1
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral Citrate Supplementation Mitigates Age-Associated Pathologic Intervertebral Disc Calcification in LG/J Mice. Aging Cell 2025; 24:e14504. [PMID: 39930949 PMCID: PMC12073913 DOI: 10.1111/acel.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025] Open
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. We investigated the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate reduced the incidence of disc calcification without affecting the vertebral bone structure, knee calcification, plasma chemistry, or locomotion in LG/J mice. Notably, a positive effect on grip strength was evident in treated mice. FTIR spectroscopy of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition. Mechanistically, activation of an endochondral differentiation in the cartilaginous endplates and nucleus pulposus (NP) compartment contributed to LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence by Ca2+ chelation throughout the disc while exhibiting a differential effect on NP and endplate cell differentiation. In the NP compartment, K3Citrate reduced the NP cell acquisition of a hypertrophic chondrocytic fate, but the pathologic endochondral program was unimpacted in the endplates. Overall, this study for the first time shows the therapeutic potential of oral K3Citrate as a systemic intervention strategy to ameliorate disc calcification.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life SciencesThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Jorge J. Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Boahen N. Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- PXE International Center of Excellence for Research and Clinical CareThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- PXE International Center of Excellence for Research and Clinical CareThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life SciencesThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Sun L, Wang J, Chen S, He Y. Crosstalk Between Wnt/β-Catenin and Hedgehog Supports Gli1+ Lineage Osteogenesis in Cranial Sutures. Int J Mol Sci 2025; 26:3508. [PMID: 40332045 PMCID: PMC12026649 DOI: 10.3390/ijms26083508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Sutures such as fibrous joints in craniofacial bones provide a niche for Gli1+ mesenchymal stem cells (MSCs) in promoting calvarial bone development and growth. However, the underlying molecular mechanism behind the fate of the Wnt/β-catenin regulation of Gli1+ MSCs during calvarial bone formation remains unclear. Here, we showed that β-catenin was colocalized with Gli1+ lineage cells near the osteogenic front within a suture, and postnatal skull development was delayed via a conditional knockout of Ctnnb1 in Gli1+ MSCs. Calcein-Alizarin Red dual staining revealed that Wnt/β-catenin signal inhibition impaired the rate of bone formation. Furthermore, immunofluorescent staining indicated that Wnt/β-catenin signaling was crucial in facilitating the proliferative capacity of Gli1+ MSCs and their commitment to the osteogenic lineage. Notably, activating hedgehog (Hh) signaling partially restored the suture morphology in Ctnnb1 knockout mice. Collectively, our findings revealed the crosstalk between Wnt and Hh signaling modulates the fate of Gli1+ MSCs during calvarial bone formation.
Collapse
Affiliation(s)
- Lin Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (L.S.); (J.W.)
- National Clinical Research Center for Oral Disease, Beijing 100081, China
| | - Jie Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (L.S.); (J.W.)
- National Clinical Research Center for Oral Disease, Beijing 100081, China
| | - Shuo Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (L.S.); (J.W.)
- National Clinical Research Center for Oral Disease, Beijing 100081, China
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (L.S.); (J.W.)
- National Clinical Research Center for Oral Disease, Beijing 100081, China
| |
Collapse
|
3
|
Komori T. Bone development by Hedgehog and Wnt signaling, Runx2, and Sp7. J Bone Miner Metab 2025; 43:33-38. [PMID: 39352550 DOI: 10.1007/s00774-024-01551-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 04/01/2025]
Abstract
Hedgehog and canonical Wnt signaling pathways and the transcription factors Runx2 and Sp7 are essential for osteoblast differentiation. Ihh is necessary for the commitment of perichondrial mesenchymal cells to Runx2+ osteoprogenitors and for the formation of the bone collar and primary spongiosa. Runx2 is needed for osteoblast differentiation during both endochondral and intramembranous ossification. It regulates the commitment of mesenchymal cells to osteoblast-lineage cells and their proliferation by inducing the expression of Hedgehog, Fgf, Wnt, Pthlh signaling pathway genes, and Dlx5. The Runx2-induced expression of Fgfr2 and Fgfr3 is important for the proliferation of osteoblast-lineage cells. Runx2 induces Sp7 expression and Runx2+ osteoprogenitors become Runx2+Sp7+ preosteoblasts. Runx2, Sp7, and canonical Wnt signaling induce the differentiation of preosteoblasts into osteoblasts. Canonical Wnt signaling, but not Sp7, enhances the proliferation of osteoblast-lineage cells. In mature osteoblasts, Runx2 plays an important role in the expression of major bone matrix protein genes, including Col1a1, Col1a2, Spp1, Ibsp, and Bglap/Bglap2. The canonical Wnt signaling pathway is also crucial for bone formation by mature osteoblasts. Sp7 is needed for osteocytes to acquire a sufficient number of processes and a reduction in these processes results in osteocyte apoptosis and cortical porosity.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan.
| |
Collapse
|
4
|
Tachibana S, Hayashi S, Ikuta K, Anjiki K, Onoi Y, Suda Y, Wada K, Maeda T, Saito A, Tsubosaka M, Kamenaga T, Kuroda Y, Nakano N, Matsumoto T, Hosooka T, Ogawa W, Kuroda R. Downregulation of Krüppel-like factor 15 expression delays endochondral bone ossification during fracture healing. Bone 2024; 190:117302. [PMID: 39437873 DOI: 10.1016/j.bone.2024.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The role of Krüppel-like zinc finger transcription factor 15 (KLF15) in endochondral ossification during fracture healing remains unexplored. In this study, we aimed to elucidate the impact of KLF15 in a mouse model of tibial transverse fracture. METHODS We created tamoxifen-inducible, cartilage-specific KLF15 knockout mice (KLF15 KO). KLF15 fl/fl Col2-CreERT mice from the same litters as the KLF15 KO mice, but not treated with 4-hydroxytamoxifen, were used as controls (CT). At 10 weeks, male KLF15 KO and CT mice underwent tibial fracture followed by intramedullary nailing. Both groups were administered tamoxifen at days 0, 3, and 7 after surgery. The tibiae were harvested on post-surgery days 7, 10, and 14 for radiological assessment using micro-computed tomography. Histological staining (Safranin-O) and immunohistochemistry for KLF15, SOX9, Indian hedgehog (IHH), RUNX2, and Osterix were performed. Additionally, cartilage from mouse fetus was cultured for qRT-PCR and western blot analyses of KLF15, SOX9, IHH, Col2, RUNX2, Osterix, TGF-β, SMAD3, and phosphor-SMAD3. RESULTS The radiological assessment revealed that immature callus formation was delayed in KLF15 KO, compared with that in CT, peaking on day 14 compared with that on day 10 in CT. KLF15 KO mice exhibited delayed fracture healing and reduced Safranin-O staining at days 7 and 10 post-surgery. The ratio of cells positive for KLF15 and SOX9 was significantly lower in KLF15 KO than in CT, whereas the ratios for IHH, RUNX2, and Osterix showed no significant difference. RT-PCR revealed reduced expression of KLF15, SOX9, and COL2, with no significant changes in IHH, Osterix, RUNX2, TGF-β, and SMAD3. Western blot analysis indicated decreased SMAD3 phosphorylation in KLF15 KO mice. CONCLUSION KLF15 regulates SOX9 via the TGF-β-SMAD3-SOX9 pathway, independent of IHH, in endochondral ossification. The KLF15 deficiency decreases SOX9 expression through reduced SMAD3 phosphorylation, subsequently delaying fracture healing.
Collapse
Affiliation(s)
- Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Kemmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihito Suda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Wada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuma Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Saito
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsuya Hosooka
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
5
|
Komori T. Regulation of Skeletal Development and Maintenance by Runx2 and Sp7. Int J Mol Sci 2024; 25:10102. [PMID: 39337587 PMCID: PMC11432631 DOI: 10.3390/ijms251810102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Runx2 (runt related transcription factor 2) and Sp7 (Sp7 transcription factor 7) are crucial transcription factors for bone development. The cotranscription factor Cbfb (core binding factor beta), which enhances the DNA-binding capacity of Runx2 and stabilizes the Runx2 protein, is necessary for bone development. Runx2 is essential for chondrocyte maturation, and Sp7 is partly involved. Runx2 induces the commitment of multipotent mesenchymal cells to osteoblast lineage cells and enhances the proliferation of osteoprogenitors. Reciprocal regulation between Runx2 and the Hedgehog, fibroblast growth factor (Fgf), Wnt, and parathyroid hormone-like hormone (Pthlh) signaling pathways and Dlx5 (distal-less homeobox 5) plays an important role in these processes. The induction of Fgfr2 (Fgf receptor 2) and Fgfr3 expression by Runx2 is important for the proliferation of osteoblast lineage cells. Runx2 induces Sp7 expression, and Runx2+ osteoprogenitors become Runx2+Sp7+ preosteoblasts. Sp7 induces the differentiation of preosteoblasts into osteoblasts without enhancing their proliferation. In osteoblasts, Runx2 is required for bone formation by inducing the expression of major bone matrix protein genes, including Col1a1 (collagen type I alpha 1), Col1a2, Spp1 (secreted phosphoprotein 1), Ibsp (integrin binding sialoprotein), and Bglap (bone gamma carboxyglutamate protein)/Bglap2. Bglap/Bglap2 (osteocalcin) regulates the alignment of apatite crystals parallel to collagen fibrils but does not function as a hormone that regulates glucose metabolism, testosterone synthesis, and muscle mass. Sp7 is also involved in Co1a1 expression and regulates osteoblast/osteocyte process formation, which is necessary for the survival of osteocytes and the prevention of cortical porosity. SP7 mutations cause osteogenesis imperfecta in rare cases. Runx2 is an important pathogenic factor, while Runx1, Runx3, and Cbfb are protective factors in osteoarthritis development.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
6
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral citrate supplementation mitigates age-associated pathological intervertebral disc calcification in LG/J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604008. [PMID: 39071393 PMCID: PMC11275755 DOI: 10.1101/2024.07.17.604008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. Here, we investigate the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate successfully reduced the incidence of disc calcification in LG/J mice without deleterious effects on vertebral bone structure, plasma chemistry, and locomotion. Notably, a positive effect on grip strength was evident in treated mice. Spectroscopic investigation of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition and revealed that reactivation of an endochondral differentiation program in endplates may drive LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence without altering the pathological endplate chondrocyte hypertrophy, suggesting mitigation of disc calcification primarily occurred through Ca2+ chelation, a conclusion supported by chondrogenic differentiation and Seahorse metabolic assays. Overall, this study underscores the therapeutic potential of K3Citrate as a systemic intervention strategy for disc calcification.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jorge J. Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Boahen N. Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Jiang Q, Nagano K, Moriishi T, Komori H, Sakane C, Matsuo Y, Zhang Z, Nishimura R, Ito K, Qin X, Komori T. Roles of Sp7 in osteoblasts for the proliferation, differentiation, and osteocyte process formation. J Orthop Translat 2024; 47:161-175. [PMID: 39027344 PMCID: PMC11254841 DOI: 10.1016/j.jot.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 07/20/2024] Open
Abstract
Background Zinc finger-containing transcription factor Osterix/Specificity protein-7 (Sp7) is an essential transcription factor for osteoblast differentiation. However, its functions in differentiated osteoblasts remain unclear and the effects of osteoblast-specific Sp7 deletion on osteocytes have not been sufficiently studied. Methods Sp7 floxneo/floxneo mice, in which Sp7 expression was 30 % of that in wild-type mice because of disturbed splicing by neo gene insertion, and osteoblast-specific knockout (Sp7 fl/fl;Col1a1-Cre) mice using 2.3-kb Col1a1 enhanced green fluorescent protein (EGFP)-Cre were examined by micro-computed tomography (micro-CT), bone histomorphometry, serum markers, and histological analyses. The expression of osteoblast and osteocyte marker genes was examined by real-time reverse transcription (RT)-PCR analysis. Osteoblastogenesis, osteoclastogenesis, and regulation of the expression of collagen type I alpha 1 chain (Col1a1) were examined in primary osteoblasts. Results Femoral trabecular bone volume was higher in female Sp7 floxneo/floxneo and Sp7 fl/fl;Col1a1-Cre mice than in the respective controls, but not in males. Bromodeoxyuridine (BrdU)-positive osteoblastic cells were increased in male Sp7 fl/fl;Col1a1-Cre mice, and osteoblast number and the bone formation rate were increased in tibial trabecular bone in female Sp7 fl/fl;Col1a1-Cre mice, although osteoblast maturation was inhibited in female Sp7 fl/fl;Col1a1-Cre mice as shown by the increased expression of an immature osteoblast marker gene, secreted phosphoprotein 1 (Spp1), and reduced expression of a mature osteoblast marker gene, bone gamma-carboxyglutamate protein/bone gamma-carboxyglutamate protein 2 (Bglap/Bglap2). Furthermore, alkaline phosphatase activity was increased but mineralization was reduced in the culture of primary osteoblasts from Sp7 fl/fl;Col1a1-Cre mice. Therefore, the accumulated immature osteoblasts in Sp7 fl/fl;Col1a1-Cre mice was likely compensated for the inhibition of osteoblast maturation at different levels in males and females. Vertebral trabecular bone volume was lower in both male and female Sp7 fl/fl;Col1a1-Cre mice than in the controls and the osteoblast parameters and bone formation rate in females were lower in Sp7 fl/fl;Col1a1-Cre mice than in Sp7 fl/fl mice, suggesting differential regulatory mechanisms in long bones and vertebrae. The femoral cortical bone was thin and porous in Sp7 floxneo/floxneo and Sp7 fl/fl;Col1a1-Cre mice of both sexes, the number of canaliculi was reduced, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL)-positive lacunae and the osteoclasts were increased, whereas the bone formation rate was similar in Sp7 fl/fl;Col1a1-Cre and Sp7 fl/fl mice. The serum levels of total procollagen type 1 N-terminal propeptide (P1NP), a marker for bone formation, were similar, while those of tartrate-resistant acid phosphatase 5b (TRAP5b), a marker for bone resorption, were higher in Sp7 fl/fl;Col1a1-Cre mice. Osteoblasts were less cuboidal, the expression of Col1a1 and Col1a1-EGFP-Cre was lower in Sp7 fl/fl;Col1a1-Cre mice, and overexpression of Sp7 induced Col1a1 expression. Conclusions Our studies indicated that Sp7 inhibits the proliferation of immature osteoblasts, induces osteoblast maturation and Col1a1 expression, and is required for osteocytes to acquire a sufficient number of processes for their survival, which prevents cortical porosity. The translational potential of this article This study clarified the roles of Sp7 in differentiated osteoblasts in proliferarion, maturation, Col1a1 expression, and osteocyte process formation, which are required for targeting SP7 in the development of therapies for osteoporosis.
Collapse
Affiliation(s)
- Qing Jiang
- Institute of Orthopaedics, Suzhou Medical College, Soochow University, Suzhou 215006, China
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8588, Japan
| | - Kenichi Nagano
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8588, Japan
| | - Takeshi Moriishi
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8588, Japan
| | - Hisato Komori
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8588, Japan
| | - Chiharu Sakane
- Research Center for Biomedical Models and Animal Welfare, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852–8588, Japan
| | - Yuki Matsuo
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8588, Japan
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8588, Japan
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1–8 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8588, Japan
| | - Xin Qin
- Institute of Orthopaedics, Suzhou Medical College, Soochow University, Suzhou 215006, China
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8588, Japan
| | - Toshihisa Komori
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852–8588, Japan
| |
Collapse
|
8
|
Tsuboi E, Asakawa Y, Hirose N, Yanoshita M, Sumi C, Takano M, Onishi A, Nishiyama S, Kubo N, Kita D, Tanimoto K. The role of semaphorin 3A on chondrogenic differentiation. In Vitro Cell Dev Biol Anim 2024; 60:609-615. [PMID: 38727898 PMCID: PMC11286676 DOI: 10.1007/s11626-024-00909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/03/2024] [Indexed: 07/31/2024]
Abstract
Osteoblast-derived semaphorin3A (Sema3A) has been reported to be involved in bone protection, and Sema3A knockout mice have been reported to exhibit chondrodysplasia. From these reports, Sema3A is considered to be involved in chondrogenic differentiation and skeletal formation, but there are many unclear points about its function and mechanism in chondrogenic differentiation. This study investigated the pharmacological effects of Sema3A in chondrogenic differentiation. The amount of Sema3A secreted into the culture supernatant was measured using an enzyme-linked immunosorbent assay. The expression of chondrogenic differentiation-related factors, such as Type II collagen (COL2A1), Aggrecan (ACAN), hyaluronan synthase 2 (HAS2), SRY-box transcription factor 9 (Sox9), Runt-related transcription factor 2 (Runx2), and Type X collagen (COL10A1) in ATDC5 cells treated with Sema3A (1,10 and 100 ng/mL) was examined using real-time reverse transcription polymerase chain reaction. Further, to assess the deposition of total glycosaminoglycans during chondrogenic differentiation, ATDC5 cells were stained with Alcian Blue. Moreover, the amount of hyaluronan in the culture supernatant was measured by enzyme-linked immunosorbent assay. The addition of Sema3A to cultured ATDC5 cells increased the expression of Sox9, Runx2, COL2A1, ACAN, HAS2, and COL10A1 during chondrogenic differentiation. Moreover, it enhanced total proteoglycan and hyaluronan synthesis. Further, Sema3A was upregulated in the early stages of chondrogenic differentiation, and its secretion decreased later. Sema3A increases extracellular matrix production and promotes chondrogenic differentiation. To the best of our knowledge, this is the first study to demonstrate the role of Sema3A on chondrogenic differentiation.
Collapse
Affiliation(s)
- Eri Tsuboi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Yuki Asakawa
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Naoto Hirose
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
| | - Makoto Yanoshita
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Chikako Sumi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Mami Takano
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Azusa Onishi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Sayuri Nishiyama
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Naoki Kubo
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Daiki Kita
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
9
|
Liang W, Wei T, Hu L, Chen M, Tong L, Zhou W, Duan X, Zhao X, Zhou W, Jiang Q, Xiao G, Zou W, Chen D, Zou Z, Bai X. An integrated multi-omics analysis reveals osteokines involved in global regulation. Cell Metab 2024; 36:1144-1163.e7. [PMID: 38574738 DOI: 10.1016/j.cmet.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Bone secretory proteins, termed osteokines, regulate bone metabolism and whole-body homeostasis. However, fundamental questions as to what the bona fide osteokines and their cellular sources are and how they are regulated remain unclear. In this study, we analyzed bone and extraskeletal tissues, osteoblast (OB) conditioned media, bone marrow supernatant (BMS), and serum, for basal osteokines and those responsive to aging and mechanical loading/unloading. We identified 375 candidate osteokines and their changes in response to aging and mechanical dynamics by integrating data from RNA-seq, scRNA-seq, and proteomic approaches. Furthermore, we analyzed their cellular sources in the bone and inter-organ communication facilitated by them (bone-brain, liver, and aorta). Notably, we discovered that senescent OBs secrete fatty-acid-binding protein 3 to propagate senescence toward vascular smooth muscle cells (VSMCs). Taken together, we identified previously unknown candidate osteokines and established a dynamic regulatory network among them, thus providing valuable resources to further investigate their systemic roles.
Collapse
Affiliation(s)
- Wenquan Liang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tiantian Wei
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Hu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meijun Chen
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liping Tong
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wu Zhou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingwei Duan
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
10
|
Asmussen NC, Cohen DJ, Boyan BD, Schwartz Z. Regulatory Pathways in Growth Plate Chondrocytes that Are Impacted by Matrix Vesicle microRNA Identified by Targeted RISC Pulldown and Sequencing of the Resulting Transcriptome. Calcif Tissue Int 2024; 114:409-418. [PMID: 38315223 PMCID: PMC10957581 DOI: 10.1007/s00223-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/23/2023] [Indexed: 02/07/2024]
Abstract
During endochondral bone formation, growth plate chondrocytes are differentially regulated by various factors and hormones. As the cellular phenotype changes, the composition of the extracellular matrix is altered, including the production and composition of matrix vesicles (MV) and their cargo of microRNA. The regulatory functions of these MV microRNA in the growth plate are still largely unknown. To address this question, we undertook a targeted bioinformatics approach. A subset of five MV microRNA was selected for analysis based on their specific enrichment in these extracellular vesicles compared to the parent cells (miR-1-3p, miR-22-3p, miR-30c-5p, miR-122-5p, and miR-133a-3p). Synthetic biotinylated versions of the microRNA were produced using locked nucleic acid (LNA) and were transfected into rat growth plate chondrocytes. The resulting LNA to mRNA complexes were pulled down and sequenced, and the transcriptomic data were used to run pathway analysis pipelines. Bone and musculoskeletal pathways were discovered to be regulated by the specific microRNA, notably those associated with transforming growth factor beta (TGFβ) and Wnt pathways, cell differentiation and proliferation, and regulation of vesicles and calcium transport. These results can help with understanding the maturation of the growth plate and the regulatory role of microRNA in MV.
Collapse
Affiliation(s)
- Niels C Asmussen
- School of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - David J Cohen
- College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
| | - Barbara D Boyan
- College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Zvi Schwartz
- College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
11
|
Novais EJ, Narayanan R, Canseco JA, van de Wetering K, Kepler CK, Hilibrand AS, Vaccaro AR, Risbud MV. A new perspective on intervertebral disc calcification-from bench to bedside. Bone Res 2024; 12:3. [PMID: 38253615 PMCID: PMC10803356 DOI: 10.1038/s41413-023-00307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Disc degeneration primarily contributes to chronic low back and neck pain. Consequently, there is an urgent need to understand the spectrum of disc degeneration phenotypes such as fibrosis, ectopic calcification, herniation, or mixed phenotypes. Amongst these phenotypes, disc calcification is the least studied. Ectopic calcification, by definition, is the pathological mineralization of soft tissues, widely studied in the context of conditions that afflict vasculature, skin, and cartilage. Clinically, disc calcification is associated with poor surgical outcomes and back pain refractory to conservative treatment. It is frequently seen as a consequence of disc aging and progressive degeneration but exhibits unique molecular and morphological characteristics: hypertrophic chondrocyte-like cell differentiation; TNAP, ENPP1, and ANK upregulation; cell death; altered Pi and PPi homeostasis; and local inflammation. Recent studies in mouse models have provided a better understanding of the mechanisms underlying this phenotype. It is essential to recognize that the presentation and nature of mineralization differ between AF, NP, and EP compartments. Moreover, the combination of anatomic location, genetics, and environmental stressors, such as aging or trauma, govern the predisposition to calcification. Lastly, the systemic regulation of calcium and Pi metabolism is less important than the local activity of PPi modulated by the ANK-ENPP1 axis, along with disc cell death and differentiation status. While there is limited understanding of this phenotype, understanding the molecular pathways governing local intervertebral disc calcification may lead to developing disease-modifying drugs and better clinical management of degeneration-related pathologies.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Unidade Local de Saúde do Litoral Alentejano, Orthopedic Department, Santiago do Cacém, Portugal
| | - Rajkishen Narayanan
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alan S Hilibrand
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Zhou F, Wang S, Qin H, Zeng H, Ye J, Yang J, Cai G, Wu Z, Zhang Z. Genome-wide association analysis unveils candidate genes and loci associated with aplasia cutis congenita in pigs. BMC Genomics 2023; 24:701. [PMID: 37990155 PMCID: PMC10664689 DOI: 10.1186/s12864-023-09803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Aplasia cutis congenita (ACC) is a rare genetic disorder characterized by the localized or widespread absence of skin in humans and animals. Individuals with ACC may experience developmental abnormalities in the skeletal and muscular systems, as well as potential complications. Localized and isolated cases of ACC can be treated through surgical and medical interventions, while extensive cases of ACC may result in neonatal mortality. The presence of ACC in pigs has implications for animal welfare. It contributes to an elevated mortality rate among piglets at birth, leading to substantial economic losses in the pig farming industry. In order to elucidate candidate genetic loci associated with ACC, we performed a Genome-Wide Association Study analysis on 216 Duroc pigs. The primary goal of this study was to identify candidate genes that associated with ACC. RESULTS This study identified nine significant SNPs associated with ACC. Further analysis revealed the presence of two quantitative trait loci, 483 kb (5:18,196,971-18,680,098) on SSC 5 and 159 kb (13:20,713,440-207294431 bp) on SSC13. By annotating candidate genes within a 1 Mb region surrounding the significant SNPs, a total of 11 candidate genes were identified on SSC5 and SSC13, including KRT71, KRT1, KRT4, ITGB7, CSAD, RARG, SP7, PFKL, TRPM2, SUMO3, and TSPEAR. CONCLUSIONS The results of this study further elucidate the potential mechanisms underlying and genetic architecture of ACC and identify reliable candidate genes. These results lay the foundation for treating and understanding ACC in humans.
Collapse
Affiliation(s)
- Fuchen Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Shenghui Wang
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Haojun Qin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Haiyu Zeng
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Jian Ye
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China.
| | - Zebin Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.
| |
Collapse
|
13
|
Larder CE, Iskandar MM, Kubow S. Collagen Hydrolysates: A Source of Bioactive Peptides Derived from Food Sources for the Treatment of Osteoarthritis. MEDICINES (BASEL, SWITZERLAND) 2023; 10:50. [PMID: 37755240 PMCID: PMC10538231 DOI: 10.3390/medicines10090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 09/28/2023]
Abstract
Osteoarthritis (OA) is the most common joint disorder, with a social and financial burden that is expected to increase in the coming years. Currently, there are no effective medications to treat it. Due to limited treatment options, patients often resort to supplements, such as collagen hydrolysates (CHs). CHs are products with low molecular weight (MW) peptides, often between 3 and 6 kDa, and are a result of industrialized processed collagen. Collagen extraction is often a by-product of the meat industry, with the main source for collagen-based products being bovine, although it can also be obtained from porcine and piscine sources. CHs have demonstrated positive results in clinical trials related to joint health, such as decreased joint pain, increased mobility, and structural joint improvements. The bioactivity of CHs is primarily attributed to their bioactive peptide (BAP) content. However, there are significant knowledge gaps regarding the digestion, bioavailability, and bioactivity of CH-derived BAPs, and how different CH products compare in that regard. The present review discusses CHs and their BAP content as potential treatments for OA.
Collapse
Affiliation(s)
- Christina E. Larder
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.E.L.); (M.M.I.)
- Corporation Genacol Canada Inc., Blainville, QC J7C 6B4, Canada
| | - Michèle M. Iskandar
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.E.L.); (M.M.I.)
| | - Stan Kubow
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.E.L.); (M.M.I.)
| |
Collapse
|
14
|
Varadinkova S, Oralova V, Clarke M, Frampton J, Knopfova L, Lesot H, Bartos P, Matalova E. Expression dynamics of metalloproteinases during mandibular bone formation: association with Myb transcription factor. Front Cell Dev Biol 2023; 11:1168866. [PMID: 37701782 PMCID: PMC10493412 DOI: 10.3389/fcell.2023.1168866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
As the dentition forms and becomes functional, the alveolar bone is remodelled. Metalloproteinases are known to contribute to this process, but new regulators are emerging and their contextualization is challenging. This applies to Myb, a transcription factor recently reported to be involved in bone development and regeneration. The regulatory effect of Myb on Mmps expression has mostly been investigated in tumorigenesis, where Myb impacted the expression of Mmp1, Mmp2, Mmp7, and Mmp9. The aim of this investigation was to evaluate the regulatory influence of the Myb on Mmps gene expression, impacting osteogenesis and mandibular bone formation. For that purpose, knock-out mouse model was used. Gene expression of bone-related Mmps and the key osteoblastic transcription factors Runx2 and Sp7 was analysed in Myb knock-out mice mandibles at the survival limit. Out of the metalloproteinases under study, Mmp13 was significantly downregulated. The impact of Myb on the expression of Mmp13 was confirmed by the overexpression of Myb in calvarial-derived cells causing upregulation of Mmp13. Expression of Mmp13 in the context of other Mmps during mandibular/alveolar bone development was followed in vivo along with Myb, Sp7 and Runx2. The most significant changes were observed in the expression of Mmp9 and Mmp13. These MMPs and MYB were further localized in situ by immunohistochemistry and were identified in pre/osteoblastic cells as well as in pre/osteocytes. In conclusion, these results provide a comprehensive insight into the expression dynamics of bone related Mmps during mandibular/alveolar bone formation and point to Myb as another potential regulator of Mmp13.
Collapse
Affiliation(s)
- S. Varadinkova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| | - V. Oralova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| | - M. Clarke
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - J. Frampton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - L. Knopfova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - H. Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
| | - P. Bartos
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
| | - E. Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
15
|
Peng S, He T, Liu Y, Zheng L, Zhong Y, Niu Z, Zhang M, Yang S. Lnc-PPP2R1B Mediates the Alternative Splicing of PPP2R1B by Interacting and Stabilizing HNRNPLL and Promotes Osteogenesis of MSCs. Stem Cell Rev Rep 2023; 19:1981-1993. [PMID: 37243830 DOI: 10.1007/s12015-023-10559-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
Osteogeinc differentiation from mesenchymal stem cells (MSCs) into osteoblasts is a key step for bone tissue engineering in regenerative medicine. The insight into regulatory mechanism of osteogenesis of MSCs facilitates achieving better recovery effect. Long non-coding RNAs are regarded as a family of important moderators in osteogenesis. In this study, we found a novel lncRNA, lnc-PPP2R1B was up-regulated during osteogenesis of MSCs by Illumina HiSeq transcritome sequencing. We demonstrated lnc-PPP2R1B overexpression promoted osteogenesis and knockdown of lnc-PPP2R1B inhibited osteogenesis of MSCs. Mechanically, it physically interacted with and up-regulated heterogeneous nuclear ribonucleoprotein L Like (HNRNPLL), which is a master regulator of activation-induced alternative splicing in T cells. We found lnc-PPP2R1B knockdown or HNRNPLL knockdown decreased transcript-201 of Protein Phosphatase 2A, Regulatory Subunit A, Beta Isoform (PPP2R1B) while increased transcript-203 of PPP2R1B, and did not affect transcript-202/204/206. PPP2R1B is a constant regulatory subunit of protein phosphatase 2 (PP2A), which activates Wnt/β-catenin pathway by removing phosphorylation and stabilization of β-catenin and translocation into nucleus. The transcript-201 retained exon 2 and 3, compared to transcript-203. And it was reported the exon 2 and 3 of PPP2R1B were one part of B subunit binding domain on A subunit in PP2A trimer, and therefore retaining exon 2 and 3 promised formation and enzyme function of PP2A. Finally, lnc-PPP2R1B promoted ectopic osteogenesis in vivo. Conclusively, lnc-PPP2R1B mediated alternative splicing of PPP2R1B through retaining exon 2 and 3 by interacting with HNRNPLL and then promoted osteogenesis, which may facilitate an in-depth understanding of function and mechanism of lncRNAs in osteogenesis. Lnc-PPP2R1B interacted with HNRNPLL, and regulated alternative splicing of PPP2R1B through retaining exon 2 and 3, which preserved enzyme function of PP2A and enhanced dephosphorylation and nuclear translocation of β-catenin, thereby promoting Runx2 and OSX expression and then osteogenesis. And it provided experimental data and potential target for promoting bone formation and bone regeneration.
Collapse
Affiliation(s)
- Shuping Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Tiantian He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Leliang Zheng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyuan Niu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mojian Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Yang
- The Reproduction Medical Center, the Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
16
|
Kimira Y, Sato T, Sakamoto M, Osawa Y, Mano H. Collagen-Derived Dipeptide Pro-Hyp Enhanced ATDC5 Chondrocyte Differentiation under Hypoxic Conditions. Molecules 2023; 28:4664. [PMID: 37375217 DOI: 10.3390/molecules28124664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Chondrocytes are surrounded by a lower oxygen environment than other well-vascularized tissues with higher oxygenation levels. Prolyl-hydroxyproline (Pro-Hyp), one of the final collagen-derived peptides, has been previously reported to be involved in the early stages of chondrocyte differentiation. However, whether Pro-Hyp can alter chondrocyte differentiation under physiological hypoxic conditions is still unclear. This study aimed to investigate whether Pro-Hyp affects the differentiation of ATDC5 chondrogenic cells under hypoxic conditions. The addition of Pro-Hyp resulted in an approximately 18-fold increase in the glycosaminoglycan staining area compared to the control group under hypoxic conditions. Moreover, Pro-Hyp treatment significantly upregulated the expression of SOX9, Col2a1, Aggrecan, and MMP13 in chondrocytes cultured under hypoxic conditions. These results demonstrate that Pro-Hyp strongly promotes the early differentiation of chondrocytes under physiological hypoxic conditions. Therefore, Pro-Hyp, a bioactive peptide produced during collagen metabolism, may function as a remodeling factor or extracellular matrix remodeling signal that regulates chondrocyte differentiation in hypoxic cartilage.
Collapse
Affiliation(s)
- Yoshifumi Kimira
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Saitama, Japan
| | - Takahiro Sato
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Saitama, Japan
| | - Mayu Sakamoto
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Saitama, Japan
| | - Yoshihiro Osawa
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Saitama, Japan
| | - Hiroshi Mano
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Saitama, Japan
| |
Collapse
|
17
|
Oliver-Cervelló L, Martin-Gómez H, Gonzalez-Garcia C, Salmeron-Sanchez M, Ginebra MP, Mas-Moruno C. Protease-degradable hydrogels with multifunctional biomimetic peptides for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1192436. [PMID: 37324414 PMCID: PMC10267393 DOI: 10.3389/fbioe.2023.1192436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Mimicking bone extracellular matrix (ECM) is paramount to develop novel biomaterials for bone tissue engineering. In this regard, the combination of integrin-binding ligands together with osteogenic peptides represents a powerful approach to recapitulate the healing microenvironment of bone. In the present work, we designed polyethylene glycol (PEG)-based hydrogels functionalized with cell instructive multifunctional biomimetic peptides (either with cyclic RGD-DWIVA or cyclic RGD-cyclic DWIVA) and cross-linked with matrix metalloproteinases (MMPs)-degradable sequences to enable dynamic enzymatic biodegradation and cell spreading and differentiation. The analysis of the intrinsic properties of the hydrogel revealed relevant mechanical properties, porosity, swelling and degradability to engineer hydrogels for bone tissue engineering. Moreover, the engineered hydrogels were able to promote human mesenchymal stem cells (MSCs) spreading and significantly improve their osteogenic differentiation. Thus, these novel hydrogels could be a promising candidate for applications in bone tissue engineering, such as acellular systems to be implanted and regenerate bone or in stem cells therapy.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Cristina Gonzalez-Garcia
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
18
|
Asmussen NC, Alam S, Lin Z, Cohen DJ, Schwartz Z, Boyan BD. 1α,25-Dihydroxyvitamin D 3 Regulates microRNA Packaging in Extracellular Matrix Vesicles and Their Release in the Matrix. Calcif Tissue Int 2023; 112:493-511. [PMID: 36840756 DOI: 10.1007/s00223-023-01067-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Growth plate chondrocytes are regulated by numerous factors and hormones as they mature during endochondral bone formation, including transforming growth factor beta-1 (TGFb1), bone morphogenetic protein 2 (BMP2), insulin-like growth factor-1 (IFG1), parathyroid hormone and parathyroid hormone related peptide (PTH, PTHrP), and Indian hedgehog (IHH). Chondrocytes in the growth plate's growth zone (GC) produce and export matrix vesicles (MVs) under the regulation of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3]. 1α,25(OH)2D3 regulates MV enzyme composition genomically and 1α,25(OH)2D3 secreted by the cells acts on the MV membrane nongenomically, destabilizing it and releasing MV enzymes. This study examined the regulatory role 1α,25(OH)2D3 has over production and packaging of microRNA (miRNA) into MVs by GC cells and the release of miRNA by direct action on MVs. Costochondral cartilage GC cells were treated with 1α,25(OH)2D3 and the miRNA in the cells and MVs sequenced. We also treated MVs with 1α,25(OH)2D3 and determined if the miRNA was released. To assess whether MVs can act directly with chondrocytes and if this is regulated by 1α,25(OH)2D3, we stained MVs with a membrane dye and treated GC cells with them. 1α,25(OH)2D3 regulated production and packaging of a unique population of miRNA into MVs compared to the vehicle control population. 1α,25(OH)2D3 treatment of MVs did not release miRNA. Stained MVs were endocytosed by GC cells and this was increased with 1α,25(OH)2D3 treatment. This study adds new regulatory roles for 1α,25(OH)2D3 with respect to packaging and transport of MV miRNAs.
Collapse
Affiliation(s)
- Niels C Asmussen
- School of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Sheikh Alam
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Zhao Lin
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - David J Cohen
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Zvi Schwartz
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Barbara D Boyan
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
19
|
Wang JS, Tokavanich N, Wein MN. SP7: from Bone Development to Skeletal Disease. Curr Osteoporos Rep 2023; 21:241-252. [PMID: 36881265 PMCID: PMC10758296 DOI: 10.1007/s11914-023-00778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the different roles of the transcription factor SP7 in regulating bone formation and remodeling, discuss current studies in investigating the causal relationship between SP7 mutations and human skeletal disease, and highlight potential therapeutic treatments that targeting SP7 and the gene networks that it controls. RECENT FINDINGS Cell-type and stage-specific functions of SP7 have been identified during bone formation and remodeling. Normal bone development regulated by SP7 is strongly associated with human bone health. Dysfunction of SP7 results in common or rare skeletal diseases, including osteoporosis and osteogenesis imperfecta with different inheritance patterns. SP7-associated signaling pathways, SP7-dependent target genes, and epigenetic regulations of SP7 serve as new therapeutic targets in the treatment of skeletal disorders. This review addresses the importance of SP7-regulated bone development in studying bone health and skeletal disease. Recent advances in whole genome and exome sequencing, GWAS, multi-omics, and CRISPR-mediated activation and inhibition have provided the approaches to investigate the gene-regulatory networks controlled by SP7 in bone and the therapeutic targets to treat skeletal disease.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
20
|
Houston DA, Stephen LA, Jayash SN, Myers K, Little K, Hopkinson M, Pitsillides AA, MacRae VE, Millan JL, Staines KA, Farquharson C. Increased PHOSPHO1 and alkaline phosphatase expression during the anabolic bone response to intermittent parathyroid hormone delivery. Cell Biochem Funct 2023; 41:189-201. [PMID: 36540015 PMCID: PMC10946561 DOI: 10.1002/cbf.3772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The administration of intermittent parathyroid hormone (iPTH) is anabolic to the skeleton. Recent studies with cultured osteoblasts have revealed that the expression of PHOSPHO1, a bone-specific phosphatase essential for the initiation of mineralisation, is regulated by PTH. Therefore, this study sought to determine whether the bone anabolic response to iPTH involves modulation of expression of Phospho1 and of other enzymes critical for bone matrix mineralisation. To mimic iPTH treatment, primary murine osteoblasts were challenged with 50 nM PTH for 6 h in every 48 h period for 8 days (4 cycles), 14 days (7 cycles) and 20 days (10 cycles) in total. The expression of both Phospho1 and Smpd3 was almost completely inhibited after 4 cycles, whereas 10 cycles were required to stimulate a similar response in Alpl expression. To explore the in vivo role of PHOSPHO1 in PTH-mediated osteogenesis, the effects of 14- and 28-day iPTH (80 µg/kg/day) administration was assessed in male wild-type (WT) and Phospho1-/- mice. The expression of Phospho1, Alpl, Smpd3, Enpp1, Runx2 and Trps1 expression was enhanced in the femora of WT mice following iPTH administration but remained unchanged in the femora of Phospho1-/- mice. After 28 days of iPTH administration, the anabolic response in the femora of WT was greater than that noted in Phospho1-/- mice. Specifically, cortical and trabecular bone volume/total volume, as well as cortical thickness, were increased in femora of iPTH-treated WT but not in iPTH-treated Phospho1-/- mice. Trabecular bone osteoblast number was also increased in iPTH-treated WT mice but not in iPTH-treated Phospho1-/- mice. The increased levels of Phospho1, Alpl, Enpp1 and Smpd3 in WT mice in response to iPTH administration is consistent with their contribution to the potent anabolic properties of iPTH in bone. Furthermore, as the anabolic response to iPTH was attenuated in mice deficient in PHOSPHO1, this suggests that the osteoanabolic effects of iPTH are at least partly mediated via bone mineralisation processes.
Collapse
Affiliation(s)
- Dean A. Houston
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Louise A. Stephen
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Soher N. Jayash
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Katherine Myers
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Kirsty Little
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Mark Hopkinson
- Comparative Biomedical SciencesThe Royal Veterinary CollegeLondonUK
| | | | - Vicky E. MacRae
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Jose Luis Millan
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Katherine A. Staines
- School of Applied Sciences, Centre for Stress and Age‐Related DiseaseUniversity of BrightonBrightonUK
| | - Colin Farquharson
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| |
Collapse
|
21
|
Zeng J, Peng Y, Wang D, Ayesha K, Chen S. The interaction between osteosarcoma and other cells in the bone microenvironment: From mechanism to clinical applications. Front Cell Dev Biol 2023; 11:1123065. [PMID: 37206921 PMCID: PMC10189553 DOI: 10.3389/fcell.2023.1123065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is a primary bone tumor with a high mortality rate. The event-free survival rate has not improved significantly in the past 30 years, which brings a heavy burden to patients and society. The high heterogeneity of osteosarcoma leads to the lack of specific targets and poor therapeutic effect. Tumor microenvironment is the focus of current research, and osteosarcoma is closely related to bone microenvironment. Many soluble factors and extracellular matrix secreted by many cells in the bone microenvironment have been shown to affect the occurrence, proliferation, invasion and metastasis of osteosarcoma through a variety of signaling pathways. Therefore, targeting other cells in the bone microenvironment may improve the prognosis of osteosarcoma. The mechanism by which osteosarcoma interacts with other cells in the bone microenvironment has been extensively investigated, but currently developed drugs targeting the bone microenvironment have poor efficacy. Therefore, we review the regulatory effects of major cells and physical and chemical properties in the bone microenvironment on osteosarcoma, focusing on their complex interactions, potential therapeutic strategies and clinical applications, to deepen our understanding of osteosarcoma and the bone microenvironment and provide reference for future treatment. Targeting other cells in the bone microenvironment may provide potential targets for the development of clinical drugs for osteosarcoma and may improve the prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Jin Zeng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yi Peng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Khan Ayesha
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Shijie Chen,
| |
Collapse
|
22
|
Nagata K, Hojo H, Chang SH, Okada H, Yano F, Chijimatsu R, Omata Y, Mori D, Makii Y, Kawata M, Kaneko T, Iwanaga Y, Nakamoto H, Maenohara Y, Tachibana N, Ishikura H, Higuchi J, Taniguchi Y, Ohba S, Chung UI, Tanaka S, Saito T. Runx2 and Runx3 differentially regulate articular chondrocytes during surgically induced osteoarthritis development. Nat Commun 2022; 13:6187. [PMID: 36261443 PMCID: PMC9581901 DOI: 10.1038/s41467-022-33744-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The Runt-related transcription factor (Runx) family plays various roles in the homeostasis of cartilage. Here, we examined the role of Runx2 and Runx3 for osteoarthritis development in vivo and in vitro. Runx3-knockout mice exhibited accelerated osteoarthritis following surgical induction, accompanied by decreased expression of lubricin and aggrecan. Meanwhile, Runx2 conditional knockout mice showed biphasic phenotypes: heterozygous knockout inhibited osteoarthritis and decreased matrix metallopeptidase 13 (Mmp13) expression, while homozygous knockout of Runx2 accelerated osteoarthritis and reduced type II collagen (Col2a1) expression. Comprehensive transcriptional analyses revealed lubricin and aggrecan as transcriptional target genes of Runx3, and indicated that Runx2 sustained Col2a1 expression through an intron 6 enhancer when Sox9 was decreased. Intra-articular administration of Runx3 adenovirus ameliorated development of surgically induced osteoarthritis. Runx3 protects adult articular cartilage through extracellular matrix protein production under normal conditions, while Runx2 exerts both catabolic and anabolic effects under the inflammatory condition.
Collapse
Affiliation(s)
- Kosei Nagata
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Hironori Hojo
- grid.26999.3d0000 0001 2151 536XCenter for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Song Ho Chang
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Hiroyuki Okada
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan ,grid.26999.3d0000 0001 2151 536XCenter for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Fumiko Yano
- grid.26999.3d0000 0001 2151 536XBone and Cartilage Regenerative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Ryota Chijimatsu
- grid.26999.3d0000 0001 2151 536XBone and Cartilage Regenerative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Yasunori Omata
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan ,grid.26999.3d0000 0001 2151 536XBone and Cartilage Regenerative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Daisuke Mori
- grid.26999.3d0000 0001 2151 536XBone and Cartilage Regenerative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Yuma Makii
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Manabu Kawata
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Taizo Kaneko
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Yasuhide Iwanaga
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Hideki Nakamoto
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Yuji Maenohara
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Naohiro Tachibana
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Hisatoshi Ishikura
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Junya Higuchi
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Yuki Taniguchi
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Shinsuke Ohba
- grid.26999.3d0000 0001 2151 536XCenter for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan ,grid.174567.60000 0000 8902 2273Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588 Japan
| | - Ung-il Chung
- grid.174567.60000 0000 8902 2273Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588 Japan
| | - Sakae Tanaka
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Taku Saito
- grid.26999.3d0000 0001 2151 536XSensory & Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| |
Collapse
|
23
|
Saito T, Nakamichi R, Yoshida A, Hiranaka T, Okazaki Y, Nezu S, Matsuhashi M, Shimamura Y, Furumatsu T, Nishida K, Ozaki T. The effect of mechanical stress on enthesis homeostasis in a rat Achilles enthesis organ culture model. J Orthop Res 2022; 40:1872-1882. [PMID: 34783068 DOI: 10.1002/jor.25210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/19/2021] [Accepted: 10/30/2021] [Indexed: 02/04/2023]
Abstract
Tendons and ligaments are jointed to bones via an enthesis that is essential to the proper function of the muscular and skeletal structures. The aim of the study is to investigate the effect of mechanical stress on the enthesis. We used ex vivo models in organ cultures of rat Achilles tendons with calcaneus including the enthesis. The organ was attached to a mechanical stretching apparatus that can conduct cyclic tensile strain. We made the models of 1-mm elongation (0.5 Hz, 3% elongation), 2-mm elongation (0.5 Hz, 5% elongation), and no stress. Histological evaluation by Safranin O staining and Toluidin Blue and Picro Sirius red staining was conducted. Expression of sex-determining region Y-box 9 (Sox9), scleraxis (Scx), Runt-related transcription factor 2 (Runx2), and matrix metalloproteinase 13 (Mmp13) were examined by real-time polymerase chain reaction and immunocytochemistry. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end-labeling and live/dead staining and was conducted for evaluation of the apoptosis and cell viability. The structure of the enthesis was most maintained in the model of 1-mm elongation. The electronic microscope showed that the enthesis of the no stress model had ill-defined borders between fibrocartilage and mineralized fibrocartilage, and that calcification of mineralized fibrocartilage occurred in the model of 2-mm elongation. Sox9 and Scx was upregulated by 1-mm elongation, whereas Runx2 and Mmp13 were upregulated by 2-mm elongation. Apoptosis was inhibited by low stress. The results of this study suggested that 1-mm elongation can maintain the structure of the enthesis, while 2-mm elongation promotes degenerative changes.
Collapse
Affiliation(s)
- Taichi Saito
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryo Nakamichi
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takaaki Hiranaka
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Okazaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Nezu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Minami Matsuhashi
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasunori Shimamura
- Department of Sports Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichiro Nishida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
24
|
Chen C, Li Y, Lu H, Liu K, Jiang W, Zhang Z, Qin X. Curcumin attenuates vascular calcification via the exosomal miR-92b-3p/KLF4 axis. Exp Biol Med (Maywood) 2022; 247:1420-1432. [PMID: 35666058 PMCID: PMC9493763 DOI: 10.1177/15353702221095456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vascular calcification (VC) is the most widespread pathological change in diseases of the vascular system. However, we do not have a good understanding of the molecular mechanisms and effective therapeutic approaches for VC. Curcumin (CUR) is a natural polyphenolic compound that has hypolipidemic, anti-inflammatory, and antioxidant effects on the cardiovascular system. Exosomes are known to have extensive miRNAs for intercellular regulation. This study investigated whether CUR attenuates VC by affecting the secretion of exosomal miRNAs. Calcification models were established in vivo and in vitro using vitamin D3 and β-glycerophosphate, respectively. Appropriate therapeutic concentrations of CUR were detected on vascular smooth muscle cells (VSMCs) using a cell counting kit 8. Exosomes were extracted by super speed centrifugation from the supernatant of cultured VSMCs and identified by transmission electron microscopy and particle size analysis. Functional and phenotypic experiments were performed in vitro to verify the effects of CUR and exosomes secreted by VSMCs treated with CUR on calcified VSMCs. Compared with the calcified control group, both CUR and exosomes secreted by VSMCs after CUR intervention attenuated calcification in VSMCs. Real-Time quantitative PCR (RT-qPCR) experiments showed that miR-92b-3p, which is important for alleviating VC, was expressed highly in both VSMCs and exosomes after CUR intervention. The mimic miR-92b-3p significantly decreased the expression of transcription factor KLF4 and osteogenic factor RUNX2 in VSMCs, while the inhibitor miR-92b-3p had the opposite effect. Based on bioinformatics databases and dual luciferase experiments, the prospective target of miR-92b-3p was determined to be KLF4. Both mRNA and protein of RUNX2 were decreased and increased in VSMCs by inhibiting and overexpressing of KLF4, respectively. In addition, in the rat calcification models, CUR attenuated vitamin D3-induced VC by increasing miR-92b-3p expression and decreasing KLF4 expression in the aorta. In conclusion, our study suggests that CUR attenuates vascular calcification via the exosomal miR-92b-3p/KLF4 axis.
Collapse
Affiliation(s)
- Chuanzhen Chen
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yaodong Li
- Department of Vascular Surgery, Tianjin
Hospital, Tianjin 300211, P.R. China
| | - Hailin Lu
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Kai Liu
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wenhong Jiang
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhanman Zhang
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiao Qin
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China,Xiao Qin.
| |
Collapse
|
25
|
Park KR, Kim B, Lee JY, Moon HJ, Kwon IK, Yun HM. Effects of Scoparone on differentiation, adhesion, migration, autophagy and mineralization through the osteogenic signalling pathways. J Cell Mol Med 2022; 26:4520-4529. [PMID: 35796406 PMCID: PMC9357629 DOI: 10.1111/jcmm.17476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 12/18/2022] Open
Abstract
Scoparone (SCOP), an active and efficient coumarin compound derived from Artemisia capillaris Thunb, has been used as a traditional Chinese herbal medicine. Herein, we investigated the effects of SCOP on the osteogenic processes using MC3T3‐E1 pre‐osteoblasts in in vitro cell systems. SCOP (C11H10O4, > 99.17%) was purified and identified from A. capillaries. SCOP (0.1 to 100 μM concentrations) did not have cytotoxic effects in pre‐osteoblasts; however, it promoted alkaline phosphatase (ALP) staining and activity, and mineralized nodule formation under early and late osteogenic induction. SCOP elevated osteogenic signals through the bone morphogenetic protein 2 (BMP2)‐Smad1/5/8 pathway, leading to the increased expression of runt‐related transcription factor 2 (RUNX2) with its target protein, matrix metallopeptidase 13 (MMP13). SCOP also induced the non‐canonical BMP2‐MAPKs pathway, but not the Wnt3a‐β‐catenin pathway. Moreover, SCOP promoted autophagy, migration and adhesion under the osteogenic induction. Overall, the findings of this study demonstrated that SCOP has osteogenic effects associated with cell differentiation, adhesion, migration, autophagy and mineralization.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Korea
| | - Bomi Kim
- National Development Institute of Korean Medicine, Gyeongsan, Korea
| | - Joon Yeop Lee
- National Development Institute of Korean Medicine, Gyeongsan, Korea
| | - Ho-Jin Moon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, Korea.,Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
26
|
Chen H, Zhang M, Zhang J, Chen Y, Zuo Y, Xie Z, Zhou G, Chen S, Chen Y. Application of Induced Pluripotent Stem Cell-Derived Models for Investigating microRNA Regulation in Developmental Processes. Front Genet 2022; 13:899831. [PMID: 35719367 PMCID: PMC9204592 DOI: 10.3389/fgene.2022.899831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Advances in induced pluripotent stem cell (iPSC) techniques have opened up new perspectives in research on developmental biology. Compared with other sources of human cellular models, iPSCs present a great advantage in hosting the unique genotype background of donors without ethical concerns. A wide spectrum of cellular and organoid models can be generated from iPSCs under appropriate in vitro conditions. The pluripotency of iPSCs is orchestrated by external signalling and regulated at the epigenetic, transcriptional and posttranscriptional levels. Recent decades have witnessed the progress of studying tissue-specific expressions and functions of microRNAs (miRNAs) using iPSC-derived models. MiRNAs are a class of short non-coding RNAs with regulatory functions in various biological processes during development, including cell migration, proliferation and apoptosis. MiRNAs are key modulators of gene expression and promising candidates for biomarker in development; hence, research on the regulation of human development by miRNAs is expanding. In this review, we summarize the current progress in the application of iPSC-derived models to studies of the regulatory roles of miRNAs in developmental processes.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mimi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingzhi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yapei Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yabo Zuo
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhishen Xie
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Guanqing Zhou
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shehong Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyong Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Nieminen-Pihala V, Rummukainen P, Wang F, Tarkkonen K, Ivaska KK, Kiviranta R. Age-Progressive and Gender-Dependent Bone Phenotype in Mice Lacking Both Ebf1 and Ebf2 in Prrx1-Expressing Mesenchymal Cells. Calcif Tissue Int 2022; 110:746-758. [PMID: 35137272 PMCID: PMC9108109 DOI: 10.1007/s00223-022-00951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/22/2022] [Indexed: 11/02/2022]
Abstract
Ebfs are a family of transcription factors regulating the differentiation of multiple cell types of mesenchymal origin, including osteoblasts. Global deletion of Ebf1 results in increased bone formation and bone mass, while global loss of Ebf2 leads to enhanced bone resorption and decreased bone mass. Targeted deletion of Ebf1 in early committed osteoblasts leads to increased bone formation, whereas deletion in mature osteoblasts has no effect. To study the effects of Ebf2 specifically on long bone development, we created a limb bud mesenchyme targeted Ebf2 knockout mouse model by using paired related homeobox gene 1 (Prrx1) Cre. To investigate the possible interplay between Ebf1 and Ebf2, we deleted both Ebf1 and Ebf2 in the cells expressing Prrx1. Mice with Prrx1-targeted deletion of Ebf2 had a very mild bone phenotype. However, deletion of both Ebf1 and Ebf2 in mesenchymal lineage cells lead to significant, age progressive increase in bone volume. The phenotype was to some extent gender dependent, leading to an increase in both trabecular and cortical bone in females, while in males a mild cortical bone phenotype and a growth plate defect was observed. The phenotype was observed at both 6 and 12 weeks of age, but it was more pronounced in older female mice. Our data suggest that Ebfs modulate bone homeostasis and they are likely able to compensate for the lack of each other. The roles of Ebfs in bone formation appear to be complex and affected by multiple factors, such as age and gender.
Collapse
Affiliation(s)
| | | | - Fan Wang
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kati Tarkkonen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Orion Pharma, Turku, Finland
| | - Kaisa K Ivaska
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riku Kiviranta
- Institute of Biomedicine, University of Turku, Turku, Finland
- Division of Medicine, Department of Endocrinology, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
28
|
Hojo H, Ohba S. Sp7 Action in the Skeleton: Its Mode of Action, Functions, and Relevance to Skeletal Diseases. Int J Mol Sci 2022; 23:5647. [PMID: 35628456 PMCID: PMC9143072 DOI: 10.3390/ijms23105647] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Osteoblast differentiation is a tightly regulated process in which key transcription factors (TFs) and their target genes constitute gene regulatory networks (GRNs) under the control of osteogenic signaling pathways. Among these TFs, Sp7 works as an osteoblast determinant critical for osteoblast differentiation. Following the identification of Sp7 and a large number of its functional studies, recent genome-scale analyses have made a major contribution to the identification of a "non-canonical" mode of Sp7 action as well as "canonical" ones. The analyses have not only confirmed known Sp7 targets but have also uncovered its additional targets and upstream factors. In addition, biochemical analyses have demonstrated that Sp7 actions are regulated by chemical modifications and protein-protein interaction with other transcriptional regulators. Sp7 is also involved in chondrocyte differentiation and osteocyte biology as well as postnatal bone metabolism. The critical role of SP7 in the skeleton is supported by its relevance to human skeletal diseases. This review aims to overview the Sp7 actions in skeletal development and maintenance, particularly focusing on recent advances in our understanding of how Sp7 functions in the skeleton under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Boyan BD, Asmussen NC, Lin Z, Schwartz Z. The Role of Matrix-Bound Extracellular Vesicles in the Regulation of Endochondral Bone Formation. Cells 2022; 11:1619. [PMID: 35626656 PMCID: PMC9139584 DOI: 10.3390/cells11101619] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Matrix vesicles are key players in the development of the growth plate during endochondral bone formation. They are involved in the turnover of the extracellular matrix and its mineralization, as well as being a vehicle for chondrocyte communication and regulation. These extracellular organelles are released by the cells and are anchored to the matrix via integrin binding to collagen. The exact function and makeup of the vesicles are dependent on the zone of the growth plate in which they are produced. Early studies defined their role as sites of initial calcium phosphate deposition based on the presence of crystals on the inner leaflet of the membrane and subsequent identification of enzymes, ion transporters, and phospholipid complexes involved in mineral formation. More recent studies have shown that they contain small RNAs, including microRNAs, that are distinct from the parent cell, raising the hypothesis that they are a distinct subset of exosomes. Matrix vesicles are produced under complex regulatory pathways, which include the action of steroid hormones. Once in the matrix, their maturation is mediated by the action of secreted hormones. How they convey information to cells, either through autocrine or paracrine actions, is now being elucidated.
Collapse
Affiliation(s)
- Barbara D. Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Niels C. Asmussen
- School of Integrated Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Zhao Lin
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
30
|
Omatsu Y, Aiba S, Maeta T, Higaki K, Aoki K, Watanabe H, Kondoh G, Nishimura R, Takeda S, Chung UI, Nagasawa T. Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells. Nat Commun 2022; 13:2654. [PMID: 35551452 PMCID: PMC9098511 DOI: 10.1038/s41467-022-30266-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/08/2022] [Indexed: 01/01/2023] Open
Abstract
In bone marrow, special microenvironments, known as niches, are essential for the maintenance of hematopoietic stem cells (HSCs). A population of mesenchymal stem cells, termed CXC chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells or leptin receptor-expressing cells are the major cellular component of HSC niches. The molecular regulation of HSC niche properties is not fully understood. The role of Runx transcription factors, Runx1 and Runx2 in HSC cellular niches remains unclear. Here we show that Runx1 is predominantly expressed in CAR cells and that mice lacking both Runx1 and Runx2 in CAR cells display an increase in fibrosis and bone formation with markedly reduced hematopoietic stem and progenitor cells in bone marrow. In vitro, Runx1 is induced by the transcription factor Foxc1 and decreases fibrotic gene expression in CAR cells. Thus, HSC cellular niches require Runx1 or Runx2 to prevent their fibrotic conversion and maintain HSCs and hematopoiesis in adults. The transcription factors, Runx1 and Runx2 are critical embryonically for generation of HSCs and osteoblasts, respectively. Here the authors show that adult mice lacking Runx1 and Runx2 in HSC-supporting CAR cells displayed an increase in fibrosis with reduced HSCs in bone marrow.
Collapse
Affiliation(s)
- Yoshiki Omatsu
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shota Aiba
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomonori Maeta
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kei Higaki
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory of Stem Cell Biology and Developmental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazunari Aoki
- Laboratory of Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hitomi Watanabe
- Laboratory of Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Gen Kondoh
- Laboratory of Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shu Takeda
- Endocrinology Division, Toranomon Hospital, Minato-ku, Tokyo, 105-8470, Japan
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory of Stem Cell Biology and Developmental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
31
|
PRDX2 Knockdown Inhibits Extracellular Matrix Synthesis of Chondrocytes by Inhibiting Wnt5a/YAP1/CTGF and Activating IL-6/JAK2/STAT3 Pathways in Deer Antler. Int J Mol Sci 2022; 23:ijms23095232. [PMID: 35563622 PMCID: PMC9103832 DOI: 10.3390/ijms23095232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
Although peroxiredoxin 2 (PRDX2) plays a vital role in relieving oxidative stress, its physiological function in cartilage development remains almost unknown. In this study, we found that the expression of PRDX2 significantly increased in the chondrocytes compared with pre-chondrocytes. PRDX2 knockdown significantly decreased the expression of extracellular matrix (ECM) protein (Col2a and Aggrecan), which led to blocked cartilage formation. Moreover, PRDX2 knockdown also inhibited the expression of connective tissue growth factor (CTGF). CTGF is an important growth factor that regulates synthesis of ECM proteins. We explored the possible regulatory mechanism by which PRDX2 regulated the expression of CTGF. Our results demonstrated that PRDX2 knockdown downregulated the expression of CTGF by inhibiting Wnt5a/Yes-associated protein 1 (YAP1) pathway. In addition, PRDX2 knockdown promoted the expression of interleukin 6 (IL-6), indicating PRDX2 expression had an anti-inflammatory function during antler growth. Mechanistically, PRDX2 knockdown promoted cartilage matrix degradation by activating the IL-6-mediated Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) signaling pathway. These results reveal that PRDX2 is a potential regulator that promotes cartilage extracellular matrix synthesis.
Collapse
|
32
|
Bin-Bin Z, Da-Wa ZX, Chao L, Lan-Tao Z, Tao W, Chuan L, Chao-Zheng L, De-Chun L, Chang F, Shu-Qing W, Zu-Nan D, Xian-Wei P, Zhang ZX, Ke-Wen L. M2 macrophagy-derived exosomal miRNA-26a-5p induces osteogenic differentiation of bone mesenchymal stem cells. J Orthop Surg Res 2022; 17:137. [PMID: 35246197 PMCID: PMC8895825 DOI: 10.1186/s13018-022-03029-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/18/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells have always been a heated research topic in bone tissue regeneration and repair because of their self-renewal and multi-differentiation potential. A large number of studies have been focused on finding the inducing factors that will promote the osteogenic differentiation of bone marrow mesenchymal stem cells. Previous studies have shown that macrophage exosomes or miRNA-26a-5p can make it work, but the function of this kind of substance on cell osteogenic differentiation has not been public. METHODS M2 macrophages are obtained from IL-4 polarized bone marrow-derived macrophages. Exosomes were isolated from the supernatant of M2 macrophages and identified via transmission electron microscopy (TEM), western blotting, and DLS. Chondrogenic differentiation potential was detected by Alcian blue staining. Oil red O staining was used to detect the potential for lipogenic differentiation. And MTT would detect the proliferative capacity of cells. Western blot was performed to detect differential expression of osteogenic differentiation-related proteins. RESULTS The results showed that M2 macrophage exosomes will promote bone differentiation and at the same time inhibit lipid differentiation. In addition, M2 macrophage-derived exosomes have the function of promoting the expression of SOX and Aggrecan suppressing the level of MMP13. The exosome inhibitor GW4689 suppresses miRNA-26a-5p in M2 macrophage exosomes, and the treated exosomes do not play an important role in promoting bone differentiation. Moreover, miRNA-26a-5p can enable to promote bone differentiation and inhibit lipid differentiation. miRNA-26a-5p can promote the expression of ALP (alkaline phosphatase), RUNX-2 (Runt-related transcription factor 2), OPN(osteopontin), and Col-2(collagen type II). Therefore, it is speculated that exosomal miRNA-26a-5p is indispensable in osteogenic differentiation. CONCLUSIONS The present study indicated that M2 macrophage exosomes carrying miRNA-26a-5p can induce osteogenic differentiation of bone marrow-derived stem cells to inhibit lipogenic differentiation, and miRNA-26a-5p will also promote the expression of osteogenic differentiation-related proteins ALP, RUNX-2, OPN, and Col-2.
Collapse
Affiliation(s)
- Zhang Bin-Bin
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Zha Xi Da-Wa
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Li Chao
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Zhang Lan-Tao
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Wu Tao
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Lu Chuan
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Liu Chao-Zheng
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Li De-Chun
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Feng Chang
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Wei Shu-Qing
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Dong Zu-Nan
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Pei Xian-Wei
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Zhi-Xia Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Out-Patient, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Li Ke-Wen
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China.
| |
Collapse
|
33
|
Scheiber AL, Wilkinson KJ, Suzuki A, Enomoto-Iwamoto M, Kaito T, Cheah KS, Iwamoto M, Leikin S, Otsuru S. 4PBA reduces growth deficiency in osteogenesis imperfecta by enhancing transition of hypertrophic chondrocytes to osteoblasts. JCI Insight 2022; 7:149636. [PMID: 34990412 PMCID: PMC8855815 DOI: 10.1172/jci.insight.149636] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Short stature is a major skeletal phenotype in osteogenesis imperfecta (OI), a genetic disorder mainly caused by mutations in genes encoding type I collagen. However, the underlying mechanism is poorly understood, and no effective treatment is available. In OI mice that carry a G610C mutation in COL1A2, we previously found that mature hypertrophic chondrocytes (HCs) are exposed to cell stress due to accumulation of misfolded mutant type I procollagen in the endoplasmic reticulum (ER). By fate mapping analysis of HCs in G610C OI mice, we found that HCs stagnate in the growth plate, inhibiting translocation of HC descendants to the trabecular area and their differentiation to osteoblasts. Treatment with 4-phenylbutyric acid (4PBA), a chemical chaperone, restored HC ER structure and rescued this inhibition, resulting in enhanced longitudinal bone growth in G610C OI mice. Interestingly, the effects of 4PBA on ER dilation were limited in osteoblasts, and the bone fragility was not ameliorated. These results highlight the importance of targeting HCs to treat growth deficiency in OI. Our findings demonstrate that HC dysfunction induced by ER disruption plays a critical role in the pathogenesis of OI growth deficiency, which lays the foundation for developing new therapies for OI.
Collapse
Affiliation(s)
- Amanda L Scheiber
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Kevin J Wilkinson
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Akiko Suzuki
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Kathryn Se Cheah
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Sergey Leikin
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health & Human Developme, Bethesda, United States of America
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| |
Collapse
|
34
|
Baek I, Bello AB, Jeon J, Arai Y, Cha BH, Kim BJ, Lee SH. Therapeutic potential of epiphyseal growth plate cells for bone regeneration in an osteoporosis model. J Tissue Eng 2022; 13:20417314221116754. [PMID: 35983547 PMCID: PMC9379561 DOI: 10.1177/20417314221116754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Bone growth occurs in the epiphyseal growth plate (EGP) and epiphyseal growth plate cells (EGPCs) exist in EGP. EGPCs, including skeletal stem cells (SSCs), are cells that induce bone growth and development through endochondral ossification. Recently, the superiority of bone regeneration through endochondral ossification has been reported. Our study compared EGPCs with bone marrow-derived mesenchymal stem cells (BM-MSCs) and suggested the therapeutic potential of new bone regeneration. In this study, we analyzed the characteristics between EGPCs and BM-MSCs based on morphological characteristics and molecular profiles. EGPCs expressed chondrogenic and osteogenic markers higher than BM-MSCs. Additionally, in co-culture with BM-MSCs, EGPCs induced an increase in chondrogenic, osteogenic, and hypertrophic markers of BM-MSCs. Finally, EGPCs induced higher bone regeneration than BM-MSCs in the osteoporosis model. Overall, we suggest the possibility of EGPCs as cell therapy for effective bone regeneration.
Collapse
Affiliation(s)
- Inho Baek
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| | - Alvin Bacero Bello
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| | - Jieun Jeon
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| | - Yoshie Arai
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| | - Byung-Hyun Cha
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | | | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| |
Collapse
|
35
|
Nakamura M, Yang MC, Ashida K, Mayanagi M, Sasano Y. Calcification and resorption of mouse Meckel's cartilage analyzed by von Kossa and tartrate-resistant acid phosphatase histochemistry and scanning electron microscopy/energy-dispersive X-ray spectrometry. Anat Sci Int 2021; 97:213-220. [PMID: 34859366 DOI: 10.1007/s12565-021-00643-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
Meckel's cartilage is essential for the normal development of the mandible. The fate of the intermediate portion of Meckel's cartilage is unique as most of it disappears soon after birth except for the part that forms the sphenomandibular ligament. The mechanism of the disappearance of Meckel's cartilage is unknown; therefore, this study was designed to investigate the process of Meckel's cartilage degradation, focusing on cartilage matrix calcification and the appearance of chondroclasts. Developing mouse mandibles at embryonic days 15, 16, 17, and 18, and postnatal day 2 were processed for whole-mount staining with alcian blue and alizarin red. The mandibles on embryonic days 15, 16, 17, and 18 were fixed and embedded in paraffin. Adjacent sections were processed for von Kossa and tartrate-resistant acid phosphatase (TRAP) histochemistry and scanning electron microscopy/energy-dispersive X-ray spectrometry (SEM/EDS). Calcification and the element concentrations of calcium, phosphorus, and carbon were examined with von Kossa histochemistry and SEM/EDS. The involvement of chondroclasts was investigated using TRAP histochemistry. The results demonstrated that the intermediate portion of Meckel's cartilage is resorbed by chondroclasts after chondrocyte hypertrophy and cartilage matrix calcification and that the mineral concentration of calcified Meckel's cartilage is comparable to that of the surrounding bone. This study contributes to the understanding of the mechanism of Meckel's cartilage resorption and provides useful insights into the development of the mandible.
Collapse
Affiliation(s)
- Megumi Nakamura
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Mu-Chen Yang
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Keijyu Ashida
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Miyuki Mayanagi
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yasuyuki Sasano
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
36
|
Ohba S. Genome-scale actions of master regulators directing skeletal development. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:217-223. [PMID: 34745394 PMCID: PMC8556520 DOI: 10.1016/j.jdsr.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/14/2021] [Accepted: 10/10/2021] [Indexed: 11/03/2022] Open
Abstract
The mammalian skeleton develops through two distinct modes of ossification: intramembranous ossification and endochondral ossification. During the process of skeletal development, SRY-box containing gene 9 (Sox9), runt-related transcription factor 2 (Runx2), and Sp7 work as master transcription factors (TFs) or transcriptional regulators, underlying cell fate specification of the two distinct populations: bone-forming osteoblasts and cartilage-forming chondrocytes. In the past two decades, core transcriptional circuits underlying skeletal development have been identified mainly through mouse genetics and biochemical approaches. Recently emerging next-generation sequencer (NGS)-based studies have provided genome-scale views on the gene regulatory landscape programmed by the master TFs/transcriptional regulators. With particular focus on Sox9, Runx2, and Sp7, this review aims to discuss the gene regulatory landscape in skeletal development, which has been identified by genome-scale data, and provide future perspectives in this field.
Collapse
Affiliation(s)
- Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
37
|
Zfhx4 regulates endochondral ossification as the transcriptional platform of Osterix in mice. Commun Biol 2021; 4:1258. [PMID: 34732852 PMCID: PMC8566502 DOI: 10.1038/s42003-021-02793-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
Abstract
Endochondral ossification is regulated by transcription factors that include SRY-box transcription factor 9, runt-related protein 2 (Runx2), and Osterix. However, the sequential and harmonious regulation of the multiple steps of endochondral ossification is unclear. This study identified zinc finger homeodomain 4 (Zfhx4) as a crucial transcriptional partner of Osterix. We found that Zfhx4 was highly expressed in cartilage and that Zfhx4 deficient mice had reduced expression of matrix metallopeptidase 13 and inhibited calcification of cartilage matrices. These phenotypes were very similar to impaired chondrogenesis in Osterix deficient mice. Coimmunoprecipitation and immunofluorescence indicated a physical interaction between Zfhx4 and Osterix. Notably, Zfhx4 and Osterix double mutant mice showed more severe phenotype than Zfhx4 deficient mice. Additionally, Zfhx4 interacted with Runx2 that functions upstream of Osterix. Our findings suggest that Zfhx4 coordinates the transcriptional network of Osterix and, consequently, endochondral ossification.
Collapse
|
38
|
Asmussen NC, Cohen DJ, Lin Z, McClure MJ, Boyan BD, Schwartz Z. Specific MicroRNAs Found in Extracellular Matrix Vesicles Regulate Proliferation and Differentiation in Growth Plate Chondrocytes. Calcif Tissue Int 2021; 109:455-468. [PMID: 33950267 DOI: 10.1007/s00223-021-00855-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Matrix vesicles (MVs) are extracellular organelles produced by growth plate cartilage cells in a zone-specific manner. MVs are similar in size to exosomes, but they are tethered to the extracellular matrix (ECM) via integrins. Originally associated with matrix calcification, studies now show that they contain matrix processing enzymes and microRNA that are specific to their zone of maturation. MVs produced by costochondral cartilage resting zone (RC) chondrocytes are enriched in microRNA 503 whereas those produced by growth zone (GC) chondrocytes are enriched in microRNA 122. MVs are packaged by chondrocytes under hormonal and factor regulation and release of their contents into the ECM is also under hormonal control, suggesting that their microRNA might have a regulatory role in growth plate proliferation and maturation. To test this, we selected a subset of these enriched microRNAs and transfected synthetic mimics back into RC and GC cells. Transfecting growth plate chondrocytes with select microRNA produced a broad range of phenotypic responses indicating that MV-based microRNAs are involved in the regulation of these cells. Specifically, microRNA 122 drives both RC and GC cells toward a proliferative phenotype, stabilizes the matrix and inhibits differentiation whereas microRNA 22 exerts control over regulatory factor production. This study demonstrates the strong regulatory capability possessed by unique MV enriched microRNAs on growth plate chondrocytes and their potential for use as therapeutic agents.
Collapse
Affiliation(s)
- Niels C Asmussen
- School of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - David J Cohen
- College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
| | - Zhao Lin
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michael J McClure
- College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
| | - Barbara D Boyan
- College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Zvi Schwartz
- College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
39
|
Cardoso KMMC, Gomes LA, Reis AMS, Silva CMO, Tamiasso NV, Serakides R, Ocarino NM. Phenotype and synthesis activity of joint chondrocytes extracted from newborn rats with prenatal ethanol exposure. Hum Exp Toxicol 2021; 40:S414-S422. [PMID: 34565211 DOI: 10.1177/09603271211045949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thirteen female Wistar rats were divided into two groups: one treated with ethanol and the other of untreated. Four newborns from each mother were selected and weighed, measured, and evaluated for physical characteristics. From these neonates, chondrocytes were extracted from the articular cartilages of the femur and tibia, and cultivated in a chondrogenic medium at 37oC and 5% CO2. At 7, 14, and 21 days of cultivation, alkaline phosphatase activity tests, MTT conversion to formazan, and percentage area covered by cells per field were performed. At 21 days, the percentage of PAS+ areas in 3D cultures was performed, as well as the evaluation of gene transcript expression for aggrecan, SOX-9, collagen type II, collagen X, Runx-2, and VEGF by real-time RT-PCR. The means were compared by Student's t-test. The weight of the ethanol group neonates was significantly lower than that of the controls. Chondrocyte cultures from the ethanol group showed significantly higher AP activity, MTT conversion, and cell percentage. There was higher expression of collagen type II and lower expression of SOX-9 in the ethanol group. There was no difference in the percentage of PAS+ areas in pellets and in expression of aggrecan, collagen X, Runx-2, or VEGF between groups. In conclusion, prenatal exposure to ethanol alters the phenotype and activity of offspring chondrocytes, which may be mechanisms by which endochondral bone formation is compromised by maternal ethanol consumption.
Collapse
Affiliation(s)
- Kênia Mara M C Cardoso
- Núcleo de Células-Tronco e Terapia Celular (NCT-TCA), Departamento de Clínica e CirurgiaVeterinárias, Escola de Veterinária, 154001UFMG, Belo Horizonte, Brazil
| | - Lorenna A Gomes
- Núcleo de Células-Tronco e Terapia Celular (NCT-TCA), Departamento de Clínica e CirurgiaVeterinárias, Escola de Veterinária, 154001UFMG, Belo Horizonte, Brazil
| | - Amanda Maria S Reis
- Instituto de Ciências Biológicas, Departamento de Patologia Geral, 113014UFMG, Belo Horizonte, Brazil
| | - Carla Maria O Silva
- Núcleo de Células-Tronco e Terapia Celular (NCT-TCA), Departamento de Clínica e CirurgiaVeterinárias, Escola de Veterinária, 154001UFMG, Belo Horizonte, Brazil
| | - Natalia V Tamiasso
- Núcleo de Células-Tronco e Terapia Celular (NCT-TCA), Departamento de Clínica e CirurgiaVeterinárias, Escola de Veterinária, 154001UFMG, Belo Horizonte, Brazil
| | - Rogéria Serakides
- Núcleo de Células-Tronco e Terapia Celular (NCT-TCA), Departamento de Clínica e CirurgiaVeterinárias, Escola de Veterinária, 154001UFMG, Belo Horizonte, Brazil
| | - Natalia M Ocarino
- Núcleo de Células-Tronco e Terapia Celular (NCT-TCA), Departamento de Clínica e CirurgiaVeterinárias, Escola de Veterinária, 154001UFMG, Belo Horizonte, Brazil
| |
Collapse
|
40
|
Masbuchin AN, Rohman MS, Liu PY. Role of Glycosylation in Vascular Calcification. Int J Mol Sci 2021; 22:9829. [PMID: 34575990 PMCID: PMC8469761 DOI: 10.3390/ijms22189829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is an important step in post-translational protein modification. Altered glycosylation results in an abnormality that causes diseases such as malignancy and cardiovascular diseases. Recent emerging evidence highlights the importance of glycosylation in vascular calcification. Two major types of glycosylation, N-glycosylation and O-glycosylation, are involved in vascular calcification. Other glycosylation mechanisms, which polymerize the glycosaminoglycan (GAG) chain onto protein, resulting in proteoglycan (PG), also have an impact on vascular calcification. This paper discusses the role of glycosylation in vascular calcification.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
41
|
Liu H, Hu L, Yu G, Yang H, Cao Y, Wang S, Fan Z. LncRNA, PLXDC2-OT Promoted the Osteogenesis Potentials of MSCs by Inhibiting the Deacetylation Function of RBM6/SIRT7 Complex and OSX Specific Isoform. Stem Cells 2021; 39:1049-1066. [DOI: 10.doi: 10.1002/stem.3362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/10/2021] [Indexed: 05/19/2025]
Abstract
Abstract
Bone regeneration and remodeling are complex physiological processes that are regulated by key transcription factors. Understanding the regulatory mechanism of key transcription factors on the osteogenic differentiation of mesenchymal stem cells (MSCs) is a key issue for successful bone regeneration and remodeling. In the present study, we investigated the regulatory mechanism of the histone deacetylase Sirtuin 7 (SIRT7) on the key transcription factor OSX and osteogenesis of MSCs. In this study, we found that SIRT7 knockdown increased ALP activity and in vitro mineralization and promoted the expression of the osteogenic differentiation markers DSPP, DMP1, BSP, OCN, and the key transcription factor OSX in MSCs. In addition, SIRT7 could associate with RNA binding motif protein 6 (RBM6) to form a protein complex. Moreover, RBM6 inhibited ALP activity, the expression of DSPP, DMP1, BSP, OCN, and OSX in MSCs, and the osteogenesis of MSCs in vivo. Then, the SIRT7/RBM6 protein complex was shown to downregulate the level of H3K18Ac in the OSX promoter by recruiting SIRT7 to the OSX promoter and inhibiting the expression of OSX isoforms 1 and 2. Furthermore, lncRNA PLXDC2-OT could associate with the SIRT7/RBM6 protein complex to diminish its binding and deacetylation function in the OSX promoter and its inhibitory function on OSX isoforms 1 and 2 and to promote the osteogenic potential of MSCs.
Collapse
Affiliation(s)
- Huina Liu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’ Republic of China
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’ Republic of China
| | - Guoxia Yu
- Department of Stomatology, Beijing Children’ Hospital, Capital Medical University, Beijing, People’ Republic of China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’ Republic of China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’ Republic of China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’ Republic of China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, People’ Republic of China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’ Republic of China
| |
Collapse
|
42
|
Liu H, Hu L, Yu G, Yang H, Cao Y, Wang S, Fan Z. LncRNA, PLXDC2-OT promoted the osteogenesis potentials of MSCs by inhibiting the deacetylation function of RBM6/SIRT7 complex and OSX specific isoform. Stem Cells 2021; 39:1049-1066. [PMID: 33684230 DOI: 10.1002/stem.3362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022]
Abstract
Bone regeneration and remodeling are complex physiological processes that are regulated by key transcription factors. Understanding the regulatory mechanism of key transcription factors on the osteogenic differentiation of mesenchymal stem cells (MSCs) is a key issue for successful bone regeneration and remodeling. In the present study, we investigated the regulatory mechanism of the histone deacetylase Sirtuin 7 (SIRT7) on the key transcription factor OSX and osteogenesis of MSCs. In this study, we found that SIRT7 knockdown increased ALP activity and in vitro mineralization and promoted the expression of the osteogenic differentiation markers DSPP, DMP1, BSP, OCN, and the key transcription factor OSX in MSCs. In addition, SIRT7 could associate with RNA binding motif protein 6 (RBM6) to form a protein complex. Moreover, RBM6 inhibited ALP activity, the expression of DSPP, DMP1, BSP, OCN, and OSX in MSCs, and the osteogenesis of MSCs in vivo. Then, the SIRT7/RBM6 protein complex was shown to downregulate the level of H3K18Ac in the OSX promoter by recruiting SIRT7 to the OSX promoter and inhibiting the expression of OSX isoforms 1 and 2. Furthermore, lncRNA PLXDC2-OT could associate with the SIRT7/RBM6 protein complex to diminish its binding and deacetylation function in the OSX promoter and its inhibitory function on OSX isoforms 1 and 2 and to promote the osteogenic potential of MSCs.
Collapse
Affiliation(s)
- Huina Liu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Guoxia Yu
- Department of Stomatology, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, People's Republic of China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
43
|
Park S, Bello A, Arai Y, Ahn J, Kim D, Cha KY, Baek I, Park H, Lee SH. Functional Duality of Chondrocyte Hypertrophy and Biomedical Application Trends in Osteoarthritis. Pharmaceutics 2021; 13:pharmaceutics13081139. [PMID: 34452101 PMCID: PMC8400409 DOI: 10.3390/pharmaceutics13081139] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chondrocyte hypertrophy is one of the key indicators in the progression of osteoarthritis (OA). However, compared with other OA indications, such as cartilage collapse, sclerosis, inflammation, and protease activation, the mechanisms by which chondrocyte hypertrophy contributes to OA remain elusive. As the pathological processes in the OA cartilage microenvironment, such as the alterations in the extracellular matrix, are initiated and dictated by the physiological state of the chondrocytes, in-depth knowledge of chondrocyte hypertrophy is necessary to enhance our understanding of the disease pathology and develop therapeutic agents. Chondrocyte hypertrophy is a factor that induces OA progression; it is also a crucial factor in the endochondral ossification. This review elaborates on this dual functionality of chondrocyte hypertrophy in OA progression and endochondral ossification through a description of the characteristics of various genes and signaling, their mechanism, and their distinguishable physiological effects. Chondrocyte hypertrophy in OA progression leads to a decrease in chondrogenic genes and destruction of cartilage tissue. However, in endochondral ossification, it represents an intermediate stage at the process of differentiation of chondrocytes into osteogenic cells. In addition, this review describes the current therapeutic strategies and their mechanisms, involving genes, proteins, cytokines, small molecules, three-dimensional environments, or exosomes, against the OA induced by chondrocyte hypertrophy. Finally, this review proposes that the contrasting roles of chondrocyte hypertrophy are essential for both OA progression and endochondral ossification, and that this cellular process may be targeted to develop OA therapeutics.
Collapse
Affiliation(s)
- Sunghyun Park
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea
| | - Alvin Bello
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- School of Integrative Engineering, Chung-ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Yoshie Arai
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Jinsung Ahn
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Dohyun Kim
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Kyung-Yup Cha
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Inho Baek
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Hansoo Park
- School of Integrative Engineering, Chung-ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- Correspondence: ; Tel.: +82-31-961-5153; Fax: +82-31-961-5108
| |
Collapse
|
44
|
Takebe H, Irie K, Hosoya A. Localization of Bmi1 in osteoblast-lineage cells during endochondral ossification. Anat Rec (Hoboken) 2021; 305:1112-1118. [PMID: 34101367 DOI: 10.1002/ar.24693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/08/2022]
Abstract
Encoded by B cell-specific moloney murine leukemia virus integration site 1, Bmi1 is part of the polycomb group of proteins localized in stem and undifferentiated cells. It regulates the expression of various differentiation genes. However, the regulatory mechanism of skeletal development by Bmi1 remains poorly understood. In this study, we aimed to observe Bmi1 distribution during endochondral ossification processes in rat bone development and fracture healing. Immunoreactivity of Bmi1 was detected in the mesenchymal cell aggregation area at embryonic day (E) 14 and in cells around the center of cartilage primordium at E 16. Subsequently, the calcified bone matrix was formed around the cartilage primordium, and osteoblasts expressing Runt-related transcription factor 2 (Runx2) and Osterix (Osx) showed immunopositivity for Bmi1. At 4 days after bone fracture, the connective tissue around the fractured bone contained Bmi1-positive cells. At 42 days after fracture, osteoblasts along the surface of the new bone revealed Bmi1-, Runx2- and Osx-positive reactions, but the Bmi1 immunoreactivity in osteocytes was less than the Runx2 and Osx immunoreactivities. In conclusion, Bmi1 is localized in the osteoblast-lineage cells in their early differentiation stages, and it might regulate their differentiation during endochondral ossification.
Collapse
Affiliation(s)
- Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Ishikari-gun, Hokkaido, Japan
| | - Kazuharu Irie
- Division of Anatomy, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Ishikari-gun, Hokkaido, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Ishikari-gun, Hokkaido, Japan
| |
Collapse
|
45
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
46
|
Ono K, Hata K, Nakamura E, Ishihara S, Kobayashi S, Nakanishi M, Yoshida M, Takahata Y, Murakami T, Takenoshita S, Komori T, Nishimura R, Yoneda T. Dmrt2 promotes transition of endochondral bone formation by linking Sox9 and Runx2. Commun Biol 2021; 4:326. [PMID: 33707608 PMCID: PMC7952723 DOI: 10.1038/s42003-021-01848-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
Endochondral bone formation is fundamental for skeletal development. During this process, chondrocytes undergo multiple steps of differentiation and coordinated transition from a proliferating to a hypertrophic stage, which is critical to advance skeletal development. Here, we identified the transcription factor Dmrt2 (double-sex and mab-3 related transcription factor 2) as a Sox9-inducible gene that promotes chondrocyte hypertrophy in pre-hypertrophic chondrocytes. Epigenetic analysis further demonstrated that Sox9 regulates Dmrt2 expression through an active enhancer located 18 kb upstream of the Dmrt2 gene and that this enhancer's chromatin status is progressively activated through chondrocyte differentiation. Dmrt2-knockout mice exhibited a dwarf phenotype with delayed initiation of chondrocyte hypertrophy. Dmrt2 augmented hypertrophic chondrocyte gene expression including Ihh through physical and functional interaction with Runx2. Furthermore, Dmrt2 deficiency reduced Runx2-dependent Ihh expression. Our findings suggest that Dmrt2 is critical for sequential chondrocyte differentiation during endochondral bone formation and coordinates the transcriptional network between Sox9 and Runx2.
Collapse
Affiliation(s)
- Koichiro Ono
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Orthopedics, Nippon Medical School, Tokyo, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Eriko Nakamura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shota Ishihara
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Sachi Kobayashi
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masako Nakanishi
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Pathology, Wakayama Medical University, Wakayama, Japan
| | - Michiko Yoshida
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Seiichi Takenoshita
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Toshiyuki Yoneda
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
47
|
Dong X, Xu X, Yang C, Luo Y, Wu Y, Wang J. USP7 regulates the proliferation and differentiation of ATDC5 cells through the Sox9-PTHrP-PTH1R axis. Bone 2021; 143:115714. [PMID: 33127578 DOI: 10.1016/j.bone.2020.115714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to examine the effect of ubiquitin-specific peptidase 7 (USP7) on the proliferation and differentiation of ATDC5 cells and explore the underlying mechanisms. PCR, western blot, and immunofluorescence staining were used to observe the expression of USP7 after chondrogenic induction. The expressions of markers of chondrogenic and hypertrophic differentiation, and parathyroid hormone-related protein (PTHrP)/parathyroid hormone 1 receptor (PTH1R) signalling, were assessed by PCR, western blot, and histological staining under USP7 knockdown or its inhibitor. Cell proliferation was assessed by the CCK-8 assay and crystal violet staining. An in vivo experiment was performed to verify the functions of USP7 through histological and immunohistochemistry staining. Cyclopamine and abaloparatide were used to verify the signalling pathway. The interactions between USP7 and both PTHrP and sex-determining region Y-box 9 (Sox9) were tested by co-immunoprecipitation. The relationship between Sox9 and PTHrP was tested by chromatin immunoprecipitation and siRNA. USP7 knockdown or its inhibitor suppressed cell proliferation and chondrogenic differentiation but improved hypertrophic differentiation. The in vivo study obtained the same results. USP7 knockdown or its inhibitor inhibited PTHrP/PTH1R signalling to exert its function. Supplementation with cyclopamine suppressed PTHrP/PTH1R signalling and inhibited ATDC5 cell proliferation and differentiation. Supplementation with abaloparatide activated PTH1R to upregulate proliferation and chondrogenic differentiation but downregulated hypertrophic differentiation. Furthermore, USP7 interacted with Sox9 and Sox9 bound to PTTHrP to promote its expression. In conclusion, USP7 modulates the proliferation and differentiation of ATDC5 cells via the Sox9-PTHrP-PTH1R axis.
Collapse
Affiliation(s)
- Xiaofei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaoxiao Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yanru Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
48
|
Wang L, Yang H, Huang J, Pei S, Wang L, Feng JQ, Jing D, Zhao H, Kronenberg HM, Moore DC, Yang W. Targeted Ptpn11 deletion in mice reveals the essential role of SHP2 in osteoblast differentiation and skeletal homeostasis. Bone Res 2021; 9:6. [PMID: 33500396 PMCID: PMC7838289 DOI: 10.1038/s41413-020-00129-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
The maturation and function of osteoblasts (OBs) rely heavily on the reversible phosphorylation of signaling proteins. To date, most of the work in OBs has focused on phosphorylation by tyrosyl kinases, but little has been revealed about dephosphorylation by protein tyrosine phosphatases (PTPases). SHP2 (encoded by PTPN11) is a ubiquitously expressed PTPase. PTPN11 mutations are associated with both bone and cartilage manifestations in patients with Noonan syndrome (NS) and metachondromatosis (MC), although the underlying mechanisms remain elusive. Here, we report that SHP2 deletion in bone gamma-carboxyglutamate protein-expressing (Bglap+) bone cells leads to massive osteopenia in both trabecular and cortical bones due to the failure of bone cell maturation and enhanced osteoclast activity, and its deletion in Bglap+ chondrocytes results in the onset of enchondroma and osteochondroma in aged mice with increased tubular bone length. Mechanistically, SHP2 was found to be required for osteoblastic differentiation by promoting RUNX2/OSTERIX signaling and for the suppression of osteoclastogenesis by inhibiting STAT3-mediated RANKL production by osteoblasts and osteocytes. These findings are likely to explain the compromised skeletal system in NS and MC patients and to inform the development of novel therapeutics to combat skeletal disorders.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Huiliang Yang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Jiahui Huang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Shaopeng Pei
- Department of Mechanical Engineering, University of Delaware, Newark, DE, DE19716, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, DE19716, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Dian Jing
- Department of Comprehensive Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Douglas C Moore
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Wentian Yang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA.
| |
Collapse
|
49
|
Kegelman CD, Nijsure MP, Moharrer Y, Pearson HB, Dawahare JH, Jordan KM, Qin L, Boerckel JD. YAP and TAZ Promote Periosteal Osteoblast Precursor Expansion and Differentiation for Fracture Repair. J Bone Miner Res 2021; 36:143-157. [PMID: 32835424 PMCID: PMC7988482 DOI: 10.1002/jbmr.4166] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
In response to bone fracture, periosteal progenitor cells proliferate, expand, and differentiate to form cartilage and bone in the fracture callus. These cellular functions require the coordinated activation of multiple transcriptional programs, and the transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) regulate osteochondroprogenitor activation during endochondral bone development. However, recent observations raise important distinctions between the signaling mechanisms used to control bone morphogenesis and repair. Here, we tested the hypothesis that YAP and TAZ regulate osteochondroprogenitor activation during endochondral bone fracture healing in mice. Constitutive YAP and/or TAZ deletion from Osterix-expressing cells impaired both cartilage callus formation and subsequent mineralization. However, this could be explained either by direct defects in osteochondroprogenitor differentiation after fracture or by developmental deficiencies in the progenitor cell pool before fracture. Consistent with the second possibility, we found that developmental YAP/TAZ deletion produced long bones with impaired periosteal thickness and cellularity. Therefore, to remove the contributions of developmental history, we next generated adult onset-inducible knockout mice (using Osx-CretetOff ) in which YAP and TAZ were deleted before fracture but after normal development. Adult onset-induced YAP/TAZ deletion had no effect on cartilaginous callus formation but impaired bone formation at 14 days post-fracture (dpf). Earlier, at 4 dpf, adult onset-induced YAP/TAZ deletion impaired the proliferation and expansion of osteoblast precursor cells located in the shoulder of the callus. Further, activated periosteal cells isolated from this region at 4 dpf exhibited impaired osteogenic differentiation in vitro upon YAP/TAZ deletion. Finally, confirming the effects on osteoblast function in vivo, adult onset-induced YAP/TAZ deletion impaired bone formation in the callus shoulder at 7 dpf before the initiation of endochondral ossification. Together, these data show that YAP and TAZ promote the expansion and differentiation of periosteal osteoblast precursors to accelerate bone fracture healing. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Christopher D Kegelman
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasaman Moharrer
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hope B Pearson
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - James H Dawahare
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Kelsey M Jordan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
50
|
Effects of PIN on Osteoblast Differentiation and Matrix Mineralization through Runt-Related Transcription Factor. Int J Mol Sci 2020; 21:ijms21249579. [PMID: 33339165 PMCID: PMC7765567 DOI: 10.3390/ijms21249579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Styrax Japonica Sieb. et Zucc. has been used as traditional medicine in inflammatory diseases, and isolated compounds have shown pharmacological activities. Pinoresinol glucoside (PIN) belonging to lignins was isolated from the stem bark of S. Japonica. This study aimed to investigate the biological function and mechanisms of PIN on cell migration, osteoblast differentiation, and matrix mineralization. Herein, we investigated the effects of PIN in MC3T3-E1 pre-osteoblasts, which are widely used for studying osteoblast behavior in in vitro cell systems. At concentrations ranging from 0.1 to 100 μM, PIN had no cell toxicity in pre-osteoblasts. Pre-osteoblasts induced osteoblast differentiation, and the treatment of PIN (10 and 30 μM) promoted the cell migration rate in a dose-dependent manner. At concentrations of 10 and 30 μM, PIN elevated early osteoblast differentiation in a dose-dependent manner, as indicated by increases in alkaline phosphatase (ALP) staining and activity. Subsequently, PIN also increased the formation of mineralized nodules in a dose-dependent manner, as indicated by alizarin red S (ARS) staining, demonstrating positive effects of PIN on late osteoblast differentiation. In addition, PIN induced the mRNA level of BMP2, ALP, and osteocalcin (OCN). PIN also upregulated the protein level of BMP2 and increased canonical BMP2 signaling molecules, the phosphorylation of Smad1/5/8, and the protein level of Runt-related transcription factor 2 (RUNX2). Furthermore, PIN activated non-canonical BMP2 signaling molecules, activated MAP kinases, and increased β-catenin signaling. The findings of this study indicate that PIN has biological roles in osteoblast differentiation and matrix mineralization, and suggest that PIN might have anabolic effects in bone diseases such as osteoporosis and periodontitis.
Collapse
|