placebo and either of the elamipretide groups. Rates of any study drug-related adverse events were similar in the 3 groups. CONCLUSIONS Elamipretide was well tolerated but did not improve LVESV at 4 weeks in patients with stable HFrEF compared with placebo.
Collapse
Affiliation(s)
- Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, Missisippi, USA
| | | | - Stefan D Anker
- Department of Cardiology (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Germany
| | - Gregg C Fonarow
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Raymond J Kim
- Duke Cardiovascular Magnetic Resonance Center, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Savina Nodari
- Cardiology Section, Department of Clinical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany; Department of Internal Medicine and Cardiology, German Heart Center Berlin, and German Centre for Cardiovascular Research (DZHK), Partner site Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Elisabeth Pieske-Kraigher
- Department of Internal Medicine and Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany; Department of Internal Medicine and Cardiology, German Heart Center Berlin, and German Centre for Cardiovascular Research (DZHK), Partner site Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Hani N Sabbah
- Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - Michele Senni
- Cardiovascular Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - James E Udelson
- Division of Cardiology and the Cardiovascular Center, Tufts Medical Center, Boston, Massachusetts, USA
| | - Jim Carr
- Stealth BioTherapeutics, Newton, Massachusetts, USA
| | - Mihai Gheorghiade
- Department of Medicine, Bluhm Cardiovascular Institute, Northwestern University Feingerg School of Medicine, Chicago, Illinois, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece.
| |
Collapse
|