1
|
Song J, Li H, Fan S. SET-CAN/NUP214 fusion gene in leukemia: general features and clinical advances. Front Oncol 2023; 13:1269531. [PMID: 37909026 PMCID: PMC10613893 DOI: 10.3389/fonc.2023.1269531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
SET-CAN/NUP214 fusion is a recurrent event commonly observed in adult male patients diagnosed with T-cell acute lymphoblastic leukemia (T-ALL) and has occasionally been reported in other diseases such as acute myeloid leukemia (AML), myeloid sarcoma (MS), acute undifferentiated leukemia (AUL), chronic myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL). This fusion gene is derived from chromosome del(9)(q34.11;q34.13) or t(9;9)(q34;q34) and may have an inhibitory effect on primitive progenitor differentiation. The prognosis of the reported patients is varied, with these patients often show resistance to chemotherapy regimens that include high doses of glucocorticoids. The optional treatment has not been determined, more cases need to be accumulated and evaluated. The scope of this review is to summarize the general features and prognostic significance in leukemia associated with the SET-CAN/NUP214 fusion gene and to discuss the methods of detection and treatment, aiming at providing some useful references for relevant researchers in the field of blood tumor.
Collapse
Affiliation(s)
- Jingyu Song
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Huibo Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shengjin Fan
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Menchits Y, Salimova T, Komkov A, Abramov D, Konyukhova T, Abasov R, Raykina E, Itov A, Gaskova M, Borkovskaia A, Kazakova A, Soldatkina O, Kashpor S, Semchenkova A, Popov A, Novichkova G, Olshanskaya Y, Maschan A, Zerkalenkova E. Unusual Presentation of SET::NUP214-Associated Concomitant Hematological Neoplasm in a Child-Diagnostic and Treatment Struggle. Int J Mol Sci 2023; 24:14451. [PMID: 37833906 PMCID: PMC10572181 DOI: 10.3390/ijms241914451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Simultaneous multilineage hematologic malignancies are uncommon and associated with poorer prognosis than single-lineage leukemia or lymphoma. Here, we describe a concomitant malignant neoplasm in a 4-year-old boy. The child presented with massive lymphoproliferative syndrome, nasal breathing difficulties, and snoring. Morphological, immunocytochemical, and flow cytometry diagnostics showed coexistence of acute myeloid leukemia (AML) and peripheral T-cell lymphoma (PTCL). Molecular examination revealed a rare t(9;9)(q34;q34)/SET::NUP214 translocation as well as common TCR clonal rearrangements in both the bone marrow and lymph nodes. The disease showed primary refractoriness to both lymphoid and myeloid high-dose chemotherapy as well as combined targeted therapy (trametinib + ruxolitinib). Hence, HSCT was performed, and the patient has since been in complete remission for over a year. This observation highlights the importance of molecular techniques for determining the united nature of complex SET::NUP214-positive malignant neoplasms arising from precursor cells with high lineage plasticity.
Collapse
Affiliation(s)
- Yaroslav Menchits
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Tatiana Salimova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexander Komkov
- Abu Dhabi Stem Cells Center, Mahdar Qutouf Str., 25, Abu Dhabi 22404, United Arab Emirates;
| | - Dmitry Abramov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Tatiana Konyukhova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Ruslan Abasov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Elena Raykina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Albert Itov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Marina Gaskova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Aleksandra Borkovskaia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Anna Kazakova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Olga Soldatkina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Svetlana Kashpor
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexandra Semchenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| |
Collapse
|
3
|
Kehlenbach RH, Neumann P, Ficner R, Dickmanns A. Interaction of nucleoporins with nuclear transport receptors: a structural perspective. Biol Chem 2023; 404:791-805. [PMID: 37210735 DOI: 10.1515/hsz-2023-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
Soluble nuclear transport receptors and stationary nucleoporins are at the heart of the nucleocytoplasmic transport machinery. A subset of nucleoporins contains characteristic and repetitive FG (phenylalanine-glycine) motifs, which are the basis for the permeability barrier of the nuclear pore complex (NPC) that controls transport of macromolecules between the nucleus and the cytoplasm. FG-motifs can interact with each other and/or with transport receptors, mediating their translocation across the NPC. The molecular details of homotypic and heterotypic FG-interactions have been analyzed at the structural level. In this review, we focus on the interactions of nucleoporins with nuclear transport receptors. Besides the conventional FG-motifs as interaction spots, a thorough structural analysis led us to identify additional similar motifs at the binding interface between nucleoporins and transport receptors. A detailed analysis of all known human nucleoporins revealed a large number of such phenylalanine-containing motifs that are not buried in the predicted 3D-structure of the respective protein but constitute part of the solvent-accessible surface area. Only nucleoporins that are rich in conventional FG-repeats are also enriched for these motifs. This additional layer of potential low-affinity binding sites on nucleoporins for transport receptors may have a strong impact on the interaction of transport complexes with the nuclear pore and, thus, the efficiency of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Piotr Neumann
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| |
Collapse
|
4
|
Pörschke M, Rodríguez-González I, Parfentev I, Urlaub H, Kehlenbach RH. Transportin 1 is a major nuclear import receptor of the nitric oxide synthase interacting protein. J Biol Chem 2023; 299:102932. [PMID: 36690276 PMCID: PMC9974451 DOI: 10.1016/j.jbc.2023.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
The nitric oxide synthase interacting protein (NOSIP), an E3-ubiquitin ligase, is involved in various processes like neuronal development, craniofacial development, granulopoiesis, mitogenic signaling, apoptosis, and cell proliferation. The best-characterized function of NOSIP is the regulation of endothelial nitric oxide synthase activity by translocating the membrane-bound enzyme to the cytoskeleton, specifically in the G2 phase of the cell cycle. For this, NOSIP itself has to be translocated from its prominent localization, the nucleus, to the cytoplasm. Nuclear import of NOSIP was suggested to be mediated by the canonical transport receptors importin α/β. Recently, we found NOSIP in a proteomic screen as a potential importin 13 cargo. Here, we describe the nuclear shuttling characteristics of NOSIP in living cells and in vitro and show that it does not interact directly with importin α. Instead, it formed stable complexes with several importins (-β, -7, -β/7, -13, and transportin 1) and was also imported into the nucleus in digitonin-permeabilized cells by these factors. In living HeLa cells, transportin 1 seems to be the major nuclear import receptor for NOSIP. A detailed analysis of the NOSIP-transportin 1 interaction revealed a high affinity and an unusual binding mode, involving the N-terminal half of transportin 1. In contrast to nuclear import, nuclear export of NOSIP seems to occur mostly by passive diffusion. Thus, our results uncover additional layers in the larger process of endothelial nitric oxide synthase regulation.
Collapse
Affiliation(s)
- Marius Pörschke
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Inés Rodríguez-González
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ralph H. Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany,For correspondence: Ralph H. Kehlenbach
| |
Collapse
|
5
|
Tingey M, Li Y, Yu W, Young A, Yang W. Spelling out the roles of individual nucleoporins in nuclear export of mRNA. Nucleus 2022; 13:170-193. [PMID: 35593254 PMCID: PMC9132428 DOI: 10.1080/19491034.2022.2076965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022] Open
Abstract
The Nuclear Pore Complex (NPC) represents a critical passage through the nuclear envelope for nuclear import and export that impacts nearly every cellular process at some level. Recent technological advances in the form of Auxin Inducible Degron (AID) strategies and Single-Point Edge-Excitation sub-Diffraction (SPEED) microscopy have enabled us to provide new insight into the distinct functions and roles of nuclear basket nucleoporins (Nups) upon nuclear docking and export for mRNAs. In this paper, we provide a review of our recent findings as well as an assessment of new techniques, updated models, and future perspectives in the studies of mRNA's nuclear export.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Albert Young
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Tai L, Zhu Y, Ren H, Huang X, Zhang C, Sun F. 8 Å structure of the outer rings of the Xenopus laevis nuclear pore complex obtained by cryo-EM and AI. Protein Cell 2022; 13:760-777. [PMID: 35015240 PMCID: PMC9233733 DOI: 10.1007/s13238-021-00895-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
The nuclear pore complex (NPC), one of the largest protein complexes in eukaryotes, serves as a physical gate to regulate nucleocytoplasmic transport. Here, we determined the 8 Å resolution cryo-electron microscopic (cryo-EM) structure of the outer rings containing nuclear ring (NR) and cytoplasmic ring (CR) from the Xenopus laevis NPC, with local resolutions reaching 4.9 Å. With the aid of AlphaFold2, we managed to build a pseudoatomic model of the outer rings, including the Y complexes and flanking components. In this most comprehensive and accurate model of outer rings to date, the almost complete Y complex structure exhibits much tighter interaction in the hub region. In addition to two copies of Y complexes, each asymmetric subunit in CR contains five copies of Nup358, two copies of the Nup214 complex, two copies of Nup205 and one copy of newly identified Nup93, while that in NR contains one copy of Nup205, one copy of ELYS and one copy of Nup93. These in-depth structural features represent a great advance in understanding the assembly of NPCs.
Collapse
Affiliation(s)
- Linhua Tai
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
| | - He Ren
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaojun Huang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
7
|
Lagadec F, Carlon-Andres I, Ragues J, Port S, Wodrich H, Kehlenbach RH. CRM1 Promotes Capsid Disassembly and Nuclear Envelope Translocation of Adenovirus Independently of Its Export Function. J Virol 2022; 96:e0127321. [PMID: 34757845 PMCID: PMC8826800 DOI: 10.1128/jvi.01273-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
After receptor-mediated endocytosis and endosomal escape, adenoviral capsids can travel via microtubule organizing centers to the nuclear envelope. Upon capsid disassembly, viral genome import into nuclei of interphase cells then occurs through nuclear pore complexes, involving the nucleoporins Nup214 and Nup358. Import also requires the activity of the classic nuclear export receptor CRM1, as it is blocked by the selective inhibitor leptomycin B. We have now used artificially enucleated as well as mitotic cells to analyze the role of an intact nucleus in different steps of the viral life cycle. In enucleated U2OS cells, viral capsids traveled to the microtubule organizing center, whereas their removal from this complex was blocked, suggesting that this step required nuclear factors. In mitotic cells, on the other hand, CRM1 promoted capsid disassembly and genome release, suggesting a role of this protein that does not require intact nuclear envelopes or nuclear pore complexes and is distinct from its function as a nuclear export receptor. Similar to enucleation, inhibition of CRM1 by leptomycin B also leads to an arrest of adenoviral capsids at the microtubule organizing center. In a small-scale screen using leptomycin B-resistant versions of CRM1, we identified a mutant, CRM1 W142A P143A, that is compromised with respect to adenoviral capsid disassembly in both interphase and mitotic cells. Strikingly, this mutant is capable of exporting cargo proteins out of the nucleus of living cells or digitonin-permeabilized cells, pointing to a role of the mutated region that is not directly linked to nuclear export. IMPORTANCE A role of nucleoporins and of soluble transport factors in adenoviral genome import into the nucleus of infected cells in interphase has previously been established. The nuclear export receptor CRM1 promotes genome import, but its precise function is not known. Using enucleated and mitotic cells, we showed that CRM1 does not simply function by exporting a crucial factor out of the nucleus that would then trigger capsid disassembly and genome import. Instead, CRM1 has an export-independent role, a notion that is also supported by a mutant, CRM1 W142A P143A, which is export competent but deficient in viral capsid disassembly, in both interphase and mitotic cells.
Collapse
Affiliation(s)
- Floriane Lagadec
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Irene Carlon-Andres
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Jessica Ragues
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Sarah Port
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| | - Harald Wodrich
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Ralph H. Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Nuclear export of the pre-60S ribosomal subunit through single nuclear pores observed in real time. Nat Commun 2021; 12:6211. [PMID: 34707094 PMCID: PMC8551241 DOI: 10.1038/s41467-021-26323-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/02/2021] [Indexed: 11/08/2022] Open
Abstract
Ribosomal biogenesis has been studied by biochemical, genetic and electron microscopic approaches, but live cell data on the in vivo kinetics are still missing. Here we analyse the export kinetics of the large ribosomal subunit (pre-60S particle) through single NPCs in human cells. We established a stable cell line co-expressing Halo-tagged eIF6 and GFP-fused NTF2 to simultaneously label pre-60S particles and NPCs, respectively. By combining single molecule tracking and super resolution confocal microscopy we visualize the dynamics of single pre-60S particles during export through single NPCs. For export events, maximum particle accumulation is found in the centre of the pore, while unsuccessful export terminates within the nuclear basket. The export has a single rate limiting step and a duration of ∼24 milliseconds. Only about 1/3 of attempted export events are successful. Our results show that the mass flux through a single NPC can reach up to ~125 MDa·s-1 in vivo.
Collapse
|
9
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
10
|
Kalita J, Kapinos LE, Lim RYH. On the asymmetric partitioning of nucleocytoplasmic transport - recent insights and open questions. J Cell Sci 2021; 134:239102. [PMID: 33912945 DOI: 10.1242/jcs.240382] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macromolecular cargoes are asymmetrically partitioned in the nucleus or cytoplasm by nucleocytoplasmic transport (NCT). At the center of this activity lies the nuclear pore complex (NPC), through which soluble factors circulate to orchestrate NCT. These include cargo-carrying importin and exportin receptors from the β-karyopherin (Kapβ) family and the small GTPase Ran, which switches between guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms to regulate cargo delivery and compartmentalization. Ongoing efforts have shed considerable light on how these soluble factors traverse the NPC permeability barrier to sustain NCT. However, this does not explain how importins and exportins are partitioned in the cytoplasm and nucleus, respectively, nor how a steep RanGTP-RanGDP gradient is maintained across the nuclear envelope. In this Review, we peel away the multiple layers of control that regulate NCT and juxtapose unresolved features against known aspects of NPC function. Finally, we discuss how NPCs might function synergistically with Kapβs, cargoes and Ran to establish the asymmetry of NCT.
Collapse
Affiliation(s)
- Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| | - Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| |
Collapse
|
11
|
Baade I, Hutten S, Sternburg EL, Pörschke M, Hofweber M, Dormann D, Kehlenbach RH. The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors. J Biol Chem 2021; 296:100659. [PMID: 33857479 PMCID: PMC8131929 DOI: 10.1016/j.jbc.2021.100659] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Fused in sarcoma (FUS) is a predominantly nuclear RNA-binding protein with key functions in RNA processing and DNA damage repair. Defects in nuclear import of FUS have been linked to severe neurodegenerative diseases; hence, it is of great interest to understand this process and how it is dysregulated in disease. Transportin-1 (TNPO1) and the closely related transportin-2 have been identified as major nuclear import receptors of FUS. They bind to the C-terminal nuclear localization signal of FUS and mediate the protein's nuclear import and at the same time also suppress aberrant phase transitions of FUS in the cytoplasm. Whether FUS can utilize other nuclear transport receptors for the purpose of import and chaperoning has not been examined so far. Here, we show that FUS directly binds to different import receptors in vitro. FUS formed stable complexes not only with TNPO1 but also with transportin-3, importin β, importin 7, or the importin β/7 heterodimer. Binding of these alternative import receptors required arginine residues within FUS-RG/RGG motifs and was weakened by arginine methylation. Interaction with these importins suppressed FUS phase separation and reduced its sequestration into stress granules. In a permeabilized cell system, we further showed that transportin-3 had the capacity to import FUS into the nucleus, albeit with lower efficiency than TNPO1. Our data suggest that aggregation-prone RNA-binding proteins such as FUS may utilize a network of importins for chaperoning and import, similar to histones and ribosomal proteins.
Collapse
Affiliation(s)
- Imke Baade
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Saskia Hutten
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Erin L Sternburg
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Marius Pörschke
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Mario Hofweber
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
Hamed M, Caspar B, Port SA, Kehlenbach RH. A nuclear export sequence promotes CRM1-dependent targeting of the nucleoporin Nup214 to the nuclear pore complex. J Cell Sci 2021; 134:jcs.258095. [PMID: 33589493 DOI: 10.1242/jcs.258095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/02/2021] [Indexed: 11/20/2022] Open
Abstract
Nup214 is a major nucleoporin on the cytoplasmic side of the nuclear pore complex with roles in late steps of nuclear protein and mRNA export. It interacts with the nuclear export receptor CRM1 (also known as XPO1) via characteristic phenylalanine-glycine (FG) repeats in its C-terminal region. Here, we identify a classic nuclear export sequence (NES) in Nup214 that mediates Ran-dependent binding to CRM1. Nup214 versions with mutations in the NES, as well as wild-type Nup214 in the presence of the selective CRM1 inhibitor leptomycin B, accumulate in the nucleus of Nup214-overexpressing cells. Furthermore, physiological binding partners of Nup214, such as Nup62 and Nup88, are recruited to the nucleus together with Nup214. Nuclear export of mutant Nup214 can be rescued by artificial nuclear export sequences at the C-terminal end of Nup214, leading also to a correct localization of Nup88. Our results suggest a function of the Nup214 NES in the biogenesis of the nuclear pore complex and/or in terminal steps of CRM1-dependent protein export.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Birgit Caspar
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Sarah A Port
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| |
Collapse
|
13
|
Hutten S, Usluer S, Bourgeois B, Simonetti F, Odeh HM, Fare CM, Czuppa M, Hruska-Plochan M, Hofweber M, Polymenidou M, Shorter J, Edbauer D, Madl T, Dormann D. Nuclear Import Receptors Directly Bind to Arginine-Rich Dipeptide Repeat Proteins and Suppress Their Pathological Interactions. Cell Rep 2020; 33:108538. [PMID: 33357437 PMCID: PMC7814465 DOI: 10.1016/j.celrep.2020.108538] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear import receptors, also called importins, mediate nuclear import of proteins and chaperone aggregation-prone cargoes (e.g., neurodegeneration-linked RNA-binding proteins [RBPs]) in the cytoplasm. Importins were identified as modulators of cellular toxicity elicited by arginine-rich dipeptide repeat proteins (DPRs), an aberrant protein species found in C9orf72-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mechanistically, the link between importins and arginine-rich DPRs remains unclear. Here, we show that arginine-rich DPRs (poly-GR and poly-PR) bind directly to multiple importins and, in excess, promote their insolubility and condensation. In cells, poly-GR impairs Impα/β-mediated nuclear import, including import of TDP-43, an RBP that aggregates in C9orf72-ALS/FTD patients. Arginine-rich DPRs promote phase separation and insolubility of TDP-43 in vitro and in cells, and this pathological interaction is suppressed by elevating importin concentrations. Our findings suggest that importins can decrease toxicity of arginine-rich DPRs by suppressing their pathological interactions.
Collapse
Affiliation(s)
- Saskia Hutten
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Francesca Simonetti
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mareike Czuppa
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Marian Hruska-Plochan
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mario Hofweber
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany; LMU Graduate School of Systemic Neurosciences (GSN), 82152 Planegg-Martinsried, Germany
| | - Magdalini Polymenidou
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; LMU Graduate School of Systemic Neurosciences (GSN), 82152 Planegg-Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany; LMU Graduate School of Systemic Neurosciences (GSN), 82152 Planegg-Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
14
|
Nup358 and Transportin 1 Cooperate in Adenoviral Genome Import. J Virol 2020; 94:JVI.00164-20. [PMID: 32161167 DOI: 10.1128/jvi.00164-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Nuclear import of viral genomes is an important step during the life cycle of adenoviruses (AdV), requiring soluble cellular factors as well as proteins of the nuclear pore complex (NPC). We addressed the role of the cytoplasmic nucleoporin Nup358 during adenoviral genome delivery by performing depletion/reconstitution experiments and time-resolved quantification of adenoviral genome import. Nup358-depleted cells displayed reduced efficiencies of nuclear import of adenoviral genomes, and the nuclear import receptor transportin 1 became rate limiting under these conditions. Furthermore, we identified a minimal N-terminal region of Nup358 that was sufficient to compensate for the import defect. Our data support a model where Nup358 functions as an assembly platform that promotes the formation of transport complexes, allowing AdV to exploit a physiological protein import pathway for accelerated transport of its DNA.IMPORTANCE Nuclear import of viral genomes is an essential step to initiate productive infection for several nuclear replicating DNA viruses. On the other hand, DNA is not a physiological nuclear import substrate; consequently, viruses have to exploit existing physiological transport routes. Here, we show that adenoviruses use the nucleoporin Nup358 to increase the efficiency of adenoviral genome import. In its absence, genome import efficiency is reduced and the transport receptor transportin 1 becomes rate limiting. We show that the N-terminal half of Nup358 is sufficient to drive genome import and identify a transportin 1 binding region. In our model, adenovirus genome import exploits an existing protein import pathway and Nup358 serves as an assembly platform for transport complexes.
Collapse
|
15
|
Oka M, Mura S, Otani M, Miyamoto Y, Nogami J, Maehara K, Harada A, Tachibana T, Yoneda Y, Ohkawa Y. Chromatin-bound CRM1 recruits SET-Nup214 and NPM1c onto HOX clusters causing aberrant HOX expression in leukemia cells. eLife 2019; 8:e46667. [PMID: 31755865 PMCID: PMC6874418 DOI: 10.7554/elife.46667] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that CRM1, a major nuclear export factor, accumulates at Hox cluster regions to recruit nucleoporin-fusion protein Nup98HoxA9, resulting in robust activation of Hox genes (Oka et al., 2016). However, whether this phenomenon is general to other leukemogenic proteins remains unknown. Here, we show that two other leukemogenic proteins, nucleoporin-fusion SET-Nup214 and the NPM1 mutant, NPM1c, which contains a nuclear export signal (NES) at its C-terminus and is one of the most frequent mutations in acute myeloid leukemia, are recruited to the HOX cluster region via chromatin-bound CRM1, leading to HOX gene activation in human leukemia cells. Furthermore, we demonstrate that this mechanism is highly sensitive to a CRM1 inhibitor in leukemia cell line. Together, these findings indicate that CRM1 acts as a key molecule that connects leukemogenic proteins to aberrant HOX gene regulation either via nucleoporin-CRM1 interaction (for SET-Nup214) or NES-CRM1 interaction (for NPM1c).
Collapse
Affiliation(s)
- Masahiro Oka
- Laboratory of Nuclear Transport DynamicsNational Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)OsakaJapan
- Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Sonoko Mura
- Biomolecular Dynamics Group, Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Mayumi Otani
- Laboratory of Nuclear Transport DynamicsNational Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)OsakaJapan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport DynamicsNational Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)OsakaJapan
| | - Jumpei Nogami
- Department of Advanced Medical Initiatives, Faculty of MedicineKyushu UniversityFukuokaJapan
| | - Kazumitsu Maehara
- Department of Advanced Medical Initiatives, Faculty of MedicineKyushu UniversityFukuokaJapan
| | - Akihito Harada
- Department of Advanced Medical Initiatives, Faculty of MedicineKyushu UniversityFukuokaJapan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of EngineeringOsaka City UniversityOsakaJapan
| | - Yoshihiro Yoneda
- Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)OsakaJapan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Faculty of MedicineKyushu UniversityFukuokaJapan
| |
Collapse
|
16
|
Mendes A, Fahrenkrog B. NUP214 in Leukemia: It's More than Transport. Cells 2019; 8:cells8010076. [PMID: 30669574 PMCID: PMC6356203 DOI: 10.3390/cells8010076] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
NUP214 is a component of the nuclear pore complex (NPC) with a key role in protein and mRNA nuclear export. Chromosomal translocations involving the NUP214 locus are recurrent in acute leukemia and frequently fuse the C-terminal region of NUP214 with SET and DEK, two chromatin remodeling proteins with roles in transcription regulation. SET-NUP214 and DEK-NUP214 fusion proteins disrupt protein nuclear export by inhibition of the nuclear export receptor CRM1, which results in the aberrant accumulation of CRM1 protein cargoes in the nucleus. SET-NUP214 is primarily associated with acute lymphoblastic leukemia (ALL), whereas DEK-NUP214 exclusively results in acute myeloid leukemia (AML), indicating different leukemogenic driver mechanisms. Secondary mutations in leukemic blasts may contribute to the different leukemia outcomes. Additional layers of complexity arise from the respective functions of SET and DEK in transcription regulation and chromatin remodeling, which may drive malignant hematopoietic transformation more towards ALL or AML. Another, less frequent fusion protein involving the C terminus of NUP214 results in the sequestosome-1 (SQSTM1)-NUP214 chimera, which was detected in ALL. SQSTM1 is a ubiquitin-binding protein required for proper autophagy induction, linking the NUP214 fusion protein to yet another cellular mechanism. The scope of this review is to summarize the general features of NUP214-related leukemia and discuss how distinct chromosomal translocation partners can influence the cellular effects of NUP214 fusion proteins in leukemia.
Collapse
Affiliation(s)
- Adélia Mendes
- Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
17
|
Bao XX, Spanos C, Kojidani T, Lynch EM, Rappsilber J, Hiraoka Y, Haraguchi T, Sawin KE. Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore. eLife 2018; 7:e33465. [PMID: 29809148 PMCID: PMC6008054 DOI: 10.7554/elife.33465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/21/2018] [Indexed: 01/04/2023] Open
Abstract
Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe, the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the γ-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs.
Collapse
Affiliation(s)
- Xun X Bao
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Tomoko Kojidani
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Department of Chemical and Biological Sciences, Faculty of ScienceJapan Women’s UniversityTokyoJapan
| | - Eric M Lynch
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
- Department of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Yasushi Hiraoka
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
18
|
Ederle H, Funk C, Abou-Ajram C, Hutten S, Funk EBE, Kehlenbach RH, Bailer SM, Dormann D. Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1. Sci Rep 2018; 8:7084. [PMID: 29728564 PMCID: PMC5935713 DOI: 10.1038/s41598-018-25007-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
TDP-43 and FUS are nuclear proteins with multiple functions in mRNA processing. They play key roles in ALS (amyotrophic lateral sclerosis) and FTD (frontotemporal dementia), where they are partially lost from the nucleus and aggregate in the cytoplasm of neurons and glial cells. Defects in nucleocytoplasmic transport contribute to this pathology, hence nuclear import of both proteins has been studied in detail. However, their nuclear export routes remain poorly characterized and it is unclear whether aberrant nuclear export contributes to TDP-43 or FUS pathology. Here we show that predicted nuclear export signals in TDP-43 and FUS are non-functional and that both proteins are exported independently of the export receptor CRM1/Exportin-1. Silencing of Exportin-5 or the mRNA export factor Aly/REF, as well as mutations that abrogate RNA-binding do not impair export of TDP-43 and FUS. However, artificially enlarging TDP-43 or FUS impairs their nuclear egress, suggesting that they could leave the nucleus by passive diffusion. Finally, we found that inhibition of transcription causes accelerated nuclear egress of TDP-43, suggesting that newly synthesized RNA retains TDP-43 in the nucleus, limiting its egress into the cytoplasm. Our findings implicate reduced nuclear retention as a possible factor contributing to mislocalization of TDP-43 in ALS/FTD.
Collapse
Affiliation(s)
- Helena Ederle
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences (GSN), 82152, Planegg-Martinsried, Germany
| | - Christina Funk
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, 70569, Stuttgart, Germany
- Frauenhofer Institute for Interfacial Engineering and Biotechnology, 70569, Stuttgart, Germany
| | - Claudia Abou-Ajram
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Saskia Hutten
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Eva B E Funk
- BioMedical Center (BMC), Biochemistry, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Susanne M Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, 70569, Stuttgart, Germany
- Frauenhofer Institute for Interfacial Engineering and Biotechnology, 70569, Stuttgart, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany.
- Graduate School of Systemic Neurosciences (GSN), 82152, Planegg-Martinsried, Germany.
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany.
| |
Collapse
|
19
|
Port SA, Mendes A, Valkova C, Spillner C, Fahrenkrog B, Kaether C, Kehlenbach RH. The Oncogenic Fusion Proteins SET-Nup214 and Sequestosome-1 (SQSTM1)-Nup214 Form Dynamic Nuclear Bodies and Differentially Affect Nuclear Protein and Poly(A)+ RNA Export. J Biol Chem 2016; 291:23068-23083. [PMID: 27613868 PMCID: PMC5087727 DOI: 10.1074/jbc.m116.735340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/31/2016] [Indexed: 01/09/2023] Open
Abstract
Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A)+ RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A)+ RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors.
Collapse
Affiliation(s)
- Sarah A Port
- From the Department of Molecular Biology, Faculty of Medicine and the Göttingen Center for Molecular Biosciences (GZMB), Georg August University, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Adélia Mendes
- the Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium, and
| | - Christina Valkova
- the Leibniz Institute on Aging,Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Christiane Spillner
- From the Department of Molecular Biology, Faculty of Medicine and the Göttingen Center for Molecular Biosciences (GZMB), Georg August University, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Birthe Fahrenkrog
- the Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium, and
| | - Christoph Kaether
- the Leibniz Institute on Aging,Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Ralph H Kehlenbach
- From the Department of Molecular Biology, Faculty of Medicine and the Göttingen Center for Molecular Biosciences (GZMB), Georg August University, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany,
| |
Collapse
|
20
|
Abstract
The nuclear pore complex (NPC) mediates the shuttle transport of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The permeability barrier formed by intrinsically disordered phenylalanine-glycine-rich nucleoporins (FG-Nups) in the NPC functions as the critical selective control for nucleocytoplasmic transport. Signal-independent small molecules (< 40 kDa) passively diffuse through the pore, but passage of large cargo molecules is inhibited unless they are chaperoned by nuclear transport receptors (NTRs). NTRs are capable of interacting with FG-Nups and guide the cargos to cross the barrier by facilitated diffusion. The native conformation of the FG-Nups permeability barrier and the competition among multiple NTRs interacting with this barrier in the native NPCs are the 2 core questions still being highly debated in the field. Recently, we applied high-speed super-resolution fluorescence microscopy to map out the natural structure of the FG-Nups barrier and determined the competition among multiple NTRs as they interact with the barrier in the native NPCs. In this extra-view article, we will review the current understanding in the configuration and function of FG-Nups barrier and highlight the new evidence obtained recently to answer the core questions in nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Christina Li
- a Department of Biology , Temple University , Philadelphia , PA , USA
| | | | - Weidong Yang
- a Department of Biology , Temple University , Philadelphia , PA , USA
| |
Collapse
|
21
|
Leukemia-Associated Nup214 Fusion Proteins Disturb the XPO1-Mediated Nuclear-Cytoplasmic Transport Pathway and Thereby the NF-κB Signaling Pathway. Mol Cell Biol 2016; 36:1820-35. [PMID: 27114368 DOI: 10.1128/mcb.00158-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023] Open
Abstract
Nuclear-cytoplasmic transport through nuclear pore complexes is mediated by nuclear transport receptors. Previous reports have suggested that aberrant nuclear-cytoplasmic transport due to mutations or overexpression of nuclear pore complexes and nuclear transport receptors is closely linked to diseases. Nup214, a component of nuclear pore complexes, has been found as chimeric fusion proteins in leukemia. Among various Nup214 fusion proteins, SET-Nup214 and DEK-Nup214 have been shown to be engaged in tumorigenesis, but their oncogenic mechanisms remain unclear. In this study, we examined the functions of the Nup214 fusion proteins by focusing on their effects on nuclear-cytoplasmic transport. We found that SET-Nup214 and DEK-Nup214 interact with exportin-1 (XPO1)/CRM1 and nuclear RNA export factor 1 (NXF1)/TAP, which mediate leucine-rich nuclear export signal (NES)-dependent protein export and mRNA export, respectively. SET-Nup214 and DEK-Nup214 decreased the XPO1-mediated nuclear export of NES proteins such as cyclin B and proteins involved in the NF-κB signaling pathway by tethering XPO1 onto nuclear dots where Nup214 fusion proteins are localized. We also demonstrated that SET-Nup214 and DEK-Nup214 expression inhibited NF-κB-mediated transcription by abnormal tethering of the complex containing p65 and its inhibitor, IκB, in the nucleus. These results suggest that SET-Nup214 and DEK-Nup214 perturb the regulation of gene expression through alteration of the nuclear-cytoplasmic transport system.
Collapse
|
22
|
Oka M, Mura S, Yamada K, Sangel P, Hirata S, Maehara K, Kawakami K, Tachibana T, Ohkawa Y, Kimura H, Yoneda Y. Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes. eLife 2016; 5:e09540. [PMID: 26740045 PMCID: PMC4718815 DOI: 10.7554/elife.09540] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023] Open
Abstract
The nucleoporin Nup98 is frequently rearranged to form leukemogenic Nup98-fusion proteins with various partners. However, their function remains largely elusive. Here, we show that Nup98-HoxA9, a fusion between Nup98 and the homeobox transcription factor HoxA9, forms nuclear aggregates that frequently associate with facultative heterochromatin. We demonstrate that stable expression of Nup98-HoxA9 in mouse embryonic stem cells selectively induces the expression of Hox cluster genes. Genome-wide binding site analysis revealed that Nup98-HoxA9 is preferentially targeted and accumulated at Hox cluster regions where the export factor Crm1 is originally prebound. In addition, leptomycin B, an inhibitor of Crm1, disassembled nuclear Nup98-HoxA9 dots, resulting in the loss of chromatin binding of Nup98-HoxA9 and Nup98-HoxA9-mediated activation of Hox genes. Collectively, our results indicate that highly selective targeting of Nup98-fusion proteins to Hox cluster regions via prebound Crm1 induces the formation of higher order chromatin structures that causes aberrant Hox gene regulation.
Collapse
Affiliation(s)
- Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Sonoko Mura
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Kohji Yamada
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Percival Sangel
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Saki Hirata
- Department of Advanced Medical Initiatives, Kyushu University, Fukuoka, Japan
| | - Kazumitsu Maehara
- Department of Advanced Medical Initiatives, Kyushu University, Fukuoka, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Shizuoka, Japan
| | - Taro Tachibana
- Department of Bioengineering, Osaka City University, Graduate School of Engineering, Osaka, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Kyushu University, Fukuoka, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshihiro Yoneda
- Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- National Institutes of Biomedical Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
23
|
Abstract
Nuclear protein import and export assays in permeabilized cells have been instrumental for the identification of transport factors and for the molecular characterization of nucleocytoplasmic transport pathways. Our original assay to quantitatively analyze CRM1-dependent export was based on stably transfected cells expressing GFP-NFAT. We now present a simplified version of the assay using transiently transfected cells expressing GFP-NFAT or GFP-snurportin1 as a fluorescent export cargo and mCherry-emerin as a marker protein for transfected cells. CRM1- and Ran-dependent export is recapitulated in digitonin-permeabilized cells and quantified by flow cytometry. The assay should be applicable to other combinations of cargo and marker proteins.
Collapse
Affiliation(s)
- Ralph H Kehlenbach
- Faculty of Medicine, Institute of Molecular Biology, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Sarah A Port
- Faculty of Medicine, Institute of Molecular Biology, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| |
Collapse
|
24
|
Port SA, Monecke T, Dickmanns A, Spillner C, Hofele R, Urlaub H, Ficner R, Kehlenbach RH. Structural and Functional Characterization of CRM1-Nup214 Interactions Reveals Multiple FG-Binding Sites Involved in Nuclear Export. Cell Rep 2015; 13:690-702. [PMID: 26489467 DOI: 10.1016/j.celrep.2015.09.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/11/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022] Open
Abstract
CRM1 is the major nuclear export receptor. During translocation through the nuclear pore, transport complexes transiently interact with phenylalanine-glycine (FG) repeats of multiple nucleoporins. On the cytoplasmic side of the nuclear pore, CRM1 tightly interacts with the nucleoporin Nup214. Here, we present the crystal structure of a 117-amino-acid FG-repeat-containing fragment of Nup214, in complex with CRM1, Snurportin 1, and RanGTP at 2.85 Å resolution. The structure reveals eight binding sites for Nup214 FG motifs on CRM1, with intervening stretches that are loosely attached to the transport receptor. Nup214 binds to N- and C-terminal regions of CRM1, thereby clamping CRM1 in a closed conformation and stabilizing the export complex. The role of conserved hydrophobic pockets for the recognition of FG motifs was analyzed in biochemical and cell-based assays. Comparative studies with RanBP3 and Nup62 shed light on specificities of CRM1-nucleoporin binding, which serves as a paradigm for transport receptor-nucleoporin interactions.
Collapse
Affiliation(s)
- Sarah A Port
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Thomas Monecke
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Christiane Spillner
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Romina Hofele
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
25
|
Dickmanns A, Monecke T, Ficner R. Structural Basis of Targeting the Exportin CRM1 in Cancer. Cells 2015; 4:538-68. [PMID: 26402707 PMCID: PMC4588050 DOI: 10.3390/cells4030538] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022] Open
Abstract
Recent studies have demonstrated the interference of nucleocytoplasmic trafficking with the establishment and maintenance of various cancers. Nucleocytoplasmic transport is highly regulated and coordinated, involving different nuclear transport factors or receptors, importins and exportins, that mediate cargo transport from the cytoplasm into the nucleus or the other way round, respectively. The exportin CRM1 (Chromosome region maintenance 1) exports a plethora of different protein cargoes and ribonucleoprotein complexes. Structural and biochemical analyses have enabled the deduction of individual steps of the CRM1 transport cycle. In addition, CRM1 turned out to be a valid target for anticancer drugs as it exports numerous proto-oncoproteins and tumor suppressors. Clearly, detailed understanding of the flexibility, regulatory features and cooperative binding properties of CRM1 for Ran and cargo is a prerequisite for the design of highly effective drugs. The first compound found to inhibit CRM1-dependent nuclear export was the natural drug Leptomycin B (LMB), which blocks export by competitively interacting with a highly conserved cleft on CRM1 required for nuclear export signal recognition. Clinical studies revealed serious side effects of LMB, leading to a search for alternative natural and synthetic drugs and hence a multitude of novel therapeutics. The present review examines recent progress in understanding the binding mode of natural and synthetic compounds and their inhibitory effects.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Thomas Monecke
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| |
Collapse
|
26
|
Nucleoporin FG domains facilitate mRNP remodeling at the cytoplasmic face of the nuclear pore complex. Genetics 2014; 197:1213-24. [PMID: 24931410 DOI: 10.1534/genetics.114.164012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Directional export of messenger RNA (mRNA) protein particles (mRNPs) through nuclear pore complexes (NPCs) requires multiple factors. In Saccharomyces cerevisiae, the NPC proteins Nup159 and Nup42 are asymmetrically localized to the cytoplasmic face and have distinct functional domains: a phenylalanine-glycine (FG) repeat domain that docks mRNP transport receptors and domains that bind the DEAD-box ATPase Dbp5 and its activating cofactor Gle1, respectively. We speculated that the Nup42 and Nup159 FG domains play a role in positioning mRNPs for the terminal mRNP-remodeling steps carried out by Dbp5. Here we find that deletion (Δ) of both the Nup42 and Nup159 FG domains results in a cold-sensitive poly(A)+ mRNA export defect. The nup42ΔFG nup159ΔFG mutant also has synthetic lethal genetic interactions with dbp5 and gle1 mutants. RNA cross-linking experiments further indicate that the nup42ΔFG nup159ΔFG mutant has a reduced capacity for mRNP remodeling during export. To further analyze the role of these FG domains, we replaced the Nup159 or Nup42 FG domains with FG domains from other Nups. These FG "swaps" demonstrate that only certain FG domains are functional at the NPC cytoplasmic face. Strikingly, fusing the Nup42 FG domain to the carboxy-terminus of Gle1 bypasses the need for the endogenous Nup42 FG domain, highlighting the importance of proximal positioning for these factors. We conclude that the Nup42 and Nup159 FG domains target the mRNP to Gle1 and Dbp5 for mRNP remodeling at the NPC. Moreover, these results provide key evidence that character and context play a direct role in FG domain function and mRNA export.
Collapse
|
27
|
Abstract
Nuclear pore complexes (NPCs) are the sole gateways between the nucleus and the cytoplasm of eukaryotic cells and they mediate all macromolecular trafficking between these cellular compartments. Nucleocytoplasmic transport is highly selective and precisely regulated and as such an important aspect of normal cellular function. Defects in this process or in its machinery have been linked to various human diseases, including cancer. Nucleoporins, which are about 30 proteins that built up NPCs, are critical players in nucleocytoplasmic transport and have also been shown to be key players in numerous other cellular processes, such as cell cycle control and gene expression regulation. This review will focus on the three nucleoporins Nup98, Nup214, and Nup358. Common to them is their significance in nucleocytoplasmic transport, their multiple other functions, and being targets for chromosomal translocations that lead to haematopoietic malignancies, in particular acute myeloid leukaemia. The underlying molecular mechanisms of nucleoporin-associated leukaemias are only poorly understood but share some characteristics and are distinguished by their poor prognosis and therapy outcome.
Collapse
|