1
|
Kannan S, Gillespie SW, Picking WL, Picking WD, Lorson CL, Singh K. Inhibitors against DNA Polymerase I Family of Enzymes: Novel Targets and Opportunities. BIOLOGY 2024; 13:204. [PMID: 38666816 PMCID: PMC11048162 DOI: 10.3390/biology13040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
DNA polymerases replicate cellular genomes and/or participate in the maintenance of genome integrity. DNA polymerases sharing high sequence homology with E. coli DNA polymerase I (pol I) have been grouped in Family A. Pol I participates in Okazaki fragment maturation and in bacterial genome repair. Since its discovery in 1956, pol I has been extensively studied, primarily to gain deeper insights into the mechanism of DNA replication. As research on DNA polymerases advances, many novel functions of this group of polymerases are being uncovered. For example, human DNA polymerase θ (a Family A DNA pol) has been shown to synthesize DNA using RNA as a template, a function typically attributed to retroviral reverse transcriptase. Increased interest in drug discovery against pol θ has emerged due to its roles in cancer. Likewise, Pol I family enzymes also appear attractive as drug-development targets against microbial infections. Development of antimalarial compounds targeting apicoplast apPOL, an ortholog of Pol I, further extends the targeting of this family of enzymes. Here, we summarize reported drug-development efforts against Family A polymerases and future perspective regarding these enzymes as antibiotic targets. Recently developed techniques, such as artificial intelligence, can be used to facilitate the development of new drugs.
Collapse
Affiliation(s)
- Saathvik Kannan
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
| | - Samuel W. Gillespie
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
| | - Wendy L. Picking
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - William D. Picking
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Christian L. Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Maruapula D, Moraka NO, Bareng OT, Mokgethi PT, Choga WT, Seatla KK, Kelentse N, Koofhethille CK, Zuze BJL, Gaolathe T, Pretorius-Holme M, Makhema J, Novitsky V, Shapiro R, Moyo S, Lockman S, Gaseitsiwe S. Archived rilpivirine-associated resistance mutations among ART-naive and virologically suppressed people living with HIV-1 subtype C in Botswana: implications for cabotegravir/rilpivirine use. J Antimicrob Chemother 2023; 78:2489-2495. [PMID: 37585352 PMCID: PMC10545497 DOI: 10.1093/jac/dkad258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
OBJECTIVES Pre-existing rilpivirine resistance-associated mutations (RVP-RAMs) have been found to predict HIV-1 virological failure in those switching to long-acting injectable cabotegravir/rilpivirine. We here evaluated the prevalence of archived RPV-RAMs in a cohort of people living with HIV (PWH). METHODS We analysed near full-length HIV-1 pol sequences from proviral DNA for the presence of RPV-RAMs, which were defined according to the 2022 IAS-USA drug resistance mutation list and Stanford HIV drug resistance database. RESULTS RPV-RAMs were identified in 757/5805 sequences, giving a prevalence of 13.0% (95% CI 12%-13.9%). Amongst the ART-naive group, 137/1281 (10.7%, 95% CI 9.1%-12.5%) had at least one RPV-RAM. Of the 4524 PWH with viral suppression on ART (VL <400 copies/mL), 620 (13.7%, 95% CI 12.7%-14.7%) had at least one RPV-RAM. E138A was the most prevalent RPV-RAM in the ART-naive group (7.9%) and the ART-suppressed group (9.3%). The rest of the mutations observed (L100I, K101E, E138G, E138K, E138Q, Y181C, H221Y, M230L, A98G, V179D, G190A, G190E and M230I) were below a prevalence of 1%. CONCLUSIONS RPV-RAMs were present in 10.7% of ART-naive and 13.7% of ART-suppressed PWH in Botswana. The most common RPV-RAM in both groups was E138A. Since individuals with the E138A mutation may be more likely to fail cabotegravir/rilpivirine, monitoring RPV-RAMs will be crucial for effective cabotegravir/rilpivirine implementation in this setting.
Collapse
Affiliation(s)
| | - Natasha O Moraka
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Faculty of Health Sciences, Medical Laboratory Sciences, University of Botswana, Gaborone, Botswana
| | - Ontlametse T Bareng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Faculty of Health Sciences, Medical Laboratory Sciences, University of Botswana, Gaborone, Botswana
| | - Patrick T Mokgethi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Faculty of Science, Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Wonderful T Choga
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Faculty of Health Sciences, Medical Laboratory Sciences, University of Botswana, Gaborone, Botswana
| | - Kaelo K Seatla
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | - Catherine K Koofhethille
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Molly Pretorius-Holme
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
| | - Vlad Novitsky
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
| | - Shahin Lockman
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Mansouri M, Rumrill S, Dawson S, Johnson A, Pinson JA, Gunzburg MJ, Latham CF, Barlow N, Mbogo GW, Ellenberg P, Headey SJ, Sluis-Cremer N, Tyssen D, Bauman JD, Ruiz FX, Arnold E, Chalmers DK, Tachedjian G. Targeting HIV-1 Reverse Transcriptase Using a Fragment-Based Approach. Molecules 2023; 28:3103. [PMID: 37049868 PMCID: PMC10095864 DOI: 10.3390/molecules28073103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Human immunodeficiency virus type I (HIV-1) is a retrovirus that infects cells of the host's immune system leading to acquired immunodeficiency syndrome and potentially death. Although treatments are available to prevent its progression, HIV-1 remains a major burden on health resources worldwide. Continued emergence of drug-resistance mutations drives the need for novel drugs that can inhibit HIV-1 replication through new pathways. The viral protein reverse transcriptase (RT) plays a fundamental role in the HIV-1 replication cycle, and multiple approved medications target this enzyme. In this study, fragment-based drug discovery was used to optimize a previously identified hit fragment (compound B-1), which bound RT at a novel site. Three series of compounds were synthesized and evaluated for their HIV-1 RT binding and inhibition. These series were designed to investigate different vectors around the initial hit in an attempt to improve inhibitory activity against RT. Our results show that the 4-position of the core scaffold is important for binding of the fragment to RT, and a lead compound with a cyclopropyl substitution was selected and further investigated. Requirements for binding to the NNRTI-binding pocket (NNIBP) and a novel adjacent site were investigated, with lead compound 27-a minimal but efficient NNRTI-offering a starting site for the development of novel dual NNIBP-Adjacent site inhibitors.
Collapse
Affiliation(s)
- Mahta Mansouri
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Shawn Rumrill
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shane Dawson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Adam Johnson
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Jo-Anne Pinson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Menachem J. Gunzburg
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Catherine F. Latham
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - George W. Mbogo
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Paula Ellenberg
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Stephen J. Headey
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David Tyssen
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Joseph D. Bauman
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Francesc X. Ruiz
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - David K. Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gilda Tachedjian
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Cryo-EM structures of wild-type and E138K/M184I mutant HIV-1 RT/DNA complexed with inhibitors doravirine and rilpivirine. Proc Natl Acad Sci U S A 2022; 119:e2203660119. [PMID: 35858448 PMCID: PMC9335299 DOI: 10.1073/pnas.2203660119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The enzyme reverse transcriptase (RT) is a key antiviral target, and nonnucleoside RT inhibitors (NNRTIs) are among the frequently used components of antiretroviral therapy for treating HIV-1 infection. The emergence of drug-resistant mutations continues to pose a challenge in HIV treatment. The RT mutations M184I and E138K emerge in patients receiving rilpivirine. We obtained the structural snapshots of rilpivirine, doravirine, and nevirapine inhibited wild-type and M184I/E138K RT/DNA polymerase complexes by cryo-electron microscopy. Key structural changes observed in the rilpivirine- and doravirine-bound structures have implications for understanding NNRTI drug resistance. Additionally, the cryo-EM structure determination strategy outlined in this study can be adapted to aid drug design targeting smaller and flexible proteins. Structures trapping a variety of functional and conformational states of HIV-1 reverse transcriptase (RT) have been determined by X-ray crystallography. These structures have played important roles in explaining the mechanisms of catalysis, inhibition, and drug resistance and in driving drug design. However, structures of several desired complexes of RT could not be obtained even after many crystallization or crystal soaking experiments. The ternary complexes of doravirine and rilpivirine with RT/DNA are such examples. Structural study of HIV-1 RT by single-particle cryo-electron microscopy (cryo-EM) has been challenging due to the enzyme’s relatively smaller size and higher flexibility. We optimized a protocol for rapid structure determination of RT complexes by cryo-EM and determined six structures of wild-type and E138K/M184I mutant RT/DNA in complexes with the nonnucleoside inhibitors rilpivirine, doravirine, and nevirapine. RT/DNA/rilpivirine and RT/DNA/doravirine complexes have structural differences between them and differ from the typical conformation of nonnucleoside RT inhibitor (NNRTI)–bound RT/double-stranded DNA (dsDNA), RT/RNA–DNA, and RT/dsRNA complexes; the primer grip in RT/DNA/doravirine and the YMDD motif in RT/DNA/rilpivirine have large shifts. The DNA primer 3′-end in the doravirine-bound structure is positioned at the active site, but the complex is in a nonproductive state. In the mutant RT/DNA/rilpivirine structure, I184 is stacked with the DNA such that their relative positioning can influence rilpivirine in the pocket. Simultaneously, E138K mutation opens the NNRTI-binding pocket entrance, potentially contributing to a faster rate of rilpivirine dissociation by E138K/M184I mutant RT, as reported by an earlier kinetic study. These structural differences have implications for understanding molecular mechanisms of drug resistance and for drug design.
Collapse
|
5
|
Insights into HIV-1 Reverse Transcriptase (RT) Inhibition and Drug Resistance from Thirty Years of Structural Studies. Viruses 2022; 14:v14051027. [PMID: 35632767 PMCID: PMC9148108 DOI: 10.3390/v14051027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The enzyme reverse transcriptase (RT) plays a central role in the life cycle of human immunodeficiency virus (HIV), and RT has been an important drug target. Elucidations of the RT structures trapping and detailing the enzyme at various functional and conformational states by X-ray crystallography have been instrumental for understanding RT activities, inhibition, and drug resistance. The structures have contributed to anti-HIV drug development. Currently, two classes of RT inhibitors are in clinical use. These are nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, the error-prone viral replication generates variants that frequently develop resistance to the available drugs, thus warranting a continued effort to seek more effective treatment options. RT also provides multiple additional potential druggable sites. Recently, the use of single-particle cryogenic electron microscopy (cryo-EM) enabled obtaining structures of NNRTI-inhibited HIV-1 RT/dsRNA initiation and RT/dsDNA elongation complexes that were unsuccessful by X-ray crystallography. The cryo-EM platform for the structural study of RT has been established to aid drug design. In this article, we review the roles of structural biology in understanding and targeting HIV RT in the past three decades and the recent structural insights of RT, using cryo-EM.
Collapse
|
6
|
Development of Human Immunodeficiency Virus Type 1 Resistance to 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine (EFdA) Starting with Wild-Type or Nucleoside Reverse Transcriptase Inhibitor Resistant-Strains. Antimicrob Agents Chemother 2021; 65:e0116721. [PMID: 34516245 DOI: 10.1128/aac.01167-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against WT and drug-resistant HIV-1, in Phase III clinical trials. EFdA resistance is not well characterized. To study EFdA-resistance patterns as it may emerge in naïve or tenofovir- (TFV), emtricitabine/lamivudine- (FTC/3TC), or zidovudine- (AZT) treated patients we performed viral passaging experiments starting with wild-type, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless the starting viral sequence, all selected EFdA-resistant variants included the M184V RT mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (∼24-fold) than M184V (∼8-fold) or A114S alone (∼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than WT HIV-1. These mutants also had significantly lower specific infectivity than WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (kcat/Km) of WT vs. A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data, suggest that EFdA is an excellent therapeutic candidate for naïve, AZT-, FTC/3TC, and especially tenofovir-treated patients.
Collapse
|
7
|
Sharma B. Meet the Editorial Board Member. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/157488551602210604092815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bechan Sharma
- Department of Biochemistry University of Allahabad, Allahabad-UP, India
| |
Collapse
|
8
|
Spratt AN, Gallazzi F, Quinn TP, Lorson CL, Sönnerborg A, Singh K. Coronavirus helicases: attractive and unique targets of antiviral drug-development and therapeutic patents. Expert Opin Ther Pat 2021; 31:339-350. [PMID: 33593200 PMCID: PMC8074651 DOI: 10.1080/13543776.2021.1884224] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction: Coronaviruses encode a helicase that is essential for viral replication and represents an excellent antiviral target. However, only a few coronavirus helicase inhibitors have been patented. These patents include drug-like compound SSYA10-001, aryl diketo acids (ADK), and dihydroxychromones. Additionally, adamantane-derived bananins, natural flavonoids, one acrylamide derivative [(E)-3-(furan-2-yl)-N-(4-sulfamoylphenyl)acrylamide], a purine derivative (7-ethyl-8-mercapto-3-methyl-3,7-dihydro-1 H-purine-2,6-dione), and a few bismuth complexes. The IC50 of patented inhibitors ranges between 0.82 μM and 8.95 μM, depending upon the assays used. Considering the urgency of clinical interventions against Coronavirus Disease-19 (COVID-19), it is important to consider developing antiviral portfolios consisting of small molecules. Areas covered: This review examines coronavirus helicases as antiviral targets, and the potential of previously patented and experimental compounds to inhibit the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) helicase. Expert opinion: Small molecule coronavirus helicase inhibitors represent attractive pharmacological modalities for the treatment of coronaviruses such as SARS-CoV and SARS-CoV-2. Rightfully so, the current emphasis is focused upon the development of vaccines. However, vaccines may not work for everyone and broad-based adoption of vaccinations is an increasingly challenging societal endeavor. Therefore, it is important to develop additional pharmacological antivirals against the highly conserved coronavirus helicases to broadly protect against this and subsequent coronavirus epidemics.
Collapse
Affiliation(s)
- Austin N Spratt
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Fabio Gallazzi
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Thomas P Quinn
- cDepartment of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,dDepartment of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Anders Sönnerborg
- eDivision of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Stockholm, Sweden.,fDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Stockholm, Sweden.,gSanctum Therapeutics Corporation, Sunnyvale, CA, USA
| |
Collapse
|
9
|
Cilento ME, Kirby KA, Sarafianos SG. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem Rev 2021; 121:3271-3296. [PMID: 33507067 DOI: 10.1021/acs.chemrev.0c00967] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| |
Collapse
|
10
|
Gu W, Martinez S, Nguyen H, Xu H, Herdewijn P, De Jonghe S, Das K. Tenofovir-Amino Acid Conjugates Act as Polymerase Substrates-Implications for Avoiding Cellular Phosphorylation in the Discovery of Nucleotide Analogues. J Med Chem 2020; 64:782-796. [PMID: 33356231 DOI: 10.1021/acs.jmedchem.0c01747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nucleotide analogues are used for treating viral infections such as HIV, hepatitis B, hepatitis C, influenza, and SARS-CoV-2. To become polymerase substrates, a nucleotide analogue must be phosphorylated by cellular kinases which is rate-limiting. The goal of this study is to develop dNTP/NTP analogues directly from nucleotides. Tenofovir (TFV) analogues were synthesized by conjugating with amino acids. We demonstrate that some conjugates act as dNTP analogues and HIV-1 reverse transcriptase (RT) catalytically incorporates the TFV part as the chain terminator. X-ray structures in complex with HIV-1 RT/dsDNA showed binding of the conjugates at the polymerase active site, however, in different modes in the presence of Mg2+ versus Mn2+ ions. The adaptability of the compounds is seemingly essential for catalytic incorporation of TFV by RT. 4d with a carboxyl sidechain demonstrated the highest incorporation. 4e showed weak incorporation and rather behaved as a dNTP-competitive inhibitor. This result advocates the feasibility of designing NTP/dNTP analogues by chemical substitutions to nucleotide analogues.
Collapse
Affiliation(s)
- Weijie Gu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium.,KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Sergio Martinez
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Hoai Nguyen
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Hongtao Xu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Kalyan Das
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
11
|
Himmel DM, Arnold E. Non-Nucleoside Reverse Transcriptase Inhibitors Join Forces with Integrase Inhibitors to Combat HIV. Pharmaceuticals (Basel) 2020; 13:ph13060122. [PMID: 32545407 PMCID: PMC7345359 DOI: 10.3390/ph13060122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
In the treatment of acquired immune deficiency syndrome (AIDS), the diarylpyrimidine (DAPY) analogs etravirine (ETR) and rilpivirine (RPV) have been widely effective against human immunodeficiency virus (HIV) variants that are resistant to other non-nucleoside reverse transcriptase inhibitors (NNRTIs). With non-inferior or improved efficacy, better safety profiles, and lower doses or pill burdens than other NNRTIs in the clinic, combination therapies including either of these two drugs have led to higher adherence than other NNRTI-containing treatments. In a separate development, HIV integrase strand transfer inhibitors (INSTIs) have shown efficacy in treating AIDS, including raltegravir (RAL), elvitegravir (EVG), cabotegravir (CAB), bictegravir (BIC), and dolutegravir (DTG). Of these, DTG and BIC perform better against a wide range of resistance mutations than other INSTIs. Nevertheless, drug-resistant combinations of mutations have begun to emerge against all DAPYs and INSTIs, attributable in part to non-adherence. New dual therapies that may promote better adherence combine ETR or RPV with an INSTI and have been safer and non-inferior to more traditional triple-drug treatments. Long-acting dual- and triple-therapies combining ETR or RPV with INSTIs are under study and may further improve adherence. Here, highly resistant emergent mutations and efficacy data on these novel treatments are reviewed. Overall, ETR or RPV, in combination with INSTIs, may be treatments of choice as long-term maintenance therapies that optimize efficacy, adherence, and safety.
Collapse
Affiliation(s)
- Daniel M. Himmel
- Himmel Sci Med Com, L.L.C., Bala Cynwyd, PA 19004, USA
- Correspondence: ; Tel.: +1-848-391-5973
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
12
|
Njenda DT, Aralaguppe SG, Singh K, Rao R, Sönnerborg A, Sarafianos SG, Neogi U. Antiretroviral potency of 4'-ethnyl-2'-fluoro-2'-deoxyadenosine, tenofovir alafenamide and second-generation NNRTIs across diverse HIV-1 subtypes. J Antimicrob Chemother 2019; 73:2721-2728. [PMID: 30053052 DOI: 10.1093/jac/dky256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/04/2018] [Indexed: 01/21/2023] Open
Abstract
Objectives 4'-Ethnyl-2'-fluoro-2'-deoxyadenosine (EFdA) is a novel translocation-defective reverse transcriptase inhibitor. We investigated the virological and biochemical inhibitory potentials of EFdA against a broad spectrum of subtype-specific chimeric viruses and compared it with tenofovir alafenamide, nevirapine, efavirenz, rilpivirine and etravirine. Methods pNL4.3 chimeric viruses encoding gag-pol from treatment-naive patients (n = 24) and therapy-failure patients (n = 3) and a panel of reverse transcriptase inhibitor-resistant strains (n = 7) were used to compare the potency of reverse transcriptase inhibitor drugs. The phenotypic drug susceptibility assay was performed using TZM-bl cells. In vitro inhibition assays were done using patient-derived reverse transcriptase. IC50 values of NNRTIs were calculated using a PicoGreen-based spectrophotometric assay. Steady-state kinetics were used to determine the apparent binding affinity (Km.dNTP) of triphosphate form of EFdA (EFdA-TP) and dATP. Results Among the chimeric treatment-naive viruses, EFdA had an ex vivo antiretroviral activity [median (IQR) EC50 = 1.4 nM (0.6-2.1 nM)] comparable to that of tenofovir alafenamide [1.6 nM (0.5-3.6 nM)]. Subtype-specific differences were found for etravirine (P = 0.004) and rilpivirine (P = 0.017), where HIV-1C had the highest EC50 values. EFdA had a greater comparative efficiency [calculated by dividing the efficiency of monophosphate form of EFdA (EFdA-MP) incorporation (kcat.EFdA-TP/Km.EFdA-TP) over the efficiency of dATP incorporation (kcat.dATP/Km.dATP)] compared with the natural substrate dATP, with a fold change of between 1.6 and 3.2. Ex vivo analysis on reverse transcriptase inhibitor-resistant strains showed EFdA to have a higher potency. Despite the presence of rilpivirine DRMs, some non-B strains showed hypersusceptibility to rilpivirine. Conclusions Our combined virological and biochemical data suggest that EFdA inhibits both WT and reverse transcriptase inhibitor-resistant viruses efficiently in a subtype-independent manner. In contrast, HIV-1C is least susceptible to etravirine and rilpivirine.
Collapse
Affiliation(s)
- Duncan T Njenda
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shambhu G Aralaguppe
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Kamalendra Singh
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Rohit Rao
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
13
|
Frey KM, Tabassum T. Current structure-based methods for designing non-nucleoside reverse transcriptase inhibitors. Future Virol 2019. [DOI: 10.2217/fvl-2019-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In 2019, structure-based methods continue to guide the design of novel antiretroviral therapies targeting HIV reverse transcriptase. This Review summarizes key findings from reverse transcriptase–non-nucleoside reverse transcriptase inhibitor analog crystal structure complexes reported from 2015 to 2019. Results from the literature and structure analysis have informed new ideas for structure-guided non-nucleoside reverse transcriptase inhibitor drug design.
Collapse
Affiliation(s)
- Kathleen M Frey
- Fairleigh Dickinson University, Division of Pharmaceutical Sciences, School of Pharmacy & Health Sciences, 230 Park Avenue, M-SP1-01, Florham Park, NJ 07932, USA
| | - Tasnim Tabassum
- Long Island University, Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy & Health Sciences, 75 Dekalb Avenue, Brooklyn, NY 11201, USA
| |
Collapse
|
14
|
Brady S, Singh G, Bolinger C, Song Z, Boeras I, Weng K, Trent B, Brown WC, Singh K, Boris-Lawrie K, Heng X. Virion-associated, host-derived DHX9/RNA helicase A enhances the processivity of HIV-1 reverse transcriptase on genomic RNA. J Biol Chem 2019; 294:11473-11485. [PMID: 31175158 PMCID: PMC6663884 DOI: 10.1074/jbc.ra119.007679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/04/2019] [Indexed: 02/02/2023] Open
Abstract
DHX9/RNA helicase A (RHA) is a host RNA helicase that participates in many critical steps of the HIV-1 life cycle. It co-assembles with the viral RNA genome into the capsid core. Virions deficient in RHA are less infectious as a result of reduced reverse transcription efficiency, demonstrating that the virion-associated RHA promotes reverse transcription before the virion gains access to the new host's RHA. Here, we quantified reverse-transcription intermediates in HIV-1-infected T cells to clarify the mechanism by which RHA enhances HIV-1 reverse transcription efficiency. Consistently, purified recombinant human RHA promoted reverse transcription efficiency under in vitro conditions that mimic the early reverse transcription steps prior to capsid core uncoating. We did not observe RHA-mediated structural remodeling of the tRNALys3-viral RNA-annealed complex. RHA did not enhance the DNA synthesis rate until incorporation of the first few nucleotides, suggesting that RHA participates primarily in the elongation phase of reverse transcription. Pre-steady-state and steady-state kinetic studies revealed that RHA has little impact on the kinetics of single-nucleotide incorporation. Primer extension assays performed in the presence of trap dsDNA disclosed that RHA enhances the processivity of HIV-1 reverse transcriptase (RT). The biochemical assays used here effectively reflected and explained the low RT activity in HIV-1 virions produced from RHA-depleted cells. Moreover, RT activity in our assays indicated that RHA in HIV-1 virions is required for the efficient catalysis of (-)cDNA synthesis during viral infection before capsid uncoating. Our study identifies RHA as a processivity factor of HIV-1 RT.
Collapse
Affiliation(s)
- Samantha Brady
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota 55108
| | - Cheryl Bolinger
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 432105
| | - Zhenwei Song
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Ioana Boeras
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota 55108
| | - Kexin Weng
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Bria Trent
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - William Clay Brown
- Center for Structural Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Kamalendra Singh
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65211
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota 55108
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 432105
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
15
|
Tang J, Do HT, Huber AD, Casey MC, Kirby KA, Wilson DJ, Kankanala J, Parniak MA, Sarafianos SG, Wang Z. Pharmacophore-based design of novel 3-hydroxypyrimidine-2,4-dione subtypes as inhibitors of HIV reverse transcriptase-associated RNase H: Tolerance of a nonflexible linker. Eur J Med Chem 2019; 166:390-399. [PMID: 30739822 PMCID: PMC6459026 DOI: 10.1016/j.ejmech.2019.01.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 11/29/2022]
Abstract
The pharmacophore of active site inhibitors of human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated RNase H typically entails a flexible linker connecting the chelating core and the hydrophobic aromatics. We report herein that novel 3-hydroxypyrimidine-2,4-dione (HPD) subtypes with a nonflexible C-6 carbonyl linkage exhibited potent and selective biochemical inhibitory profiles with strong RNase H inhibition at low nM, weak to moderate integrase strand transfer (INST) inhibition at low μM, and no to marginal RT polymerase (pol) inhibition up to 10 μM. A few analogues also demonstrated significant antiviral activity without cytotoxicity. The overall inhibitory profile is comparable to or better than that of previous HPD subtypes with a flexible C-6 linker, suggesting that the nonflexible carbonyl linker can be tolerated in the design of novel HIV RNase H active site inhibitors.
Collapse
Affiliation(s)
- Jing Tang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ha T Do
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew D Huber
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Karen A Kirby
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel J Wilson
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael A Parniak
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
16
|
Machnowska P, Meixenberger K, Schmidt D, Jessen H, Hillenbrand H, Gunsenheimer-Bartmeyer B, Hamouda O, Kücherer C, Bannert N. Prevalence and persistence of transmitted drug resistance mutations in the German HIV-1 Seroconverter Study Cohort. PLoS One 2019; 14:e0209605. [PMID: 30650082 PMCID: PMC6334938 DOI: 10.1371/journal.pone.0209605] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/07/2018] [Indexed: 02/03/2023] Open
Abstract
The prevalence of transmitted drug resistance (TDR) in antiretroviral therapy (ART)-naïve individuals remains stable in most developed countries despite a decrease in the prevalence of acquired drug resistance. This suggests that persistence and further transmission of HIV-1 that encodes transmitted drug resistance mutations (TDRMs) is occurring in ART-naïve individuals. In this study, we analysed the prevalence and persistence of TDRMs in the protease and reverse transcriptase-sequences of ART-naïve patients within the German HIV-1 Seroconverter Study Cohort who were infected between 1996 and 2017. The prevalence of TDRMs and baseline susceptibility to antiretroviral drugs were assessed using the Stanford HIVdb list and algorithm. Mean survival times of TDRMs were calculated by Kaplan-Meier analysis. The overall prevalence of TDR was 17.2% (95% CI 15.7–18.6, N = 466/2715). Transmitted NNRTI resistance was observed most frequently with 7.8% (95% CI 6.8–8.8), followed by NRTI resistance (5.0%, 95% CI 4.2–5.9) and PI resistance (2.8%, 95% CI 2.2–3.4). Total TDR (OR = 0.89, p = 0.034) and transmitted NRTI resistance (OR = 0.65, p = 0.000) decreased between 1996 and 2017 but has remained stable during the last decade. Viral susceptibility to NNRTIs (6.5%-6.9% for individual drugs) was mainly reduced, while <3% of the recommended NRTIs and PIs were affected. The longest mean survival times were calculated for the NNRTI mutations K103N (5.3 years, 95% CI 4.2–5.6) and E138A/G/K (8.0 years, 95% CI 5.8–10.2 / 7.9 years, 95% CI 5.4–10.3 / 6.7 years, 95% CI 6.7–6.7) and for the NRTI mutation M41L (6.4 years, 95% CI 6.0–6.7).The long persistence of single TDRMs indicates that onward transmission from ART-naïve individuals is the main cause for TDR in Germany. Transmitted NNRTI resistance was the most frequent TDR, showing simultaneously the highest impact on baseline ART susceptibility and on TDRMs with prolonged persistence. These results give cause for concern regarding the use of NNRTI in first-line regimens.
Collapse
Affiliation(s)
- Patrycja Machnowska
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
- * E-mail: (NB); (PM)
| | | | - Daniel Schmidt
- Division of HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany
| | | | | | | | - Osamah Hamouda
- Division of HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany
| | - Claudia Kücherer
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Norbert Bannert
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (NB); (PM)
| | | |
Collapse
|
17
|
Namasivayam V, Vanangamudi M, Kramer VG, Kurup S, Zhan P, Liu X, Kongsted J, Byrareddy SN. The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. J Med Chem 2018; 62:4851-4883. [PMID: 30516990 DOI: 10.1021/acs.jmedchem.8b00843] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) infection is now pandemic. Targeting HIV-1 reverse transcriptase (HIV-1 RT) has been considered as one of the most successful targets for the development of anti-HIV treatment. Among the HIV-1 RT inhibitors, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity, and low toxicity in antiretroviral combination therapies used to treat HIV. Until now, >50 structurally diverse classes of compounds have been reported as NNRTIs. Among them, six NNRTIs were approved for HIV-1 treatment, namely, nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), etravirine (ETR), rilpivirine (RPV), and doravirine (DOR). In this perspective, we focus on the six NNRTIs and lessons learned from their journey through development to clinical studies. It demonstrates the obligatory need of understanding the physicochemical and biological principles (lead optimization), resistance mutations, synthesis, and clinical requirements for drugs.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Murugesan Vanangamudi
- Department of Medicinal and Pharmaceutical Chemistry , Sree Vidyanikethan College of Pharmacy , Tirupathi , Andhra Pradesh 517102 , India
| | | | - Sonali Kurup
- College of Pharmacy , Roosevelt University , Schaumburg , Illinois 60173 , United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 , Odense M , Denmark
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha 68198-5880 , United States
| |
Collapse
|
18
|
Xu JP, Francis AC, Meuser ME, Mankowski M, Ptak RG, Rashad AA, Melikyan GB, Cocklin S. Exploring Modifications of an HIV-1 Capsid Inhibitor: Design, Synthesis, and Mechanism of Action. JOURNAL OF DRUG DESIGN AND RESEARCH 2018; 5:1070. [PMID: 30393786 PMCID: PMC6214487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent efforts by both academic and pharmaceutical researchers have focused on the HIV-1 capsid (CA) protein as a new therapeutic target. An interprotomer pocket within the hexamer configuration of the CA, which is also a binding site for key host dependency factors, is the target of the most widely studied CA inhibitor compound PF-3450074 (PF-74). Despite its popularity, PF-74 suffers from properties that limit its usefulness as a lead, most notably it's extremely poor metabolic stability. To minimize unfavorable qualities, we investigated bioisosteric modification of the PF-74 scaffold as a first step in redeveloping this compound. Using a field-based bioisostere identification method, coupled with biochemical and biological assessment, we have created four new compounds that inhibit HIV-1 infection and that bind to the assembled CA hexamer. Detailed mechanism of action studies indicates that the modifications alter the manner in which these new compounds affect HIV-1 capsid core stability, as compared to the parental compound. Further investigations are underway to redevelop these compounds to optimize potency and drug-like characteristics and to deeply define the mechanism of action.
Collapse
Affiliation(s)
- Jimmy P. Xu
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| | | | - Megan E. Meuser
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| | - Marie Mankowski
- Department of Infectious Disease Research, Southern Research Institute, USA
| | - Roger G. Ptak
- Department of Infectious Disease Research, Southern Research Institute, USA
| | - Adel A. Rashad
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| | | | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| |
Collapse
|
19
|
Rogers L, Obasa AE, Jacobs GB, Sarafianos SG, Sönnerborg A, Neogi U, Singh K. Structural Implications of Genotypic Variations in HIV-1 Integrase From Diverse Subtypes. Front Microbiol 2018; 9:1754. [PMID: 30116231 PMCID: PMC6083056 DOI: 10.3389/fmicb.2018.01754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/13/2018] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) integrates viral DNA into the host genome using its 3′-end processing and strand-transfer activities. Due to the importance of HIV-1 IN, it is targeted by the newest class of approved drugs known as integrase strand transfer inhibitors (INSTIs). INSTIs are efficient in maintaining low viral load; however, as with other approved antivirals, resistance mutations emerge in patients receiving INSTI-containing therapy. As INSTIs are becoming increasingly accessible worldwide, it is important to understand the mechanism(s) of INSTI susceptibility. There is strong evidence suggesting differences in the patterns and mechanisms of drug resistance between HIV-1 subtype B, which dominates in United States, Western Europe and Australia, and non-B infections that are most prevalent in countries of Africa and Asia. IN polymorphisms and other genetic differences among diverse subtypes are likely responsible for these different patterns, but lack of a full-length high-resolution structure of HIV-1 IN has been a roadblock in understanding the molecular mechanisms of INSTI resistance and the impact of polymorphisms on therapy outcome. A recently reported full-length medium-resolution cryoEM structure of HIV-1 IN provides insights into understanding the mechanism of integrase function and the impact of genetic variation on the effectiveness of INSTIs. Here we use molecular modeling to explore the structural impact of IN polymorphisms on the IN reaction mechanism and INSTI susceptibility.
Collapse
Affiliation(s)
- Leonard Rogers
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Adetayo E Obasa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Graeme B Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
20
|
Wang L, Tang J, Huber AD, Casey MC, Kirby KA, Wilson DJ, Kankanala J, Parniak MA, Sarafianos SG, Wang Z. 6-Biphenylmethyl-3-hydroxypyrimidine-2,4-diones potently and selectively inhibited HIV reverse transcriptase-associated RNase H. Eur J Med Chem 2018; 156:680-691. [PMID: 30031978 DOI: 10.1016/j.ejmech.2018.07.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated ribonuclease H (RNase H) remains an unvalidated drug target. Reported HIV RNase H inhibitors generally lack significant antiviral activity. We report herein the design, synthesis, biochemical and antiviral evaluations of a new 6-biphenylmethyl subtype of the 3-hydroxypyrimidine-2,4-dione (HPD) chemotype. In biochemical assays, analogues of this new subtype potently inhibited RT RNase H in low nanomolar range without inhibiting RT polymerase (pol) or integrase strand transfer (INST) at the highest concentrations tested. In cell-based assays, a few analogues inhibited HIV in low micromolar range without cytotoxicity at concentrations up to 100 μM.
Collapse
Affiliation(s)
- Lei Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jing Tang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew D Huber
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Karen A Kirby
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Parniak
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Wang L, Tang J, Huber AD, Casey MC, Kirby KA, Wilson DJ, Kankanala J, Xie J, Parniak MA, Sarafianos SG, Wang Z. 6-Arylthio-3-hydroxypyrimidine-2,4-diones potently inhibited HIV reverse transcriptase-associated RNase H with antiviral activity. Eur J Med Chem 2018; 156:652-665. [PMID: 30031976 DOI: 10.1016/j.ejmech.2018.07.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/31/2018] [Accepted: 07/15/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not targeted by current drugs. Although a few chemotypes have been reported to inhibit HIV RNase H in biochemical assays, their general lack of significant antiviral activity in cell culture necessitates continued efforts in identifying highly potent RNase H inhibitors to confer antiviral activity. We report herein the design, synthesis, biochemical and antiviral evaluations of a new 6-arylthio subtype of the 3-hydroxypyrimidine-2,4-dione (HPD) chemotype. In biochemical assays these new analogues inhibited RT RNase H in single-digit nanomolar range without inhibiting RT polymerase (pol) at concentrations up to 10 μM, amounting to exceptional biochemical inhibitory selectivity. Many analogues also inhibited integrase strand transfer (INST) activity in low to sub micromolar range. More importantly, most analogues inhibited HIV in low micromolar range without cytotoxicity. In the end, compound 13j (RNase H IC50 = 0.005 μM; RT pol IC50 = 10 μM; INST IC50 = 4.0 μM; antiviral EC50 = 7.7 μM; CC50 > 100 μM) represents the best analogues within this series. These results characterize the new 6-arylthio-HPD subtype as a promising scaffold for HIV RNase H inhibitor discovery.
Collapse
Affiliation(s)
- Lei Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jing Tang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew D Huber
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Karen A Kirby
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael A Parniak
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
22
|
Brado D, Obasa AE, Ikomey GM, Cloete R, Singh K, Engelbrecht S, Neogi U, Jacobs GB. Analyses of HIV-1 integrase sequences prior to South African national HIV-treatment program and available of integrase inhibitors in Cape Town, South Africa. Sci Rep 2018; 8:4709. [PMID: 29549274 PMCID: PMC5856838 DOI: 10.1038/s41598-018-22914-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 01/16/2023] Open
Abstract
HIV-Integrase (IN) has proven to be a viable target for highly specific HIV-1 therapy. We aimed to characterize the HIV-1 IN gene in a South African context and identify resistance-associated mutations (RAMs) against available first and second generation Integrase strand-transfer inhibitors (InSTIs). We performed genetic analyses on 91 treatment-naïve HIV-1 infected patients, as well as 314 treatment-naive South African HIV-1 IN-sequences, downloaded from Los Alamos HIV Sequence Database. Genotypic analyses revealed the absence of major RAMs in the cohort collected before the broad availability of combination antiretroviral therapy (cART) and INSTI in South Africa, however, occurred at a rate of 2.85% (9/314) in database derived sequences. RAMs were present at IN-positions 66, 92, 143, 147 and 148, all of which may confer resistance to Raltegravir (RAL) and Elvitegravir (EVG), but are unlikely to affect second-generation Dolutegravir (DTG), except mutations in the Q148 pathway. Furthermore, protein modeling showed, naturally occurring polymorphisms impact the stability of the intasome-complex and therefore may contribute to an overall potency against InSTIs. Our data suggest the prevalence of InSTI RAMs, against InSTIs, is low in South Africa, but natural polymorphisms and subtype-specific differences may influence the effect of individual treatment regimens.
Collapse
Affiliation(s)
- Dominik Brado
- Division of Virology, Institute for Virology and Immunobiology, Faculty of Medicine, University of Wuerzburg, 97080, Wuerzburg, Germany
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Adetayo Emmanuel Obasa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa.
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden.
| | - George Mondinde Ikomey
- CSCCD, Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Western Cape, South Africa
| | - Kamalendra Singh
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden
- Department of Molecular Microbiology and Immunology, Columbia, MO, 65211, USA
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Susan Engelbrecht
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden
| | - Graeme Brendon Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| |
Collapse
|
23
|
Galilee M, Alian A. The structure of FIV reverse transcriptase and its implications for non-nucleoside inhibitor resistance. PLoS Pathog 2018; 14:e1006849. [PMID: 29364950 PMCID: PMC5798851 DOI: 10.1371/journal.ppat.1006849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/05/2018] [Accepted: 01/03/2018] [Indexed: 11/24/2022] Open
Abstract
Reverse transcriptase (RT) is the target for the majority of anti-HIV-1 drugs. As with all anti-AIDS treatments, continued success of RT inhibitors is persistently disrupted by the occurrence of resistance mutations. To explore latent resistance mechanisms potentially accessible to therapeutically challenged HIV-1 viruses, we examined RT from the related feline immunodeficiency virus (FIV). FIV closely parallels HIV-1 in its replication and pathogenicity, however, is resistant to all non-nucleoside inhibitors (NNRTI). The intrinsic resistance of FIV RT is particularly interesting since FIV harbors the Y181 and Y188 sensitivity residues absent in both HIV-2 and SIV. Unlike RT from HIV-2 or SIV, previous efforts have failed to make FIV RT susceptible to NNRTIs concluding that the structure or flexibility of the feline enzyme must be profoundly different. We report the first crystal structure of FIV RT and, being the first structure of an RT from a non-primate lentivirus, enrich the structural and species repertoires available for RT. The structure demonstrates that while the NNRTI binding pocket is conserved, minor subtleties at the entryway can render the FIV RT pocket more restricted and unfavorable for effective NNRTI binding. Measuring NNRTI binding affinity to FIV RT shows that the “closed” pocket configuration inhibits NNRTI binding. Mutating the loop residues rimming the entryway of FIV RT pocket allows for NNRTI binding, however, it does not confer sensitivity to these inhibitors. This reveals a further layer of resistance caused by inherent FIV RT variances that could have enhanced the dissociation of bound inhibitors, or, perhaps, modulated protein plasticity to overcome inhibitory effects of bound NNRTIs. The more “closed” conformation of FIV RT pocket can provide a template for the development of innovative drugs that could unlock the constrained pocket, and the resilient mutant version of the enzyme can offer a fresh model for the study of NNRTI-resistance mechanisms overlooked in HIV-1. The majority of anti-AIDS drugs target the reverse transcriptase (RT) enzyme of the HIV-1 virus. RT catalyzes the central step in the virus replication cycle converting the viral RNA genome into DNA for subsequent integration into the host genome. As with all anti-AIDS treatments, continued success of RT inhibitors is persistently disrupted by the occurrence of resistance mutations. To explore latent resistance mechanisms potentially accessible to therapeutically challenged HIV-1 viruses, we examined RT from the related feline immunodeficiency virus (FIV). FIV closely parallels HIV-1 in its replication and pathogenicity however is resistant to all non-nucleoside inhibitors of HIV-1 RT. We resolved the crystal structure of FIV RT, and using mutational and biochemical analyses, we show that specific differences in the FIV RT structure inhibit the binding of non-nucleoside inhibitors. We further show that mutating the protein to facilitate binding of the inhibitors does not confer sensitivity to these inhibitors, suggesting that other variances inherent in FIV RT modulate a second layer of resistance. These insights can help in the development of novel drugs against evolving HIV-1 RT resistance.
Collapse
Affiliation(s)
- Meytal Galilee
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Akram Alian
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
24
|
Duchowicz PR, Bacelo DE, Fioressi SE, Palermo V, Ibezim NE, Romanelli GP. QSAR studies of indoyl aryl sulfides and sulfones as reverse transcriptase inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2069-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
A 2-Hydroxyisoquinoline-1,3-Dione Active-Site RNase H Inhibitor Binds in Multiple Modes to HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2017; 61:AAC.01351-17. [PMID: 28760905 DOI: 10.1128/aac.01351-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 11/20/2022] Open
Abstract
The RNase H (RNH) function of HIV-1 reverse transcriptase (RT) plays an essential part in the viral life cycle. We report the characterization of YLC2-155, a 2-hydroxyisoquinoline-1,3-dione (HID)-based active-site RNH inhibitor. YLC2-155 inhibits both polymerase (50% inhibitory concentration [IC50] = 2.6 μM) and RNH functions (IC50 = 0.65 μM) of RT but is more effective against RNH. X-ray crystallography, nuclear magnetic resonance (NMR) analysis, and molecular modeling were used to show that YLC2-155 binds at the RNH-active site in multiple conformations.
Collapse
|
26
|
Fan N, Zhang S, Sheng T, Zhao L, Liu Z, Liu J, Wang X. Docking field-based QSAR and pharmacophore studies on the substituted pyrimidine derivatives targeting HIV-1 reverse transcriptase. Chem Biol Drug Des 2017; 91:398-407. [PMID: 28816417 DOI: 10.1111/cbdd.13086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 12/15/2022]
Abstract
HIV-1 reverse transcriptase (RT) is one of the most important enzymes required for viral replication, thus acting as an attractive target for antiretroviral therapy. Pyrimidine analogues reportedly have selective inhibition on HIV-1 RT with favorable antiviral activities in our previous study. To further explore the relationship between inhibitory activity and pharmacophoric characteristics, field-based QSAR models were generated and validated using Schrodinger Suite (correlation coefficient of .8078, cross-validated value of 0.5397 for training set and Q2 of 0.4669, Pearson's r of .7357 for test set). Docking, pocket surfaces, and pharmacophore study were also investigated to define the binding pattern and pharmacophoric features, including (i) π-π interaction with residue Tyr181, Tyr188, and Trp229 and p-π interaction with His235 and (ii) hydrogen bond with residue Lys101 and halogen bond with residue Tyr188. The pharmacophore features of six-point hypothesis AADRRR.184, AAADRR.38, and AADRRR.26 further complimented to the docking and QSAR results. We also found that the protein-ligand complex exhibited high relative binding free energy. These observations could be potentially utilized to guide the rational design and optimization of novel HIV-1 RT inhibitors.
Collapse
Affiliation(s)
- Ningning Fan
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shuang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tao Sheng
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Junyi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaowei Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
27
|
How to win the HIV-1 drug resistance hurdle race: running faster or jumping higher? Biochem J 2017; 474:1559-1577. [PMID: 28446620 DOI: 10.1042/bcj20160772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 11/17/2022]
Abstract
Infections by the human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), are still totaling an appalling 36.7 millions worldwide, with 1.1 million AIDS deaths/year and a similar number of yearly new infections. All this, in spite of the discovery of HIV-1 as the AIDS etiological agent more than 30 years ago and the introduction of an effective combinatorial antiretroviral therapy (cART), able to control disease progression, more than 20 years ago. Although very effective, current cART is plagued by the emergence of drug-resistant viral variants and most of the efforts in the development of novel direct-acting antiviral agents (DAAs) against HIV-1 have been devoted toward the fighting of resistance. In this review, rather than providing a detailed listing of all the drugs and the corresponding resistance mutations, we aim, through relevant examples, at presenting to the general reader the conceptual shift in the approaches that are being taken to overcome the viral resistance hurdle. From the classic 'running faster' strategy, based on the development of novel DAAs active against the mutant viruses selected by the previous drugs and/or presenting to the virus a high genetic barrier toward the development of resilience, to a 'jumping higher' approach, which looks at the cell, rather than the virus, as a source of valuable drug targets, in order to make the cellular environment non-permissive toward the replication of both wild-type and mutated viruses.
Collapse
|
28
|
Thammaporn R, Ishii K, Yagi-Utsumi M, Uchiyama S, Hannongbua S, Kato K. Mass Spectrometric Characterization of HIV-1 Reverse Transcriptase Interactions with Non-nucleoside Reverse Transcriptase Inhibitors. Biol Pharm Bull 2016; 39:450-4. [PMID: 26934936 DOI: 10.1248/bpb.b15-00880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) have been developed for the treatment of acquired immunodeficiency syndrome. HIV-1 RT binding to NNRTIs has been characterized by various biophysical techniques. However, these techniques are often hampered by the low water solubility of the inhibitors, such as the current promising diarylpyrimidine-based inhibitors rilpivirine and etravirine. Hence, a conventional and rapid method that requires small sample amounts is desirable for studying NNRTIs with low water solubility. Here we successfully applied a recently developed mass spectrometric technique under non-denaturing conditions to characterize the interactions between the heterodimeric HIV-1 RT enzyme and NNRTIs with different inhibitory activities. Our data demonstrate that mass spectrometry serves as a semi-quantitative indicator of NNRTI binding affinity for HIV-1 RT using low and small amounts of samples, offering a new high-throughput screening tool for identifying novel RT inhibitors as anti-HIV drugs.
Collapse
|
29
|
Ishii K, Noda M, Uchiyama S. Mass spectrometric analysis of protein-ligand interactions. Biophys Physicobiol 2016; 13:87-95. [PMID: 27924262 PMCID: PMC5042164 DOI: 10.2142/biophysico.13.0_87] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/16/2016] [Indexed: 12/01/2022] Open
Abstract
The interactions of small molecules with proteins (protein–ligand interactions) mediate various biological phenomena including signal transduction and protein transcription and translation. Synthetic compounds such as drugs can also bind to target proteins, leading to the inhibition of protein–ligand interactions. These interactions typically accompany association–dissociation equilibrium according to the free energy difference between free and bound states; therefore, the quantitative biophysical analysis of the interactions, which uncovers the stoichiometry and dissociation constant, is important for understanding biological reactions as well as for rational drug development. Mass spectrometry (MS) has been used to determine the precise molecular masses of molecules. Recent advancements in MS enable us to determine the molecular masses of protein–ligand complexes without disrupting the non-covalent interactions through the gentle desolvation of the complexes by increasing the vacuum pressure of a chamber in a mass spectrometer. This method is called MS under non-denaturing conditions or native MS and allows the unambiguous determination of protein–ligand interactions. Under a few assumptions, MS has also been applied to determine the dissociation constants for protein–ligand interactions. The structural information of a protein–ligand interaction, such as the location of the interaction and conformational change in a protein, can also be analyzed using hydrogen/deuterium exchange MS. In this paper, we briefly describe the history, principle, and recent applications of MS for the study of protein–ligand interactions.
Collapse
Affiliation(s)
- Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Aralaguppe SG, Winner D, Singh K, Sarafianos SG, Quiñones-Mateu ME, Sönnerborg A, Neogi U. Increased replication capacity following evolution of PYxE insertion in Gag-p6 is associated with enhanced virulence in HIV-1 subtype C from East Africa. J Med Virol 2016; 89:106-111. [PMID: 27328744 DOI: 10.1002/jmv.24610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND A lower virulence of HIV-1 subtype C (HIV-1C) is suggested to be related to the global dominance of HIV-1C. In this observational study, combining in vivo (clinical monitoring) and in vitro (genotypic, biochemical, and phenotypic assays), we explored whether HIV-1C from East Africa (HIV-1CEA ) is more pathogenic due to the evolution of a PYxE-insertion (CPYxEi ) in the gag-p6 that also could affect the therapy response. METHODS HIV-1B (n = 112) and HIV-1CEA (n = 128)-infected individuals residing in Sweden were analyzed with regard to Gag-p6 genotype and clinically monitored. Based on the Gag-p6 characteristics, three HIV-1CEA and one HIV-1 B patient-derived p2-INT-recombinant virus (gag-p2/NCp7/p1/p6/pol-PR/RT/IN) were constructed to analyze viral growth kinetics (VGKs) and drug sensitivity assays. Reverse transcriptase (RT) from the same samples was cloned into the heterodimer expression plasmid (pRT6H-PROT) to analyze catalytic efficiency of RT. RESULTS A higher viral failure rate and lower pre-therapy CD4+ T-cell counts were observed in HIV-1CEA -infected patients compared to HIV-1B-infected patients. In Gag-p6, PTAP-duplication was more common in HIV-1C. HIV-1CEA -infected patients with signature CPYxEi, evidenced very low pre-therapy CD4+ T-cell counts and suboptimal gain in CD4+ T-cells following therapy, as compared to the non-CPYxEi -strains indicating higher virulence. VGKs showed a statistically significant higher replication capacity (RC) for the CPYxEi viruses than the other two non-CPYxEi strains. No statistically significant difference was observed in the catalytic efficiency among HIV-1C RTs. CONCLUSIONS This is the first evidence of polymerase independent increased virulence and RC in HIV-1CEA following PYxE-insertion that is associated with suboptimal CD4+ T-cell gain following therapy initiation. J. Med. Virol. 89:106-111, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shambhu G Aralaguppe
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Dane Winner
- University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Kamalendra Singh
- Department of Molecular Microbiology and Immunology, Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Miguel E Quiñones-Mateu
- University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, Ohio.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
31
|
Han YS, Xiao WL, Xu H, Kramer VG, Quan Y, Mesplède T, Oliveira M, Colby-Germinario SP, Sun HD, Wainberg MA. Identification of a dibenzocyclooctadiene lignan as a HIV-1 non-nucleoside reverse transcriptase inhibitor. Antivir Chem Chemother 2016; 24:28-38. [PMID: 26149264 DOI: 10.1177/2040206614566580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Due to resistance to all classes of anti-HIV drugs and drug toxicity, there is a need for the discovery and development of new anti-HIV drugs. METHODS HIV-1 inhibitors were identified and biologically characterized for mechanism of action. RESULTS We identified a dibenzocyclooctadiene lignan, termed HDS2 that possessed anti-HIV activity against a wide variety of viral strains with EC50 values in the 1-3 µM range. HDS2 was shown to act as an NNRTI by qPCR and in vitro enzyme assays. CONCLUSIONS This compound provides a new scaffold for further optimization of activity through structure-guided design.
Collapse
Affiliation(s)
- Ying-Shan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Wei-Lie Xiao
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Victor G Kramer
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Yudong Quan
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maureen Oliveira
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Susan P Colby-Germinario
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Smith SJ, Pauly GT, Akram A, Melody K, Rai G, Maloney DJ, Ambrose Z, Thomas CJ, Schneider JT, Hughes SH. Rilpivirine analogs potently inhibit drug-resistant HIV-1 mutants. Retrovirology 2016; 13:11. [PMID: 26880034 PMCID: PMC4754833 DOI: 10.1186/s12977-016-0244-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a class of antiretroviral compounds that bind in an allosteric binding pocket in HIV-1 RT, located about 10 Å from the polymerase active site. Binding of an NNRTI causes structural changes that perturb the alignment of the primer terminus and polymerase active site, preventing viral DNA synthesis. Rilpivirine (RPV) is the most recent NNRTI approved by the FDA, but like all other HIV-1 drugs, suboptimal treatment can lead to the development of resistance. To generate better compounds that could be added to the current HIV-1 drug armamentarium, we have developed several RPV analogs to combat viral variants that are resistant to the available NNRTIs. Results Using a single-round infection assay, we identified several RPV analogs that potently inhibited a broad panel of NNRTI resistant mutants. Additionally, we determined that several resistant mutants selected by either RPV or Doravirine (DOR) caused only a small increase in susceptibility to the most promising RPV analogs. Conclusions The antiviral data suggested that there are RPV analogs that could be candidates for further development as NNRTIs, and one of the most promising compounds was modeled in the NNRTI binding pocket. This model can be used to explain why this compound is broadly effective against the panel of NNRTI resistance mutants. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0244-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven J Smith
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Gary T Pauly
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Aamir Akram
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Kevin Melody
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ganesha Rai
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - Zandrea Ambrose
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. .,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Craig J Thomas
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - Joel T Schneider
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
33
|
Frey KM. Structure-enhanced methods in the development of non-nucleoside inhibitors targeting HIV reverse transcriptase variants. Future Microbiol 2015; 10:1767-72. [PMID: 26517310 DOI: 10.2217/fmb.15.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Resistance continues to emerge as a leading cause for antiretroviral treatment failure. Several mutations in HIV reverse transcriptase (RT) confer resistance to non-nucleoside inhibitors (NNRTIs), vital components of antiretroviral combination therapies. Since the majority of mutations are located in the NNRTI binding pocket, crystal structures of RT variants in complex with NNRTIs have provided ideas for new drug design strategies. This article reviews the impact of RT crystal structures on the multidisciplinary design and development of new inhibitors with improved resistance profiles.
Collapse
Affiliation(s)
- Kathleen M Frey
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy & Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA
| |
Collapse
|
34
|
Neogi U, Häggblom A, Singh K, Rogers LC, Rao SD, Amogne W, Schülter E, Zazzi M, Arnold E, Sarafianos SG, Sönnerborg A. Factors influencing the efficacy of rilpivirine in HIV-1 subtype C in low- and middle-income countries. J Antimicrob Chemother 2015; 71:367-71. [PMID: 26518047 DOI: 10.1093/jac/dkv359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/02/2015] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES The use of the NNRTI rilpivirine in low- and middle-income countries (LMICs) is under debate. The main objective of this study was to provide further clinical insights and biochemical evidence on the usefulness of rilpivirine in LMICs. PATIENTS AND METHODS Rilpivirine resistance was assessed in 5340 therapy-naive and 13,750 first-generation NNRTI-failed patients from Europe and therapy-naive HIV-1 subtype C (HIV-1C)-infected individuals from India (n = 617) and Ethiopia (n = 127). Rilpivirine inhibition and binding affinity assays were performed using patient-derived HIV-1C reverse transcriptases (RTs). RESULTS Primary rilpivirine resistance was rare, but the proportion of patients with >100,000 HIV-1 RNA copies/mL pre-ART was high in patients from India and Ethiopia, limiting the usefulness of rilpivirine as a first-line drug in LMICs. In patients failing first-line NNRTI treatments, cross-resistance patterns suggested that 73% of the patients could benefit from switching to rilpivirine-based therapy. In vitro inhibition assays showed ∼ 2-fold higher rilpivirine IC50 for HIV-1C RT than HIV-1B RT. Pre-steady-state determination of rilpivirine-binding affinities revealed 3.7-fold lower rilpivirine binding to HIV-1C than HIV-1B RT. Structural analysis indicated that naturally occurring polymorphisms close to the NNRTI-binding pocket may reduce rilpivirine binding, leading to lower susceptibility of HIV-1C to rilpivirine. CONCLUSIONS Our clinical and biochemical findings indicate that the usefulness of rilpivirine has limitations in HIV-1C-dominated epidemics in LMICs, but the drug could still be beneficial in patients failing first-line therapy if genotypic resistance testing is performed.
Collapse
Affiliation(s)
- Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden
| | - Amanda Häggblom
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Kamalendra Singh
- Departments of Molecular Microbiology & Immunology and Biochemistry, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Leonard C Rogers
- Departments of Molecular Microbiology & Immunology and Biochemistry, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Shwetha D Rao
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden
| | | | - Eugen Schülter
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Eddy Arnold
- Department of Chemistry and Chemical Biology and Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Stefan G Sarafianos
- Departments of Molecular Microbiology & Immunology and Biochemistry, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
35
|
Van Eygen V, Thys K, Van Hove C, Rimsky LT, De Meyer S, Aerssens J, Picchio G, Vingerhoets J. Deep sequencing analysis of HIV-1 reverse transcriptase at baseline and time of failure in patients receiving rilpivirine in the phase III studies ECHO and THRIVE. J Med Virol 2015; 88:798-806. [PMID: 26412111 DOI: 10.1002/jmv.24395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 11/10/2022]
Abstract
Minority variants (1.0-25.0%) were evaluated by deep sequencing (DS) at baseline and virological failure (VF) in a selection of antiretroviral treatment-naïve, HIV-1-infected patients from the rilpivirine ECHO/THRIVE phase III studies. Linkage between frequently emerging resistance-associated mutations (RAMs) was determined. DS (llIumina®) and population sequencing (PS) results were available at baseline for 47 VFs and time of failure for 48 VFs; and at baseline for 49 responders matched for baseline characteristics. Minority mutations were accurately detected at frequencies down to 1.2% of the HIV-1 quasispecies. No baseline minority rilpivirine RAMs were detected in VFs; one responder carried 1.9% F227C. Baseline minority mutations associated with resistance to other non-nucleoside reverse transcriptase inhibitors (NNRTIs) were detected in 8/47 VFs (17.0%) and 7/49 responders (14.3%). Baseline minority nucleoside/nucleotide reverse transcriptase inhibitor (NRTI) RAMs M184V and L210W were each detected in one VF (none in responders). At failure, two patients without NNRTI RAMs by PS carried minority rilpivirine RAMs K101E and/or E138K; and five additional patients carried other minority NNRTI RAMs V90I, V106I, V179I, V189I, and Y188H. Overall at failure, minority NNRTI RAMs and NRTI RAMs were found in 29/48 (60.4%) and 16/48 VFs (33.3%), respectively. Linkage analysis showed that E138K and K101E were usually not observed on the same viral genome. In conclusion, baseline minority rilpivirine RAMs and other NNRTI/NRTI RAMs were uncommon in the rilpivirine arm of the ECHO and THRIVE studies. DS at failure showed emerging NNRTI resistant minority variants in seven rilpivirine VFs who had no detectable NNRTI RAMs by PS.
Collapse
Affiliation(s)
| | - Kim Thys
- Janssen Infectious Diseases BVBA, Beerse, Belgium
| | | | | | | | | | - Gaston Picchio
- Janssen Research and Development, Titusville, New Jersey
| | | |
Collapse
|
36
|
Potempa M, Lee SK, Wolfenden R, Swanstrom R. The triple threat of HIV-1 protease inhibitors. Curr Top Microbiol Immunol 2015; 389:203-41. [PMID: 25778681 DOI: 10.1007/82_2015_438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
37
|
Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014; 6:4095-139. [PMID: 25341668 PMCID: PMC4213579 DOI: 10.3390/v6104095] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
38
|
Bernardo CEP, Silva PJ. Computational development of rubromycin-based lead compounds for HIV-1 reverse transcriptase inhibition. PeerJ 2014; 2:e470. [PMID: 25071993 PMCID: PMC4103094 DOI: 10.7717/peerj.470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/16/2014] [Indexed: 11/23/2022] Open
Abstract
The binding of several rubromycin-based ligands to HIV1-reverse transcriptase was analyzed using molecular docking and molecular dynamics simulations. MM-PBSA analysis and examination of the trajectories allowed the identification of several promising compounds with predicted high affinity towards reverse transcriptase mutants which have proven resistant to current drugs. Important insights on the complex interplay of factors determining the ability of ligands to selectively target each mutant have been obtained.
Collapse
Affiliation(s)
- Carlos E P Bernardo
- REQUIMTE/Faculdade de Ciências da Saúde, Universidade Fernando Pessoa , Rua Carlos da Maia, Porto , Portugal
| | - Pedro J Silva
- REQUIMTE/Faculdade de Ciências da Saúde, Universidade Fernando Pessoa , Rua Carlos da Maia, Porto , Portugal
| |
Collapse
|
39
|
Jeulin H, Foissac M, Boyer L, Agrinier N, Perrier P, Kennel A, Velay A, Goehringer F, Henard S, Rabaud C, May T, Schvoerer E. Real-life rilpivirine resistance and potential emergence of an E138A-positive HIV strain in north-eastern France. J Antimicrob Chemother 2014; 69:3095-102. [PMID: 25006240 DOI: 10.1093/jac/dku256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES To assess the prevalence of resistance to rilpivirine and mutations at position 138 in reverse transcriptase and to identify associated epidemiological and biological characteristics. METHODS This retrospective study included 238 patients with available HIV-1 nucleotide sequences analysed at the Laboratory of Virology at the University Hospital of Nancy between January 2011 and June 2013. Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) was evaluated according to the ANRS algorithm (version 23) and correlated with clinico-epidemiological and therapeutic data. The virus strains were analysed by evaluating the distance and distribution of the phylogenetic tree (MEGAv5). RESULTS Among previously treated patients (111/238, 46.6%), 68/111 (61.3%) had received NNRTIs; all were rilpivirine-naive. The prevalence of rilpivirine resistance in the whole cohort was 12.6% (30/238), and was 10.2% (13/127) and 15.3% (17/111) in naive and pre-treated patients, respectively. The E138A mutation was the most frequent mutation associated with resistance to rilpivirine (P < 0.0001). The prevalence of the E138A mutation tended to increase over time, from 3.6% (2/55) during the first half of 2011 to 9.3% (4/43) during the first half of 2013 (P = 0.0614). Seven viral strains from seven naive male patients positive for the E138A mutation appeared in the same cluster. CONCLUSIONS In our cohort of patients, we observed significantly increased resistance to rilpivirine, mostly because of the E138A mutation, probably due to an E138A strain circulating in newly diagnosed men who have sex with men. Taken together, our results emphasize the need to investigate the prevalence of rilpivirine resistance-associated mutations in the coming years both in France and abroad.
Collapse
Affiliation(s)
- H Jeulin
- CHU Nancy, Laboratoire de Virologie, Nancy, F-54000, France Université Lorraine, Faculté de Médecine, EA 7300, Vandoeuvre-les-Nancy, F-54500, France
| | - M Foissac
- CHU Nancy, Service de Maladies Infectieuses et Tropicales, Nancy, F-54000, France
| | - L Boyer
- CHU Nancy, Service de Maladies Infectieuses et Tropicales, Nancy, F-54000, France
| | - N Agrinier
- CHU Nancy, Service d'épidémiologie clinique, Nancy, F-54000, France
| | - P Perrier
- CHU Nancy, Laboratoire d'histocompatibilité, Nancy, F-54000, France
| | - A Kennel
- CHU Nancy, Laboratoire d'histocompatibilité, Nancy, F-54000, France
| | - A Velay
- CHU Nancy, Laboratoire de Virologie, Nancy, F-54000, France Université Lorraine, Faculté de Médecine, EA 7300, Vandoeuvre-les-Nancy, F-54500, France
| | - F Goehringer
- CHU Nancy, Service de Maladies Infectieuses et Tropicales, Nancy, F-54000, France
| | - S Henard
- CHU Nancy, Service de Maladies Infectieuses et Tropicales, Nancy, F-54000, France
| | - C Rabaud
- CHU Nancy, Service de Maladies Infectieuses et Tropicales, Nancy, F-54000, France
| | - T May
- CHU Nancy, Service de Maladies Infectieuses et Tropicales, Nancy, F-54000, France
| | - E Schvoerer
- CHU Nancy, Laboratoire de Virologie, Nancy, F-54000, France Université Lorraine, Faculté de Médecine, EA 7300, Vandoeuvre-les-Nancy, F-54500, France
| |
Collapse
|
40
|
Galembeck SE, Bickelhaupt FM, Fonseca Guerra C, Galembeck E. Effects of the protonation state in the interaction of an HIV-1 reverse transcriptase (RT) amino acid, Lys101, and a non nucleoside RT inhibitor, GW420867X. J Mol Model 2014; 20:2332. [DOI: 10.1007/s00894-014-2332-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/30/2014] [Indexed: 01/15/2023]
|
41
|
Michailidis E, Huber AD, Ryan EM, Ong YT, Leslie MD, Matzek KB, Singh K, Marchand B, Hagedorn AN, Kirby KA, Rohan LC, Kodama EN, Mitsuya H, Parniak MA, Sarafianos SG. 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) inhibits HIV-1 reverse transcriptase with multiple mechanisms. J Biol Chem 2014; 289:24533-48. [PMID: 24970894 DOI: 10.1074/jbc.m114.562694] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a nucleoside analog that, unlike approved anti-human immunodeficiency virus type 1 (HIV-1) nucleoside reverse transcriptase inhibitors, has a 3'-OH and exhibits remarkable potency against wild-type and drug-resistant HIVs. EFdA triphosphate (EFdA-TP) is unique among nucleoside reverse transcriptase inhibitors because it inhibits HIV-1 reverse transcriptase (RT) with multiple mechanisms. (a) EFdA-TP can block RT as a translocation-defective RT inhibitor that dramatically slows DNA synthesis, acting as a de facto immediate chain terminator. Although non-translocated EFdA-MP-terminated primers can be unblocked, they can be efficiently converted back to the EFdA-MP-terminated form. (b) EFdA-TP can function as a delayed chain terminator, allowing incorporation of an additional dNTP before blocking DNA synthesis. In such cases, EFdA-MP-terminated primers are protected from excision. (c) EFdA-MP can be efficiently misincorporated by RT, leading to mismatched primers that are extremely hard to extend and are also protected from excision. The context of template sequence defines the relative contribution of each mechanism and affects the affinity of EFdA-MP for potential incorporation sites, explaining in part the lack of antagonism between EFdA and tenofovir. Changes in the type of nucleotide before EFdA-MP incorporation can alter its mechanism of inhibition from delayed chain terminator to immediate chain terminator. The versatility of EFdA in inhibiting HIV replication by multiple mechanisms may explain why resistance to EFdA is more difficult to emerge.
Collapse
Affiliation(s)
- Eleftherios Michailidis
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Andrew D Huber
- From the Christopher Bond Life Sciences Center and Departments of Veterinary Pathobiology and
| | - Emily M Ryan
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Yee T Ong
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Maxwell D Leslie
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Kayla B Matzek
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Kamalendra Singh
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Bruno Marchand
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Ariel N Hagedorn
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Karen A Kirby
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Lisa C Rohan
- Magee-Womens Research Institute and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Eiichi N Kodama
- Division of Emerging Infectious Diseases, Tohoku University, Sendai 980-8575, Japan
| | - Hiroaki Mitsuya
- Department of Internal Medicine, Kumamoto University, Kumamoto 860-8556, Japan, Experimental Retrovirology Section, HIV/AIDS Malignancy Branch, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Michael A Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Stefan G Sarafianos
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211, Biochemistry, University of Missouri, Columbia, Missouri 65211,
| |
Collapse
|
42
|
Himmel DM, Myshakina NS, Ilina T, Van Ry A, Ho WC, Parniak MA, Arnold E. Structure of a dihydroxycoumarin active-site inhibitor in complex with the RNase H domain of HIV-1 reverse transcriptase and structure-activity analysis of inhibitor analogs. J Mol Biol 2014; 426:2617-31. [PMID: 24840303 DOI: 10.1016/j.jmb.2014.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) encodes four essential enzymes: protease, integrase, reverse transcriptase (RT)-associated DNA polymerase, and RT-associated ribonuclease H (RNase H). Current clinically approved anti-AIDS drugs target all HIV enzymatic activities except RNase H, which has proven to be a very difficult target for HIV drug discovery. Our high-throughput screening activities identified the dihydroxycoumarin compound F3284-8495 as a specific inhibitor of RT RNase H, with low micromolar potency in vitro. Optimization of inhibitory potency can be facilitated by structural information about inhibitor-target binding. Here, we report the crystal structure of F3284-8495 bound to the active site of an isolated RNase H domain of HIV-1 RT at a resolution limit of 1.71Å. From predictions based on this structure, compounds were obtained that showed improved inhibitory activity. Computational analysis suggested structural alterations that could provide additional interactions with RT and thus improve inhibitory potency. These studies established proof of concept that F3284-8495 could be used as a favorable chemical scaffold for development of HIV RNase H inhibitors.
Collapse
Affiliation(s)
- Daniel M Himmel
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-5627, USA.
| | - Nataliya S Myshakina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Tatiana Ilina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Alexander Van Ry
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - William C Ho
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-5627, USA.
| | - Michael A Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-5627, USA.
| |
Collapse
|
43
|
Mislak AC, Frey KM, Bollini M, Jorgensen WL, Anderson KS. A mechanistic and structural investigation of modified derivatives of the diaryltriazine class of NNRTIs targeting HIV-1 reverse transcriptase. Biochim Biophys Acta Gen Subj 2014; 1840:2203-11. [PMID: 24726448 DOI: 10.1016/j.bbagen.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/21/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are vital in treating HIV-1 infection by inhibiting reverse transcriptase (RT). Drug toxicity and resistance drive the need for effective new inhibitors with improved physiochemical properties and potent antiviral activity. Computer-aided and structure-based drug design have guided the addition of solubilizing substituents to the diaryltriazine scaffold. These derivatives have markedly improved solubility and maintain low nanomolar antiviral activity against RT. The molecular and structural basis of inhibition for this series was determined to facilitate future inhibitor development with improved pharmacological profiles. METHODS The molecular mechanism of inhibition was investigated using transient-state kinetic analysis. Crystal structures of RT in complex with each inhibitor were obtained to investigate the structural basis of inhibition. RESULTS The diaryltriazine and its morpholine derivative have RT inhibition constants of 9±2nM and 14±4nM, respectively. They adopt differential binding modes within the non-nucleoside inhibitor binding pocket to distort the catalytic site geometry and primer grip regions. The novel morpholinopropoxy substituent extends into the RT/solvent interface of the NNIBP. CONCLUSIONS Kinetic and structural analyses show that these inhibitors behave as conventional NNRTIs and inhibit the polymerization step. This study confirms that appending solubilizing substituents on the azine ring of diaryltriazine class of NNRTIs that extend into the RT/solvent interface effectively maintains low nanomolar potency and improves physiochemical properties. GENERAL SIGNIFICANCE The modification of NNRTI scaffolds with solubilizing substituents, which extend into the RT/solvent interface, yields potent antivirals and is an effective strategy for developing novel inhibitors with improved pharmacological properties.
Collapse
Affiliation(s)
- Andrea C Mislak
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Kathleen M Frey
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Mariela Bollini
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| |
Collapse
|
44
|
In vitro characterization of MK-1439, a novel HIV-1 nonnucleoside reverse transcriptase inhibitor. Antimicrob Agents Chemother 2013; 58:1652-63. [PMID: 24379202 DOI: 10.1128/aac.02403-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for treating human immunodeficiency type 1 virus (HIV-1)-infected patients. MK-1439 is a novel NNRTI with a 50% inhibitory concentration (IC50) of 12, 9.7, and 9.7 nM against the wild type (WT) and K103N and Y181C reverse transcriptase (RT) mutants, respectively, in a biochemical assay. Selectivity and cytotoxicity studies confirmed that MK-1439 is a highly specific NNRTI with minimum off-target activities. In the presence of 50% normal human serum (NHS), MK-1439 showed excellent potency in suppressing the replication of WT virus, with a 95% effective concentration (EC95) of 20 nM, as well as K103N, Y181C, and K103N/Y181C mutant viruses with EC95 of 43, 27, and 55 nM, respectively. MK-1439 exhibited similar antiviral activities against 10 different HIV-1 subtype viruses (a total of 93 viruses). In addition, the susceptibility of a broader array of clinical NNRTI-associated mutant viruses (a total of 96 viruses) to MK-1439 and other benchmark NNRTIs was investigated. The results showed that the mutant profile of MK-1439 was superior overall to that of efavirenz (EFV) and comparable to that of etravirine (ETR) and rilpivirine (RPV). Furthermore, E138K, Y181C, and K101E mutant viruses that are associated with ETR and RPV were susceptible to MK-1439 with a fold change (FC) of <3. A two-drug in vitro combination study indicated that MK-1439 acts nonantagonistically in the antiviral activity with each of 18 FDA-licensed drugs for HIV infection. Taken together, these in vitro data suggest that MK-1439 possesses the desired properties for further development as a new antiviral agent.
Collapse
|
45
|
The connection domain mutation N348I in HIV-1 reverse transcriptase enhances resistance to etravirine and rilpivirine but restricts the emergence of the E138K resistance mutation by diminishing viral replication capacity. J Virol 2013; 88:1536-47. [PMID: 24227862 DOI: 10.1128/jvi.02904-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Clinical resistance to rilpivirine (RPV), a novel nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI), is associated an E-to-K mutation at position 138 (E138K) in RT together with an M184I/V mutation that confers resistance against emtricitabine (FTC), a nucleoside RT inhibitor (NRTI) that is given together with RPV in therapy. These two mutations can compensate for each other in regard to fitness deficits conferred by each mutation alone, raising the question of why E138K did not arise spontaneously in the clinic following lamivudine (3TC) use, which also selects for the M184I/V mutations. In this context, we have investigated the role of a N348I connection domain mutation that is prevalent in treatment-experienced patients. N348I confers resistance to both the NRTI zidovudine (ZDV) and the NNRTI nevirapine (NVP) and was also found to be associated with M184V and to compensate for deficits associated with the latter mutation. Now, we show that both N348I alone and N348I/M184V can prevent or delay the emergence of E138K under pressure with RPV or a related NNRTI, termed etravirine (ETR). N348I also enhanced levels of resistance conferred by E138K against RPV and ETR by 2.2- and 2.3-fold, respectively. The presence of the N348I or M184V/N348I mutation decreased the replication capacity of E138K virus, and biochemical assays confirmed that N348I, in a background of E138K, impaired RT catalytic efficiency and RNase H activity. These findings help to explain the low viral replication capacity of viruses containing the E138K/N348I mutations and how N348I delayed or prevented the emergence of E138K in patients with M184V-containing viruses.
Collapse
|
46
|
Monroe JI, El-Nahal WG, Shirts MR. Investigating the mutation resistance of nonnucleoside inhibitors of HIV-RT using multiple microsecond atomistic simulations. Proteins 2013; 82:130-44. [PMID: 23775803 DOI: 10.1002/prot.24346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/17/2013] [Accepted: 05/31/2013] [Indexed: 11/06/2022]
Abstract
Inhibiting HIV reverse transcriptase through the use of nonnucleoside reverse transcriptase inhibitors (NNRTIs) has become an essential component in drug regimens for the treatment of HIV. Older NNRTIs, such as nevirapine, are structurally rigid, exhibiting decreased inhibitory function on development of common mutations in the NNRTI-binding pocket, which is located around 10 Å from the catalytically active binding site. The newer generation of drugs, such as rilpivirine, are more flexible and resistant to binding pocket mutations but the mechanism by which they actually inhibit protein function and avoid mutations is not well-understood. To this end, we have performed 2-2.4 µs simulations with explicit solvent in an isobaric-isothermal ensemble of six different systems: apo wild-type, apo K103N/Y181C mutant, nevirapine-bound wild-type, nevirapine-bound mutant, rilpivirine-bound wild type, and rilpivirine-bound mutant. Analysis of protein conformations, principal components of motion, and mutual information between residues points to an inhibitory mechanism in which the primer grip stretches away from the catalytic triad of aspartic acids necessary for polymerization of HIV-encoding DNA, but is still unable to reveal a specific structural mechanism behind mutation resistance.
Collapse
Affiliation(s)
- Jacob I Monroe
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | | | | |
Collapse
|
47
|
Role of the K101E substitution in HIV-1 reverse transcriptase in resistance to rilpivirine and other nonnucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 2013; 57:5649-57. [PMID: 24002090 DOI: 10.1128/aac.01536-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV.
Collapse
|
48
|
Imaz A, García F, di Yacovo S, Llibre JM. Perfil de resistencia de rilpivirina. Enferm Infecc Microbiol Clin 2013; 31 Suppl 2:36-43. [DOI: 10.1016/s0213-005x(13)70141-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Effect of mutations at position E138 in HIV-1 reverse transcriptase and their interactions with the M184I mutation on defining patterns of resistance to nonnucleoside reverse transcriptase inhibitors rilpivirine and etravirine. Antimicrob Agents Chemother 2013; 57:3100-9. [PMID: 23612196 DOI: 10.1128/aac.00348-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Impacts of mutations at position E138 (A/G/K/Q/R/V) alone or in combination with M184I in HIV-1 reverse transcriptase (RT) were investigated. We also determined why E138K is the most prevalent nonnucleoside reverse transcriptase inhibitor mutation in patients failing rilpivirine (RPV) therapy. Recombinant RT enzymes and viruses containing each of the above-mentioned mutations were generated, and drug susceptibility was assayed. Each of the E138A/G/K/Q/R mutations, alone or in combination with M184I, resulted in decreased susceptibility to RPV and etravirine (ETR). The maximum decrease in susceptibility to RPV was observed for E138/R/Q/G by both recombinant RT assay and cell-based assays. E138Q/R-containing enzymes and viruses also showed the most marked decrease in susceptibility to ETR by both assays. The addition of M184I to the E138 mutations did not significantly change the levels of diminution in drug susceptibility. These findings indicate that E138R caused the highest level of loss of susceptibility to both RPV and ETR, and, accordingly, E138R should be recognized as an ETR resistance-associated mutation. The E138K/Q/R mutations can compensate for M184I in regard to both enzymatic fitness and viral replication capacity. The favored emergence of E138K over other mutations at position E138, together with M184I, is not due to an advantage in either the level of drug resistance or viral replication capacity but may reflect the fact that E138R and E138Q require two distinct mutations to occur, one of which is a disfavorable G-to-C mutation, whereas E138K requires only a single favorable G-to-A hypermutation. Of course, other factors may also affect the concept of barrier to resistance.
Collapse
|
50
|
Das K, Arnold E. HIV-1 reverse transcriptase and antiviral drug resistance. Part 2. Curr Opin Virol 2013; 3:119-28. [PMID: 23602470 DOI: 10.1016/j.coviro.2013.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 11/29/2022]
Abstract
Structures of RT and its complexes combined with biochemical and clinical data help in illuminating the molecular mechanisms of different drug-resistance mutations. The NRTI drugs that are used in combinations have different primary mutation sites. RT mutations that confer resistance to one drug can be hypersensitive to another RT drug. Structure of an RT-DNA-nevirapine complex revealed how NNRTI binding forbids RT from forming a polymerase competent complex. Collective knowledge about various mechanisms of drug resistance by RT has broader implications for understanding and targeting drug resistance in general. In Part 1, we discussed the role of RT in developing HIV-1 drug resistance, structural and functional states of RT, and the nucleoside/nucleotide analog (NRTI) and non-nucleoside (NNRTI) drugs used in treating HIV-1 infections. In this part, we discuss structural understanding of various mechanisms by which RT confers antiviral drug resistance.
Collapse
Affiliation(s)
- Kalyan Das
- Center for Advanced Biotechnology and Medicine (CABM), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|