1
|
Samuel H, Campelo Morillo R, Kafsack BFC. Suppression by RNA Polymerase I Inhibitors Varies Greatly Between Distinct RNA Polymerase I Transcribed Genes in Malaria Parasites. Pathogens 2024; 13:924. [PMID: 39599477 PMCID: PMC11597781 DOI: 10.3390/pathogens13110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The transcription of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I) is the rate-limiting step in ribosome biogenesis and a major determinant of cellular growth rates. Unlike other eukaryotes, which express identical rRNA from large tandem arrays of dozens to hundreds of identical rRNA genes in every cell, the genome of the human malaria parasite Plasmodium falciparum contains only a handful single-copy 47S rRNA loci that differ substantially from one another in length, sequence, and expression in different cell types. We found that the growth of the malaria parasite was acutely sensitive to the Pol I inhibitors 9-hydroxyellipticine and BMH-21 and demonstrated that they greatly reduce the transcription of 47S rRNAs as well as the transcription of other non-coding RNA genes. This makes P. falciparum only the second known organism where RNA Polymerase I transcribes genes other than the 47S rRNAs. We found that the various types of Pol I-transcribed genes differed by more than two orders of magnitude in their susceptibility to these inhibitors and explored the implications of these findings for the regulation of rRNA in P. falciparum.
Collapse
Affiliation(s)
- Hermela Samuel
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- ACCESS Summer Internship Program, Weill Cornell Medicine, New York, NY 10021, USA
- Carleton College, Northfield, MN 55057, USA
| | - Riward Campelo Morillo
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Björn F. C. Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
2
|
Samuel H, Campelo-Morillo R, Kafsack BF. Suppression by RNA Polymerase I Inhibitors Varies Greatly Between Distinct RNA Polymerase I Transcribed Genes in Malaria Parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610888. [PMID: 39282452 PMCID: PMC11398372 DOI: 10.1101/2024.09.02.610888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Transcription of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I) is the rate-limiting step in ribosome biogenesis and a major determinant of cellular growth rates. Unlike virtually every other eukaryote, which express identical rRNA from large tandem arrays of dozens to hundreds of identical rRNA genes in every cell, the genome of the human malaria parasite Plasmodium falciparum contains only a handful single-copy 47S rRNA loci that differ substantially from one another in length, sequence and expression in different cell-types. We found that growth of malaria parasite was acutely sensitive to the Pol I inhibitors 9-hydroxyellipticine and BMH-21 and demonstrate that they greatly reduce the transcription of 47S rRNAs as well as transcription of other non-coding RNA genes. Surprisingly, we found that the various types of Pol I-transcribed genes differed by more than two orders of magnitude in their susceptibility to these inhibitors and explore the implications of these findings for regulation of rRNA in P. falciparum.
Collapse
Affiliation(s)
- Hermela Samuel
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
- ACCESS Summer Internship Program, Weill Cornell Medicine, New York, NY, USA
- Carleton College, Northfield, MN, USA
| | | | - Björn F.C. Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
4
|
Hou W, Xu XL, Huang LJ, Zhang ZY, Zhou ZN, Wang JY, Ouyang X, Xin SY, Zhang ZY, Xiong Y, Huang H, Lan JX. Bioactivities and Action Mechanisms of Ellipticine Derivatives Reported Prior to 2023. Chem Biodivers 2024; 21:e202400210. [PMID: 38433548 DOI: 10.1002/cbdv.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/05/2024]
Abstract
Currently, natural products are one of the priceless options for finding novel chemical pharmaceutical entities. Ellipticine is a naturally occurring alkaloid isolated from the leaves of Ochrosia elliptica Labill. Ellipticine and its derivatives are characterized by multiple biological activities. The purpose of this review was to provide a critical and systematic assessment of ellipticine and its derivatives as bioactive molecules over the last 60 years. Publications focused mainly on the total synthesis of alkaloids of this type without any evaluation of bioactivity have been excluded. We have reviewed papers dealing with the synthesis, bioactivity evaluation and mechanism of action of ellipticine and its derivatives. It was found that ellipticine and its derivatives showed cytotoxicity, antimicrobial ability, and anti-inflammatory activity, among which cytotoxicity toward cancer cell lines was the most investigated aspect. The inhibition of DNA topoisomerase II was the most relevant mechanism for cytotoxicity. The PI3K/AKT pathway, p53 pathway, and MAPK pathway were also closely related to the antiproliferative ability of these compounds. In addition, the structure-activity relationship was deduced, and future prospects were outlined. We are confident that these findings will lay a scientific foundation for ellipticine-based drug development, especially for anticancer agents.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Xin-Liang Xu
- Department of Pharmacy, Xingguo People's Hospital, Xingguo Hospital Affiliated to Gannan Medical University, Ganzhou, 342400, P. R. China
| | - Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhen-Yu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhi-Nuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jin-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Xi Ouyang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Yi Xiong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, P. R. China
| |
Collapse
|
5
|
Nechay M, Wang D, Kleiner RE. Inhibition of nucleolar transcription by oxaliplatin involves ATM/ATR kinase signaling. Cell Chem Biol 2023; 30:906-919.e4. [PMID: 37433295 PMCID: PMC10529435 DOI: 10.1016/j.chembiol.2023.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Platinum (Pt) compounds are an important class of anti-cancer therapeutics, but outstanding questions remain regarding their mechanism of action. Here, we demonstrate that oxaliplatin, a Pt drug used to treat colorectal cancer, inhibits rRNA transcription through ATM and ATR signaling, and induces DNA damage and nucleolar disruption. We show that oxaliplatin causes nucleolar accumulation of the nucleolar DNA damage response proteins (n-DDR) NBS1 and TOPBP1; however transcriptional inhibition does not depend upon NBS1 or TOPBP1, nor does oxaliplatin induce substantial amounts of nucleolar DNA damage, distinguishing the nucleolar response from previously characterized n-DDR pathways. Taken together, our work indicates that oxaliplatin induces a distinct ATM and ATR signaling pathway that functions to inhibit Pol I transcription in the absence of direct nucleolar DNA damage, demonstrating how nucleolar stress and transcriptional silencing can be linked to DNA damage signaling and highlighting an important mechanism of Pt drug cytotoxicity.
Collapse
Affiliation(s)
- Misha Nechay
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Danyang Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
6
|
Sharma I, Fang J, Lewallen EA, Deitsch KW, McCutchan TF. Identification of a long noncoding RNA required for temperature induced expression of stage-specific rRNA in malaria parasites. Gene 2023:147516. [PMID: 37286021 DOI: 10.1016/j.gene.2023.147516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Protozoan parasites of the genus Plasmodium cause malaria, a mosquito borne disease responsible for substantial health and economic costs throughout the developing world. During transition from human host to insect vector, the parasites undergo profound changes in morphology, host cell tropism and gene expression. Unique among eukaryotes, Plasmodium differentiation through each stage of development includes differential expression of singular, stage-specific ribosomal RNAs, permitting real-time adaptability to major environmental changes. In the mosquito vector, these Plasmodium parasites respond to changes in temperature by modulating transcriptional activities, allowing real-time responses to environmental cues. Here, we identify a novel form of long noncoding RNA: a temperature-regulated untranslated lncRNA (tru-lncRNA) that influences the Plasmodium parasite's ability to respond to changes in its local environment. Expression of this tru-lncRNA is specifically induced by shifts in temperature from 37°C to ambient temperature that parallels the transition from mammalian host to insect vector. Interestingly, deletion of tru-lncRNA from the genome may prevent processing of S-type rRNA thereby affecting the protein synthesis machinery. Malaria prevention and mitigation strategies aimed at disrupting the Plasmodium life cycle will benefit from the characterization of ancillary biomolecules (including tru-lncRNAs) that are constitutively sensitive to micro- environmental parameters.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Biological Sciences, Hampton University, Hampton Virginia, USA.
| | - Jun Fang
- Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton Virginia, USA
| | - Kirk W Deitsch
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY
| | - Thomas F McCutchan
- Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Nechay M, Kleiner RE. Oxaliplatin Inhibits RNA Polymerase I via DNA Damage Signaling Targeted to the Nucleolus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535301. [PMID: 37066425 PMCID: PMC10103995 DOI: 10.1101/2023.04.02.535301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Platinum (Pt) compounds are an important class of anti-cancer therapeutics, but outstanding questions remain regarding their mode of action. In particular, emerging evidence indicates that oxaliplatin, a Pt drug used to treat colorectal cancer, kills cells by inducing ribosome biogenesis stress rather than through DNA damage generation, but the underlying mechanism is unknown. Here, we demonstrate that oxaliplatin-induced ribosomal RNA (rRNA) transcriptional silencing and nucleolar stress occur downstream of DNA damage signaling involving ATM and ATR. We show that NBS1 and TOPBP1, two proteins involved in the nucleolar DNA damage response (n-DDR), are recruited to nucleoli upon oxaliplatin treatment. However, we find that rRNA transcriptional inhibition by oxaliplatin does not depend upon NBS1 or TOPBP1, nor does oxaliplatin induce substantial amounts of nucleolar DNA damage, distinguishing it from previously characterized n-DDR pathways. Taken together, our work indicates that oxaliplatin induces a distinct DDR signaling pathway that functions in trans to inhibit Pol I transcription in the nucleolus, demonstrating how nucleolar stress can be linked to DNA damage signaling and highlighting an important mechanism of Pt drug cytotoxicity.
Collapse
|
8
|
Corman A, Sirozh O, Lafarga V, Fernandez-Capetillo O. Targeting the nucleolus as a therapeutic strategy in human disease. Trends Biochem Sci 2023; 48:274-287. [PMID: 36229381 DOI: 10.1016/j.tibs.2022.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
The nucleolus is the site of ribosome biogenesis, one of the most resource-intensive processes in eukaryotic cells. Accordingly, nucleolar morphology and activity are highly responsive to growth signaling and nucleolar insults which are collectively included in the actively evolving concept of nucleolar stress. Importantly, nucleolar alterations are a prominent feature of multiple human pathologies, including cancer and neurodegeneration, as well as being associated with aging. The past decades have seen numerous attempts to isolate compounds targeting different facets of nucleolar activity. We provide an overview of therapeutic opportunities for targeting nucleoli in different pathologies and currently available therapies.
Collapse
Affiliation(s)
- Alba Corman
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
9
|
Regulation of RNA Polymerase I Stability and Function. Cancers (Basel) 2022; 14:cancers14235776. [PMID: 36497261 PMCID: PMC9737084 DOI: 10.3390/cancers14235776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase I is a highly processive enzyme with fast initiation and elongation rates. The structure of Pol I, with its in-built RNA cleavage ability and incorporation of subunits homologous to transcription factors, enables it to quickly and efficiently synthesize the enormous amount of rRNA required for ribosome biogenesis. Each step of Pol I transcription is carefully controlled. However, cancers have highjacked these control points to switch the enzyme, and its transcription, on permanently. While this provides an exceptional benefit to cancer cells, it also creates a potential cancer therapeutic vulnerability. We review the current research on the regulation of Pol I transcription, and we discuss chemical biology efforts to develop new targeted agents against this process. Lastly, we highlight challenges that have arisen from the introduction of agents with promiscuous mechanisms of action and provide examples of agents with specificity and selectivity against Pol I.
Collapse
|
10
|
Cen X, Wang B, Liang Y, Chen Y, Xiao Y, Du S, Nandakumar KS, Yin H, Liu S, Cheng K. Small molecule SMU-CX24 targeting toll-like receptor 3 counteracts inflammation: A novel approach to atherosclerosis therapy. Acta Pharm Sin B 2022; 12:3667-3681. [PMID: 36176917 PMCID: PMC9513496 DOI: 10.1016/j.apsb.2022.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Toll-like receptor 3 (TLR3), as an important pattern recognition receptor (PRR), dominates the innate and adaptive immunity regulating many acute and chronic inflammatory diseases. Atherosclerosis is proved as an inflammatory disease, and inflammatory events involved in the entire process of initiation and deterioration. However, the contribution of TLR3 to atherosclerosis remains unclear. Herein, we identified the clinical relevance of TLR3 upregulation and disease processes in human atherosclerosis. Besides, activation of TLR3 also directly led to significant expression of atherogenic chemokines and adhesion molecules. Conversely, silencing TLR3 inhibited the uptake of oxLDL by macrophages and significantly reduced foam cell formation. Given the aberrance in TLR3 functions on atherosclerosis progression, we hypothesized that TLR3 could serve as novel target for clinical atherosclerosis therapy. Therefore, we developed the novel ellipticine derivative SMU-CX24, which specifically inhibited TLR3 (IC50 = 18.87 ± 2.21 nmol/L). In vivo, atherosclerotic burden was alleviated in Western diet fed ApoE-/- mice in response to SMU-CX24 treatment, accompanying notable reductions in TLR3 expression and inflammation infiltration within atherosclerotic lesion. Thus, for the first time, we revealed that pharmacological downregulation of TLR3 with specific inhibitor regenerated inflammatory environment to counteract atherosclerosis progression, thereby proposing a new strategy and probe for atherosclerosis therapy.
Collapse
Affiliation(s)
- Xiaohong Cen
- Guangdong Provincial Key Laboratory of New Drug Screening and State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Baoqu Wang
- Guangdong Provincial Key Laboratory of New Drug Screening and State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuqing Liang
- Guangdong Provincial Key Laboratory of New Drug Screening and State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanlin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu Xiao
- Guangdong Provincial Key Laboratory of New Drug Screening and State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaohua Du
- Department of Musculoskeletal Oncology, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510642, China
| | - Kutty Selva Nandakumar
- Guangdong Provincial Key Laboratory of New Drug Screening and State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening and State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening and State Key Laboratory of Organ Failure Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Musculoskeletal Oncology, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510642, China
| |
Collapse
|
11
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
12
|
Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers (Basel) 2022; 14:cancers14092126. [PMID: 35565259 PMCID: PMC9100539 DOI: 10.3390/cancers14092126] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Cells need to produce ribosomes to sustain continuous proliferation and expand in numbers, a feature that is even more prominent in uncontrollably proliferating cancer cells. Certain cancer cell types are expected to depend more on ribosome biogenesis based on their genetic background, and this potential vulnerability can be exploited in designing effective, targeted cancer therapies. This review provides information on anti-cancer molecules that target the ribosome biogenesis machinery and indicates avenues for future research. Abstract Rapid growth and unrestrained proliferation is a hallmark of many cancers. To accomplish this, cancer cells re-wire and increase their biosynthetic and metabolic activities, including ribosome biogenesis (RiBi), a complex, highly energy-consuming process. Several chemotherapeutic agents used in the clinic impair this process by interfering with the transcription of ribosomal RNA (rRNA) in the nucleolus through the blockade of RNA polymerase I or by limiting the nucleotide building blocks of RNA, thereby ultimately preventing the synthesis of new ribosomes. Perturbations in RiBi activate nucleolar stress response pathways, including those controlled by p53. While compounds such as actinomycin D and oxaliplatin effectively disrupt RiBi, there is an ongoing effort to improve the specificity further and find new potent RiBi-targeting compounds with improved pharmacological characteristics. A few recently identified inhibitors have also become popular as research tools, facilitating our advances in understanding RiBi. Here we provide a comprehensive overview of the various compounds targeting RiBi, their mechanism of action, and potential use in cancer therapy. We discuss screening strategies, drug repurposing, and common problems with compound specificity and mechanisms of action. Finally, emerging paths to discovery and avenues for the development of potential biomarkers predictive of therapeutic outcomes across cancer subtypes are also presented.
Collapse
|
13
|
Campbell E, Taladriz-Sender A, Paisley OI, Kennedy AR, Bush JT, Burley GA. A Chemo- and Regioselective Tandem [3 + 2]Heteroannulation Strategy for Carbazole Synthesis: Combining Two Mechanistically Distinct Bond-Forming Processes. J Org Chem 2022; 87:4603-4616. [PMID: 35302774 PMCID: PMC8981337 DOI: 10.1021/acs.joc.1c02943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A modular approach to prepare tri-
and tetracyclic carbazoles by
a sequential [3 + 2]heteroannulation is described. First, optimization
of Pd-catalyzed Buchwald–Hartwig amination followed by C/N-arylation
in a one-pot process is established. Second, mechanistic analyses
identified the origins of chemo- and regioselective sequential control
of both bond-forming steps. Finally, the substrate scope is demonstrated
by the preparation of a range of tri- and tetracyclic carbazoles,
including expedient access to several natural products and anti-cancer
agents.
Collapse
Affiliation(s)
- Emma Campbell
- Department of Pure Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Andrea Taladriz-Sender
- Department of Pure Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Olivia I Paisley
- Department of Pure Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Alan R Kennedy
- Department of Pure Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Jacob T Bush
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Glenn A Burley
- Department of Pure Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
14
|
Brown IN, Lafita-Navarro MC, Conacci-Sorrell M. Regulation of Nucleolar Activity by MYC. Cells 2022; 11:574. [PMID: 35159381 PMCID: PMC8834138 DOI: 10.3390/cells11030574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC's role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.
Collapse
Affiliation(s)
- Isabella N. Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - M. Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Quinacrine Induces Nucleolar Stress in Treatment-Refractory Ovarian Cancer Cell Lines. Cancers (Basel) 2021; 13:cancers13184645. [PMID: 34572872 PMCID: PMC8466834 DOI: 10.3390/cancers13184645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
A considerable subset of gynecologic cancer patients experience disease recurrence or acquired resistance, which contributes to high mortality rates in ovarian cancer (OC). Our prior studies showed that quinacrine (QC), an antimalarial drug, enhanced chemotherapy sensitivity in treatment-refractory OC cells, including artificially generated chemoresistant and high-grade serous OC cells. In this study, we investigated QC-induced transcriptomic changes to uncover its cytotoxic mechanisms of action. Isogenic pairs of OC cells generated to be chemoresistant and their chemosensitive counterparts were treated with QC followed by RNA-seq analysis. Validation of selected expression results and database comparison analyses indicated the ribosomal biogenesis (RBG) pathway is inhibited by QC. RBG is commonly upregulated in cancer cells and is emerging as a drug target. We found that QC attenuates the in vitro and in vivo expression of nucleostemin (NS/GNL3), a nucleolar RBG and DNA repair protein, and the RPA194 catalytic subunit of Pol I that results in RBG inhibition and nucleolar stress. QC promotes the redistribution of fibrillarin in the form of extranuclear foci and nucleolar caps, an indicator of nucleolar stress conditions. In addition, we found that QC-induced downregulation of NS disrupted homologous recombination repair both by reducing NS protein levels and PARylation resulting in reduced RAD51 recruitment to DNA damage. Our data suggest that QC inhibits RBG and this inhibition promotes DNA damage by directly downregulating the NS-RAD51 interaction. Additionally, QC showed strong synergy with PARP inhibitors in OC cells. Overall, we found that QC downregulates the RBG pathway, induces nucleolar stress, supports the increase of DNA damage, and sensitizes cells to PARP inhibition, which supports new therapeutic stratagems for treatment-refractory OC. Our work offers support for targeting RBG in OC and determines NS to be a novel target for QC.
Collapse
|
16
|
DNA Intercalators Inhibit Eukaryotic Ribosomal RNA Synthesis by Impairing the Initiation of Transcription. Genes (Basel) 2021; 12:genes12091412. [PMID: 34573394 PMCID: PMC8466728 DOI: 10.3390/genes12091412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
In eukaryotes, ribosome biogenesis is driven by the synthesis of the ribosomal RNA (rRNA) by RNA polymerase I (Pol-I) and is tightly linked to cell growth and proliferation. The 3D-structure of the rDNA promoter plays an important, yet not fully understood role in regulating rRNA synthesis. We hypothesized that DNA intercalators/groove binders could affect this structure and disrupt rRNA transcription. To test this hypothesis, we investigated the effect of a number of compounds on Pol-I transcription in vitro and in cells. We find that intercalators/groove binders are potent inhibitors of Pol-I specific transcription both in vitro and in cells, regardless of their specificity and the strength of its interaction with DNA. Importantly, the synthetic ability of Pol-I is unaffected, suggesting that these compounds are not targeting post-initiating events. Notably, the tested compounds have limited effect on transcription by Pol-II and III, demonstrating the hypersensitivity of Pol-I transcription. We propose that stability of pre-initiation complex and initiation are affected as result of altered 3D architecture of the rDNA promoter, which is well in line with the recently reported importance of biophysical rDNA promoter properties on initiation complex formation in the yeast system.
Collapse
|
17
|
Global Genome Demethylation Causes Transcription-Associated DNA Double Strand Breaks in HPV-Associated Head and Neck Cancer Cells. Cancers (Basel) 2020; 13:cancers13010021. [PMID: 33374558 PMCID: PMC7793113 DOI: 10.3390/cancers13010021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
High levels of DNA methylation at CpG loci are associated with transcriptional repression of tumor suppressor genes and dysregulation of DNA repair genes. Human papilloma virus (HPV)-associated head and neck squamous cell carcinomas (HNSCC) have high levels of DNA methylation and methylation has been associated with dampening of an innate immune response in virally infected cells. We have been exploring demethylation as a potential treatment in HPV+ HNSCC and recently reported results of a window clinical trial showing that HNSCCs are particularly sensitive to demethylating agent 5-azacytidine (5-aza). Mechanistically, sensitivity is partially due to downregulation of HPV genes expression and restoration of tumor suppressors p53 and Rb. Here, for the first time, we show that 5-azaC treatment of HPV+ HNSCC induces replication and transcription-associated DNA double strand breaks (DSBs) that occur preferentially at demethylated genomic DNA. Blocking replication or transcription prevented formation of DNA DSBs and reduced sensitivity of HPV-positive head and neck cancer cells to 5-azaC, demonstrating that both replication and active transcription are required for formation of DSBs associated with 5-azaC.
Collapse
|
18
|
Sullivan HJ, Chen B, Wu C. Molecular Dynamics Study on the Binding of an Anticancer DNA G-Quadruplex Stabilizer, CX-5461, to Human Telomeric, c-KIT1, and c-Myc G-Quadruplexes and a DNA Duplex. J Chem Inf Model 2020; 60:5203-5224. [PMID: 32820923 DOI: 10.1021/acs.jcim.0c00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA G-quadruplex (G4) stabilizer, CX-5461, is in phase I/II clinical trials for advanced cancers with BRCA1/2 deficiencies. A FRET-melting temperature increase assay measured the stabilizing effects of CX-5461 to a DNA duplex (∼10 K), and three G4 forming sequences negatively implicated in the cancers upon its binding: human telomeric (∼30 K), c-KIT1 (∼27 K), and c-Myc (∼25 K). Without experimentally solved structures of these CX-5461-G4 complexes, CX-5461's interactions remain elusive. In this study, we performed a total of 73.5 μs free ligand molecular dynamics binding simulations of CX-5461 to the DNA duplex and three G4s. Three binding modes (top, bottom, and side) were identified for each system and their thermodynamic, kinetic, and structural nature were deciphered. The molecular mechanics/Poisson Boltzmann surface area binding energies of CX-5461 were calculated for the human telomeric (-28.6 kcal/mol), c-KIT1 (-23.9 kcal/mol), c-Myc (-22.0 kcal/mol) G4s, and DNA duplex (-15.0 kcal/mol) systems. These energetic differences coupled with structural differences at the 3' site explained the different melting temperatures between the G4s, while CX-5461's lack of intercalation to the duplex explained the difference between the G4s and duplex. Based on the interaction insight, CX-5461 derivatives were designed and docked, showing higher selectivity to the G4s over the duplex.
Collapse
Affiliation(s)
- Holli-Joi Sullivan
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| | - Brian Chen
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| |
Collapse
|
19
|
A Multimodal Genotoxic Anticancer Drug Characterized by Pharmacogenetic Analysis in Caenorhabditis elegans. Genetics 2020; 215:609-621. [PMID: 32414869 PMCID: PMC7337070 DOI: 10.1534/genetics.120.303169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/08/2020] [Indexed: 01/05/2023] Open
Abstract
New anticancer therapeutics require extensive in vivo characterization to identify endogenous and exogenous factors affecting efficacy, to measure toxicity and mutagenicity, and to determine genotypes that result in therapeutic sensitivity or resistance. We used Caenorhabditis elegans as a platform with which to characterize properties of the anticancer therapeutic CX-5461. To understand the processes that respond to CX-5461-induced damage, we generated pharmacogenetic profiles for a panel of C. elegans DNA replication and repair mutants with common DNA-damaging agents for comparison with the profile of CX-5461. We found that multiple repair pathways, including homology-directed repair, microhomology-mediated end joining, nucleotide excision repair, and translesion synthesis, were needed for CX-5461 tolerance. To determine the frequency and spectrum of CX-5461-induced mutations, we used a genetic balancer to capture CX-5461-induced mutations. We found that CX-5461 is mutagenic, resulting in both large copy number variations and a high frequency of single-nucleotide variations (SNVs), which are consistent with the pharmacogenetic profile for CX-5461. Whole-genome sequencing of CX-5461-exposed animals found that CX-5461-induced SNVs exhibited a distinct mutational signature. We also phenocopied the CX-5461 photoreactivity observed in clinical trials and demonstrated that CX-5461 generates reactive oxygen species when exposed to UVA radiation. Together, the data from C. elegans demonstrate that CX-5461 is a multimodal DNA-damaging anticancer agent.
Collapse
|
20
|
Ferreira R, Schneekloth JS, Panov KI, Hannan KM, Hannan RD. Targeting the RNA Polymerase I Transcription for Cancer Therapy Comes of Age. Cells 2020; 9:cells9020266. [PMID: 31973211 PMCID: PMC7072222 DOI: 10.3390/cells9020266] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Transcription of the ribosomal RNA genes (rDNA) that encode the three largest ribosomal RNAs (rRNA), is mediated by RNA Polymerase I (Pol I) and is a key regulatory step for ribosomal biogenesis. Although it has been reported over a century ago that the number and size of nucleoli, the site of ribosome biogenesis, are increased in cancer cells, the significance of this observation for cancer etiology was not understood. The realization that the increase in rRNA expression has an active role in cancer progression, not only through increased protein synthesis and thus proliferative capacity but also through control of cellular check points and chromatin structure, has opened up new therapeutic avenues for the treatment of cancer through direct targeting of Pol I transcription. In this review, we discuss the rational of targeting Pol I transcription for the treatment of cancer; review the current cancer therapeutics that target Pol I transcription and discuss the development of novel Pol I-specific inhibitors, their therapeutic potential, challenges and future prospects.
Collapse
Affiliation(s)
- Rita Ferreira
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Correspondence:
| | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Konstantin I. Panov
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- CCRCB and School of Biological Sciences, Queen’s University Belfast Medical Biology Centre, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Katherine M. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ross D. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
21
|
Tan X, Awuah SG. A cell-based screening system for RNA polymerase I inhibitors. MEDCHEMCOMM 2019; 10:1765-1774. [PMID: 31803394 PMCID: PMC6844272 DOI: 10.1039/c9md00227h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
RNA polymerase I (RNA Pol I) is a "factory" that orchestrates the transcription of ribosomal RNA for constructing ribosomes as a primary workshop for protein translation to sustain cell growth. The deregulation of RNA Pol I often causes uncontrolled cell proliferation, leading to cancer. Efficient and reliable methods are needed for the identification of selective inhibitors of RNA Pol I. Yeast (Saccharomyces cerevisiae) is eukaryotic and represents a valuable model system to study RNA Pol I, especially with the availability of the X-ray crystal structure of the yeast homologue of RNA Pol I, offering a structural basis to selectively target this transcriptional machinery. Herein, we developed a cell-based screening strategy by establishing a stable yeast cell line with a stably integrated human RNA Pol I promoter and ribosomal DNA. The model system was validated using the well-known RNA Pol I inhibitor CX-5461 by measuring transcribed human rRNA as readout. Virtual screening coupled with compound library screening using this cell line enabled the identification of a new candidate inhibitor of RNA Pol I, namely, cerivastatin sodium. Furthermore, we used growth and transcription activity assays to biologically evaluate the hit compound. Preliminary studies demonstrated antiproliferative effects of cerivastatin sodium against human cancer cells, namely, A2780 and H460 cell lines. These results implicated cerivastatin sodium as a selective RNA Pol I inhibitor worthy of further development together with potential as a targeted anticancer therapeutic.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Chemistry , University of Kentucky , 505 Rose Street , Lexington , Kentucky 40506 , USA . ; Tel: +1 8593239561
| | - Samuel G Awuah
- Department of Chemistry , University of Kentucky , 505 Rose Street , Lexington , Kentucky 40506 , USA . ; Tel: +1 8593239561
| |
Collapse
|
22
|
Dan VM, Varghese TS, Viswanathan G, Baby S. Ellipticine, its Derivatives: Re-evaluation of Clinical Suitability with the Aid of Drug Delivery Systems. Curr Cancer Drug Targets 2019; 20:33-46. [PMID: 31560288 DOI: 10.2174/1568009619666190927150131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/20/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
Abstract
Targeted drug delivery systems gave newer dimensions for safer and more effective use of therapeutic drugs, thus helping in circumventing the issues of toxicity and unintended drug accumulation. These ongoing developments in delivery systems can, in turn, bring back drugs that suffered various limitations, Ellipticine (EPT) being a candidate. EPT derivatives witnessed entry into clinical settings but failed to survive in clinics citing various toxic side effects. A large body of preclinical data deliberates the potency of drug delivery systems in increasing the efficiency of EPT/derivatives while decreasing their toxic side effects. Recent developments in drug delivery systems provide a platform to explore EPT and its derivatives as good clinical candidates in treating tumors. The present review deals with delivery mechanisms of EPT/EPT derivatives as antitumor drugs, in vitro and in vivo, and evaluates the suitability of EPT-carriers in clinical settings.
Collapse
Affiliation(s)
- Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Thania Sara Varghese
- Garden Management Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Gayathri Viswanathan
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| |
Collapse
|
23
|
Carotenuto P, Pecoraro A, Palma G, Russo G, Russo A. Therapeutic Approaches Targeting Nucleolus in Cancer. Cells 2019; 8:E1090. [PMID: 31527430 PMCID: PMC6770360 DOI: 10.3390/cells8091090] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
The nucleolus is a distinct sub-cellular compartment structure in the nucleus. First observed more than 200 years ago, the nucleolus is detectable by microscopy in eukaryotic cells and visible during the interphase as a sub-nuclear structure immersed in the nucleoplasm, from which it is not separated from any membrane. A huge number of studies, spanning over a century, have identified ribosome biogenesis as the main function of the nucleolus. Recently, novel functions, independent from ribosome biogenesis, have been proposed by several proteomic, genomic, and functional studies. Several works have confirmed the non-canonical role for nucleoli in regulating important cellular processes including genome stability, cell-cycle control, the cellular senescence, stress responses, and biogenesis of ribonucleoprotein particles (RNPs). Many authors have shown that both canonical and non-canonical functions of the nucleolus are associated with several cancer-related processes. The association between the nucleolus and cancer, first proposed by cytological and histopathological studies showing that the number and shape of nucleoli are commonly altered in almost any type of cancer, has been confirmed at the molecular level by several authors who demonstrated that numerous mechanisms occurring in the nucleolus are altered in tumors. Recently, therapeutic approaches targeting the nucleolus in cancer have started to be considered as an emerging "hallmark" of cancer and several therapeutic interventions have been developed. This review proposes an up-to-date overview of available strategies targeting the nucleolus, focusing on novel targeted therapeutic approaches. Finally, a target-based classification of currently available treatment will be proposed.
Collapse
Affiliation(s)
- Pietro Carotenuto
- The Institute of Cancer Research, Cancer Therapeutic Unit, London SM2 5NG, UK.
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy.
| | - Annalisa Pecoraro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gaetano Palma
- Department of Advanced Biomedical Science, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Giulia Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Annapina Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
24
|
Swanston A, Zabrady K, Ferreira HC. The ATP-dependent chromatin remodelling enzyme Uls1 prevents Topoisomerase II poisoning. Nucleic Acids Res 2019; 47:6172-6183. [PMID: 31106359 PMCID: PMC6614809 DOI: 10.1093/nar/gkz362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/29/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Topoisomerase II (Top2) is an essential enzyme that decatenates DNA via a transient Top2-DNA covalent intermediate. This intermediate can be stabilized by a class of drugs termed Top2 poisons, resulting in massive DNA damage. Thus, Top2 activity is a double-edged sword that needs to be carefully controlled to maintain genome stability. We show that Uls1, an adenosine triphosphate (ATP)-dependent chromatin remodelling (Snf2) enzyme, can alter Top2 chromatin binding and prevent Top2 poisoning in yeast. Deletion mutants of ULS1 are hypersensitive to the Top2 poison acriflavine (ACF), activating the DNA damage checkpoint. We map Uls1's Top2 interaction domain and show that this, together with its ATPase activity, is essential for Uls1 function. By performing ChIP-seq, we show that ACF leads to a general increase in Top2 binding across the genome. We map Uls1 binding sites and identify tRNA genes as key regions where Uls1 associates after ACF treatment. Importantly, the presence of Uls1 at these sites prevents ACF-dependent Top2 accumulation. Our data reveal the effect of Top2 poisons on the global Top2 binding landscape and highlights the role of Uls1 in antagonizing Top2 function. Remodelling Top2 binding is thus an important new means by which Snf2 enzymes promote genome stability.
Collapse
Affiliation(s)
- Amy Swanston
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Katerina Zabrady
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Helder C Ferreira
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| |
Collapse
|
25
|
Novel 11-Substituted Ellipticines as Potent Anticancer Agents with Divergent Activity against Cancer Cells. Pharmaceuticals (Basel) 2019; 12:ph12020090. [PMID: 31207878 PMCID: PMC6631919 DOI: 10.3390/ph12020090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
Abstract
Ellipticines have well documented anticancer activity, in particular with substitution at the 1-, 2-, 6- and 9-positions. However, due to limitations in synthesis and coherent screening methodology the full SAR profile of this anticancer class has not yet been achieved. In order to address this shortfall, we have set out to explore the anticancer activity of this potent natural product by substitution. We currently describe the synthesis of novel 11-substituted ellipticines with two specific derivatives showing potency and diverging cellular growth effects.
Collapse
|
26
|
W. Gribble G, A. Obaza-Nutaitis J. Synthesis and Cytotoxicity of Novel Bis-Ellipticines and Bis-Isoellipticines. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
The nucleolar transcriptome regulates Piwi shuttling between the nucleolus and the nucleoplasm. Chromosome Res 2018; 27:141-152. [DOI: 10.1007/s10577-018-9595-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023]
|
28
|
Sinicropi MS, Iacopetta D, Rosano C, Randino R, Caruso A, Saturnino C, Muià N, Ceramella J, Puoci F, Rodriquez M, Longo P, Plutino MR. N-thioalkylcarbazoles derivatives as new anti-proliferative agents: synthesis, characterisation and molecular mechanism evaluation. J Enzyme Inhib Med Chem 2018; 33:434-444. [PMID: 29383954 PMCID: PMC6010102 DOI: 10.1080/14756366.2017.1419216] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022] Open
Abstract
Synthetic or natural carbazole derivatives constitute an interesting class of heterocycles, which showed several pharmaceutical properties and occupied a promising place as antitumour tools in preclinical studies. They target several cellular key-points, e.g. DNA and Topoisomerases I and II. The most studied representative, i.e. Ellipticine, was introduced in the treatment of metastatic breast cancer. However, because of the onset of dramatic side effects, its use was almost dismissed. Many efforts were made in order to design and synthesise new carbazole derivatives with good activity and reduced side effects. The major goal of the present study was to synthesise a series of new N-thioalkylcarbazole derivatives with anti-proliferative effects. Two compounds, 5a and 5c, possess an interesting anti-proliferative activity against breast and uterine cancer cell lines without affecting non-tumoural cell lines viability. The most active compound (5c) induces cancer cells death triggering the intrinsic apoptotic pathway by inhibition of Topoisomerase II.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS Policlinico San Martino-IST, Genova, Italy
| | - Rosario Randino
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | | | - Noemi Muià
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | | | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Haniff HS, Graves A, Disney MD. Selective Small Molecule Recognition of RNA Base Pairs. ACS COMBINATORIAL SCIENCE 2018; 20:482-491. [PMID: 29966095 PMCID: PMC6325646 DOI: 10.1021/acscombsci.8b00049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many types of RNAs exist in the human transcriptome, yet only the bacterial ribosome has been exploited as a small molecule drug target. Aside from rRNA, other cellular RNAs such as noncoding RNAs have primarily secondary structure and limited tertiary structure. Within these secondary structures of noncanonically paired and unpaired regions, more than 50% are base paired, with most efforts to target these structures focused on looped regions. A void exists in the availability of small molecules capable of targeting RNA base pairs. Using chemoinformatics, an RNA-focused library enriched for nitrogen-containing heterocycles was developed and tested for binding RNA base pairs, leading to the identification of six selective and previously unknown binders. While all binders were derivatives of benzimidazoles, those with expanded aromatic polycycles bound selectively to AU pairs, while those with flexible urea side chains bound selectively to GC pairs. Two of the three selective GC pair binders can distinguish between two different orientations, 5'GG/3'CC and 5'GC/3'CG pairs. Furthermore, all six molecules showed >50-fold selectivity for RNA over DNA. These studies provide foundational knowledge to better exploit RNA as targets for small molecule chemical probes or lead therapeutics by using modules that target RNA base pairs.
Collapse
Affiliation(s)
- Hafeez S Haniff
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Amanda Graves
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Matthew D Disney
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
30
|
Leung AWY, Anantha M, Dragowska WH, Wehbe M, Bally MB. Copper-CX-5461: A novel liposomal formulation for a small molecule rRNA synthesis inhibitor. J Control Release 2018; 286:1-9. [PMID: 30016731 DOI: 10.1016/j.jconrel.2018.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/23/2022]
Abstract
CX-5461 is currently in Phase I/II clinical trials for advanced hematologic malignancies and triple negative or BRCA-deficient breast cancer. The compound is currently administered to patients intravenously (i.v.) at low pH (3.5) due to solubility challenges. Reliance of low pH to enhance solubility of CX-5461 can adversely impact pharmacokinetics, biodistribution and therapeutic potential. We have addressed this solubility issue through a formulation method that relies on the interactions between CX-5461 and copper. Copper binds CX-5461 through the nitrogens of the pyrazine ring. Here, we describe synthesizing this copper-complexed CX-5461 (Cu(CX-5461)) within liposomes. CX-5461 was added to copper-containing liposomes and incubated at 60 °C for 30 min. The pharmacokinetics of CX-5461 was assessed in mice following a single i.v. injection at 30 mg/kg. Efficacy studies were completed in multiple subcutaneous mouse xenografts as well as in a bone marrow engraftment model of acute myeloid leukemia (AML). The novel Cu(CX-5461) formulation was stable at pH 7.4 and exhibited increased plasma circulation longevity, increasing the total exposure to CX5461 by an order of magnitude. Cu(CX-5461) was more active than CX-5461 in AML models in vivo. In HCT116-B46 and Capan-1 solid tumour models that are BRCA-deficient, the Cu(CX-5461) formulation engendered activity that was comparable to that of the low pH CX-5461 formulation. We have generated the first Cu(CX-5461) formulation suitable for i.v. administration that is more efficacious than the existing low-pH formulation in pre-clinical models of AML. The Cu(CX-5461) formulation may serve as an alternative formulation for CX-5461 in BRCA-deficient cancers.
Collapse
Affiliation(s)
- Ada W Y Leung
- Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC, Canada; Cuprous Pharmaceuticals Inc., Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Malathi Anantha
- Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Wieslawa H Dragowska
- Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Mohamed Wehbe
- Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Marcel B Bally
- Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Cuprous Pharmaceuticals Inc., Vancouver, BC, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada; Centre for Drug Research and Development, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Wei T, Najmi SM, Liu H, Peltonen K, Kucerova A, Schneider DA, Laiho M. Small-Molecule Targeting of RNA Polymerase I Activates a Conserved Transcription Elongation Checkpoint. Cell Rep 2018; 23:404-414. [PMID: 29642000 PMCID: PMC6016085 DOI: 10.1016/j.celrep.2018.03.066] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/02/2022] Open
Abstract
Inhibition of RNA polymerase I (Pol I) is a promising strategy for modern cancer therapy. BMH-21 is a first-in-class small molecule that inhibits Pol I transcription and induces degradation of the enzyme, but how this exceptional response is enforced is not known. Here, we define key elements requisite for the response. We show that Pol I preinitiation factors and polymerase subunits (e.g., RPA135) are required for BMH-21-mediated degradation of RPA194. We further find that Pol I inhibition and induced degradation by BMH-21 are conserved in yeast. Genetic analyses demonstrate that mutations that induce transcription elongation defects in Pol I result in hypersensitivity to BMH-21. Using a fully reconstituted Pol I transcription assay, we show that BMH-21 directly impairs transcription elongation by Pol I, resulting in long-lived polymerase pausing. These studies define a conserved regulatory checkpoint that monitors Pol I transcription and is activated by therapeutic intervention.
Collapse
Affiliation(s)
- Ting Wei
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy and Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Karita Peltonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy and Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Alena Kucerova
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy and Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Marikki Laiho
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy and Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland; Department of Radiation Oncology and Molecular Radiation Sciences and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
32
|
Quin J, Chan KT, Devlin JR, Cameron DP, Diesch J, Cullinane C, Ahern J, Khot A, Hein N, George AJ, Hannan KM, Poortinga G, Sheppard KE, Khanna KK, Johnstone RW, Drygin D, McArthur GA, Pearson RB, Sanij E, Hannan RD. Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling. Oncotarget 2018; 7:49800-49818. [PMID: 27391441 PMCID: PMC5226549 DOI: 10.18632/oncotarget.10452] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023] Open
Abstract
RNA polymerase I (Pol I)-mediated transcription of the ribosomal RNA genes (rDNA) is confined to the nucleolus and is a rate-limiting step for cell growth and proliferation. Inhibition of Pol I by CX-5461 can selectively induce p53-mediated apoptosis of tumour cells in vivo. Currently, CX-5461 is in clinical trial for patients with advanced haematological malignancies (Peter Mac, Melbourne). Here we demonstrate that CX-5461 also induces p53-independent cell cycle checkpoints mediated by ATM/ATR signaling in the absence of DNA damage. Further, our data demonstrate that the combination of drugs targeting ATM/ATR signaling and CX-5461 leads to enhanced therapeutic benefit in treating p53-null tumours in vivo, which are normally refractory to each drug alone. Mechanistically, we show that CX-5461 induces an unusual chromatin structure in which transcriptionally competent relaxed rDNA repeats are devoid of transcribing Pol I leading to activation of ATM signaling within the nucleoli. Thus, we propose that acute inhibition of Pol transcription initiation by CX-5461 induces a novel nucleolar stress response that can be targeted to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Jaclyn Quin
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Keefe T Chan
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia
| | - Jennifer R Devlin
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia.,Institute for Molecular Medicine Finland, Biomedicum 2, Helsinki, Finland
| | - Donald P Cameron
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Jeannine Diesch
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia.,Josep Carreras Institute for Leukaemia Research (IJC), Campus ICO-HGTP, Badalona, Barcelona, Spain
| | - Carleen Cullinane
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia
| | - Jessica Ahern
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia
| | - Amit Khot
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia
| | - Nadine Hein
- The John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| | - Amee J George
- The John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Katherine M Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,The John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| | - Gretchen Poortinga
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Karen E Sheppard
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane City, Qld, Australia
| | - Ricky W Johnstone
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Grant A McArthur
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Richard B Pearson
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Elaine Sanij
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Ross D Hannan
- Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,The John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Johnston R, D'Costa Z, Ray S, Gorski J, Harkin DP, Mullan P, Panov KI. The identification of a novel role for BRCA1 in regulating RNA polymerase I transcription. Oncotarget 2018; 7:68097-68110. [PMID: 27589844 PMCID: PMC5356541 DOI: 10.18632/oncotarget.11770] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
The unrestrained proliferation of cancer cells requires a high level of ribosome biogenesis. The first stage of ribosome biogenesis is the transcription of the large ribosomal RNAs (rRNAs); the structural and functional components of the ribosome. Transcription of rRNA is carried out by RNA polymerase I (Pol-I) and its associated holoenzyme complex.Here we report that BRCA1, a nuclear phosphoprotein, and a known tumour suppressor involved in variety of cellular processes such as DNA damage response, transcriptional regulation, cell cycle control and ubiquitylation, is associated with rDNA repeats, in particular with the regulatory regions of the rRNA gene.We demonstrate that BRCA1 interacts directly with the basal Pol-I transcription factors; upstream binding factor (UBF), selectivity factor-1 (SL1) as well as interacting with RNA Pol-I itself. We show that in response to DNA damage, BRCA1 occupancy at the rDNA repeat is decreased and the observed BRCA1 interactions with the Pol-I transcription machinery are weakened.We propose, therefore, that there is a rDNA associated fraction of BRCA1 involved in DNA damage dependent regulation of Pol-I transcription, regulating the stability and formation of the Pol-I holoenzyme during initiation and/or elongation in response to DNA damage.
Collapse
Affiliation(s)
- Rebecca Johnston
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Zenobia D'Costa
- The Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK.,Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Swagat Ray
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.,Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Julia Gorski
- The Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - D Paul Harkin
- The Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Paul Mullan
- The Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Konstantin I Panov
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.,The Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
34
|
W. Gribble G, A. Davis D. A Short Synthesis of 9-Fluoroellipticine from 5-Fluoroindole. HETEROCYCLES 2018. [DOI: 10.3987/com-18-s(t)30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Abstract
The nucleolus is a distinct compartment of the nucleus responsible for ribosome biogenesis. Mis-regulation of nucleolar functions and of the cellular translation machinery has been associated with disease, in particular with many types of cancer. Indeed, many tumor suppressors (p53, Rb, PTEN, PICT1, BRCA1) and proto-oncogenes (MYC, NPM) play a direct role in the nucleolus, and interact with the RNA polymerase I transcription machinery and the nucleolar stress response. We have identified Dicer and the RNA interference pathway as having an essential role in the nucleolus of quiescent Schizosaccharomyces pombe cells, distinct from pericentromeric silencing, by controlling RNA polymerase I release. We propose that this novel function is evolutionarily conserved and may contribute to the tumorigenic pre-disposition of DICER1 mutations in mammals.
Collapse
Affiliation(s)
- Benjamin Roche
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoît Arcangioli
- b Genome Dynamics Unit, UMR 3525 CNRS, Institut Pasteur , Paris , France
| | - Rob Martienssen
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| |
Collapse
|
36
|
Cornelison R, Dobbin ZC, Katre AA, Jeong DH, Zhang Y, Chen D, Petrova Y, Llaneza DC, Steg AD, Parsons L, Schneider DA, Landen CN. Targeting RNA-Polymerase I in Both Chemosensitive and Chemoresistant Populations in Epithelial Ovarian Cancer. Clin Cancer Res 2017; 23:6529-6540. [PMID: 28778862 DOI: 10.1158/1078-0432.ccr-17-0282] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/25/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Purpose: A hallmark of neoplasia is increased ribosome biogenesis, and targeting this process with RNA polymerase I (Pol I) inhibitors has shown some efficacy. We examined the contribution and potential targeting of ribosomal machinery in chemotherapy-resistant and -sensitive models of ovarian cancer.Experimental Design: Pol I machinery expression was examined, and subsequently targeted with the Pol I inhibitor CX-5461, in ovarian cancer cell lines, an immortalized surface epithelial line, and patient-derived xenograft (PDX) models with and without chemotherapy. Effects on viability, Pol I occupancy of rDNA, ribosomal content, and chemosensitivity were examined.Results: In PDX models, ribosomal machinery components were increased in chemotherapy-treated tumors compared with controls. Thirteen cell lines were sensitive to CX-5461, with IC50s 25 nmol/L-2 μmol/L. Interestingly, two chemoresistant lines were 10.5- and 5.5-fold more sensitive than parental lines. CX-5461 induced DNA damage checkpoint activation and G2-M arrest with increased γH2AX staining. Chemoresistant cells had 2- to 4-fold increased rDNA Pol I occupancy and increased rRNA synthesis, despite having slower proliferation rates, whereas ribosome abundance and translational efficiency were not impaired. In five PDX models treated with CX-5461, one showed a complete response, one a 55% reduction in tumor volume, and one maintained stable disease for 45 days.Conclusions: Pol I inhibition with CX-5461 shows high activity in ovarian cancer cell lines and PDX models, with an enhanced effect on chemoresistant cells. Effects occur independent of proliferation rates or dormancy. This represents a novel therapeutic approach that may have preferential activity in chemoresistant populations. Clin Cancer Res; 23(21); 6529-40. ©2017 AACR.
Collapse
Affiliation(s)
- Robert Cornelison
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, Virginia
| | - Zachary C Dobbin
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois
| | - Ashwini A Katre
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dae Hoon Jeong
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Busan, Korea
| | - Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dongquan Chen
- Department of Medicine, Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuliya Petrova
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, Virginia
| | - Danielle C Llaneza
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, Virginia
| | - Adam D Steg
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Laura Parsons
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, Virginia
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charles N Landen
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
37
|
Shimazu A, Kawagoshi M, Takeda S, Kurasaki H, Kato A, Morii N, Sakai N, Konakahara T. Determination of binding modes and binding constants for the complexes of 6H-pyrido[4,3-b]carbazole derivatives with DNA. Bioorg Med Chem 2017; 25:1094-1112. [PMID: 28063783 DOI: 10.1016/j.bmc.2016.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/05/2023]
Abstract
The binding modes and binding constants for the complexes of forty types of pyridocarbazole derivatives 1-40 with double stranded DNAs (dsDNAs) were reported. The binding modes were determined by a combination of a deflection spectroscopy and orientation of the corresponding molecule in the DNA-based film with chain alignment. All of the compounds exhibited the intercalation-binding mode. Its binding constants Ka for the complexes, determined by quartz crystal microbalance (QCM), varied from 1.7×105 to 4.5×107M-1 according to the substituents on the pyridocarbazole framework and the sequences of dsDNA. The binding constants Ka of pyridocarbazole derivatives possessing the 2-(ω-amino)alkyl group and 5-(ω-amino)alkylcarbamyl group were larger than those of the corresponding ω-ureido derivatives. These ω-amino compounds exhibited strong GC base-pair preference in complexation. The Ka values decreased with the increasing NaCl concentration. It was clarified by a molecular modeling that the framework of the 2-tethered ω-amino derivative was completely overlapped with the stacking GC base-pairs leading to the formation of the stable intercalative-complex, and that the framework of the 5-tethered ureido derivative was half overlapped leading to the formation of the unstable complex. Furthermore, there were good linear relationships between lnKa and the relative stabilities Srel of the complexes. Contrary to our expectation, there was no linear relationship between lnKa and IC50 against Sarcoma-180, NIH3T3, and HeLa S-3 cell lines.
Collapse
Affiliation(s)
- Akihito Shimazu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan
| | - Masashi Kawagoshi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan
| | - Shoichi Takeda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan
| | - Haruaki Kurasaki
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan
| | - Asako Kato
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan
| | - Nahoko Morii
- Nanomaterials Laboratory, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0003, Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan
| | - Takeo Konakahara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan.
| |
Collapse
|
38
|
Guner G, Sirajuddin P, Zheng Q, Bai B, Brodie A, Liu H, Af Hällström T, Kulac I, Laiho M, De Marzo AM. Novel Assay to Detect RNA Polymerase I Activity In Vivo. Mol Cancer Res 2017; 15:577-584. [PMID: 28119429 DOI: 10.1158/1541-7786.mcr-16-0246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/08/2016] [Accepted: 01/02/2017] [Indexed: 01/22/2023]
Abstract
This report develops an analytically validated chromogenic in situ hybridization (CISH) assay using branched DNA signal amplification (RNAscope) for detecting the expression of the 5' external transcribed spacer (ETS) of the 45S ribosomal (r) RNA precursor in formalin-fixed and paraffin-embedded (FFPE) human tissues. 5'ETS/45S CISH was performed on standard clinical specimens and tissue microarrays (TMA) from untreated prostate carcinomas, high-grade prostatic intraepithelial neoplasia (PIN), and matched benign prostatic tissues. Signals were quantified using image analysis software. The 5'ETS rRNA signal was restricted to the nucleolus. The signal was markedly attenuated in cell lines and in prostate tissue slices after pharmacologic inhibition of RNA polymerase I (Pol I) using BMH-21 or actinomycin D, and by RNAi depletion of Pol I, demonstrating validity as a measure of Pol I activity. Clinical human prostate FFPE tissue sections and TMAs showed a marked increase in the signal in the presumptive precursor lesion (high-grade PIN) and invasive adenocarcinoma lesions (P = 0.0001 and P = 0.0001, respectively) compared with non-neoplastic luminal epithelium. The increase in 5'ETS rRNA signal was present throughout all Gleason scores and pathologic stages at radical prostatectomy, with no marked difference among these. This precursor rRNA assay has potential utility for detection of increased rRNA production in various tumor types and as a novel companion diagnostic for clinical trials involving Pol I inhibition.Implications: Increased rRNA production, a possible therapeutic target for multiple cancers, can be detected with a new, validated assay that also serves as a pharmacodynamic marker for Pol I inhibitors. Mol Cancer Res; 15(5); 577-84. ©2017 AACR.
Collapse
Affiliation(s)
- Gunes Guner
- Department of Pathology, Urology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul Sirajuddin
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, Urology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Baoyan Bai
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra Brodie
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Taija Af Hällström
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ibrahim Kulac
- Department of Pathology, Urology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Pathology, Urology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
39
|
Liu F, Jin R, Liu X, Huang H, Wilkinson SC, Zhong D, Khuri FR, Fu H, Marcus A, He Y, Zhou W. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions. Oncotarget 2016; 7:2519-31. [PMID: 26506235 PMCID: PMC4823052 DOI: 10.18632/oncotarget.6224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022] Open
Abstract
We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells.
Collapse
Affiliation(s)
- Fakeng Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Rui Jin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiuju Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Henry Huang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott C Wilkinson
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA
| | - Diansheng Zhong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, P.R.China
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology and Laboratory Medicine and Department of Human Genetics Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
40
|
Jin R, Zhou W. TIF-IA: An oncogenic target of pre-ribosomal RNA synthesis. Biochim Biophys Acta Rev Cancer 2016; 1866:189-196. [PMID: 27641688 DOI: 10.1016/j.bbcan.2016.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022]
Abstract
Cancer cells devote the majority of their energy consumption to ribosome biogenesis, and pre-ribosomal RNA transcription accounts for 30-50% of all transcriptional activity. This aberrantly elevated biological activity is an attractive target for cancer therapeutic intervention if approaches can be developed to circumvent the development of side effects in normal cells. TIF-IA is a transcription factor that connects RNA polymerase I with the UBF/SL-1 complex to initiate the transcription of pre-ribosomal RNA. Its function is conserved in eukaryotes from yeast to mammals, and its activity is promoted by the phosphorylation of various oncogenic kinases in cancer cells. The depletion of TIF-IA induces cell death in lung cancer cells and mouse embryonic fibroblasts but not in several other normal tissue types evaluated in knock-out studies. Furthermore, the nuclear accumulation of TIF-IA under UTP down-regulated conditions requires the activity of LKB1 kinase, and LKB1-inactivated cancer cells are susceptible to cell death under such stress conditions. Therefore, TIF-IA may be a unique target to suppress ribosome biogenesis without significantly impacting the survival of normal tissues.
Collapse
Affiliation(s)
- Rui Jin
- Department of Hematology and Medical Oncology, The Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Wei Zhou
- Department of Hematology and Medical Oncology, The Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; Department of Pathology and Laboratory Medicine and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
41
|
Abstract
Trees have made an enormous phytochemical contribution in anticancer drugs' development more than any other life form. The contributions include alkaloids that are biosynthesized in various ways and yield. Lead alkaloids isolated from the trees are taxol and camptothecins that currently have annual sales in billion dollars. Other important alkaloids isolated from these life forms include rohitukine, harringtonine, acronycine, thalicarpine, usambarensine, ellipticine, and matrines. Studies on their mechanism of action and target on the DNA and protein of cancerous cells aided the development of potent hemisynthesized congeners. The molecules and their congeners passed/are passing a long period of historical development before approved as antineoplastic drugs for cancer chemotherapy. Some of them did not find the application as anticancer drugs due to ineffectiveness in clinical trials; others are generating research interest in the antineoplastic activity at the present and have reached clinical trial stages. Potentials in antineoplastic molecules from trees are high and are hoped to be commensurate with cancer types afflicting human society in the future.
Collapse
Affiliation(s)
- Tasiu Isah
- Department of Botany, Cellular Differentiation and Molecular Genetics Section, Hamdard University, New Delhi, India
| |
Collapse
|
42
|
Kato A, Nagatsuka Y, Hiratsuka T, Kiuchi S, Iwase Y, Okuno Y, Tsukamoto T, Kiran Y, Sakai N, Konakahara T. Synthesis and cytotoxic activity of novel 11-methyl-6H-pyrido[4,3-b]carbazole derivatives linked to amine, N-methylurea, and N-methyl-N-nitrosourea moieties with various types of carbamoyl tethers at the C-5 atom. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Palde PB, Bhaskar A, Pedrό Rosa LE, Madoux F, Chase P, Gupta V, Spicer T, Scampavia L, Singh A, Carroll KS. First-in-Class Inhibitors of Sulfur Metabolism with Bactericidal Activity against Non-Replicating M. tuberculosis. ACS Chem Biol 2016; 11:172-84. [PMID: 26524379 PMCID: PMC4729198 DOI: 10.1021/acschembio.5b00517] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Development of effective therapies to eradicate persistent, slowly replicating M. tuberculosis (Mtb) represents a significant challenge to controlling the global TB epidemic. To develop such therapies, it is imperative to translate information from metabolome and proteome adaptations of persistent Mtb into the drug discovery screening platforms. To this end, reductive sulfur metabolism is genetically and pharmacologically implicated in survival, pathogenesis, and redox homeostasis of persistent Mtb. Therefore, inhibitors of this pathway are expected to serve as powerful tools in its preclinical and clinical validation as a therapeutic target for eradicating persisters. Here, we establish a first functional HTS platform for identification of APS reductase (APSR) inhibitors, a critical enzyme in the assimilation of sulfate for the biosynthesis of cysteine and other essential sulfur-containing molecules. Our HTS campaign involving 38 350 compounds led to the discovery of three distinct structural classes of APSR inhibitors. A class of bioactive compounds with known pharmacology displayed potent bactericidal activity in wild-type Mtb as well as MDR and XDR clinical isolates. Top compounds showed markedly diminished potency in a conditional ΔAPSR mutant, which could be restored by complementation with Mtb APSR. Furthermore, ITC studies on representative compounds provided evidence for direct engagement of the APSR target. Finally, potent APSR inhibitors significantly decreased the cellular levels of key reduced sulfur-containing metabolites and also induced an oxidative shift in mycothiol redox potential of live Mtb, thus providing functional validation of our screening data. In summary, we have identified first-in-class inhibitors of APSR that can serve as molecular probes in unraveling the links between Mtb persistence, antibiotic tolerance, and sulfate assimilation, in addition to their potential therapeutic value.
Collapse
Affiliation(s)
- Prakash B. Palde
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ashima Bhaskar
- Department of Microbiology and Cell Biology (MCBL), Center for Infectious Disease Research (CIDR), Indian Institute of Science (IISc.), Bangalore 560012, India
| | - Laura E. Pedrό Rosa
- Lead Identification Division, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Franck Madoux
- Lead Identification Division, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Peter Chase
- Lead Identification Division, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Vinayak Gupta
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Timothy Spicer
- Lead Identification Division, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Louis Scampavia
- Lead Identification Division, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Amit Singh
- Department of Microbiology and Cell Biology (MCBL), Center for Infectious Disease Research (CIDR), Indian Institute of Science (IISc.), Bangalore 560012, India
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
44
|
Hacker SM, Buntz A, Zumbusch A, Marx A. Direct Monitoring of Nucleotide Turnover in Human Cell Extracts and Cells by Fluorogenic ATP Analogs. ACS Chem Biol 2015; 10:2544-52. [PMID: 26274552 DOI: 10.1021/acschembio.5b00459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleotides containing adenosine play pivotal roles in every living cell. Adenosine triphosphate (ATP), for example, is the universal energy currency, and ATP-consuming processes also contribute to posttranslational protein modifications. Nevertheless, detecting the turnover of adenosine nucleotides in the complex setting of a cell remains challenging. Here, we demonstrate the use of fluorogenic analogs of ATP and adenosine tetraphosphate to study nucleotide hydrolysis in lysates of human cell lines and in intact human cells. We found that the adenosine triphosphate analog is completely stable in lysates of human cell lines, whereas the adenosine tetraphosphate analog is rapidly turned over. The observed activity in human cell lysates can be assigned to a single enzyme, namely, the human diadenosine tetraphosphate hydrolase NudT2. Since NudT2 has been shown to be a prognostic factor for breast cancer, the adenosine tetraphosphate analog might contribute to a better understanding of its involvement in cancerogenesis and allow the straightforward screening for inhibitors. Studying hydrolysis of the analogs in intact cells, we found that electroporation is a suitable method to deliver nucleotide analogs into the cytoplasm and show that high FRET efficiencies can be detected directly after internalization. Time-dependent experiments reveal that adenosine triphosphate and tetraphosphate analogs are both processed in the cellular environment. This study demonstrates that these nucleotide analogs indeed bear the potential to be powerful tools for the exploration of nucleotide turnover in the context of whole cells.
Collapse
Affiliation(s)
- Stephan M. Hacker
- Department of Chemistry,
Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Annette Buntz
- Department of Chemistry,
Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Zumbusch
- Department of Chemistry,
Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry,
Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
45
|
Huang CJ, Wu D, Khan FA, Huo LJ. DeSUMOylation: An Important Therapeutic Target and Protein Regulatory Event. DNA Cell Biol 2015; 34:652-60. [PMID: 26309017 DOI: 10.1089/dna.2015.2933] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery of the process of small ubiquitin-like modifier (SUMO)-mediated post-translational modification of targets (SUMOylation) in early 1990s proved to be a significant step ahead in understanding mechanistic regulation of proteins and their functions in diverse life processes at the cellular level. The critical step in reversing the SUMOylation pathway is its ability to be dynamically deSUMOylated by SUMO/sentrin-specific protease (SENP). This review is intended to give a brief introduction about the process of SUMOylation, different mammalian deSUMOylating enzymes with special emphasis on their regulation of ribosome biogenesis at the molecular level, and its emerging roles in mitochondrial dynamics that might reveal usefulness of SENPs for therapeutic applications.
Collapse
Affiliation(s)
- Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| |
Collapse
|
46
|
Zeniou M, Fève M, Mameri S, Dong J, Salomé C, Chen W, El-Habr EA, Bousson F, Sy M, Obszynski J, Boh A, Villa P, Assad Kahn S, Didier B, Bagnard D, Junier MP, Chneiweiss H, Haiech J, Hibert M, Kilhoffer MC. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells. PLoS One 2015; 10:e0134793. [PMID: 26270679 PMCID: PMC4536076 DOI: 10.1371/journal.pone.0134793] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/14/2015] [Indexed: 01/11/2023] Open
Abstract
Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication.
Collapse
Affiliation(s)
- Maria Zeniou
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
- * E-mail:
| | - Marie Fève
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Samir Mameri
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Jihu Dong
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Christophe Salomé
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Wanyin Chen
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Elias A. El-Habr
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Fanny Bousson
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Mohamadou Sy
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Julie Obszynski
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Alexandre Boh
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Pascal Villa
- Plateforme de Chimie Biologie Intégrative (PCBIS), Université de Strasbourg / CNRS UMS 3286, Laboratoire d’Excellence Medalis, ESBS Pôle API-Bld Sébastien Brant, 67401 Illkirch, France
| | - Suzana Assad Kahn
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Bruno Didier
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
- Plateforme de Chimie Biologie Intégrative (PCBIS), Université de Strasbourg / CNRS UMS 3286, Laboratoire d’Excellence Medalis, ESBS Pôle API-Bld Sébastien Brant, 67401 Illkirch, France
| | - Dominique Bagnard
- U682, Inserm, Université de Strasbourg, 3, Avenue Molière, 67200 Strasbourg, France
| | - Marie-Pierre Junier
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Hervé Chneiweiss
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Jacques Haiech
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Marcel Hibert
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Marie-Claude Kilhoffer
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
47
|
Abstract
A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53?
Collapse
Affiliation(s)
- Allison James
- a Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA
| | | | | | | | | |
Collapse
|
48
|
A survey on the computational approaches to identify drug targets in the postgenomic era. BIOMED RESEARCH INTERNATIONAL 2015; 2015:239654. [PMID: 26060814 PMCID: PMC4427773 DOI: 10.1155/2015/239654] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022]
Abstract
Identifying drug targets plays essential roles in designing new drugs and combating diseases. Unfortunately, our current knowledge about drug targets is far from comprehensive. Screening drug targets in the lab is an expensive and time-consuming procedure. In the past decade, the accumulation of various types of omics data makes it possible to develop computational approaches to predict drug targets. In this paper, we make a survey on the recent progress being made on computational methodologies that have been developed to predict drug targets based on different kinds of omics data and drug property data.
Collapse
|
49
|
Eriksson A, Österroos A, Hassan S, Gullbo J, Rickardson L, Jarvius M, Nygren P, Fryknäs M, Höglund M, Larsson R. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia. Blood Cancer J 2015; 5:e307. [PMID: 25885427 PMCID: PMC4450329 DOI: 10.1038/bcj.2015.31] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/06/2015] [Indexed: 01/21/2023] Open
Abstract
To find drugs suitable for repositioning for use against leukemia, samples from patients with chronic lymphocytic, acute myeloid and lymphocytic leukemias as well as peripheral blood mononuclear cells (PBMC) were tested in response to 1266 compounds from the LOPAC1280 library (Sigma). Twenty-five compounds were defined as hits with activity in all leukemia subgroups (<50% cell survival compared with control) at 10 μM drug concentration. Only one of these compounds, quinacrine, showed low activity in normal PBMCs and was therefore selected for further preclinical evaluation. Mining the NCI-60 and the NextBio databases demonstrated leukemia sensitivity and the ability of quinacrine to reverse myeloid leukemia gene expression. Mechanistic exploration was performed using the NextBio bioinformatic software using gene expression analysis of drug exposed acute myeloid leukemia cultures (HL-60) in the database. Analysis of gene enrichment and drug correlations revealed strong connections to ribosomal biogenesis nucleoli and translation initiation. The highest drug–drug correlation was to ellipticine, a known RNA polymerase I inhibitor. These results were validated by additional gene expression analysis performed in-house. Quinacrine induced early inhibition of protein synthesis supporting these predictions. The results suggest that quinacrine have repositioning potential for treatment of acute myeloid leukemia by targeting of ribosomal biogenesis.
Collapse
Affiliation(s)
- A Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - A Österroos
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - S Hassan
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J Gullbo
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - L Rickardson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M Jarvius
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - P Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - M Fryknäs
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M Höglund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - R Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Nguyen LXT, Raval A, Garcia JS, Mitchell BS. Regulation of Ribosomal Gene Expression in Cancer. J Cell Physiol 2015; 230:1181-8. [DOI: 10.1002/jcp.24854] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Le Xuan Truong Nguyen
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Aparna Raval
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Jacqueline S. Garcia
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Beverly S. Mitchell
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| |
Collapse
|