1
|
Loupy KM, Dawud LM, Zambrano CA, Lee T, Heinze JD, Elsayed AI, Hassell JE, D'Angelo HM, Frank MG, Maier SF, Brenner LA, Lowry CA. Effects of Oral Administration of the Probiotic Lactobacillus rhamnosus GG on the Proteomic Profiles of Cerebrospinal Fluid and Immunoregulatory Signaling in the Hippocampus of Adult Male Rats. Neuroimmunomodulation 2025; 32:94-109. [PMID: 40031897 DOI: 10.1159/000544842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION The microbiome-gut-brain axis, by modulating bidirectional immune, metabolic, and neural signaling pathways in the host, has emerged as a target for the prevention and treatment of psychiatric and neurological disorders. Oral administration of the probiotic bacterium Lactobacillus rhamnosus GG (LGG; ATCC 53103) exhibits anti-inflammatory effects, although the precise mechanisms by which LGG benefits host physiology and behavior are not known. The goal of this study was to explore the general effects of LGG on the cerebrospinal fluid (CSF) proteome and a biological signature of anti-inflammatory signaling in the central nervous system (CNS) of undisturbed, adult male rats. METHODS Liquid chromatography-tandem mass spectrometry-based proteomics were conducted using CSF samples collected after 21 days of oral treatment with live LGG (3.34 × 107 colony-forming units (CFU)/mL in the drinking water (resulting in an estimated delivery of ∼1.17 × 109 CFU/day/rat) or water vehicle. Gene enrichment analysis (using DAVID, v. 6.8) and protein-protein interactions (using STRING, v. 11) were used to explore physiological network changes in CSF. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) was performed to assess gene expression changes of anti-inflammatory cytokines in the hippocampus. Genes associated with anti-inflammatory signaling that were analyzed included Il10, Tgfb1, Il4, and IL-4-responsive genes, Cd200, Cd200r1, and Mrc1 (Cd206). RESULTS Oral LGG administration altered the abundance of CSF proteins, increasing the abundance of five proteins (cochlin, NPTXR, reelin, Sez6l, and VPS13C) and decreasing the abundance of two proteins (CPQ, IGFBP-7) in the CSF. Simultaneously, LGG increased the expression of Il10 mRNA, encoding the anti-inflammatory cytokine interleukin 10, in the hippocampus. CONCLUSION Oral LGG altered the abundance of CSF proteins associated with extracellular scaffolding, synaptic plasticity, and glutamatergic signaling. These data are consistent with the hypothesis that oral administration of LGG improves memory and cognition, and promotes a physiological resilience to neurodegenerative disease, by increasing glutamatergic signaling and promoting an anti-inflammatory environment in the brain.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lamya'a M Dawud
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Thomas Lee
- Central Analytical Laboratory and Mass Spectrometry Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jared D Heinze
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lisa A Brenner
- Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
2
|
Lewis PA, Silajdžić E, Smith H, Bates N, Smith CA, Mancini FE, Knight D, Denning C, Brison DR, Kimber SJ. A secreted proteomic footprint for stem cell pluripotency. PLoS One 2024; 19:e0299365. [PMID: 38875182 PMCID: PMC11178176 DOI: 10.1371/journal.pone.0299365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/08/2024] [Indexed: 06/16/2024] Open
Abstract
With a view to developing a much-needed non-invasive method for monitoring the healthy pluripotent state of human stem cells in culture, we undertook proteomic analysis of the waste medium from cultured embryonic (Man-13) and induced (Rebl.PAT) human pluripotent stem cells (hPSCs). Cells were grown in E8 medium to maintain pluripotency, and then transferred to FGF2 and TGFβ deficient E6 media for 48 hours to replicate an early, undirected dissolution of pluripotency. We identified a distinct proteomic footprint associated with early loss of pluripotency in both hPSC lines, and a strong correlation with changes in the transcriptome. We demonstrate that multiplexing of four E8- against four E6- enriched secretome biomarkers provides a robust, diagnostic metric for the pluripotent state. These biomarkers were further confirmed by Western blotting which demonstrated consistent correlation with the pluripotent state across cell lines, and in response to a recovery assay.
Collapse
Affiliation(s)
- Philip A. Lewis
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Edina Silajdžić
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Helen Smith
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Christopher A. Smith
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Fabrizio E. Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David Knight
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Chris Denning
- Biodiscovery Institute, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Daniel R. Brison
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
3
|
Huang LC, McKeown CR, He HY, Ta AC, Cline HT. BRCA1 and ELK-1 regulate neural progenitor cell fate in the optic tectum in response to visual experience in Xenopus laevis tadpoles. Proc Natl Acad Sci U S A 2024; 121:e2316542121. [PMID: 38198524 PMCID: PMC10801852 DOI: 10.1073/pnas.2316542121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
In developing Xenopus tadpoles, the optic tectum begins to receive patterned visual input while visuomotor circuits are still undergoing neurogenesis and circuit assembly. This visual input regulates neural progenitor cell fate decisions such that maintaining tadpoles in the dark increases proliferation, expanding the progenitor pool, while visual stimulation promotes neuronal differentiation. To identify regulators of activity-dependent neural progenitor cell fate, we profiled the transcriptomes of proliferating neural progenitor cells and newly differentiated neurons using RNA-Seq. We used advanced bioinformatic analysis of 1,130 differentially expressed transcripts to identify six differentially regulated transcriptional regulators, including Breast Cancer 1 (BRCA1) and the ETS-family transcription factor, ELK-1, which are predicted to regulate the majority of the other differentially expressed transcripts. BRCA1 is known for its role in cancers, but relatively little is known about its potential role in regulating neural progenitor cell fate. ELK-1 is a multifunctional transcription factor which regulates immediate early gene expression. We investigated the potential functions of BRCA1 and ELK-1 in activity-regulated neurogenesis in the tadpole visual system using in vivo time-lapse imaging to monitor the fate of GFP-expressing SOX2+ neural progenitor cells in the optic tectum. Our longitudinal in vivo imaging analysis showed that knockdown of either BRCA1 or ELK-1 altered the fates of neural progenitor cells and furthermore that the effects of visual experience on neurogenesis depend on BRCA1 and ELK-1 expression. These studies provide insight into the potential mechanisms by which neural activity affects neural progenitor cell fate.
Collapse
Affiliation(s)
- Lin-Chien Huang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA92037
| | - Caroline R. McKeown
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA92037
| | - Hai-Yan He
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA92037
| | - Aaron C. Ta
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA92037
| | - Hollis T. Cline
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
4
|
Jung U, Kim M, Dowker-Key P, Noë S, Bettaieb A, Shepherd E, Voy B. Hypoxia promotes proliferation and inhibits myogenesis in broiler satellite cells. Poult Sci 2024; 103:103203. [PMID: 37980759 PMCID: PMC10685027 DOI: 10.1016/j.psj.2023.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Breast muscle myopathies in broilers compromise meat quality and continue to plague the poultry industry. Broiler breast muscle myopathies are characterized by impaired satellite cell (SC)-mediated repair, and localized tissue hypoxia and dysregulation of oxygen homeostasis have been implicated as contributing factors. The present study was designed to test the hypothesis that hypoxia disrupts the ability of SC to differentiate and form myotubes, both of which are key components of myofiber repair, and to determine the extent to which effects are reversed by restoration of oxygen tension. Primary SC were isolated from pectoralis major of young (5 d) Cobb 700 chicks and maintained in growth conditions or induced to differentiate under normoxic (20% O2) or hypoxic (1% O2) conditions for up to 48 h. Hypoxia enhanced SC proliferation while inhibiting myogenic potential, with decreased fusion index and suppressed myotube formation. Reoxygenation after hypoxia partially reversed effects on both proliferation and myogenesis. Western blotting showed that hypoxia diminished myogenin expression, activated AMPK, upregulated proliferation markers, and increased molecular signaling of cellular stress. Hypoxia also promoted accumulation of lipid droplets in myotubes. Targeted RNAseq identified numerous differentially expressed genes across differentiation under hypoxia, including several genes that have been associated with myopathies in vivo. Altogether, these data demonstrate localized hypoxia may influence SC behavior in ways that disrupt muscle repair and promote the formation of myopathies in broilers.
Collapse
Affiliation(s)
- Usuk Jung
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Minjeong Kim
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Presley Dowker-Key
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Simon Noë
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Elizabeth Shepherd
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Brynn Voy
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Lin Y, Dai H, Yu G, Song C, Liu J, Xu J. Inhibiting KCNMA1-AS1 promotes osteogenic differentiation of HBMSCs via miR-1303/cochlin axis. J Orthop Surg Res 2023; 18:73. [PMID: 36717952 PMCID: PMC9885668 DOI: 10.1186/s13018-023-03538-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Osteoporosis is a progressive systemic skeletal disorder. Multiple profiling studies have contributed to characterizing biomarkers and therapeutic targets for osteoporosis. However, due to the limitation of the platform of miRNA sequencing, only a part of miRNA can be sequenced based on one platform. MATERIALS AND METHODS In this study, we performed miRNA sequencing in osteoporosis bone samples based on a novel platform Illumina Hiseq 2500. Bioinformatics analysis was performed to construct osteoporosis-related competing endogenous RNA (ceRNA) networks. Gene interference and osteogenic induction were used to examine the effect of identified ceRNA networks on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSCs). RESULTS miR-1303 was lowly expressed, while cochlin (COCH) and KCNMA1-AS1 were highly expressed in the osteoporosis subjects. COCH knockdown improved the osteogenic differentiation of HBMSCs. Meanwhile, COCH inhibition compensated for the suppression of osteogenic differentiation of HBMSCs by miR-1303 knockdown. Further, KCNMA1-AS1 knockdown promoted osteogenic differentiation of HBMSCs through downregulating COCH by sponging miR-1303. CONCLUSIONS Our findings suggest that the KCNMA1-AS1/miR-1303/COCH axis is a promising biomarker and therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yuan Lin
- grid.415108.90000 0004 1757 9178Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, China ,grid.256112.30000 0004 1797 9307Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hanhao Dai
- grid.256112.30000 0004 1797 9307Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Guoyu Yu
- grid.415108.90000 0004 1757 9178Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, China ,grid.265021.20000 0000 9792 1228Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Chao Song
- grid.256112.30000 0004 1797 9307Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jun Liu
- grid.265021.20000 0000 9792 1228Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China ,grid.33763.320000 0004 1761 2484Department of Joints, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jie Xu
- grid.415108.90000 0004 1757 9178Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, China ,grid.256112.30000 0004 1797 9307Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Zhang W, Wang N, Zhang T, Wang M, Ge W, Wang X. Roles of Melatonin in Goat Hair Follicle Stem Cell Proliferation and Pluripotency Through Regulating the Wnt Signaling Pathway. Front Cell Dev Biol 2021; 9:686805. [PMID: 34150780 PMCID: PMC8212062 DOI: 10.3389/fcell.2021.686805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/03/2021] [Indexed: 01/20/2023] Open
Abstract
Emerging studies show that melatonin promotes cashmere development through hypodermic implantation. However, the impact and underlying mechanisms are currently unknown. In vitro study has previously demonstrated that melatonin induces cashmere growth by regulating the proliferation of goat secondary hair follicle stem cells (gsHFSCs), but there is limited information concerning the effects of melatonin on cell pluripotency. It is also known that Wnt signaling may actively participate in regulating cell proliferation and stem cell pluripotency. Therefore, in the current investigation, goat hair follicle stem cells were exposed to multiple concentrations of melatonin and different culture times to reveal the relationship between melatonin and the activation of Wnt signaling. A proportionally high Catenin beta-1 (CTNNB1) response was induced by 500 ng/L of melatonin, but it was then suppressed with the dosages over 1,000 ng/L. Greater amounts of CTNNB1 entered the cell nuclei by extending the exposure time to 72 h, which activated transcription factor 4/lymphoid enhancer-binding factor 1 and promoted the expression of the proliferation-related genes C-MYC, C-JUN, and CYCLIND1. Moreover, nuclear receptor ROR-alpha (RORα) and bone morphogenetic protein 4 (BMP4) were employed to analyze the underlying mechanism. RORα presented a sluggish concentration/time-dependent rise, but BMP4 was increased dramatically by melatonin exposure, which revealed that melatonin might participate in regulating the pluripotency of hair follicle stem cells. Interestingly, NOGGIN, which is a BMP antagonist and highly relevant to cell stemness, was also stimulated by melatonin. These findings demonstrated that melatonin exposure and/or NOGGIN overexpression in hair follicle stem cells might promote the expression of pluripotency markers Homeobox protein NANOG, Organic cation/carnitine transporter 4, and Hematopoietic progenitor cell antigen CD34. Our findings here provided a comprehensive view of Wnt signaling in melatonin stimulated cells and melatonin mediated stemness of gsHFSCs by regulating NOGGIN, which demonstrates a regulatory mechanism of melatonin enhancement on the growth of cashmere.
Collapse
Affiliation(s)
- Weidong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Niu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tongtong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Meng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Franca R, Zudeh G, Lucafò M, Rabusin M, Decorti G, Stocco G. Genome wide association studies for treatment-related adverse effects of pediatric acute lymphoblastic leukemia. WIREs Mech Dis 2021; 13:e1509. [PMID: 33016644 DOI: 10.1002/wsbm.1509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/01/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric hematological malignancy; notwithstanding the success of ALL therapy, severe adverse drugs effects represent a serious issue in pediatric oncology, because they could be both an additional life threatening condition for ALL patients per se and a reason to therapy delay or discontinuation with important fallouts on final outcome. Cancer treatment-related toxicities have generated a significant need of finding predictive pharmacogenomic markers for the a priori identification of at risk patients. In the era of precision medicine, high throughput genomic screening such as genome wide association studies (GWAS) might provide useful markers to tailor therapy intensity on patients' genetic profile. Furthermore, these findings could be useful in basic research for better understanding the mechanistic and regulatory pathways of the biological functions associated with ALL treatment toxicities. The purpose of this review is to give an overview of high throughput genomic screening of the last 10 years that had investigated the landscape of ALL treatment-associated toxicities. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Zudeh
- University of Trieste, PhD Course in Reproductive and Developmental Sciences, Trieste, Italy
| | - Marianna Lucafò
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Marco Rabusin
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Giuliana Decorti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Maamari D, El-Khoury H, Saifi O, Muwakkit SA, Zgheib NK. Implementation of Pharmacogenetics to Individualize Treatment Regimens for Children with Acute Lymphoblastic Leukemia. Pharmgenomics Pers Med 2020; 13:295-317. [PMID: 32848445 PMCID: PMC7429230 DOI: 10.2147/pgpm.s239602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
Despite major advances in the management and high cure rates of childhood acute lymphoblastic leukemia (ALL), patients still suffer from many drug-induced toxicities, sometimes necessitating dose reduction, or halting of cytotoxic drugs with a secondary risk of disease relapse. In addition, investigators have noted significant inter-individual variability in drug toxicities and disease outcomes, hence the role of pharmacogenetics (PGx) in elucidating genetic polymorphisms in candidate genes for the optimization of disease management. In this review, we present the PGx data in association with main toxicities seen in children treated for ALL in addition to efficacy, with a focus on the most plausible germline PGx variants. We then follow with a summary of the highest evidence drug-gene annotations with suggestions to move forward in implementing preemptive PGx for the individualization of treatment regimens for children with ALL.
Collapse
Affiliation(s)
- Dimitri Maamari
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Habib El-Khoury
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Omran Saifi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar A Muwakkit
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
9
|
Souza MR, Ibelli AMG, Savoldi IR, Cantão ME, Peixoto JDO, Mores MAZ, Lopes JS, Coutinho LL, Ledur MC. Transcriptome analysis identifies genes involved with the development of umbilical hernias in pigs. PLoS One 2020; 15:e0232542. [PMID: 32379844 PMCID: PMC7205231 DOI: 10.1371/journal.pone.0232542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Umbilical hernia (UH) is one of the most frequent defects affecting pig production, however, it also affects humans and other mammals. UH is characterized as an abnormal protrusion of the abdominal contents to the umbilical region, causing pain, discomfort and reduced performance in pigs. Some genomic regions associated to UH have already been identified, however, no study involving RNA sequencing was performed when umbilical tissue is considered. Therefore, here, we have sequenced the umbilical ring transcriptome of five normal and five UH-affected pigs to uncover genes and pathways involved with UH development. A total of 13,216 transcripts were expressed in the umbilical ring tissue. From those, 230 genes were differentially expressed (DE) between normal and UH-affected pigs (FDR <0.05), being 145 downregulated and 85 upregulated in the affected compared to the normal pigs. A total of 68 significant biological processes were identified and the most relevant were extracellular matrix, immune system, anatomical development, cell adhesion, membrane components, receptor activation, calcium binding and immune synapse. The results pointed out ACAN, MMPs, COLs, EPYC, VIT, CCBE1 and LGALS3 as strong candidates to trigger umbilical hernias in pigs since they act in the extracellular matrix remodeling and in the production, integrity and resistance of the collagen. We have generated the first transcriptome of the pig umbilical ring tissue, which allowed the identification of genes that had not yet been related to umbilical hernias in pigs. Nevertheless, further studies are needed to identify the causal mutations, SNPs and CNVs in these genes to improve our understanding of the mechanisms of gene regulation.
Collapse
Affiliation(s)
- Mayla Regina Souza
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | - Igor Ricardo Savoldi
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | | | | | | | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
| |
Collapse
|
10
|
Li L, Sajdyk T, Smith EML, Chang CW, Li C, Ho RH, Hutchinson R, Wells E, Skiles JL, Winick N, Martin PL, Renbarger JL. Genetic Variants Associated With Vincristine-Induced Peripheral Neuropathy in Two Populations of Children With Acute Lymphoblastic Leukemia. Clin Pharmacol Ther 2019; 105:1421-1428. [PMID: 30506673 DOI: 10.1002/cpt.1324] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/25/2018] [Indexed: 01/29/2023]
Abstract
Vincristine is one of the core chemotherapy agents used in the treatment of pediatric acute lymphoblastic leukemia (ALL). However, one of the major toxicities resulting from vincristine exposure is vincristine-induced peripheral neuropathy (VIPN). When VIPN results in significant morbidity, the vincristine dose may need to be reduced, thus potentially decreasing the effectiveness of treatment. To date, there are no robust biomarkers used clinically to determine which patients will be at risk for worse neuropathy. The current study included genomewide association study (GWAS) in two independent cohorts: Pediatric Oncology Group (POG) ALL trials and a multicenter study based at Indiana University in children with ALL. A meta-analysis of the cohorts identified two single-nucleotide polymorphisms (SNPs), rs1045644 and rs7963521, as being significantly (P value threshold 0.05/4749 = 1.05E-05) associated with neuropathy. Subsequently these SNPs may be effective biomarkers of VIPN in children with ALL.
Collapse
Affiliation(s)
- Lang Li
- Ohio State University, Columbus, Ohio, USA
| | - Tammy Sajdyk
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - Claire Li
- Merck, Upper Gwynedd, Pennsylvania, USA
| | - Richard H Ho
- Vanderbilt University, Nashville, Tennessee, USA
| | | | - Elizabeth Wells
- Children's Children Research Institute, Washington, District of Columbia, USA
| | - Jodi L Skiles
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Naomi Winick
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Paul L Martin
- Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
11
|
Mouse embryonic fibroblast (MEF)/BMP4-conditioned medium enhanced multipotency of human dental pulp cells. J Mol Histol 2017; 49:17-26. [DOI: 10.1007/s10735-017-9743-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
|
12
|
Margolis MJ, Martinez M, Valencia J, Lee RK, Bhattacharya SK. Phospholipid secretions of organ cultured ciliary body. J Cell Biochem 2017; 119:2556-2566. [PMID: 28981155 DOI: 10.1002/jcb.26419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
Homeostasis of intraocular pressure (IOP) is important for the maintenance of anterior eye anatomic integrity, minimizing pressure-associated damage to the optic nerve, and maintaining a pressure gradient for blood flow to the eye. IOP is regulated by equilibrium between aqueous humor (AH) production and its outflow. The ciliary body (CB) is thought to actively secrete AH. However, whether AH composition and in particular, its phospholipids are entirely due to CB secretion remains uncertain. Comparison of phospholipids released by cultured CB, phospholipids present within CB tissue, within AH, and within blood and serum are consistent with release of most phospholipids into the AH by the CB. Treatment of CB in culture with timolol, a non-specific beta-adrenergic antagonist, alters the release of phospholipids by CB into the media. However, dorzalamide, a carbonic anhydrase inhibitor that reduces production of AH, does not affect phospholipid release thereby suggesting timolol, which also decreases IOP through decreased AH outflow, affects other physiological homeostatic mechanisms regulating aqueous outflow. These outflow changes also affect the composition of secreted phospholipids. We present evidence that release of lipids by the CB has a prolonged survival effect on cultured primary TM cells and TM tissue.
Collapse
Affiliation(s)
- Michael J Margolis
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mitchell Martinez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey Valencia
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Richard K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Sanjoy K Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
13
|
Feng J, Jing J, Li J, Zhao H, Punj V, Zhang T, Xu J, Chai Y. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development 2017; 144:2560-2569. [PMID: 28576771 DOI: 10.1242/dev.150136] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/31/2017] [Indexed: 02/05/2023]
Abstract
Signaling pathways are used reiteratively in different developmental processes yet produce distinct cell fates through specific downstream transcription factors. In this study, we used tooth root development as a model with which to investigate how the BMP signaling pathway regulates transcriptional complexes to direct the fate determination of multipotent mesenchymal stem cells (MSCs). We first identified the MSC population supporting mouse molar root growth as Gli1+ cells. Using a Gli1-driven Cre-mediated recombination system, our results provide the first in vivo evidence that BMP signaling activity is required for the odontogenic differentiation of MSCs. Specifically, we identified the transcription factors Pax9, Klf4, Satb2 and Lhx8 as being downstream of BMP signaling and expressed in a spatially restricted pattern that is potentially involved in determining distinct cellular identities within the dental mesenchyme. Finally, we found that overactivation of one key transcription factor, Klf4, which is associated with the odontogenic region, promotes odontogenic differentiation of MSCs. Collectively, our results demonstrate the functional significance of BMP signaling in regulating MSC fate during root development and shed light on how BMP signaling can achieve functional specificity in regulating diverse organ development.
Collapse
Affiliation(s)
- Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Hu Zhao
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Vasu Punj
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tingwei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Rusanescu G, Mao J. Peripheral nerve injury induces adult brain neurogenesis and remodelling. J Cell Mol Med 2016; 21:299-314. [PMID: 27665307 PMCID: PMC5264155 DOI: 10.1111/jcmm.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Unilateral peripheral nerve chronic constriction injury (CCI) has been widely used as a research model of human neuropathic pain. Recently, CCI has been shown to induce spinal cord adult neurogenesis, which may contribute to the chronic increase in nociceptive sensitivity. Here, we show that CCI also induces rapid and profound asymmetrical anatomical rearrangements in the adult rodent cerebellum and pons. This remodelling occurs throughout the hindbrain, and in addition to regions involved in pain processing, also affects other sensory modalities. We demonstrate that these anatomical changes, partially reversible in the long term, result from adult neurogenesis. Neurogenic markers Mash1, Ngn2, doublecortin and Notch3 are widely expressed in the rodent cerebellum and pons, both under normal and injured conditions. CCI-induced hindbrain structural plasticity is absent in Notch3 knockout mice, a strain with impaired neuronal differentiation, demonstrating its dependence on adult neurogenesis. Grey matter and white matter structural changes in human brain, as a result of pain, injury or learned behaviours have been previously detected using non-invasive neuroimaging techniques. Because neurogenesis-mediated structural plasticity is thought to be restricted to the hippocampus and the subventricular zone, such anatomical rearrangements in other parts of the brain have been thought to result from neuronal plasticity or glial hypertrophy. Our findings suggest the presence of extensive neurogenesis-based structural plasticity in the adult mammalian brain, which may maintain a memory of basal sensory levels, and act as an adaptive mechanism to changes in sensory inputs.
Collapse
Affiliation(s)
- Gabriel Rusanescu
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Tobias IC, Brooks CR, Teichroeb JH, Villagómez DA, Hess DA, Séguin CA, Betts DH. Small-Molecule Induction of Canine Embryonic Stem Cells Toward Naïve Pluripotency. Stem Cells Dev 2016; 25:1208-22. [DOI: 10.1089/scd.2016.0103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ian C. Tobias
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
| | - Courtney R. Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
| | - Jonathan H. Teichroeb
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
| | - Daniel A. Villagómez
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Departamento de Producción Animal, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - David A. Hess
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, the University of Western Ontario, London, Ontario, Canada
- Molecular Medicine Research Group, Krembil Centre for Stem Cell Biology, Robarts Research Institute, the University of Western Ontario, London, Ontario Canada
| | - Cheryle A. Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, the University of Western Ontario, London, Ontario, Canada
| | - Dean H. Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, the University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Abstract
Stem cells hold great promise in treating many diseases either through promoting endogenous cell repair or through direct cell transplants. In order to maximize their potential, understanding the fundamental signals and mechanisms that regulate their behavior is essential. The extracellular matrix (ECM) is one such component involved in mediating stem cell fate. Recent studies have made significant progress in understanding stem cell-ECM interactions. Technological developments have provided greater clarity in how cells may sense and respond to the ECM, in particular the physical properties of the matrix. This review summarizes recent developments, providing illustrative examples of the different modes with which the ECM controls both embryonic and adult stem cell behavior.
Collapse
|
17
|
Tadayon SH, Vaziri-Pashkam M, Kahali P, Ansari Dezfouli M, Abbassian A. Common Genetic Variant in VIT Is Associated with Human Brain Asymmetry. Front Hum Neurosci 2016; 10:236. [PMID: 27252636 PMCID: PMC4877381 DOI: 10.3389/fnhum.2016.00236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
Brain asymmetry varies across individuals. However, genetic factors contributing to this normal variation are largely unknown. Here we studied variation of cortical surface area asymmetry in a large sample of subjects. We performed principal component analysis (PCA) to capture correlated asymmetry variation across cortical regions. We found that caudal and rostral anterior cingulate together account for a substantial part of asymmetry variation among individuals. To find SNPs associated with this subset of brain asymmetry variation we performed a genome-wide association study followed by replication in an independent cohort. We identified one SNP (rs11691187) that had genome-wide significant association (PCombined = 2.40e-08). The rs11691187 is in the first intron of VIT. In a follow-up analysis, we found that VIT gene expression is associated with brain asymmetry in six donors of the Allen Human Brain Atlas. Based on these findings we suggest that VIT contributes to normal brain asymmetry variation. Our results can shed light on disorders associated with altered brain asymmetry.
Collapse
Affiliation(s)
- Sayed H Tadayon
- School of Cognitive Sciences, Institute for Research in Fundamental SciencesTehran, Iran; School of Mathematics, Institute for Research in Fundamental SciencesTehran, Iran
| | - Maryam Vaziri-Pashkam
- Vision Sciences Laboratory, Department of Psychology, Harvard University Cambridge, MA, USA
| | - Pegah Kahali
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences Tehran, Iran
| | - Mitra Ansari Dezfouli
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran Tehran, Iran
| | - Abdolhossein Abbassian
- School of Cognitive Sciences, Institute for Research in Fundamental SciencesTehran, Iran; School of Mathematics, Institute for Research in Fundamental SciencesTehran, Iran
| |
Collapse
|
18
|
Liu L, Liu X, Ren X, Tian Y, Chen Z, Xu X, Du Y, Jiang C, Fang Y, Liu Z, Fan B, Zhang Q, Jin G, Yang X, Zhang X. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification. Sci Rep 2016; 6:21602. [PMID: 26905010 PMCID: PMC4764856 DOI: 10.1038/srep21602] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/27/2016] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events.
Collapse
Affiliation(s)
- Ling Liu
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China.,Tongji University Advanced Institute of Translational Medicine, Shanghai 200092, China
| | - Xu Liu
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
| | - Xudong Ren
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
| | - Yue Tian
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhenyu Chen
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiangjie Xu
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
| | - Yanhua Du
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092
| | - Cizhong Jiang
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092
| | - Yujiang Fang
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhongliang Liu
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
| | - Beibei Fan
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
| | - Quanbin Zhang
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
| | - Guohua Jin
- Department of Anatomy and Neurobiology, the Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Jiangsu 226001, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | - Xiaoqing Zhang
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China.,Tongji University Advanced Institute of Translational Medicine, Shanghai 200092, China.,The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
| |
Collapse
|
19
|
Sox6 suppression induces RA-dependent apoptosis mediated by BMP-4 expression during neuronal differentiation in P19 cells. Mol Cell Biochem 2015; 412:49-57. [PMID: 26590087 PMCID: PMC4718955 DOI: 10.1007/s11010-015-2607-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/14/2015] [Indexed: 11/01/2022]
Abstract
Sox6 is a transcription factor that induces neuronal differentiation in P19 cells; its suppression not only inhibits neuronal differentiation but also induces retinoic acid (RA)-dependent apoptosis of P19 cells. In the present study, we found that Sox6 suppression-induced apoptosis was mediated by activation of caspase 9 and 3. Moreover, we noted a weak leakage of cytochrome c into the cytoplasm from the mitochondria, indicating that apoptosis occurs through a mitochondrial pathway in Sox6-suppressed P19 (P19[anti-Sox6]) cells. Sox6 suppression in the presence of RA also induced the expression and secretion of bone morphogenetic protein 4 (BMP-4). Addition of an anti-BMP-4 antibody for neutralization increased cell viability and led to RA-dependent death of P19[anti-Sox6] cells. Our results indicate that Sox6 suppression induces RA-dependent cell death of P19 cells, mediated by BMP-4 expression and secretion. Normally, high Sox6 expression leads to RA-mediated neuronal differentiation in P19 cells; however, Sox6 deficiency induces production and secretion of BMP-4, which mediates selective cell death. Our findings suggest that Sox6 contributes to cell survival by suppressing BMP-4 transcription during neuronal differentiation.
Collapse
|
20
|
Zhu G, Fei T, Li Z, Yan X, Chen YG. Activin Regulates Self-renewal and Differentiation of Trophoblast Stem Cells by Down-regulating the X Chromosome Gene Bcor. J Biol Chem 2015. [PMID: 26221038 DOI: 10.1074/jbc.m115.674127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of a functional placenta is largely dependent upon proper proliferation and differentiation of trophoblast stem cells (TSCs). Activin signaling has long been regarded to play important roles during this process, but the exact mechanism is largely unknown. Here, we demonstrate that the X chromosome gene BCL-6 corepressor (Bcor) is a critical downstream effector of activin to fine-tune mouse TSC fate decision. Bcor was specifically down-regulated by activin A in TSCs in a dose-dependent manner, and immediately up-regulated upon TSC differentiation. Knockdown of Bcor partially compensated for the absence of activin A in maintaining the self-renewal of TSCs together with FGF4, while promoting syncytiotrophoblast differentiation in the absence of FGF4. Moreover, the impaired trophoblast giant cell and spongiotrophoblast differentiation upon Bcor knockdown also resembled the function of activin. Reporter analysis showed that BCOR inhibited the expression of the key trophoblast regulator genes Eomes and Cebpa by binding to their promoter regions. Our findings provide us with a better understanding of placental development and placenta-related diseases.
Collapse
Affiliation(s)
- Gaoyang Zhu
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Fei
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongwei Li
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Yan
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Signaling Control of Differentiation of Embryonic Stem Cells toward Mesendoderm. J Mol Biol 2015; 428:1409-22. [PMID: 26119455 DOI: 10.1016/j.jmb.2015.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/29/2023]
Abstract
Mesendoderm (ME) refers to the primitive streak in mammalian embryos, which has the ability to further differentiate into mesoderm and endoderm. A better understanding on the regulatory networks of ME differentiation of embryonic stem (ES) cells would provide important insights on early embryo patterning and a possible guidance for ES applications in regenerative medicine. Studies on developmental biology and embryology have offered a great deal of knowledge about key signaling pathways involved in primitive streak formation. Recently, various chemically defined recipes have been formulated to induce differentiation of ES cells toward ME in vitro, which greatly facilitate the elucidation of the regulatory mechanisms of different signals involved in ME specification. Among the extrinsic signals, transforming growth factor-β/Activin signaling and Wnt signaling have been shown to be the most critical ones. On another side, intrinsic epigenetic regulation has been indicated to be important in ME determination. In this review, we summarize the current understanding on the extrinsic and intrinsic regulations of ES cells-to-ME differentiation and the crosstalk among them, aiming to get a general overview on ME specification and primitive streak formation.
Collapse
|
22
|
Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 2015; 3:15005. [PMID: 26273537 PMCID: PMC4472151 DOI: 10.1038/boneres.2015.5] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-β/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-β (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-β/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-β/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and β-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-β/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Naznin Akhtar
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Hossen Mohammad Jamil
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Rajat Suvra Banik
- Lab of Network Biology, Biotechnology and Genetic Engineering Discipline, Khulna University , Khulna 9208, Bangladesh
| | - Sikder M Asaduzzaman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| |
Collapse
|
23
|
Liu J, Du X, Zhou J, Pan Z, Liu H, Li Q. MicroRNA-26b functions as a proapoptotic factor in porcine follicular Granulosa cells by targeting Sma-and Mad-related protein 4. Biol Reprod 2014; 91:146. [PMID: 25395673 DOI: 10.1095/biolreprod.114.122788] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sma- and Mad-related protein 4 (SMAD4) is the central mediator of the transforming growth factor beta signaling pathway and is closely related to mammalian reproductive ability and the development of ovarian follicles. However, little is currently known about the role of SMAD4 in mammalian follicular granulosa cell (GC) apoptosis or its regulation by miRNAs. Here, we found that the porcine SMAD4 protein was expressed at high levels in GCs and oocytes from primary, preantral, and antral follicles, and only slightly expressed in theca cells; its expression level was down-regulated in apoptotic ovarian GCs, suggesting that SMAD4 may be involved in ovary development and selection. Overexpression and knockdown of SMAD4 increased the proliferation and apoptosis of cultured porcine GCs, respectively. In addition, the use of miRNA mimics and luciferase reporter assays revealed that miRNA-26b (miR-26b) functions as a proapoptotic factor in porcine follicular GCs by targeting the 3'-untranslated region of the SMAD4 gene. Overexpression of miR-26b in follicular GCs suppressed SMAD4 mRNA and protein levels, resulting in down-regulation of the antiapoptotic BCL-2 gene and the promotion of GC apoptosis. Furthermore, transforming growth factor beta 1 (TGF-beta1) down-regulates miR-26b expression in porcine GCs. Taken together, these data suggest that SMAD4 plays a critical role in porcine follicular GC apoptosis and follicular atresia and that miR-26b may have a proapoptotic role in GCs by regulating the expression of SMAD4 in the transforming growth factor beta signaling pathway.
Collapse
Affiliation(s)
- Jiying Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Jilong Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
24
|
Li Y, Zhang Y, Zhang X, Sun J, Hao J. BMP4/Smad Signaling Pathway Induces the Differentiation of Mouse Spermatogonial Stem Cells via Upregulation of Sohlh2. Anat Rec (Hoboken) 2014; 297:749-57. [DOI: 10.1002/ar.22891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/10/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Yi Li
- Department of Histology and Embryology; School of Medicine, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University; Jinan 250012 People's Republic of China
- Obstetric Genetic Disease Laboratory; Maternal and Child Health Hospital of Zibo City; Zibo 255029 People's Republic of China
| | - Yuecun Zhang
- Department of Gynaecology and Obstetrics; Qilu Hospital, Shandong University; Jinan 250012 People's Republic of China
| | - Xiaoli Zhang
- Department of Histology and Embryology; School of Medicine, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University; Jinan 250012 People's Republic of China
| | - Jinhao Sun
- Department of Human Anatomy; School of Medicine; Shandong University; Jinan 250012 People's Republic of China
| | - Jing Hao
- Department of Histology and Embryology; School of Medicine, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University; Jinan 250012 People's Republic of China
| |
Collapse
|
25
|
|