1
|
Rivera-Correa J, Gupta S, Ricker E, Flores-Castro D, Jenkins D, Vulcano S, Phalke SP, Pannellini T, Miele MM, Li Z, Zamponi N, Kim YB, Chinenov Y, Giannopoulou E, Cerchietti L, Pernis AB. ROCK1 promotes B cell differentiation and proteostasis under stress through the heme-regulated proteins, BACH2 and HRI. JCI Insight 2025; 10:e180507. [PMID: 39903532 PMCID: PMC11949073 DOI: 10.1172/jci.insight.180507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
The mechanisms utilized by differentiating B cells to withstand highly damaging conditions generated during severe infections, like the massive hemolysis that accompanies malaria, are poorly understood. Here, we demonstrate that ROCK1 regulates B cell differentiation in hostile environments replete with pathogen-associated molecular patterns (PAMPs) and high levels of heme by controlling 2 key heme-regulated molecules, BACH2 and heme-regulated eIF2α kinase (HRI). ROCK1 phosphorylates BACH2 and protects it from heme-driven degradation. As B cells differentiate, furthermore, ROCK1 restrains their pro-inflammatory potential and helps them handle the heightened stress imparted by the presence of PAMPs and heme by controlling HRI, a key regulator of the integrated stress response and cytosolic proteotoxicity. ROCK1 controls the interplay of HRI with HSP90 and limits the recruitment of HRI and HSP90 to unique p62/SQSTM1 complexes that also contain critical kinases like mTOR complex 1 and TBK1, and proteins involved in RNA metabolism, oxidative damage, and proteostasis like TDP-43. Thus, ROCK1 helps B cells cope with intense pathogen-driven destruction by coordinating the activity of key controllers of B cell differentiation and stress responses. These ROCK1-dependent mechanisms may be widely employed by cells to handle severe environmental stresses, and these findings may be relevant for immune-mediated and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores-Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Swati P. Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Tania Pannellini
- Research Division and Precision Medicine Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Matthew M. Miele
- Microchemistry & Proteomics Core at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhuoning Li
- Microchemistry & Proteomics Core at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nahuel Zamponi
- Hematology and Oncology Division, Weill Cornell Medicine, New York, New York, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yurii Chinenov
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Eugenia Giannopoulou
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Leandro Cerchietti
- Hematology and Oncology Division, Weill Cornell Medicine, New York, New York, USA
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
2
|
Sun Y, Xu C, Jiang Z, Jiang X. DEF6(differentially exprehomolog) exacerbates pathological cardiac hypertrophy via RAC1. Cell Death Dis 2023; 14:483. [PMID: 37524688 PMCID: PMC10390462 DOI: 10.1038/s41419-023-05948-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023]
Abstract
Pathological cardiac hypertrophy involves multiple regulators and several signal transduction pathways. Currently, the mechanisms of it are not well understood. Differentially expressed in FDCP 6 homolog (DEF6) was reported to participate in immunity, bone remodeling, and cancers. The effects of DEF6 on pathological cardiac hypertrophy, however, have not yet been fully characterized. We initially determined the expression profile of DEF6 and found that DEF6 was upregulated in hypertrophic hearts and cardiomyocytes. Our in vivo results revealed that DEF6 deficiency in mice alleviated transverse aortic constriction (TAC)-induced cardiac hypertrophy, fibrosis, dilation and dysfunction of left ventricle. Conversely, cardiomyocyte-specific DEF6-overexpression aggravated the hypertrophic phenotype in mice under chronic pressure overload. Similar to the animal experiments, the in vitro data showed that adenovirus-mediated knockdown of DEF6 remarkably inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas DEF6 overexpression exerted the opposite effects. Mechanistically, exploration of the signal pathways showed that the mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2)-extracellular signal-regulated kinase 1/2 (ERK1/2) cascade might be involved in the prohypertrophic effect of DEF6. Coimmunoprecipitation and GST (glutathione S-transferase) pulldown analyses demonstrated that DEF6 can directly interact with small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1), and the Rac1 activity assay revealed that the activity of Rac1 is altered with DEF6 expression in TAC-cardiac hypertrophy and PE-triggered cardiomyocyte hypertrophy. In the end, western blot and rescue experiments using Rac1 inhibitor NSC23766 and the constitutively active mutant Rac1(G12V) verified the requirement of Rac1 and MEK1/2-ERK1/2 activation for DEF6-mediated pathological cardiac hypertrophy. Our study substantiates that DEF6 acts as a deleterious regulator of cardiac hypertrophy by activating the Rac1 and MEK1/2-ERK1/2 signaling pathways, and suggests that DEF6 may be a potential treatment target for heart failure.
Collapse
Affiliation(s)
- Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Changlu Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China.
| |
Collapse
|
3
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
4
|
Hallumi E, Shalah R, Lo WL, Corso J, Oz I, Beach D, Wittman S, Isenberg A, Sela M, Urlaub H, Weiss A, Yablonski D. Itk Promotes the Integration of TCR and CD28 Costimulation through Its Direct Substrates SLP-76 and Gads. THE JOURNAL OF IMMUNOLOGY 2021; 206:2322-2337. [PMID: 33931484 DOI: 10.4049/jimmunol.2001053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
The costimulatory receptor CD28 synergizes with the TCR to promote IL-2 production, cell survival, and proliferation; yet the obligatory interdependence of TCR and CD28 signaling is not well understood. Upon TCR stimulation, Gads, a Grb2-family adaptor, bridges the interaction of two additional adaptors, LAT and SLP-76, to form a TCR-induced effector signaling complex. SLP-76 binds the Tec-family tyrosine kinase, Itk, which phosphorylates SLP-76 Y173 and PLC-γ1 Y783. In this study, we identified TCR-inducible, Itk-mediated phosphorylation of Gads Y45 in a human T cell line and in mouse primary T cells. Y45 is found within the N-terminal SH3 domain of Gads, an evolutionarily conserved domain with no known signaling function. Gads Y45 phosphorylation depended on the interaction of Gads with SLP-76 and on the dimerization-dependent binding of Gads to phospho-LAT. We provide evidence that Itk acts through SLP-76 and Gads to promote the TCR/CD28-induced activation of the RE/AP transcriptional element from the IL-2 promoter. Two Itk-related features of SLP-76, Y173 and a proline-rich Itk SH3 binding motif on SLP-76, were dispensable for activation of NFAT but selectively required for the TCR/CD28-induced increase in cytoplasmic and nuclear c-Rel and consequent RE/AP activation. We provide evidence that unphosphorylated, monomeric Gads mediates an RE/AP-directed inhibitory activity that is mitigated upon Gads dimerization and Y45 phosphorylation. This study illuminates a new, to our knowledge, regulatory module, in which TCR-induced, Itk-mediated phosphorylation sites on SLP-76 and Gads control the transcriptional response to TCR/CD28 costimulation, thus enforcing the obligatory interdependence of the TCR and CD28 signaling pathways.
Collapse
Affiliation(s)
- Enas Hallumi
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rose Shalah
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wan-Lin Lo
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jasmin Corso
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ilana Oz
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dvora Beach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Samuel Wittman
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Amy Isenberg
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Meirav Sela
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Research Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Deborah Yablonski
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Fournier B, Tusseau M, Villard M, Malcus C, Chopin E, Martin E, Jorge Cordeiro D, Fabien N, Fusaro M, Gauthier A, Garnier N, Goncalves D, Lounis S, Lenoir C, Mathieu AL, Moreews M, Perret M, Picard C, Picard C, Poitevin F, Viel S, Bertrand Y, Walzer T, Belot A, Latour S. DEF6 deficiency, a mendelian susceptibility to EBV infection, lymphoma, and autoimmunity. J Allergy Clin Immunol 2020; 147:740-743.e9. [PMID: 32562707 DOI: 10.1016/j.jaci.2020.05.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Maud Tusseau
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Marine Villard
- Immunology Department, Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon 1 University, France
| | - Christophe Malcus
- Immunology Laboratory, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Emilie Chopin
- Centre de Biotechnologie Cellulaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Debora Jorge Cordeiro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Nicole Fabien
- Immunology Department, Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon 1 University, France
| | - Mathieu Fusaro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Study Center for Primary Immunodeficiencies, Assistance Publique Hôpitaux de Paris, Necker-Enfants Malades Hospital, F-75015, Paris, France
| | - Alexandra Gauthier
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Nathalie Garnier
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - David Goncalves
- Immunology Department, Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon 1 University, France
| | - Sonia Lounis
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Anne-Laure Mathieu
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Marion Moreews
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Magali Perret
- Immunology Department, Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon 1 University, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France; Study Center for Primary Immunodeficiencies, Assistance Publique Hôpitaux de Paris, Necker-Enfants Malades Hospital, F-75015, Paris, France
| | - Cécile Picard
- Institut de Pathologie Multisite, Groupement Hospitalier Est, Hospices Civils de Lyon, UCBL Lyon 1 University, Lyon, France
| | - Françoise Poitevin
- Immunology Laboratory, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Sébastien Viel
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France; Immunology Department, Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon 1 University, France
| | - Yves Bertrand
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France; Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Thierry Walzer
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Alexandre Belot
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France; National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in childrEn (RAISE), France; Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, University Lyon I, Lyon, France.
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France.
| |
Collapse
|
6
|
Serwas NK, Hoeger B, Ardy RC, Stulz SV, Sui Z, Memaran N, Meeths M, Krolo A, Yüce Petronczki Ö, Pfajfer L, Hou TZ, Halliday N, Santos-Valente E, Kalinichenko A, Kennedy A, Mace EM, Mukherjee M, Tesi B, Schrempf A, Pickl WF, Loizou JI, Kain R, Bidmon-Fliegenschnee B, Schickel JN, Glauzy S, Huemer J, Garncarz W, Salzer E, Pierides I, Bilic I, Thiel J, Priftakis P, Banerjee PP, Förster-Waldl E, Medgyesi D, Huber WD, Orange JS, Meffre E, Sansom DM, Bryceson YT, Altman A, Boztug K. Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat Commun 2019; 10:3106. [PMID: 31308374 PMCID: PMC6629652 DOI: 10.1038/s41467-019-10812-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Immune responses need to be controlled tightly to prevent autoimmune diseases, yet underlying molecular mechanisms remain partially understood. Here, we identify biallelic mutations in three patients from two unrelated families in differentially expressed in FDCP6 homolog (DEF6) as the molecular cause of an inborn error of immunity with systemic autoimmunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated with reduced functional CTLA-4 availability, which is replicated in DEF6-knockout Jurkat cells. Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11+CTLA-4+ vesicles in DEF6-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.
Collapse
Affiliation(s)
- Nina K Serwas
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Rico C Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sigrun V Stulz
- Centre for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Zhenhua Sui
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - Nima Memaran
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Centre for Paediatrics and Adoloscent Medicine, Hannover Medical School, Hannover, Germany
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Özlem Yüce Petronczki
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Pathophysiology of Toulouse Purpan, INSERM UMR1043, CNRS UMR5282, Paul Sabatier University, Toulouse, France
| | - Tie Z Hou
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | | | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alan Kennedy
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Emily M Mace
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
- Columbia University Medical Center, Columbia, NY, USA
| | - Malini Mukherjee
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Bianca Tesi
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna Schrempf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Renate Kain
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Salomé Glauzy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jakob Huemer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wojciech Garncarz
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Elisabeth Salzer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Iro Pierides
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ivan Bilic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Takeda (Shire), Vienna, Austria
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, 79106, Germany
| | - Peter Priftakis
- Astrid Lindgren Children's Hospital, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Pinaki P Banerjee
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
- MD Anderson Cancer Center, Houston, TX, USA
| | - Elisabeth Förster-Waldl
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | - David Medgyesi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wolf-Dietrich Huber
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
- Columbia University Medical Center, Columbia, NY, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
- St. Anna Kinderspital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Calender A, Rollat Farnier PA, Buisson A, Pinson S, Bentaher A, Lebecque S, Corvol H, Abou Taam R, Houdouin V, Bardel C, Roy P, Devouassoux G, Cottin V, Seve P, Bernaudin JF, Lim CX, Weichhart T, Valeyre D, Pacheco Y, Clement A, Nathan N. Whole exome sequencing in three families segregating a pediatric case of sarcoidosis. BMC Med Genomics 2018; 11:23. [PMID: 29510755 PMCID: PMC5839022 DOI: 10.1186/s12920-018-0338-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sarcoidosis (OMIM 181000) is a multi-systemic granulomatous disorder of unknown origin. Despite multiple genome-wide association (GWAS) studies, no major pathogenic pathways have been identified to date. To find out relevant sarcoidosis predisposing genes, we searched for de novo and recessive mutations in 3 young probands with sarcoidosis and their healthy parents using a whole-exome sequencing (WES) methodology. METHODS From the SARCFAM project based on a national network collecting familial cases of sarcoidosis, we selected three families (trios) in which a child, despite healthy parents, develop the disease before age 15 yr. Each trio was genotyped by WES (Illumina HiSEQ 2500) and we selected the gene variants segregating as 1) new mutations only occurring in affected children and 2) as recessive traits transmitted from each parents. The identified coding variants were compared between the three families. Allelic frequencies and in silico functional results were analyzed using ExAC, SIFT and Polyphenv2 databases. The clinical and genetic studies were registered by the ClinicalTrials.gov - Protocol Registration and Results System (PRS) ( https://clinicaltrials.gov ) receipt under the reference NCT02829853 and has been approved by the ethical committee (CPP LYON SUD EST - 2 - REF IRB 00009118 - September 21, 2016). RESULTS We identified 37 genes sharing coding variants occurring either as recessive mutations in at least 2 trios or de novo mutations in one of the three affected children. The genes were classified according to their potential roles in immunity related pathways: 9 to autophagy and intracellular trafficking, 6 to G-proteins regulation, 4 to T-cell activation, 4 to cell cycle and immune synapse, 2 to innate immunity. Ten of the 37 genes were studied in a bibliographic way to evaluate the functional link with sarcoidosis. CONCLUSIONS Whole exome analysis of case-parent trios is useful for the identification of genes predisposing to complex genetic diseases as sarcoidosis. Our data identified 37 genes that could be putatively linked to a pediatric form of sarcoidosis in three trios. Our in-depth focus on 10 of these 37 genes may suggest that the formation of the characteristic lesion in sarcoidosis, granuloma, results from combined deficits in autophagy and intracellular trafficking (ex: Sec16A, AP5B1 and RREB1), G-proteins regulation (ex: OBSCN, CTTND2 and DNAH11), T-cell activation (ex: IDO2, IGSF3), mitosis and/or immune synapse (ex: SPICE1 and KNL1). The significance of these findings needs to be confirmed by functional tests on selected gene variants.
Collapse
Affiliation(s)
- Alain Calender
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | | | - Adrien Buisson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
| | - Stéphane Pinson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
| | - Abderrazzaq Bentaher
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | - Serge Lebecque
- Cancer Research Center, INSERM U-1052, CNRS 5286, 69008 Lyon, France
| | - Harriet Corvol
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, AP-HP, INSERM UMR-S938, Sorbonne University, Paris, France
| | - Rola Abou Taam
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Necker, Paris, France
| | - Véronique Houdouin
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Robert Debré, INSERM U-1142, University Paris Diderot VII, Paris, France
| | - Claire Bardel
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
| | - Pascal Roy
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
| | - Gilles Devouassoux
- Department of Pulmonology, University Hospital, Hôpital Croix Rousse, Lyon, France
| | - Vincent Cottin
- Department of Pulmonology, University Hospital, Hôpital Louis Pradel, Lyon, France
| | - Pascal Seve
- Department of Internal medicine, University Hospital, Hôpital Croix Rousse, Lyon, France
| | | | - Clarice X. Lim
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
| | - Dominique Valeyre
- EA2363, University Paris 13, COMUE Sorbonne-Paris-Cité, 74 rue Marcel Cachin, 93009 Bobigny, France
- Assistance Publique Hôpitaux de Paris, Department of Pulmonology, Avicenne University Hospital, 93009 Bobigny, France
| | - Yves Pacheco
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | - Annick Clement
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| | - Nadia Nathan
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| | - in the frame of GSF (Groupe Sarcoïdose France)
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
- Cancer Research Center, INSERM U-1052, CNRS 5286, 69008 Lyon, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, AP-HP, INSERM UMR-S938, Sorbonne University, Paris, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Necker, Paris, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Robert Debré, INSERM U-1142, University Paris Diderot VII, Paris, France
- Department of Pulmonology, University Hospital, Hôpital Croix Rousse, Lyon, France
- Department of Pulmonology, University Hospital, Hôpital Louis Pradel, Lyon, France
- Department of Internal medicine, University Hospital, Hôpital Croix Rousse, Lyon, France
- Histology and Tumor Biology, ER2 UPMC, Hôpital Tenon, Paris, France
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
- EA2363, University Paris 13, COMUE Sorbonne-Paris-Cité, 74 rue Marcel Cachin, 93009 Bobigny, France
- Assistance Publique Hôpitaux de Paris, Department of Pulmonology, Avicenne University Hospital, 93009 Bobigny, France
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| |
Collapse
|
8
|
Zhang S, Huang Y, Zhu J, Shan L, Gao J, Zhang Y, Yu N, Yang L, Huang J. Expression of hNeuritin protein in a baculovirus expression system and the analysis of its activity. Gene 2018; 647:129-135. [PMID: 29320757 DOI: 10.1016/j.gene.2018.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 12/11/2022]
Abstract
Neuritin plays an important role in the development and regeneration of the nervous system, and shows good prospects in the treatment and protection of the nervous system. To characterize neuritin function, we constructed a baculovirus expression system of neuritin, and identified the biological activity of the neuritin protein. The results and showed that the expression product could promote the neurite growth of dorsal root ganglion in chicken embryos. The neuritin open reading frame was amplified and cloned into the plasmid pFastBac™HTA. The pFastBac™HTA-neuritin was confirmed to be correct by PCR and DNA sequencing, and then transformed into Escherichia coli DH10Bac. The high purity recombinant Bacmid-neuritin (shuttle vectors) was obtained from DH10Bac through screening and identification. Recombinant virus, including the neuritin gene (virus-neuritin), was produced by transfection of SF9 cells using the bacmid-neuritin, and then amplified repeatedly to express the neuritin fusion protein. Finally, we identified the fusion protein with SDS-PAGE and western blotting, and optimized the best expression time of the neuritin fusion protein. We also analyzed the activity of the expressed protein by dorsal root ganglion from chicken embryos.
Collapse
Affiliation(s)
- Shuai Zhang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Yanhong Huang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Jingling Zhu
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Liya Shan
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Jianfeng Gao
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Yunhua Zhang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Na Yu
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Lei Yang
- Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Jin Huang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China.
| |
Collapse
|
9
|
Wang C, Schmich F, Srivatsa S, Weidner J, Beerenwinkel N, Spang A. Context-dependent deposition and regulation of mRNAs in P-bodies. eLife 2018; 7:29815. [PMID: 29297464 PMCID: PMC5752201 DOI: 10.7554/elife.29815] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Cells respond to stress by remodeling their transcriptome through transcription and degradation. Xrn1p-dependent degradation in P-bodies is the most prevalent decay pathway, yet, P-bodies may facilitate not only decay, but also act as a storage compartment. However, which and how mRNAs are selected into different degradation pathways and what determines the fate of any given mRNA in P-bodies remain largely unknown. We devised a new method to identify both common and stress-specific mRNA subsets associated with P-bodies. mRNAs targeted for degradation to P-bodies, decayed with different kinetics. Moreover, the localization of a specific set of mRNAs to P-bodies under glucose deprivation was obligatory to prevent decay. Depending on its client mRNA, the RNA-binding protein Puf5p either promoted or inhibited decay. Furthermore, the Puf5p-dependent storage of a subset of mRNAs in P-bodies under glucose starvation may be beneficial with respect to chronological lifespan.
Collapse
Affiliation(s)
- Congwei Wang
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Fabian Schmich
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Julie Weidner
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Anne Spang
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun 2017; 8:254. [PMID: 28811467 PMCID: PMC5557982 DOI: 10.1038/s41467-017-00348-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/12/2017] [Indexed: 01/24/2023] Open
Abstract
Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (TH) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (TFH) cells, is critical as aberrant TFH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1–4E-BP–eIF4E axis, secondary to aberrant assembly of a raptor–p62–TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant TFH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity. Excessive expansion of the T follicular helper (TFH) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of TFH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.
Collapse
|
11
|
Manni M, Ricker E, Pernis AB. Regulation of systemic autoimmunity and CD11c + Tbet + B cells by SWEF proteins. Cell Immunol 2017; 321:46-51. [PMID: 28780965 DOI: 10.1016/j.cellimm.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
Recent studies have revealed the existence of a T-bet dependent subset of B cells, which expresses unique phenotypic and functional characteristics including high levels of CD11c and CD11b. In the murine system this B cell subset has been termed Age/autoimmune-associated B cells (ABCs) since it expands with age in non-autoimmune mice and it prematurely accumulates in autoimmune-prone strains. The molecular mechanisms that promote the expansion and function of ABCs are largely unknown. This review will focus on the SWEF proteins, a small family of Rho GEFs comprised of SWAP-70 and its homolog DEF6, a newly identified risk variant for human SLE. We will first provide an overview of the SWEF proteins and then discuss the complex array of biological processes that they control and the autoimmune phenotypes that spontaneously develop in their absence, highlighting the emerging involvement of these proteins in regulating ABCs. A better understanding of the pathways controlled by the SWEF proteins could help provide new insights into the mechanisms responsible for the expansion of ABCs in autoimmunity and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
12
|
Chandrasekaran U, Yi W, Gupta S, Weng CH, Giannopoulou E, Chinenov Y, Jessberger R, Weaver CT, Bhagat G, Pernis AB. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol 2017; 68:1454-66. [PMID: 26816213 DOI: 10.1002/art.39599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/14/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Treg cells need to acquire an effector phenotype to function in settings of inflammation. Whether effector Treg cells can limit disease severity in lupus is unknown. Interferon regulatory factor 4 (IRF-4) is an essential controller of effector Treg cells and regulates their ability to express interleukin-10 (IL-10). In non-Treg cells, IRF-4 activity is modulated by interactions with DEF-6 and its homolog switch-associated protein 70 (SWAP-70). Although mice lacking both DEF-6 and SWAP-70 (double-knockout [DKO] mice) develop lupus, they display normal survival, suggesting that in DKO mice, Treg cells can moderate disease development. The purpose of this study was to investigate whether Treg cells from DKO mice have an increased capacity to become effector Treg cells due to the ability of DEF-6 and SWAP-70 to restrain IRF-4 activity. METHODS Treg cells were evaluated by fluorescence-activated cell sorting. The B lymphocyte-induced maturation protein 1 (BLIMP-1)/IL-10 axis was assessed by crossing DKO mice with BLIMP-1-YFP-10BiT dual-reporter mice. Deletion of IRF-4 in Treg cells from DKO mice was achieved by generating FoxP3(Cre) IRF-4(fl/fl) DKO mice. RESULTS The concomitant absence of DEF-6 and SWAP-70 led to increased numbers of Treg cells, which acquired an effector phenotype in a cell-intrinsic manner. In addition, Treg cells from DKO mice exhibited enhanced expression of the BLIMP-1/IL-10 axis. Notably, DKO effector Treg cells survived and expanded as disease progressed. The accumulation of Treg cells from DKO mice was associated with the up-regulation of genes controlling autophagy. IRF-4 was required for the expansion and function of effector Treg cells from DKO mice. CONCLUSION This study revealed the existence of mechanisms that, by acting on IRF-4, can fine-tune the function and survival of effector Treg cells in lupus. These findings suggest that the existence of a powerful effector Treg cell compartment that successfully survives in an unfavorable inflammatory environment could limit disease development.
Collapse
Affiliation(s)
| | - Woelsung Yi
- Hospital for Special Surgery, New York, New York
| | - Sanjay Gupta
- Hospital for Special Surgery, New York, New York
| | - Chien-Huan Weng
- Hospital for Special Surgery and Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Eugenia Giannopoulou
- Hospital for Special Surgery, New York, and New York City College of Technology, City University of New York, Brooklyn, New York
| | | | | | | | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, New York
| | - Alessandra B Pernis
- Hospital for Special Surgery, Weill Cornell Graduate School of Medical Sciences, and Weill Cornell Medicine, Cornell University, New York, New York
| |
Collapse
|
13
|
Identification of a Novel Alternatively Spliced Form of Inflammatory Regulator SWAP-70-Like Adapter of T Cells. Int J Inflam 2017; 2017:1324735. [PMID: 28523202 PMCID: PMC5421089 DOI: 10.1155/2017/1324735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
Activation of naive CD4+ T cells results in the development of several distinct subsets of effector Th cells, including Th2 cells that play a pivotal role in allergic inflammation and helminthic infections. SWAP-70-like adapter of T cells (SLAT), also known as Def6 or IBP, is a guanine nucleotide exchange factor for small GTPases, which regulates CD4+ T cell inflammatory responses by controlling Ca2+/NFAT signaling. In this study, we have identified a novel alternatively spliced isoform of SLAT, named SLAT2, which lacks the region encoded by exons 2-7 of the Def6 gene. SLAT2 was selectively expressed in differentiated Th2 cells after the second round of in vitro stimulation, but not in differentiated Th1, Th17, or regulatory T (Treg) cells. Functional assays revealed that SLAT2 shared with SLAT the ability to enhance T cell receptor- (TCR-) mediated activation of NFAT and production of IL-4 but was unable to enhance TCR-induced adhesion to ICAM-1. Ectopic expression of SLAT2 or SLAT in Jurkat T cells resulted in the expression of distinct forms of filopodia, namely, short versus long ones, respectively. These results demonstrate that modulating either SLAT2 or SLAT protein expression could play critical roles in cytokine production and actin reorganization during inflammatory immune responses.
Collapse
|
14
|
Liew PL, Fang CY, Lee YC, Lee YC, Chen CL, Chu JS. DEF6 expression in ovarian carcinoma correlates with poor patient survival. Diagn Pathol 2016; 11:68. [PMID: 27488395 PMCID: PMC4973116 DOI: 10.1186/s13000-016-0518-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increased expression of DEF6 is correlated with the malignant behavior of various cancers. Both DEF6 and p16 contribute to the regulation of cell cycle progression, and p53 plays important role in the cell cycle checkpoints. This study was designed to elucidate the prognostic significance of DEF6, p53 and p16 immunoexpressions in different histology subtypes of ovarian carcinoma. METHODS Immunohistochemistry results of DEF6, p53 and p16 on ovarian carcinoma were compared with histology subtypes, clinical data, overall survival (OS) and disease-free survival (DFS) by Cox regression and Kaplan-Meier analysis. RESULTS We studied 180 cases of ovarian carcinomas (75 high-grade serous, 41 clear cell, 36 mucinous and 28 endometrioid), including 109 FIGO stage I-II cases and 71 FIGO stage III-IV cases. Ovarian carcinomas positive for both DEF6 and p16 expression were associated with the worst OS (P = 0.027) and DFS (P = 0.023), whereas those negative for both DEF6 and p16 had the best OS and DFS. Aberrant p53 expression combined with positive DEF6 was associated with worst OS (P = 0.031) and DFS (P = 0.028). Kaplan-Meier analysis showed that significantly shorter survival rates were seen in patients with high expressions of DEF6 (P = 0.008) and p16 (P = 0.022). Patients with aberrant p53 expression in high-grade serous carcinoma (P = 0.012) and patients with high DEF6 expression in clear cell carcinoma (P = 0.001) were also associated with shorter overall survival. In univariate analysis, FIGO stage, DEF6 and p16 were associated with poor prognosis. DEF6 expression was the only independent prognostic factor correlated with shorted OS (HR 2.115; P = 0.025) and DFS (HR 2.248; P = 0.016) upon multivariate analysis. CONCLUSIONS DEF6 expression may serve as an independent prognostic factor, and interacted positively with p16 toward high tumor stage and shorter survival.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/mortality
- Adenocarcinoma, Mucinous/diagnosis
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/mortality
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Carcinoma, Endometrioid/diagnosis
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/mortality
- Cell Line, Tumor
- Cohort Studies
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Cystadenoma, Serous/diagnosis
- Cystadenoma, Serous/metabolism
- Cystadenoma, Serous/mortality
- DNA-Binding Proteins/metabolism
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Immunohistochemistry
- Middle Aged
- Multivariate Analysis
- Nuclear Proteins/metabolism
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Prognosis
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Phui-Ly Liew
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561 Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
| | - Chih-Yeu Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116 Taiwan
| | - Yu-Chieh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
| | - Yi-Chih Lee
- Department of International Business, Chien Hsin University of Science and Technology, Taoyuan, 32097 Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031 Taiwan
| | - Jan-Show Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031 Taiwan
| |
Collapse
|
15
|
CCHCR1 interacts with EDC4, suggesting its localization in P-bodies. Exp Cell Res 2014; 327:12-23. [DOI: 10.1016/j.yexcr.2014.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/17/2023]
|
16
|
Pelassa I, Corà D, Cesano F, Monje FJ, Montarolo PG, Fiumara F. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum Mol Genet 2014; 23:3402-20. [PMID: 24497578 PMCID: PMC4049302 DOI: 10.1093/hmg/ddu049] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The expansion of homopolymeric glutamine (polyQ) or alanine (polyA) repeats in certain proteins owing to genetic mutations induces protein aggregation and toxicity, causing at least 18 human diseases. PolyQ and polyA repeats can also associate in the same proteins, but the general extent of their association in proteomes is unknown. Furthermore, the structural mechanisms by which their expansion causes disease are not well understood, and these repeats are generally thought to misfold upon expansion into aggregation-prone β-sheet structures like amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) structures in triggering aggregation and toxicity of polyQ-expanded proteins, raising the possibility that polyA repeats may as well form these structures, by themselves or in association with polyQ. We found through bioinformatics screenings that polyA, polyQ and polyQA repeats have a phylogenetically graded association in human and non-human proteomes and associate/overlap with CC domains. Circular dichroism and cross-linking experiments revealed that polyA repeats can form—alone or with polyQ and polyQA—CC structures that increase in stability with polyA length, forming higher-order multimers and polymers in vitro. Using structure-guided mutagenesis, we studied the relevance of polyA CCs to the in vivo aggregation and toxicity of RUNX2—a polyQ/polyA protein associated with cleidocranial dysplasia upon polyA expansion—and found that the stability of its polyQ/polyA CC controls its aggregation, localization and toxicity. These findings indicate that, like polyQ, polyA repeats form CC structures that can trigger protein aggregation and toxicity upon expansion in human genetic diseases.
Collapse
Affiliation(s)
| | - Davide Corà
- Center for Molecular Systems Biology, University of Torino, Torino 10123, Italy
| | - Federico Cesano
- Department of Chemistry, University of Torino, Torino 10125, Italy
| | - Francisco J. Monje
- Department of Neurophysiology and Neuropharmacology,Medical University of Vienna, Vienna 1090, Austria
| | - Pier Giorgio Montarolo
- Department of Neuroscience and
- National Institute of Neuroscience (INN), Torino 10125, Italy
| | - Ferdinando Fiumara
- Department of Neuroscience and
- To whom correspondence should be addressed at: Department of Neuroscience, University of Torino, Corso Raffaello 30, Torino 10125, Italy. Tel: +39-0116708486;
| |
Collapse
|
17
|
RETRACTED: Swap70b is required for convergent and extension cell movement during zebrafish gastrulation linking Wnt11 signalling and RhoA effector function. Dev Biol 2014; 386:191-203. [DOI: 10.1016/j.ydbio.2013.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/22/2022]
|
18
|
IBP regulates epithelial-to-mesenchymal transition and the motility of breast cancer cells via Rac1, RhoA and Cdc42 signaling pathways. Oncogene 2013; 33:3374-82. [PMID: 23975422 PMCID: PMC4078416 DOI: 10.1038/onc.2013.337] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/04/2013] [Accepted: 07/12/2013] [Indexed: 12/21/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a crucial process for the invasion and metastasis of epithelial tumors. However, the molecular mechanisms underlying this transition are poorly understood. In this study, we demonstrate that interferon regulatory factor 4 binding protein (IBP) regulates EMT and the motility of breast cancer cells through Rac1, RhoA and Cdc42 signaling pathways. We found that increased expression of IBP was associated with the progression of breast cancer and that IBP protein levels were significantly elevated in matched distant metastases. High IBP levels also predict shorter overall survival of breast cancer patients. Furthermore, the forced expression of IBP decreased the expression of the epithelial marker E-cadherin but increased the mesenchymal markers in breast cancer cells. In contrast, silencing IBP in metastatic breast tumor cells promoted a shift toward an epithelial morphology concomitant with increased expression of E-cadherin and decreased expression of mesenchymal markers. IBP silencing also reduced the expression of EMT-inducing transcription factors (Snail, Slug, ZEB1 and ZEB2). Moreover, we identified a role for IBP in endogenous EMT induced by epidermal growth factor (EGF) and deletion of IBP attenuated EGF receptor (EGFR) signaling in breast cancer cells. Furthermore, IBP regulates the migration, invasion and matrix metalloprotease production in breast cancer cells as well as actin cytoskeleton rearrangement and the activation of GTP-Rac1, GTP-RhoA and GTP-Cdc42. Taken together, our findings demonstrate an oncogenic property for IBP in promoting the metastatic potential of breast cancer cells.
Collapse
|
19
|
Chacón-Martínez CA, Kiessling N, Winterhoff M, Faix J, Müller-Reichert T, Jessberger R. The switch-associated protein 70 (SWAP-70) bundles actin filaments and contributes to the regulation of F-actin dynamics. J Biol Chem 2013; 288:28687-703. [PMID: 23921380 DOI: 10.1074/jbc.m113.461277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coordinated assembly and disassembly of actin into filaments and higher order structures such as stress fibers and lamellipodia are fundamental for cell migration and adhesion. However, the precise spatiotemporal regulation of F-actin structures is not completely understood. SWAP-70, a phosphatidylinositol 3,4,5-trisphosphate-interacting, F-actin-binding protein, participates in actin rearrangements through yet unknown mechanisms. Here, we show that SWAP-70 is an F-actin-bundling protein that oligomerizes through a Gln/Glu-rich stretch within a coiled-coil region. SWAP-70 bundles filaments in parallel and anti-parallel fashion through its C-terminal F-actin binding domain and delays dilution-induced F-actin depolymerization. We further demonstrate that SWAP-70 co-localizes and directly interacts with cofilin, an F-actin severing and depolymerization factor, and contributes to the regulation of cofilin activity in vivo. In line with these activities, upon stem cell factor stimulation, murine bone marrow-derived mast cells lacking SWAP-70 display aberrant regulation of F-actin and actin free barbed ends dynamics. Moreover, proper stem cell factor-dependent cofilin activation via dephosphorylation and subcellular redistribution into a detergent-resistant cytoskeletal compartment also require SWAP-70. Together, these findings reveal an important role of SWAP-70 in the dynamic spatiotemporal regulation of F-actin networks.
Collapse
|
20
|
Oyedele OO, Kramer B. Nuanced but significant: how ethanol perturbs avian cranial neural crest cell actin cytoskeleton, migration and proliferation. Alcohol 2013; 47:417-26. [PMID: 23731693 DOI: 10.1016/j.alcohol.2013.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022]
Abstract
Children with fetal alcohol syndrome (FAS) display striking craniofacial abnormalities. These features are proposed to result from perturbations in the morphology and function of cranial neural crest cells (cNCCs), which contribute significantly to the craniofacial complex. While certain pathways by which this may occur have been suggested, precise teratogenic mechanisms remain intensely investigated, as does the question of the teratogenic dose. The present study focused on examining how avian cNCC actin cytoskeleton, migratory distance, and proliferation are affected ex vivo by exposure to ethanol concentrations that simulate maternal intoxication. Chick cNCCs were cultured in 0.2% and 0.4% v/v ethanol. Distances migrated by both ethanol-treated and control cells at 24 and 48 h were recorded. Following phalloidin immunocytochemistry, treated and control cNCCs were compared morphologically and quantitatively. Apoptosis and proliferation in control versus treated cNCCs were also studied. Chick cNCCs cultured in ethanol lost their spindle-like shapes and their ordered cytoskeleton. There was a significant stage-dependent effect on cNCC migration at 24 h (p = 0.035), which was greatest at stage 10 (HH). Ethanol treatment for 48 h revealed a significant main effect for ethanol, chiefly at the 0.4% level. There was also an interaction effect between ethanol dose and stage of development (stage 9 HH). Actin microfilament disruption was quantitatively increased by ethanol at the doses studied while cNCC proliferation was increased but not significantly. Ethanol had no effect on cNCC apoptosis. At ethanol levels likely to induce human FAS, avian cNCCs exhibit various subtle, potentially significant changes in morphology, migration, and proliferation, with possible consequences for fated structures.
Collapse
Affiliation(s)
- Olusegun O Oyedele
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | | |
Collapse
|
21
|
Abdullah H, Brankin B, Brady C, Cosby SL. Wild-type measles virus infection upregulates poliovirus receptor-related 4 and causes apoptosis in brain endothelial cells by induction of tumor necrosis factor-related apoptosis-inducing ligand. J Neuropathol Exp Neurol 2013; 72:681-96. [PMID: 23771216 DOI: 10.1097/nen.0b013e31829a26b6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.
Collapse
Affiliation(s)
- Hani'ah Abdullah
- From the Centre for Infection and Immunity (HA, CB, SLC), School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, UK; and School of Biological Sciences (BB), Dublin Institute of Technology, Dublin, Ireland
| | | | | | | |
Collapse
|
22
|
Xie Q, Joseph RE, Fulton DB, Andreotti AH. Substrate recognition of PLCγ1 via a specific docking surface on Itk. J Mol Biol 2012; 425:683-96. [PMID: 23219468 DOI: 10.1016/j.jmb.2012.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 12/15/2022]
Abstract
Itk (interleukin-2 inducible T cell kinase) is a non-receptor protein tyrosine kinase expressed primarily in T cells. Itk catalyzes phosphorylation on tyrosine residues within a number of its natural substrates, including the well-characterized Y783 of PLCγ1. However, the molecular mechanisms Itk exploits to recognize its substrates are not completely understood. We have previously identified a specific docking interaction between the kinase domain of Itk and the C-terminal Src homology 2 (SH2C) domain of PLCγ1 that promotes substrate specificity for this enzyme/substrate pair. In the current study, we identify and map the interaction surface on the Itk kinase domain as an acidic patch centered on the G helix. Mutation of the residues on and adjacent to the G helix within the Itk kinase domain impairs the catalytic efficacy of PLCγ1 substrate phosphorylation by specifically altering the protein-protein interaction interface and not the inherent catalytic activity of Itk. NMR titration experiments using a Btk (Bruton's tyrosine kinase) kinase domain as a surrogate for the Itk kinase domain provide further support for an Itk/PLCγ1 SH2C interaction surrounding the G helix of the kinase domain. The work presented here provides structural insight into how the Itk kinase uses the G helix to single out Y783 of PLCγ1 for specific phosphorylation. Comparing these results to other well-characterized kinase/substrate systems suggests that the G helix is a general structural feature used by kinases for substrate recognition during signaling.
Collapse
Affiliation(s)
- Qian Xie
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|