1
|
Zhang T, Zhang M, Guo L, Liu D, Zhang K, Bi C, Zhang P, Wang J, Fan Y, He Q, Chang ACY, Zhang J. Angiopoietin-like protein 2 inhibits thrombus formation. Mol Cell Biochem 2025; 480:1169-1181. [PMID: 38880861 PMCID: PMC11835982 DOI: 10.1007/s11010-024-05034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Acute myocardial infarction is mainly caused by a lack of blood flood in the coronary artery. Angiopoietin-like protein 2 (ANGPTL2) induces platelet activation and thrombus formation in vitro through binding with immunoglobulin-like receptor B, an immunoglobulin superfamily receptor. However, the mechanism by which it regulates platelet function in vivo remains unclear. In this study, we investigated the role of ANGPTL2 during thrombosis in relationship with ST-segment elevation myocardial infarction (STEMI) with spontaneous recanalization (SR). In a cohort of 276 male and female patients, we measured plasma ANGPTL2 protein levels. Using male Angptl2-knockout and wild-type mice, we examined the inhibitory effect of Angptl2 on thrombosis and platelet activation both in vivo and ex vivo. We found that plasma and platelet ANGPTL2 levels were elevated in patients with STEMI with SR compared to those in non-SR (NSR) patients, and was an independent predictor of SR. Angptl2 deficiency accelerated mesenteric artery thrombosis induced by FeCl3 in Angptl2-/- compared to WT animals, promoted platelet granule secretion and aggregation induced by thrombin and collogen while purified ANGPTL2 protein supplementation reversed collagen-induced platelet aggregation. Angptl2 deficiency also increased platelet spreading on immobilized fibrinogen and clot contraction. In collagen-stimulated Angptl2-/- platelets, Src homology region 2 domain-containing phosphatase (Shp)1-Y564 and Shp2-Y580 phosphorylation were attenuated while Src, Syk, and Phospholipase Cγ2 (PLCγ2) phosphorylation increased. Our results demonstrate that ANGPTL2 negatively regulated thrombus formation by activating ITIM which can suppress ITAM signaling pathway. This new knowledge provides a new perspective for designing future antiplatelet aggregation therapies.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingliang Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lingyu Guo
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Dongsheng Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kandi Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changlong Bi
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jin Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qing He
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alex C Y Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Kenny M, Pollitt AY, Patil S, Hiebner DW, Smolenski A, Lakic N, Fisher R, Alsufyani R, Lickert S, Vogel V, Schoen I. Contractility defects hinder glycoprotein VI-mediated platelet activation and affect platelet functions beyond clot contraction. Res Pract Thromb Haemost 2024; 8:102322. [PMID: 38379711 PMCID: PMC10877441 DOI: 10.1016/j.rpth.2024.102322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024] Open
Abstract
Background Active and passive biomechanical properties of platelets contribute substantially to thrombus formation. Actomyosin contractility drives clot contraction required for stabilizing the hemostatic plug. Impaired contractility results in bleeding but is difficult to detect using platelet function tests. Objectives To determine how diminished myosin activity affects platelet functions, including and beyond clot contraction. Methods Using the myosin IIA-specific pharmacologic inhibitor blebbistatin, we modulated myosin activity in platelets from healthy donors and systematically characterized platelet responses at various levels of inhibition by interrogating distinct platelet functions at each stage of thrombus formation using a range of complementary assays. Results Partial myosin IIA inhibition neither affected platelet von Willebrand factor interactions under arterial shear nor platelet spreading and cytoskeletal rearrangements on fibrinogen. However, it impacted stress fiber formation and the nanoarchitecture of cell-matrix adhesions, drastically reducing and limiting traction forces. Higher blebbistatin concentrations impaired platelet adhesion under flow, altered mechanosensing at lamellipodia edges, and eliminated traction forces without affecting platelet spreading, α-granule secretion, or procoagulant platelet formation. Unexpectedly, myosin IIA inhibition reduced calcium influx, dense granule secretion, and platelet aggregation downstream of glycoprotein (GP)VI and limited the redistribution of GPVI on the cell membrane, whereas aggregation induced by adenosine diphosphate or arachidonic acid was unaffected. Conclusion Our findings highlight the importance of both active contractile and passive crosslinking roles of myosin IIA in the platelet cytoskeleton. They support the hypothesis that highly contractile platelets are needed for hemostasis and further suggest a supportive role for myosin IIA in GPVI signaling.
Collapse
Affiliation(s)
- Martin Kenny
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice Y. Pollitt
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Smita Patil
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dishon W. Hiebner
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Albert Smolenski
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Natalija Lakic
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert Fisher
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Reema Alsufyani
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sebastian Lickert
- Department of Health Sciences and Technologies, ETH Zurich, Zurich, Switzerland
| | - Viola Vogel
- Department of Health Sciences and Technologies, ETH Zurich, Zurich, Switzerland
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
3
|
Tantiwong C, Dunster JL, Cavill R, Tomlinson MG, Wierling C, Heemskerk JWM, Gibbins JM. An agent-based approach for modelling and simulation of glycoprotein VI receptor diffusion, localisation and dimerisation in platelet lipid rafts. Sci Rep 2023; 13:3906. [PMID: 36890261 PMCID: PMC9994409 DOI: 10.1038/s41598-023-30884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
Receptor diffusion plays an essential role in cellular signalling via the plasma membrane microenvironment and receptor interactions, but the regulation is not well understood. To aid in understanding of the key determinants of receptor diffusion and signalling, we developed agent-based models (ABMs) to explore the extent of dimerisation of the platelet- and megakaryocyte-specific receptor for collagen glycoprotein VI (GPVI). This approach assessed the importance of glycolipid enriched raft-like domains within the plasma membrane that lower receptor diffusivity. Our model simulations demonstrated that GPVI dimers preferentially concentrate in confined domains and, if diffusivity within domains is decreased relative to outside of domains, dimerisation rates are increased. While an increased amount of confined domains resulted in further dimerisation, merging of domains, which may occur upon membrane rearrangements, was without effect. Modelling of the proportion of the cell membrane which constitutes lipid rafts indicated that dimerisation levels could not be explained by these alone. Crowding of receptors by other membrane proteins was also an important determinant of GPVI dimerisation. Together, these results demonstrate the value of ABM approaches in exploring the interactions on a cell surface, guiding the experimentation for new therapeutic avenues.
Collapse
Affiliation(s)
- Chukiat Tantiwong
- School of Biological Sciences, University of Reading, Reading, UK.,Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Joanne L Dunster
- School of Biological Sciences, University of Reading, Reading, UK
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | | | | | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands.,Synapse Research Institute, Maastricht, The Netherlands
| | | |
Collapse
|
4
|
Palankar R, Sachs L, Wesche J, Greinacher A. Cytoskeleton Dependent Mobility Dynamics of FcγRIIA Facilitates Platelet Haptotaxis and Capture of Opsonized Bacteria. Cells 2022; 11:cells11101615. [PMID: 35626650 PMCID: PMC9139458 DOI: 10.3390/cells11101615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Platelet adhesion and spreading at the sites of vascular injury is vital to hemostasis. As an integral part of the innate immune system, platelets interact with opsonized bacterial pathogens through FcγRIIA and contribute to host defense. As mechanoscavangers, platelets actively migrate and capture bacteria via cytoskeleton-rich, dynamic structures, such as filopodia and lamellipodia. However, the role of human platelet FcγRIIA in cytoskeleton-dependent interaction with opsonized bacteria is not well understood. To decipher this, we used a reductionist approach with well-defined micropatterns functionalized with immunoglobulins mimicking immune complexes at planar interfaces and bacteriamimetic microbeads. By specifically blocking of FcγRIIA and selective disruption of the platelet cytoskeleton, we show that both functional FcγRIIA and cytoskeleton are necessary for human platelet adhesion and haptotaxis. The direct link between FcγRIIA and the cytoskeleton is further explored by single-particle tracking. We then demonstrate the relevance of cytoskeleton-dependent differential mobilities of FcγRIIA on bacteria opsonized with the chemokine platelet factor 4 (PF4) and patient-derived anti-PF4/polyanion IgG. Our data suggest that efficient capture of opsonized bacteria during host-defense is governed by mobility dynamics of FcγRIIA on filopodia and lamellipodia, and the cytoskeleton plays an essential role in platelet morphodynamics at biological interfaces that display immune complexes.
Collapse
|
5
|
Shao B, Hoover C, Shi H, Kondo Y, Lee RH, Chen J, Shan X, Song J, McDaniel JM, Zhou M, McGee S, Vanhoorelbeke K, Bergmeier W, López JA, George JN, Xia L. Deletion of platelet CLEC-2 decreases GPIbα-mediated integrin αIIbβ3 activation and decreases thrombosis in TTP. Blood 2022; 139:2523-2533. [PMID: 35157766 PMCID: PMC9029097 DOI: 10.1182/blood.2021012896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Microvascular thrombosis in patients with thrombotic thrombocytopenic purpura (TTP) is initiated by GPIbα-mediated platelet binding to von Willebrand factor (VWF). Binding of VWF to GPIbα causes activation of the platelet surface integrin αIIbβ3. However, the mechanism of GPIbα-initiated activation of αIIbβ3 and its clinical importance for microvascular thrombosis remain elusive. Deletion of platelet C-type lectin-like receptor 2 (CLEC-2) did not prevent VWF binding to platelets but specifically inhibited platelet aggregation induced by VWF binding in mice. Deletion of platelet CLEC-2 also inhibited αIIbβ3 activation induced by the binding of VWF to GPIbα. Using a mouse model of TTP, which was created by infusion of anti-mouse ADAMTS13 monoclonal antibodies followed by infusion of VWF, we found that deletion of platelet CLEC-2 decreased pulmonary arterial thrombosis and the severity of thrombocytopenia. Importantly, prophylactic oral administration of aspirin, an inhibitor of platelet activation, and therapeutic treatment of the TTP mice with eptifibatide, an integrin αIIbβ3 antagonist, reduced pulmonary arterial thrombosis in the TTP mouse model. Our observations demonstrate that GPIbα-mediated activation of integrin αIIbβ3 plays an important role in the formation of thrombosis in TTP. These observations suggest that prevention of platelet activation with aspirin may reduce the risk for thrombosis in patients with TTP.
Collapse
Affiliation(s)
- Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Christopher Hoover
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yuji Kondo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Robert H Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jianhua Song
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - J Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Meixiang Zhou
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium; and
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - James N George
- Hematology-Oncology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
6
|
Li M, Wang L, Tang D, Zhao G, Ni Z, Gu N, Yang F. Hemodynamic Mimic Shear Stress for Platelet Membrane Nanobubbles Preparation and Integrin α IIbβ 3 Conformation Regulation. NANO LETTERS 2022; 22:271-279. [PMID: 34894698 DOI: 10.1021/acs.nanolett.1c03731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Platelet (PLT) membrane biomimetic nanomaterials have become promising theranostic platforms due to their good biocompatibility and effectiveness. However, in order to achieve precise regulation of cell membrane components, novel controllable construction approaches need to be developed. Inspired by the interaction mechanism among platelet production, activation, and dynamic biomechanical signals in blood circulation, here a platelet nanobubbles (PNBs) with reassembled platelet membrane with ideal echogenicity was fabricated using an adjustable pressure-induced shear stress method. The results demonstrate that the high shear stress during PNBs fabrication led to the enrichment of platelet membrane lipid rafts and proteins, as well as their reassembly on the gas-liquid interface. More importantly, the conformation of platelet integrin αIIbβ3 was transformed into a shear stress-induced intermediate affinity state, which gives PNBs enhanced adhesion ability to the vascular endothelial injury. Taken together, these PNBs have great application potential in the specifically targeted ultrasound diagnosis of vascular endothelial injury.
Collapse
Affiliation(s)
- Mingxi Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 210009, China
| | - Liang Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Dalin Tang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280, United States
| | - Gutian Zhao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 210009, China
| | - Zhonghua Ni
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
7
|
Soriano Jerez EM, Gibbins JM, Hughes CE. Targeting platelet inhibition receptors for novel therapies: PECAM-1 and G6b-B. Platelets 2021; 32:761-769. [PMID: 33646086 DOI: 10.1080/09537104.2021.1882668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While current oral antiplatelet therapies benefit many patients, they deregulate the hemostatic balance leaving patients at risk of systemic side-effects such as hemorrhage. Dual antiplatelet treatment is the standard approach, combining aspirin with P2Y12 blockers. These therapies mainly target autocrine activation mechanisms (TxA2, ADP) and, more recently, the use of thrombin or thrombin receptor antagonists have been added to the available approaches. Recent efforts to develop new classes of anti-platelet drugs have begun to focus on primary platelet activation pathways such as through the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor GPVI/FcRγ-chain complex. There are already encouraging results from targeting GPVI, with reduced aggregation and smaller arterial thrombi, without major bleeding complications, likely due to overlapping activation signaling pathways with other receptors such as the GPIb-V-IX complex. An alternative approach to reduce platelet activation could be to inhibit this signaling pathway by targeting the inhibitory pathways intrinsic to platelets. Stimulation of endogenous negative modulators could provide more specific inhibition of platelet function, but is this feasible? In this review, we explore the potential of the two major platelet immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing inhibitory receptors, G6b-B and PECAM-1, as antithrombotic targets.
Collapse
Affiliation(s)
- Eva M Soriano Jerez
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK.,Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Craig E Hughes
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| |
Collapse
|
8
|
van Geffen JP, Swieringa F, van Kuijk K, Tullemans BME, Solari FA, Peng B, Clemetson KJ, Farndale RW, Dubois LJ, Sickmann A, Zahedi RP, Ahrends R, Biessen EAL, Sluimer JC, Heemskerk JWM, Kuijpers MJE. Mild hyperlipidemia in mice aggravates platelet responsiveness in thrombus formation and exploration of platelet proteome and lipidome. Sci Rep 2020; 10:21407. [PMID: 33293576 PMCID: PMC7722935 DOI: 10.1038/s41598-020-78522-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Hyperlipidemia is a well-established risk factor for cardiovascular diseases. Millions of people worldwide display mildly elevated levels of plasma lipids and cholesterol linked to diet and life-style. While the prothrombotic risk of severe hyperlipidemia has been established, the effects of moderate hyperlipidemia are less clear. Here, we studied platelet activation and arterial thrombus formation in Apoe-/- and Ldlr-/- mice fed a normal chow diet, resulting in mildly increased plasma cholesterol. In blood from both knockout mice, collagen-dependent thrombus and fibrin formation under flow were enhanced. These effects did not increase in severe hyperlipidemic blood from aged mice and upon feeding a high-fat diet (Apoe-/- mice). Bone marrow from wild-type or Ldlr-/- mice was transplanted into irradiated Ldlr-/- recipients. Markedly, thrombus formation was enhanced in blood from chimeric mice, suggesting that the hyperlipidemic environment altered the wild-type platelets, rather than the genetic modification. The platelet proteome revealed high similarity between the three genotypes, without clear indication for a common protein-based gain-of-function. The platelet lipidome revealed an altered lipid profile in mildly hyperlipidemic mice. In conclusion, in Apoe-/- and Ldlr-/- mice, modest elevation in plasma and platelet cholesterol increased platelet responsiveness in thrombus formation and ensuing fibrin formation, resulting in a prothrombotic phenotype.
Collapse
Affiliation(s)
- Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.,Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Kim van Kuijk
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Bibian M E Tullemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Fiorella A Solari
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Bing Peng
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Kenneth J Clemetson
- Department of Haematology, Inselspital, University of Bern, Bern, Switzerland
| | | | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - René P Zahedi
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany.,Segal Cancer Proteomics Centre, Jewish General Hospital, McGill University, Montreal, Canada
| | - Robert Ahrends
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany.,Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Wien, Austria
| | - Erik A L Biessen
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands.,Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Judith C Sluimer
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands.,BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Satti HH, Khaleel EF, Badi RM, Elrefaie AO, Mostafa DG. Antiplatelet activity of astaxanthin in control- and high cholesterol-fed rats mediated by down-regulation of P2Y 12, inhibition of NF-κB, and increasing intracellular levels of cAMP. Platelets 2020; 32:469-478. [PMID: 32379559 DOI: 10.1080/09537104.2020.1756237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study evaluated the antiplatelet effect of the plant carotenoid, astaxanthin (ASTX) in rats fed either control or high cholesterol plus cholic acid diet (HCCD) and possible underlying mechanisms. Adult male Wistar rats were divided into four groups (n = 8/each), namely, control (fed normal diet), control + ASTX (10 mg/kg/day), HCCD-fed rats, and HCCD + ASTX-treated rats. Diets and treatments were orally administered daily for 30 days. In both control and HCCD-fed rats, ASTX significantly increased fecal levels of triglycerides and cholesterol, reduced platelet count, prolonged bleeding time, and inhibited platelet aggregation. It also reduced platelet levels of reactive oxygen species (ROS) and Bcl-2; thromboxane B2 (TXB2) release; and the expression of P2Y12, P-selectin, and CD36 receptors. Moreover, the activity NF-κB p65 and Akt was inhibited. Concomitantly, it increased the protein levels of cleaved caspase-3 and vasodilator-stimulated phosphoprotein (p-VASP) as well as intracellular levels of cAMP. However, in HCCD-fed rats, the effects of ASTX were associated with reduced serum levels of ox-LDL-c and fasting plasma glucose levels. In conclusion, antiplatelet effects of ASTX involve ROS scavenging, inhibiting NF-κB activity, down-regulating P2Y12 expression, and increasing intracellular levels of cAMP that are attributed to its antioxidant, hypolipidemic, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Huda H Satti
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Department of Pathology, University of Khartoum, Khartoum, Sudan
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Faculty of Medicine, Department of Medical Physiology, Cairo University, Cairo, Egypt
| | - Rehab M Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Faculty of Medicine, Department of Physiology, University of Khartoum, Khartoum, Sudan
| | - Amany O Elrefaie
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,National Liver Institute, Department of Pathology, Menoufyia University, Menoufyia, Egypt
| | - Dalia G Mostafa
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Li M, Li J, Chen J, Liu Y, Cheng X, Yang F, Gu N. Platelet Membrane Biomimetic Magnetic Nanocarriers for Targeted Delivery and in Situ Generation of Nitric Oxide in Early Ischemic Stroke. ACS NANO 2020; 14:2024-2035. [PMID: 31927980 DOI: 10.1021/acsnano.9b08587] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Early diagnosis and treatment of acute ischemic stroke poses a significant challenge due to its suddenness and short therapeutic time window. Human endogenous cells derived biomimetic drug carriers have provided new options for stroke theranostics since these cells have higher biosafety and targeting abilities than artificial carriers. Inspired by natural platelets (PLTs) and their role in targeting adhesion to the damaged blood vessel during thrombus formation, we fabricated a biomimetic nanocarrier comprising a PLT membrane envelope loaded with l-arginine and γ-Fe2O3 magnetic nanoparticles (PAMNs) for thrombus-targeted delivery of l-arginine and in situ generation of nitric oxide (NO). Results demonstrate that the engineered 200 nm PAMNs inherit the natural properties of the PLT membrane and achieve rapid targeting to ischemic stroke lesions under the guidance of an external magnetic field. Subsequent to the release of l-arginine at the thrombus site, endothelial cells produce NO, which promotes vasodilation to disrupt the local PLT aggregation. Rapid targeting of PAMNs to stroke lesions as well as in situ generation of NO prompts vasodilation, recovery of blood flow, and reperfusion of the stroke microvascular. Thus, these PLT membrane derived nanocarriers are diagnostically beneficial for localizing stroke lesions and a promising modality for executing therapies.
Collapse
Affiliation(s)
- Mingxi Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Jing Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Jinpeng Chen
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing 210009 , China
| | - Yang Liu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Xiao Cheng
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
11
|
Houck KL, Yuan H, Tian Y, Solomon M, Cramer D, Liu K, Zhou Z, Wu X, Zhang J, Oehler V, Dong JF. Physical proximity and functional cooperation of glycoprotein 130 and glycoprotein VI in platelet membrane lipid rafts. J Thromb Haemost 2019; 17:1500-1510. [PMID: 31145836 DOI: 10.1111/jth.14525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/28/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Clinical and laboratory studies have demonstrated that platelets become hyperactive and prothrombotic in conditions of inflammation. We have previously shown that the proinflammatory cytokine interleukin (IL)-6 forms a complex with soluble IL-6 receptor α (sIL-6Rα) to prime platelets for activation by subthreshold concentrations of collagen. Upon being stimulated with collagen, the transcription factor signal transducer and activator of transcription (STAT) 3 in platelets is phosphorylated and dimerized to act as a protein scaffold to facilitate the catalytic action between the kinase Syk and the substrate phospholipase Cγ2 (PLCγ2) in collagen-induced signaling. However, it remains unknown how collagen induces phosphorylation and dimerization of STAT3. METHODS AND RESULTS We conducted complementary in vitro experiments to show that the IL-6 receptor subunit glycoprotein 130 (GP130) was in physical proximity to the collagen receptor glycoprotein VI (GPVI in membrane lipid rafts of platelets. This proximity allows collagen to induce STAT3 activation and dimerization, and the IL-6-sIL-6Rα complex to activate the kinase Syk and the substrate PLCγ2 in the GPVI signal pathway, resulting in an enhanced platelet response to collagen. Disrupting lipid rafts or blocking GP130-Janus tyrosine kinase (JAK)-STAT3 signaling abolished the cross-activation and reduced platelet reactivity to collagen. CONCLUSION These results demonstrate cross-talk between collagen and IL-6 signal pathways. This cross-talk could potentially provide a novel mechanism for inflammation-induced platelet hyperactivity, so the IL-6-GP130-JAK-STAT3 pathway has been identified as a potential target to block this hyperactivity.
Collapse
Affiliation(s)
| | - Hengjie Yuan
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | | | - Drake Cramer
- Bloodworks Research Institute, Seattle, Washington
| | - Kitty Liu
- Bloodworks Research Institute, Seattle, Washington
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
| | - Xiaoping Wu
- Bloodworks Research Institute, Seattle, Washington
| | - Jianning Zhang
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | - Vivian Oehler
- Clinical Research Division, Hutchison Cancer Center, Seattle, Washington
- Seattle Cancer Alliances, Seattle, Washington
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, Washington
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
Martyanov AA, Kaneva VN, Panteleev MA, Sveshnikova AN. [CLEC-2 induced signalling in blood platelets]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:387-396. [PMID: 30378555 DOI: 10.18097/pbmc20186405387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Platelet activating receptor CLEC-2 has been identified on platelet surface a decade ago. The only confirmed endogenous CLEC-2 agonist is podoplanin. Podoplanin is a transmembrane protein expressed by lymphatic endothelial cells, reticular fibroblastic cells in lymph nodes, kidney podocytes and by cells of certain tumors. CLEC-2 and podoplanin are involved in the processes of embryonic development (blood-lymph vessel separation and angiogenesis), maintaining of vascular integrity of small vessels during inflammation and prevention of blood-lymphatic mixing in high endothelial venules. However, CLEC-2 and podoplanin are contributing to tumor methastasis progression, Salmonella sepsis, deep-vein thrombosis. CLEC-2 signalling cascade includes tyrosine-kinases (Syk, SFK, Btk) as well as adapter LAT and phospholipase Cg2, which induces calcium signalling. CLEC-2, podoplanin and proteins, participating in CLEC-2 signalling cascade, are perspective targets for antithrombotic therapy.
Collapse
Affiliation(s)
- A A Martyanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - V N Kaneva
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Rogachev National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - M A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia; Rogachev National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| |
Collapse
|
13
|
Izquierdo I, Barrachina MN, Hermida-Nogueira L, Casas V, Eble JA, Carrascal M, Abián J, García Á. Platelet membrane lipid rafts protein composition varies following GPVI and CLEC-2 receptors activation. J Proteomics 2019; 195:88-97. [PMID: 30677554 DOI: 10.1016/j.jprot.2019.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 12/11/2022]
Abstract
Lipid rafts are membrane microdomains that have been proposed to play an important role in several platelet-signalling cascades, including those mediated by the receptors Glycoprotein VI (GPVI), and C-type lectin domain family 1 member B (CLEC-2), both involved in thrombus formation. We have performed a LC-MS/MS proteomic analysis of lipid rafts isolated from platelets activated through GPVI and CLEC-2 as well as from resting platelets. Our aim was to determine the magnitude of changes in lipid rafts protein composition and to elucidate the relevance of these alterations in platelet function. A number of relevant signalling proteins were found enriched in lipid rafts following platelet activation (such as the tyrosine protein kinases Fyn, Lyn and Yes; the G proteins G(i) and G(z); and cAMP protein kinase). Interestingly, our results indicate that the relative enrichment of lipid rafts in these signalling proteins may not be a consequence of protein translocation to these domains upon platelet stimulation, but the result of a massive loss in cytoskeletal proteins after platelet activation. Thus, this study may help to better understand the effects of platelet activation in the reorganization of lipid rafts and set the basis for further proteomic studies of these membrane microdomains in platelets. SIGNIFICANCE: We performed the first proteomic comparative analysis of lipid rafts- protein composition in platelets activated through GPVI and CLEC-2 receptors and in resting state. We identified a number of signalling proteins essential for platelet activation relatively enriched in platelets activated through both receptors, and we show that lipid rafts reorganization upon platelet activation leads to a loss in cytoskeletal proteins, highly associated to these domains in resting platelets.
Collapse
Affiliation(s)
- Irene Izquierdo
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - María N Barrachina
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Vanessa Casas
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Joaquín Abián
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Wei H, Malcor JDM, Harper MT. Lipid rafts are essential for release of phosphatidylserine-exposing extracellular vesicles from platelets. Sci Rep 2018; 8:9987. [PMID: 29968812 PMCID: PMC6030044 DOI: 10.1038/s41598-018-28363-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets protect the vascular system during damage or inflammation, but platelet activation can result in pathological thrombosis. Activated platelets release a variety of extracellular vesicles (EVs). EVs shed from the plasma membrane often expose phosphatidylserine (PS). These EVs are pro-thrombotic and increased in number in many cardiovascular and metabolic diseases. The mechanisms by which PS-exposing EVs are shed from activated platelets are not well characterised. Cholesterol-rich lipid rafts provide a platform for coordinating signalling through receptors and Ca2+ channels in platelets. We show that cholesterol depletion with methyl-β-cyclodextrin or sequestration with filipin prevented the Ca2+-triggered release of PS-exposing EVs. Although calpain activity was required for release of PS-exposing, calpain-dependent cleavage of talin was not affected by cholesterol depletion. P2Y12 and TPα, receptors for ADP and thromboxane A2, respectively, have been reported to be in platelet lipid rafts. However, the P2Y12 antagonist, AR-C69931MX, or the cyclooxygenase inhibitor, aspirin, had no effect on A23187-induced release of PS-exposing EVs. Together, these data show that lipid rafts are required for release of PS-exposing EVs from platelets.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
15
|
Weddell JC, Imoukhuede PI. Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling. Integr Biol (Camb) 2018; 9:464-484. [PMID: 28436498 DOI: 10.1039/c7ib00011a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, intracellular receptor signaling has been identified as a key component mediating cell responses for various receptor tyrosine kinases (RTKs). However, the extent each endocytic compartment (endocytic vesicle, early endosome, recycling endosome, late endosome, lysosome and nucleus) contributes to receptor signaling has not been quantified. Furthermore, our understanding of endocytosis and receptor signaling is complicated by cell- or receptor-specific endocytosis mechanisms. Therefore, towards understanding the differential endocytic compartment signaling roles, and identifying how to achieve signal transduction control for RTKs, we delineate how endocytosis regulates RTK signaling. We achieve this via a meta-analysis across eight RTKs, integrating computational modeling with experimentally derived cell (compartment volume, trafficking kinetics and pH) and ligand-receptor (ligand/receptor concentration and interaction kinetics) physiology. Our simulations predict the abundance of signaling from eight RTKs, identifying the following hierarchy in RTK signaling: PDGFRβ > IGFR1 > EGFR > PDGFRα > VEGFR1 > VEGFR2 > Tie2 > FGFR1. We find that endocytic vesicles are the primary cell signaling compartment; over 43% of total receptor signaling occurs within the endocytic vesicle compartment for these eight RTKs. Mechanistically, we found that high RTK signaling within endocytic vesicles may be attributed to their low volume (5.3 × 10-19 L) which facilitates an enriched ligand concentration (3.2 μM per ligand molecule within the endocytic vesicle). Under the analyzed physiological conditions, we identified extracellular ligand concentration as the most sensitive parameter to change; hence the most significant one to modify when regulating absolute compartment signaling. We also found that the late endosome and nucleus compartments are important contributors to receptor signaling, where 26% and 18%, respectively, of average receptor signaling occurs across the eight RTKs. Conversely, we found very low membrane-based receptor signaling, exhibiting <1% of the total receptor signaling for these eight RTKs. Moreover, we found that nuclear translocation, mechanistically, requires late endosomal transport; when we blocked receptor trafficking from late endosomes to the nucleus we found a 57% reduction in nuclear translocation. In summary, our research has elucidated the significance of endocytic vesicles, late endosomes and the nucleus in RTK signal propagation.
Collapse
Affiliation(s)
- Jared C Weddell
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W Springfield Ave., 3233 Digital Computer Laboratory, Urbana, IL 61801, USA.
| | | |
Collapse
|
16
|
Westgarth S, Blois SL, D. Wood R, Verbrugghe A, Ma DW. Effects of omega-3 polyunsaturated fatty acids and aspirin, alone and combined, on canine platelet function. J Small Anim Pract 2017; 59:272-280. [DOI: 10.1111/jsap.12776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/10/2017] [Accepted: 08/03/2017] [Indexed: 11/29/2022]
Affiliation(s)
- S. Westgarth
- Department of Clinical Studies; University of Guelph; Guelph Ontaria N1G 2W1 Canada
| | - S. L. Blois
- Department of Clinical Studies; University of Guelph; Guelph Ontaria N1G 2W1 Canada
| | - R. D. Wood
- Department of Pathobiology; University of Guelph; Guelph Ontaria N1G 2W1 Canada
| | - A. Verbrugghe
- Department of Clinical Studies; University of Guelph; Guelph Ontaria N1G 2W1 Canada
| | - D. W. Ma
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph Ontaria N1G 2W1 Canada
| |
Collapse
|
17
|
Haining EJ, Matthews AL, Noy PJ, Romanska HM, Harris HJ, Pike J, Morowski M, Gavin RL, Yang J, Milhiet PE, Berditchevski F, Nieswandt B, Poulter NS, Watson SP, Tomlinson MG. Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation. Platelets 2017; 28:629-642. [PMID: 28032533 PMCID: PMC5706974 DOI: 10.1080/09537104.2016.1254175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
The tetraspanins are a superfamily of four-transmembrane proteins, which regulate the trafficking, lateral diffusion and clustering of the transmembrane proteins with which they interact. We have previously shown that tetraspanin Tspan9 is expressed on platelets. Here we have characterised gene-trap mice lacking Tspan9. The mice were viable with normal platelet numbers and size. Tspan9-deficient platelets were specifically defective in aggregation and secretion induced by the platelet collagen receptor GPVI, despite normal surface GPVI expression levels. A GPVI activation defect was suggested by partially impaired GPVI-induced protein tyrosine phosphorylation. In mechanistic experiments, Tspan9 and GPVI co-immunoprecipitated and co-localised, but super-resolution imaging revealed no defects in collagen-induced GPVI clustering on Tspan9-deficient platelets. However, single particle tracking using total internal reflection fluorescence microscopy showed that GPVI lateral diffusion was reduced by approximately 50% in the absence of Tspan9. Therefore, Tspan9 plays a fine-tuning role in platelet activation by regulating GPVI membrane dynamics.
Collapse
Affiliation(s)
- Elizabeth J. Haining
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandra L. Matthews
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Peter J. Noy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Helen J. Harris
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy Pike
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- PSIBS Doctoral Training Centre, School of Chemistry, University of Birmingham, Birmingham, UK
| | - Martina Morowski
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Rebecca L. Gavin
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jing Yang
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre-Emmanuel Milhiet
- INSERM U1054, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier University, France
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michael G. Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
18
|
SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation. PLoS One 2017; 12:e0169609. [PMID: 28072855 PMCID: PMC5224795 DOI: 10.1371/journal.pone.0169609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023] Open
Abstract
Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.
Collapse
|
19
|
Izquierdo I, García Á. Platelet proteomics applied to the search for novel antiplatelet therapeutic targets. Expert Rev Proteomics 2016; 13:993-1006. [DOI: 10.1080/14789450.2016.1246188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Van Aelst B, Devloo R, Zachée P, t'Kindt R, Sandra K, Vandekerckhove P, Compernolle V, Feys HB. Psoralen and Ultraviolet A Light Treatment Directly Affects Phosphatidylinositol 3-Kinase Signal Transduction by Altering Plasma Membrane Packing. J Biol Chem 2016; 291:24364-24376. [PMID: 27687726 DOI: 10.1074/jbc.m116.735126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/17/2016] [Indexed: 01/15/2023] Open
Abstract
Psoralen and ultraviolet A light (PUVA) are used to kill pathogens in blood products and as a treatment of aberrant cell proliferation in dermatitis, cutaneous T-cell lymphoma, and graft-versus-host disease. DNA damage is well described, but the direct effects of PUVA on cell signal transduction are poorly understood. Because platelets are anucleate and contain archetypal signal transduction machinery, they are ideally suited to address this. Lipidomics on platelet membrane extracts showed that psoralen forms adducts with unsaturated carbon bonds of fatty acyls in all major phospholipid classes after PUVA. Such adducts increased lipid packing as measured by a blue shift of an environment-sensitive fluorescent probe in model liposomes. Furthermore, the interaction of these liposomes with lipid order-sensitive proteins like amphipathic lipid-packing sensor and α-synuclein was inhibited by PUVA. In platelets, PUVA caused poor membrane binding of Akt and Bruton's tyrosine kinase effectors following activation of the collagen glycoprotein VI and thrombin protease-activated receptor (PAR) 1. This resulted in defective Akt phosphorylation despite unaltered phosphatidylinositol 3,4,5-trisphosphate levels. Downstream integrin activation was furthermore affected similarly by PUVA following PAR1 (effective half-maximal concentration (EC50), 8.4 ± 1.1 versus 4.3 ± 1.1 μm) and glycoprotein VI (EC50, 1.61 ± 0.85 versus 0.26 ± 0.21 μg/ml) but not PAR4 (EC50, 50 ± 1 versus 58 ± 1 μm) signal transduction. Our findings were confirmed in T-cells from graft-versus-host disease patients treated with extracorporeal photopheresis, a form of systemic PUVA. In conclusion, PUVA increases the order of lipid phases by covalent modification of phospholipids, thereby inhibiting membrane recruitment of effector kinases.
Collapse
Affiliation(s)
- Britt Van Aelst
- From the Transfusion Research Center, Belgian Red Cross-Flanders, 9000 Ghent, Belgium
| | - Rosalie Devloo
- From the Transfusion Research Center, Belgian Red Cross-Flanders, 9000 Ghent, Belgium
| | - Pierre Zachée
- the Department of Hematology, Hospital Network Antwerp, 2000 Antwerp, Belgium
| | - Ruben t'Kindt
- the Research Institute for Chromatography, 8500 Kortrijk, Belgium
| | - Koen Sandra
- the Research Institute for Chromatography, 8500 Kortrijk, Belgium
| | - Philippe Vandekerckhove
- the Blood Service of the Belgian Red Cross-Flanders, 2800 Mechelen, Belgium,; the Department of Public Health and Primary Care, KULeuven, 3000 Leuven, Belgium, and; the Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Veerle Compernolle
- From the Transfusion Research Center, Belgian Red Cross-Flanders, 9000 Ghent, Belgium,; the Blood Service of the Belgian Red Cross-Flanders, 2800 Mechelen, Belgium,; the Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Hendrik B Feys
- From the Transfusion Research Center, Belgian Red Cross-Flanders, 9000 Ghent, Belgium,.
| |
Collapse
|
21
|
Deng W, Li R. Juxtamembrane contribution to transmembrane signaling. Biopolymers 2016; 104:317-22. [PMID: 25846274 DOI: 10.1002/bip.22651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
Signaling across the cell membrane mediated by transmembrane receptors plays an important role in diverse biological processes. Recent studies have indicated that, in a number of single-span transmembrane receptors, the intracellular juxtamembrane (JM) sequence linking the transmembrane helix with the rest of the cytoplasmic domain participates directly in the signaling process via several novel mechanisms. This review briefly highlights several modes of JM dynamics in the context of signal transduction that are shared by different types of transmembrane receptors.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322
| | - Renhao Li
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322
| |
Collapse
|
22
|
Belleville-Rolland T, Sassi Y, Decouture B, Dreano E, Hulot JS, Gaussem P, Bachelot-Loza C. MRP4 (ABCC4) as a potential pharmacologic target for cardiovascular disease. Pharmacol Res 2016; 107:381-389. [PMID: 27063943 DOI: 10.1016/j.phrs.2016.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 01/13/2023]
Abstract
This review focuses on multidrug resistance protein 4 (MRP4 or ABCC4) that has recently been shown to play a role in cAMP homeostasis, a key-pathway in vascular biology and in platelet functions. In vascular system, recent data provide evidence that inhibition of MRP4 prevents human coronary artery smooth muscle cell proliferation in vitro and in vivo, as well as human pulmonary artery smooth muscle cell proliferation in vitro and pulmonary hypertension in mice in vivo. In the heart, MRP4 silencing in adult rat ventricular myocytes results in an increase in intracellular cAMP levels leading to enhanced cardiomyocyte contractility. However, a prolonged inhibition of MRP4 can promote cardiac hypertrophy. In addition, secreted cAMP, through its metabolite adenosine, prevents adrenergically induced cardiac hypertrophy and fibrosis. Finally, MRP4 inhibition in platelets induces a moderate thrombopathy. The localization of MRP4 underlines the emerging concept of cAMP compartmentalization in platelets, which is a major regulatory mechanism in other cells. cAMP storage in platelet dense granules might limit the cAMP cytosolic concentration upon adenylate cyclase activation, a necessary step to induce platelet activation. In this review, we discuss the therapeutic potential of direct pharmacological inhibition of MRP4 in atherothrombotic disease, via its vasodilating and antiplatelet effects.
Collapse
Affiliation(s)
- Tiphaine Belleville-Rolland
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; AP-HP, Hôpital Européen Georges Pompidou, Service dhématologie biologique, Paris, France
| | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benoit Decouture
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Elise Dreano
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Sébastien Hulot
- AP-HP, Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, F-75013 Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, France
| | - Pascale Gaussem
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; AP-HP, Hôpital Européen Georges Pompidou, Service dhématologie biologique, Paris, France
| | - Christilla Bachelot-Loza
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
23
|
Liang X, Syed AK, Russell SR, Ware J, Li R. Dimerization of glycoprotein Ibα is not sufficient to induce platelet clearance. J Thromb Haemost 2016; 14:381-6. [PMID: 26662889 PMCID: PMC4755834 DOI: 10.1111/jth.13221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/22/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED ESSENTIALS: Many anti-glycoprotein (GP)Ibα antibodies induce platelet clearance in a dimer-dependent manner. Characterization of monoclonal antibodies that bind the mechanosensitive domain (MSD) of GPIbα. An anti-MSD antibody binds two copies of GPIbα in platelets but does not induce platelet clearance. The prevailing clustering model of GPIbα signaling is incorrect or needs revision. BACKGROUND The mechanism of platelet clearance is not clear. Many antibodies binding the membrane-distal ligand-binding domain of glycoprotein (GP)Ibα induce rapid clearance of platelets and acute thrombocytopenia, which requires the bifurcated antibody structure. It was thought that binding of these antibodies induced lateral dimerization or clustering of GPIbα in the plasma membrane, which leads to downstream signaling and platelet clearance. However, many antibodies targeting GPIbβ and GPIX, which are associated with GPIbα in the GPIb-IX complex, do not induce platelet clearance, which is in contradiction to the clustering model. OBJECTIVES To test whether dimerization or clustering of GPIbα is sufficient to transmit the signal that leads to platelet clearance. METHODS We have recently raised several mAbs targeting the mechanosensitive domain (MSD) of GPIbα. Binding of these anti-MSD antibodies was characterized with biochemical methods. Their ability to stimulate platelets and induce platelet clearance in mice was assessed. RESULTS AND CONCLUSION Infusion of anti-MSD antibodies does not cause thrombocytopenia in mice. These antibodies show no detectable effects on platelet activation and aggregation in vitro. Further biochemical investigation showed that the anti-MSD antibody 3D1 binds two copies of GPIbα on the platelet surface. Therefore, lateral dimerization of GPIbα induced by antibody binding is not sufficient to initiate GPIb-IX signaling and induce platelet clearance. Our results suggest that a factor other than or in addition to clustering of GPIbα is required to induce platelet clearance.
Collapse
Affiliation(s)
- Xin Liang
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Anum K. Syed
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Susan R. Russell
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jerry Ware
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
24
|
Regulation of Early Steps of GPVI Signal Transduction by Phosphatases: A Systems Biology Approach. PLoS Comput Biol 2015; 11:e1004589. [PMID: 26584182 PMCID: PMC4652868 DOI: 10.1371/journal.pcbi.1004589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2), provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in controlling the rate, and therefore extent, of GPVI-stimulated platelet activation.
Collapse
|
25
|
Jang JY, Wang SB, Min JH, Chae YH, Baek JY, Yu DY, Chang TS. Peroxiredoxin II is an antioxidant enzyme that negatively regulates collagen-stimulated platelet function. J Biol Chem 2015; 290:11432-42. [PMID: 25802339 DOI: 10.1074/jbc.m115.644260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Indexed: 12/16/2022] Open
Abstract
Collagen-induced platelet signaling is mediated by binding to the primary receptor glycoprotein VI (GPVI). Reactive oxygen species produced in response to collagen have been found to be responsible for the propagation of GPVI signaling pathways in platelets. Therefore, it has been suggested that antioxidant enzymes could down-regulate GPVI-stimulated platelet activation. Although the antioxidant enzyme peroxiredoxin II (PrxII) has emerged as having a role in negatively regulating signaling through various receptors by eliminating H2O2 generated upon receptor stimulation, the function of PrxII in collagen-stimulated platelets is not known. We tested the hypothesis that PrxII negatively regulates collagen-stimulated platelet activation. We analyzed PrxII-deficient murine platelets. PrxII deficiency enhanced GPVI-mediated platelet activation through the defective elimination of H2O2 and the impaired protection of SH2 domain-containing tyrosine phosphatase 2 (SHP-2) against oxidative inactivation, which resulted in increased tyrosine phosphorylation of key components for the GPVI signaling cascade, including Syk, Btk, and phospholipase Cγ2. Interestingly, PrxII-mediated antioxidative protection of SHP-2 appeared to occur in the lipid rafts. PrxII-deficient platelets exhibited increased adhesion and aggregation upon collagen stimulation. Furthermore, in vivo experiments demonstrated that PrxII deficiency facilitated platelet-dependent thrombus formation in injured carotid arteries. This study reveals that PrxII functions as a protective antioxidant enzyme against collagen-stimulated platelet activation and platelet-dependent thrombosis.
Collapse
Affiliation(s)
- Ji Yong Jang
- From the Graduate School of Pharmaceutical Sciences and
| | - Su Bin Wang
- From the Graduate School of Pharmaceutical Sciences and
| | - Ji Hyun Min
- From the Graduate School of Pharmaceutical Sciences and
| | - Yun Hee Chae
- From the Graduate School of Pharmaceutical Sciences and
| | | | - Dae-Yeul Yu
- the Disease Model Research Laboratory, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 605-806, Korea
| | - Tong-Shin Chang
- From the Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750 and
| |
Collapse
|
26
|
Manne BK, Badolia R, Dangelmaier CA, Kunapuli SP. C-type lectin like receptor 2 (CLEC-2) signals independently of lipid raft microdomains in platelets. Biochem Pharmacol 2014; 93:163-70. [PMID: 25462818 DOI: 10.1016/j.bcp.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
C-type lectin like receptor 2 (CLEC-2) has been reported to activate platelets through a lipid raft-dependent manner. Secreted ADP potentiates CLEC-2-mediated platelet aggregation. We have investigated whether the decrease in CLEC-2-mediated platelet aggregation, previously reported in platelets with disrupted rafts, is a result of the loss of agonist potentiation by ADP. We disrupted platelet lipid rafts with methyl-β-cyclodextrin (MβCD) and measured signaling events downstream of CLEC-2 activation. Lipid raft disruption decreases platelet aggregation induced by CLEC-2 agonists. The inhibition of platelet aggregation by the disruption of lipid rafts was rescued by the exogenous addition of epinephrine but not 2-methylthioadenosine diphosphate (2MeSADP), which suggests that lipid raft disruption effects P2Y12-mediated Gi activation but not Gz. Phosphorylation of Syk (Y525/526) and PLCγ2 (Y759), were not affected by raft disruption in CLEC-2 agonist-stimulated platelets. Furthermore, tyrosine phosphorylation of the CLEC-2 hemi-ITAM was not effected when MβCD disrupts lipid rafts. Lipid rafts do not directly contribute to CLEC-2 receptor activation in platelets. The effects of disruption of lipid rafts in in vitro assays can be attributed to inhibition of ADP feedback that potentiates CLEC-2 signaling.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Rachit Badolia
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Carol A Dangelmaier
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Satya P Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
27
|
O'Donnell VB, Murphy RC, Watson SP. Platelet lipidomics: modern day perspective on lipid discovery and characterization in platelets. Circ Res 2014; 114:1185-203. [PMID: 24677238 PMCID: PMC4021279 DOI: 10.1161/circresaha.114.301597] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipids are diverse families of biomolecules that perform essential structural and signaling roles in platelets. Their formation and metabolism are tightly controlled by enzymes and signal transduction pathways, and their dysregulation leads to significant defects in platelet function and disease. Platelet activation is associated with significant changes to membrane lipids, and formation of diverse bioactive lipids plays essential roles in hemostasis. In recent years, new generation mass spectrometry analysis of lipids (termed lipidomics) has begun to alter our understanding of how these molecules participate in key cellular processes. Although the application of lipidomics to platelet biology is still in its infancy, seminal earlier studies have shaped our knowledge of how lipids regulate key aspects of platelet biology, including aggregation, shape change, coagulation, and degranulation, as well as how lipids generated by platelets influence other cells, such as leukocytes and the vascular wall, and thus how they regulate hemostasis, vascular integrity, and inflammation, as well as contribute to pathologies, including arterial/deep vein thrombosis and atherosclerosis. This review will provide a brief historical perspective on the characterization of lipids in platelets, then an overview of the new generation lipidomic approaches, their recent application to platelet biology, and future perspectives for research in this area. The major platelet-regulatory lipid families, their formation, metabolism, and their role in health and disease, will be summarized.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- From the Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (V.B.O'D.); Department of Pharmacology, University of Colorado at Denver, Aurora (R.C.M.); and Birmingham Platelet Group, Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, Birmingham, United Kingdom (S.P.W.)
| | | | | |
Collapse
|
28
|
Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts. Blood 2013; 122:3340-8. [PMID: 24002447 DOI: 10.1182/blood-2013-04-491290] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction.
Collapse
|
29
|
Pradhan S, Vijayan KV. Lipid rafts contribute to agonist-induced serine/threonine phosphatase activation and platelet aggregation. J Thromb Haemost 2013; 11:1612-5. [PMID: 23789860 PMCID: PMC3749069 DOI: 10.1111/jth.12329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/13/2013] [Indexed: 01/15/2023]
|
30
|
Ozaki Y, Suzuki-Inoue K, Inoue O. Platelet receptors activated via mulitmerization: glycoprotein VI, GPIb-IX-V, and CLEC-2. J Thromb Haemost 2013; 11 Suppl 1:330-9. [PMID: 23809136 DOI: 10.1111/jth.12235] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While very different in structure, GPVI - the major collagen receptor on platelet membranes, the GPIb-IX-V complex - the receptor for von Willebrand factor, and CLEC-2, a novel platelet activation receptor for podoplanin, share several common features in terms of function and platelet activation signal transduction pathways. All employ Src family kinases (SFK), Syk, and other signaling molecules involving tyrosine phosphorylation, similar to those of immunoreceptors for T and B cells. There appear to be overlapping functional roles for these glycoproteins, and in some cases, they can compensate for each other, suggesting a degree of redundancy. New ligands for these receptors are being identified, which broadens their functional relevancy. This is particularly true for CLEC-2, whose functions beyond hemostasis are being explored. The common mode of signaling, clustering, and localization to glycosphingolipid-enriched microdomains (GEMs) suggest that GEMs are central to signaling function by ligand-dependent association of these receptors, SFK, Syk, phosphotyrosine phosphatases, and other signaling molecules.
Collapse
Affiliation(s)
- Y Ozaki
- Department of Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | | |
Collapse
|
31
|
Larson MK, Tormoen GW, Weaver LJ, Luepke KJ, Patel IA, Hjelmen CE, Ensz NM, McComas LS, McCarty OJT. Exogenous modification of platelet membranes with the omega-3 fatty acids EPA and DHA reduces platelet procoagulant activity and thrombus formation. Am J Physiol Cell Physiol 2012; 304:C273-9. [PMID: 23174566 DOI: 10.1152/ajpcell.00174.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several studies have implicated the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in inhibition of normal platelet function, suggesting a role for platelets in EPA- and DHA-mediated cardioprotection. However, it is unclear whether the cardioprotective mechanisms arise from alterations to platelet-platelet, platelet-matrix, or platelet-coagulation factor interactions. Our previous results led us to hypothesize that EPA and DHA alter the ability of platelets to catalyze the generation of thrombin. We tested this hypothesis by exogenously modifying platelet membranes with EPA and DHA, which resulted in compositional changes analogous to increased dietary EPA and DHA intake. Platelets treated with EPA and DHA showed reductions in the rate of thrombin generation and exposure of platelet phosphatidylserine. In addition, treatment of platelets with EPA and DHA decreased thrombus formation and altered the processing of thrombin precursor proteins. Furthermore, treatment of whole blood with EPA and DHA resulted in increased occlusion time and a sharply reduced accumulation of fibrin under flow conditions. These results demonstrate that EPA and DHA inhibit, but do not eliminate, the ability of platelets to catalyze thrombin generation in vitro. The ability of EPA and DHA to reduce the procoagulant function of platelets provides a possible mechanism behind the cardioprotective phenotype in individuals consuming high levels of EPA and DHA.
Collapse
Affiliation(s)
- Mark K Larson
- Department of Biology, Augustana College, Sioux Falls, SD 57197, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Séverin S, Nash CA, Mori J, Zhao Y, Abram C, Lowell CA, Senis YA, Watson SP. Distinct and overlapping functional roles of Src family kinases in mouse platelets. J Thromb Haemost 2012; 10:1631-45. [PMID: 22694307 PMCID: PMC4280098 DOI: 10.1111/j.1538-7836.2012.04814.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Src family kinases (SFKs) play a critical role in initiating and propagating signals in platelets. The aims of this study were to quantitate SFK members present in platelets and to analyze their contribution to platelet regulation using glycoprotein VI (GPVI) and intregrin αIIbβ3, and in vivo. METHODS AND RESULTS Mouse platelets express four SFKs, Fgr, Fyn, Lyn and Src, with Lyn expressed at a considerably higher level than the others. Using mutant mouse models, we demonstrate that platelet activation by collagen-related peptide (CRP) is delayed and then potentiated in the absence of Lyn, but only marginally reduced in the absence of Fyn or Fgr, and unaltered in the absence of Src. Compound deletions of Lyn/Src or Fyn/Lyn, but not of Fyn/Src or Fgr/Lyn, exhibit a greater delay in activation relative to Lyn-deficient platelets. Fibrinogen-adherent platelets show reduced spreading in the absence of Src, potentiation in the absence of Lyn, but no change in the absence of Fyn or Fgr. In mice double-deficient in Lyn/Src or Fgr/Lyn, the inhibitory role of Lyn on spreading on fibrinogen is lost. Lyn is the major SFK-mediating platelet aggregation on collagen at arterial shear and its absence leads to a reduction in thrombus size in a laser injury model. CONCLUSION These results demonstrate that SFKs share individual and overlapping roles in regulating platelet activation, with Lyn having a dual role in regulating GPVI signaling and an inhibitory role downstream of αIIbβ3, which requires prior signaling through Src.
Collapse
Affiliation(s)
- S Séverin
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Deckmyn H, De Meyer SF, Broos K, Vanhoorelbeke K. Inhibitors of the interactions between collagen and its receptors on platelets. Handb Exp Pharmacol 2012:311-337. [PMID: 22918737 DOI: 10.1007/978-3-642-29423-5_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
At sites of vascular injury, collagen-mediated platelet adhesion and activation have long been known as one of the first events in platelet-dependent thrombus formation. Studying patients with bleeding disorders that are caused by defective platelet adhesion to collagen resulted in the identification of several platelet collagen receptors, with glycoprotein VI and integrin α2β1 being the most important ones. Subsequent development of specific collagen receptor knockout mice and various inhibitors of platelet binding to collagen have further proven the role of these receptors in haemostasis and thrombosis. The search for clinically applicable inhibitors for use as antithrombotic drug has led to the identification of inhibitory antibodies, soluble receptor fragments, peptides, collagen-mimetics and proteins from snake venoms or haematophagous animals. In experimental settings, these inhibitors have a good antithrombotic effect, with little prolongation of bleeding times, suggesting a larger therapeutic window than currently available antiplatelet drugs. However, at present, none of the collagen receptor blockers are in clinical development yet.
Collapse
Affiliation(s)
- Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven campus Kortrijk, Kortrijk, Belgium.
| | | | | | | |
Collapse
|
34
|
Suzuki-Inoue K, Inoue O, Ozaki Y. Novel platelet activation receptor CLEC-2: from discovery to prospects. J Thromb Haemost 2011; 9 Suppl 1:44-55. [PMID: 21781241 DOI: 10.1111/j.1538-7836.2011.04335.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C-type lectin-like receptor 2 (CLEC-2) has been identified as a receptor for the platelet activating snake venom rhodocytin. CLEC-2 elicits powerful platelet activation signals in conjunction with Src, Syk kinases, and phospholipase Cγ2, similar to the collagen receptor glycoprotein (GP) VI/FcRγ-chain complex. In contrast to GPVI/FcRγ, which initiates platelet activation through the tandem YxxL motif immunoreceptor tyrosine-based activation motif (ITAM), CLEC-2 signals via the single YxxL motif hemi-ITAM. The endogenous ligand of CLEC-2 has been identified as podoplanin, which is expressed on the surface of tumour cells and facilitates tumour metastasis by inducing platelet activation. Studies of CLEC-2-deficient mice have revealed several physiological roles of CLEC-2. Podoplanin is also expressed in lymphatic endothelial cells as well as several other cells, including type I alveolar cells and kidney podocytes, but is absent from vascular endothelial cells. In the developmental stages, when the primary lymph sac is derived from the cardinal vein, podoplanin activates platelets in lymphatic endothelial cells by binding to CLEC-2, which facilitates blood/lymphatic vessel separation. Moreover, CLEC-2 is involved in thrombus stabilisation under flow conditions in part through homophilic interactions. However, the absence of CLEC-2 does not significantly increase bleeding tendency. CLEC-2 may be a good target protein for novel anti-platelet drugs or anti-metastatic drugs having therapeutic and preventive effects on arterial thrombosis and cancer, the primary causes of mortality in developed countries. In this article, we review the mechanisms of signal transduction, structure, expression, and function of CLEC-2.
Collapse
Affiliation(s)
- K Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | |
Collapse
|
35
|
Larson MK, Shearer GC, Ashmore JH, Anderson-Daniels JM, Graslie EL, Tholen JT, Vogelaar JL, Korth AJ, Nareddy V, Sprehe M, Harris WS. Omega-3 fatty acids modulate collagen signaling in human platelets. Prostaglandins Leukot Essent Fatty Acids 2011; 84:93-8. [PMID: 21177087 PMCID: PMC3031726 DOI: 10.1016/j.plefa.2010.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/26/2010] [Accepted: 11/14/2010] [Indexed: 01/19/2023]
Abstract
Dietary intake of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) results in cardioprotective benefits. However, the cellular and physiological bases for these benefits remain unclear. We hypothesized that EPA and DHA treatments would interfere with collagen-mediated platelet signaling. Thirty healthy volunteers received 28 days of 3.4 g/d EPA+DHA with and without a single dose of aspirin. Clinical hematologic parameters were then measured along with assays of collagen-stimulated platelet activation and protein phosphorylation. Omega-3 therapy led to a small but significant reduction in platelets (6.3%) and red blood cells (1.7%), but did not impair clinical time-to-closure assays. However, collagen-mediated platelet signaling events of integrin activation, α-granule secretion, and phosphatidylserine exposure were all reduced by roughly 50% after omega-3 incorporation, and collagen-induced tyrosine phosphorylation was significantly impaired. The diminished platelet response to collagen may account for some of the cardioprotective benefits provided by DHA and EPA.
Collapse
Affiliation(s)
- M K Larson
- Biology Department, Augustana College, Sioux Falls, SD 57197, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
SUMMARY The glycoprotein VI (GPVI)-FcR gamma-chain complex initiates powerful activation of platelets by the subendothelial matrix proteins collagen and laminin through an immunoreceptor tyrosine-based activation motif (ITAM)-regulated signaling pathway. ITAMs are characterized by two YxxL sequences separated by 6-12 amino acids and are found associated with several classes of immunoglobulin (Ig) and C-type lectin receptors in hematopoietic cells, including Fc receptors. Cross-linking of the Ig GPVI leads to phosphorylation of two conserved tyrosines in the FcR gamma-chain ITAM by Src family tyrosine kinases, followed by binding and activation of the tandem SH2 domain-containing Syk tyrosine kinase and stimulation of a downstream signaling cascade that culminates in activation of phospholipase Cgamma2 (PLCgamma2). In contrast, the C-type lectin receptor CLEC-2 mediates powerful platelet activation through Src and Syk kinases, but regulates Syk through a novel dimerization mechanism via a single YxxL motif known as a hemITAM. CLEC-2 is a receptor for podoplanin, which is expressed at high levels in several tissues, including type 1 lung alveolar cells, lymphatic endothelial cells, kidney podocytes and some tumors, but is absent from vascular endothelial cells and platelets. In this article, we compare the mechanism of platelet activation by GPVI and CLEC-2 and consider their functional roles in hemostasis and other vascular processes, including maintenance of vascular integrity, angiogenesis and lymphogenesis.
Collapse
Affiliation(s)
- S P Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | | | | |
Collapse
|
37
|
|
38
|
Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization, secondary mediators, and Rac. Blood 2010; 115:2938-46. [PMID: 20154214 DOI: 10.1182/blood-2009-12-257212] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The C-type lectin-like receptor 2 (CLEC-2) activates platelets through Src and Syk tyrosine kinases via a single cytoplasmic YxxL motif known as a hem immunoreceptor tyrosine-based activation motif (hemITAM). Here, we demonstrate using sucrose gradient ultracentrifugation and methyl-beta-cyclodextrin treatment that CLEC-2 translocates to lipid rafts upon ligand engagement and that translocation is essential for hemITAM phosphorylation and signal initiation. HemITAM phosphorylation, but not translocation, is also critically dependent on actin polymerization, Rac1 activation, and release of ADP and thromboxane A(2) (TxA(2)). The role of ADP and TxA(2) in mediating phosphorylation is dependent on ligand engagement and rac activation but is independent of platelet aggregation. In contrast, tyrosine phosphorylation of the GPVI-FcRgamma-chain ITAM, which has 2 YxxL motifs, is independent of actin polymerization and secondary mediators. These results reveal a unique series of proximal events in CLEC-2 phosphorylation involving actin polymerization, secondary mediators, and Rac activation.
Collapse
|
39
|
Das thrombozytäre Proteom. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
40
|
Xu S, Huo J, Gunawan M, Su IH, Lam KP. Activated dectin-1 localizes to lipid raft microdomains for signaling and activation of phagocytosis and cytokine production in dendritic cells. J Biol Chem 2009; 284:22005-22011. [PMID: 19525229 DOI: 10.1074/jbc.m109.009076] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipid rafts are plasma membrane microdomains that are enriched in cholesterol, glycosphingolipids, and glycosylphosphatidylinositol-anchored proteins and play an important role in the signaling of ITAM-bearing lymphocyte antigen receptors. Dectin-1 is a C-type lectin receptor (CLR) that recognizes beta-glucan in the cell walls of fungi and triggers signal transduction via its cytoplasmic hemi-ITAM. However, it is not known if similar to antigen receptors, Dectin-1 would also signal via lipid rafts and if the integrity of lipid raft microdomains is important for the physiological functions mediated by Dectin-1. We demonstrate here using sucrose gradient ultracentrifugation and confocal microscopy that Dectin-1 translocates to lipid rafts upon stimulation of dendritic cells (DCs) with the yeast derivative zymosan or beta-glucan. In addition, two key signaling molecules, Syk and PLCgamma2 are also recruited to lipid rafts upon the activation of Dectin-1, suggesting that lipid raft microdomains facilitate Dectin-1 signaling. Disruption of lipid raft integrity with the synthetic drug, methyl-beta-cyclodextrin (betamD) leads to reduced intracellular Ca2+ flux and defective Syk and ERK phosphorylation in Dectin-1-activated DCs. Furthermore, betamD-treated DCs have significantly attenuated production of IL-2, IL-10, and TNFalpha upon Dectin-1 engagement, and they also exhibit impaired phagocytosis of zymosan particles. Taken together, the data indicate that Dectin-1 and perhaps also other CLRs are recruited to lipid rafts upon activation and that the integrity of lipid rafts is important for the signaling and cellular functions initiated by this class of innate receptors.
Collapse
Affiliation(s)
- Shengli Xu
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668
| | - Jianxin Huo
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668
| | - Merry Gunawan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - I-Hsin Su
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Kong-Peng Lam
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074
| |
Collapse
|
41
|
Canobbio I, Trionfini P, Guidetti GF, Balduini C, Torti M. Targeting of the small GTPase Rap2b, but not Rap1b, to lipid rafts is promoted by palmitoylation at Cys176 and Cys177 and is required for efficient protein activation in human platelets. Cell Signal 2008; 20:1662-70. [DOI: 10.1016/j.cellsig.2008.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/26/2008] [Indexed: 10/22/2022]
|
42
|
Abstract
Adapters are multidomain molecules that recruit effector proteins during signal transduction by immunoreceptors and integrins. The absence of these scaffolding molecules profoundly affects development and function of various hematopoietic lineages, underscoring their importance as regulators of signaling cascades. An emerging aspect of the mechanism by which engaged immunoreceptors and integrins transmit signals within the cell is by differential usage of various adapters that function to nucleate formation of distinct signaling complexes in a specific location within the cell. In this review, we discuss the mechanisms by which adapter proteins coordinate signal transduction with an emphasis on the role of subcellular compartmentalization in adapter function.
Collapse
Affiliation(s)
- Natalie Bezman
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
43
|
Abstract
Stable platelet adhesion to extracellular matrices and the formation of a hemostatic or pathological thrombus are dependent on integrin alphaIIbbeta3, also known as GPIIb-IIIa. However, maximal platelet responses to vascular injury may involve the participation of other integrins expressed in platelets (alphaVbeta3, alpha2beta1, alpha5beta1, and alpha6beta1). Platelet membrane 'immunoreceptors' contain at least one subunit with an extracellular immunoglobulin superfamily domain and/or an intracellular stimulatory immunoreceptor tyrosine-based activation motif (ITAM) or immunoreceptor tyrosine-based inhibitory motif (ITIM). Platelet ITAM receptors, such as FcgammaRIIA and the GPVI-FcRgamma complex, promote activation of integrins, while ITIM receptors, such as platelet-endothelial cell adhesion molecule-1, may promote their inhibition. This review summarizes the structure and function of platelet integrins and immunoreceptors, the emerging functional relationships between these receptor classes, and the consequences of their interaction for platelet function in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Ana Kasirer-Friede
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0726, USA.
| | | | | |
Collapse
|
44
|
Farndale RW, Slatter DA, Siljander PRM, Jarvis GE. Platelet receptor recognition and cross-talk in collagen-induced activation of platelets. J Thromb Haemost 2007; 5 Suppl 1:220-9. [PMID: 17635730 DOI: 10.1111/j.1538-7836.2007.02521.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Comprehensive mapping of protein-binding sites within human collagen III has allowed the recognition motifs for integrin alpha(2)beta(1) and VWF A3 domain to be identified. Glycoprotein VI-binding sites are understood, although less well defined. This information, together with recent developments in understanding collagen fiber architecture, and crystal structures of the receptor collagen-binding domains, allows a coherent model for the interaction of collagen with the platelet surface to be developed. This complements our understanding of the orchestration of receptor presentation by membrane microdomains, such that the polyvalent collagen surface may stabilize signaling complexes within the heterogeneous receptor composition of the lipid raft. The ensuing interactions lead to the convergence of signals from each of the adhesive receptors, mediated by FcR gamma-chain and/or FcgammaRIIa, leading to concerted and co-operative platelet activation. Each receptor has a shear-dependent role, VWF/GpIb essential at high shear, and alpha(2)beta(1) at low and intermediate shear, whilst GpVI provides core signals that contribute to enhanced integrin affinity, tighter binding to collagen and consequent platelet activation.
Collapse
Affiliation(s)
- R W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
45
|
Reineri S, Bertoni A, Sanna E, Baldassarri S, Sarasso C, Zanfa M, Canobbio I, Torti M, Sinigaglia F. Membrane lipid rafts coordinate estrogen-dependent signaling in human platelets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:273-8. [PMID: 17208317 DOI: 10.1016/j.bbamcr.2006.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/02/2006] [Accepted: 12/06/2006] [Indexed: 11/22/2022]
Abstract
The impact of estrogens on the viability of cardiovascular system and their ability to regulate platelet function is still an open and debated question. We have previously shown that estrogen is able to significantly potentiate the aggregation induced by low doses of thrombin and to initiate a rapid and reversible signaling pathway mediated by ERbeta-directed activation of the tyrosine kinases Src and Pyk2 at the level of the plasma membrane. Lipid rafts are critical, cholesterol-enriched membrane domains, which play a major role in blood platelet activation processes. In this work, we investigated the role of lipid rafts in 17beta-estradiol signaling in human platelets. We observed that membrane rafts were essential for both 17beta-estradiol-dependent potentiation of platelet aggregation induced by subthreshold concentrations of thrombin and 17beta-estradiol-induced phosphorylation of Src. 17beta-estradiol caused the reversible translocation of ERbeta to the raft fractions and promoted the rapid and transient recruitment to, and activation within the membrane raft domains of the tyrosine kinases Src and Pyk2. The raft integrity was essential with this respect, as these effects of 17beta-estradiol were completely inhibited by cholesterol depletion. This paper provides evidence for the first time that membrane lipid rafts coordinate estrogen signaling in human platelets.
Collapse
Affiliation(s)
- Stefania Reineri
- Department of Medical Sciences, University "A. Avogadro", Via Solaroli 17, 28100-Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Quinter PG, Dangelmaier CA, Quinton TM, Kunapuli SP, Daniel JL. Glycoprotein VI agonists have distinct dependences on the lipid raft environment. J Thromb Haemost 2007; 5:362-8. [PMID: 17096705 DOI: 10.1111/j.1538-7836.2007.02309.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND It has been reported that the association of glycoprotein VI (GPVI) with lipid rafts regulates GPVI signaling in platelets. OBJECTIVE Secreted adenosine 5'-diphosphate (ADP) potentiates GPVI-induced platelet aggregation at particular agonist concentrations. We have investigated whether the decrease in GPVI signaling, previously reported in platelets with disrupted rafts, is a result of the loss of agonist potentiation by ADP. METHODS We disrupted platelet lipid rafts with methyl-beta-cyclodextrin and measured signaling events downstream of GPVI activation. RESULTS Lipid raft disruption decreases aggregation induced by low concentrations of convulxin, but this decrease is almost eliminated in the presence of ADP antagonists. Signaling indicators, such as protein phosphorylation and calcium mobilization, were not affected by raft disruption in collagen or convulxin stimulated platelets. Interestingly, however, raft disruption directly reduced GPVI signaling induced by collagen-related peptide. CONCLUSIONS Lipid rafts do not directly contribute to signaling by the physiologic agonist collagen. The effects of disruption of lipid rafts in in vitro assays can be attributed to inhibition of ADP feedback that potentiates GPVI signaling.
Collapse
Affiliation(s)
- P G Quinter
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
47
|
|
48
|
|
49
|
Lee FA, van Lier M, Relou IAM, Foley L, Akkerman JWN, Heijnen HFG, Farndale RW. Lipid rafts facilitate the interaction of PECAM-1 with the glycoprotein VI-FcR gamma-chain complex in human platelets. J Biol Chem 2006; 281:39330-8. [PMID: 17068334 DOI: 10.1074/jbc.m607930200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycoprotein (GP) VI, the main signaling receptor for collagen on platelets, is expressed in complex with the FcR gamma-chain. The latter contains an immunoreceptor tyrosine-based activation motif, which becomes phosphorylated, initiating a signaling cascade leading to the rapid activation and aggregation of platelets. Previous studies have shown that signaling by immunoreceptor tyrosine-based activation motif-containing receptors is counteracted by signals from receptors with immunoreceptor tyrosine-based inhibitory motifs. Here we show, by immunoprecipitation, that the GPVI-FcR gamma-chain complex associates with the immunoreceptor tyrosine-based inhibitory motif-containing receptor, PECAM-1. In platelets stimulated with collagen-related peptide (CRP-XL), tyrosine phosphorylation of PECAM-1 precedes that of the FcR gamma-chain, implying direct regulation of the former. The GPVI-FcR gamma-chain complex and PECAM-1 were present in both lipid raft and soluble fractions in human platelets; this distribution was unaltered by activation with CRP-XL. Their association occurred in lipid rafts and was lost after lipid raft depletion using methyl-beta-cyclodextrin. We propose that lipid raft clustering facilitates the interaction of PECAM-1 with the GPVI-FcR gamma-chain complex, leading to the down-regulation of the latter.
Collapse
Affiliation(s)
- Fiona A Lee
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
50
|
van Lier M, Lee F, Farndale RW, Gorter G, Verhoef S, Ohno-Iwashita Y, Akkerman JWN, Heijnen HFG. Adhesive surface determines raft composition in platelets adhered under flow. J Thromb Haemost 2005; 3:2514-25. [PMID: 16241950 DOI: 10.1111/j.1538-7836.2005.01597.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adhesion to von Willebrand factor (VWF) induces platelet spreading, whereas adhesion to collagen induces aggregation. Here we report that cholesterol-rich domains (CRDs) or rafts play a critical role in clustering of receptors that control these responses. Platelets adhered to VWF and collagen show CRDs concentrated in filopodia which contain both the VWF receptor glycoprotein (GP) Ibalpha and the collagen receptor GPVI. Biochemical analysis of CRDs shows a threefold enrichment of GPIbalpha (but not GPVI) in VWF-adhered platelets and a fourfold enrichment of GPVI (but not GPIbalpha) in collagen-adhered platelets. Depletion of cholesterol (i) leaves the initial adhesion unchanged, (ii) inhibits spreading on VWF and aggregate formation on collagen, (iii) leaves filopodia formation intact, and (iv) reduces the localization in filopodia of GPIbalpha but not of GPVI. These data show that the adhesive substrate determines the composition of CRDs, and that cholesterol is crucial for redistribution of GPIbalpha but not of GPVI.
Collapse
Affiliation(s)
- M van Lier
- Laboratory for Thrombosis and Haemostasis, Department of Haematology, UMCU and Institute of Biomembranes, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|