1
|
Chudyk EI, Beer M, Limb MAL, Jones CA, Spencer J, van der Kamp MW, Mulholland AJ. QM/MM Simulations Reveal the Determinants of Carbapenemase Activity in Class A β-Lactamases. ACS Infect Dis 2022; 8:1521-1532. [PMID: 35877936 PMCID: PMC9379904 DOI: 10.1021/acsinfecdis.2c00152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/28/2022]
Abstract
β-lactam antibiotic resistance in Gram-negative bacteria, primarily caused by β-lactamase enzymes that hydrolyze the β-lactam ring, has become a serious clinical problem. Carbapenems were formerly considered "last resort" antibiotics because they escaped breakdown by most β-lactamases, due to slow deacylation of the acyl-enzyme intermediate. However, an increasing number of Gram-negative bacteria now produce β-lactamases with carbapenemase activity: these efficiently hydrolyze the carbapenem β-lactam ring, severely limiting the treatment of some bacterial infections. Here, we use quantum mechanics/molecular mechanics (QM/MM) simulations of the deacylation reactions of acyl-enzyme complexes of eight β-lactamases of class A (the most widely distributed β-lactamase group) with the carbapenem meropenem to investigate differences between those inhibited by carbapenems (TEM-1, SHV-1, BlaC, and CTX-M-16) and those that hydrolyze them (SFC-1, KPC-2, NMC-A, and SME-1). QM/MM molecular dynamics simulations confirm the two enzyme groups to differ in the preferred acyl-enzyme orientation: carbapenem-inhibited enzymes favor hydrogen bonding of the carbapenem hydroxyethyl group to deacylating water (DW). QM/MM simulations of deacylation give activation free energies in good agreement with experimental hydrolysis rates, correctly distinguishing carbapenemases. For the carbapenem-inhibited enzymes, free energies for deacylation are significantly higher than for the carbapenemases, even when the hydroxyethyl group was restrained to prevent interaction with the DW. Analysis of these simulations, and additional simulations of mutant enzymes, shows how factors including the hydroxyethyl orientation, the active site volume, and architecture (conformations of Asn170 and Asn132; organization of the oxyanion hole; and the Cys69-Cys238 disulfide bond) collectively determine catalytic efficiency toward carbapenems.
Collapse
Affiliation(s)
- Ewa I. Chudyk
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Michael Beer
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- School
of Cellular and Molecular Medicine, University
of Bristol Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael A. L. Limb
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Charlotte A. Jones
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Marc W. van der Kamp
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- School
of Biochemistry, University of Bristol Medical
Sciences Building, University Walk, Bristol BS8 1TD, United
Kingdom
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
2
|
Song Z, Trozzi F, Tian H, Yin C, Tao P. Mechanistic Insights into Enzyme Catalysis from Explaining Machine-Learned Quantum Mechanical and Molecular Mechanical Minimum Energy Pathways. ACS PHYSICAL CHEMISTRY AU 2022; 2:316-330. [PMID: 35936506 PMCID: PMC9344433 DOI: 10.1021/acsphyschemau.2c00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the increasing popularity of machine learning (ML) applications, the demand for explainable artificial intelligence techniques to explain ML models developed for computational chemistry has also emerged. In this study, we present the development of the Boltzmann-weighted cumulative integrated gradients (BCIG) approach for effective explanation of mechanistic insights into ML models trained on high-level quantum mechanical and molecular mechanical (QM/MM) minimum energy pathways. Using the acylation reactions of the Toho-1 β-lactamase and two antibiotics (ampicillin and cefalexin) as the model systems, we show that the BCIG approach could quantitatively attribute the energetic contribution in one system and the relative reactivity of individual steps across different systems to specific chemical processes such as the bond making/breaking and proton transfers. The proposed BCIG contribution attribution method quantifies chemistry-interpretable insights in terms of contributions from each elementary chemical process, which is in agreement with the validating QM/MM calculations and our intuitive mechanistic understandings of the model reactions.
Collapse
|
3
|
Shurina BA, Page RC. Structural Comparisons of Cefotaximase (CTX-M-ase) Sub Family 1. Front Microbiol 2021; 12:688509. [PMID: 34504475 PMCID: PMC8421805 DOI: 10.3389/fmicb.2021.688509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
The cefotaximase or CTX-M, family of serine-β-lactamases represents a significant clinical concern due to the ability for these enzymes to confer resistance to a broad array of β-lactam antibiotics an inhibitors. This behavior lends CTX-M-ases to be classified as extended spectrum β-lactamases (ESBL). Across the family of CTX-M-ases most closely related to CTX-M-1, the structures of CTX-M-15 with a library of different ligands have been solved and serve as the basis of comparison within this review. Herein we focus on the structural changes apparent in structures of CTX-M-15 in complex with diazabicyclooctane (DABCO) and boronic acid transition state analog inhibitors. Interactions between a positive surface patch near the active site and complementary functional groups of the bound inhibitor play key roles in the dictating the conformations of active site residues. The insights provided by analyzing structures of CTX-M-15 in complex with DABCO and boronic acid transition state analog inhibitors and analyzing existing structures of CTX-M-64 offer opportunities to move closer to making predictions as to how CTX-M-ases may interact with potential drug candidates, setting the stage for the further development of new antibiotics and β-lactamase inhibitors.
Collapse
Affiliation(s)
- Ben A Shurina
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States.,Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH, United States
| |
Collapse
|
4
|
Sakhrani VV, Ghosh RK, Hilario E, Weiss KL, Coates L, Mueller LJ. Toho-1 β-lactamase: backbone chemical shift assignments and changes in dynamics upon binding with avibactam. JOURNAL OF BIOMOLECULAR NMR 2021; 75:303-318. [PMID: 34218390 PMCID: PMC9122098 DOI: 10.1007/s10858-021-00375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Backbone chemical shift assignments for the Toho-1 β-lactamase (263 amino acids, 28.9 kDa) are reported based on triple resonance solution-state NMR experiments performed on a uniformly 2H,13C,15N-labeled sample. These assignments allow for subsequent site-specific characterization at the chemical, structural, and dynamical levels. At the chemical level, titration with the non-β-lactam β-lactamase inhibitor avibactam is found to give chemical shift perturbations indicative of tight covalent binding that allow for mapping of the inhibitor binding site. At the structural level, protein secondary structure is predicted based on the backbone chemical shifts and protein residue sequence using TALOS-N and found to agree well with structural characterization from X-ray crystallography. At the dynamical level, model-free analysis of 15N relaxation data at a single field of 16.4 T reveals well-ordered structures for the ligand-free and avibactam-bound enzymes with generalized order parameters of ~ 0.85. Complementary relaxation dispersion experiments indicate that there is an escalation in motions on the millisecond timescale in the vicinity of the active site upon substrate binding. The combination of high rigidity on short timescales and active site flexibility on longer timescales is consistent with hypotheses for achieving both high catalytic efficiency and broad substrate specificity: the induced active site dynamics allows variously sized substrates to be accommodated and increases the probability that the optimal conformation for catalysis will be sampled.
Collapse
Affiliation(s)
- Varun V Sakhrani
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Rittik K Ghosh
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Eduardo Hilario
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
| | - Leonard J Mueller
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Das CK, Nair NN. Elucidating the Molecular Basis of Avibactam‐Mediated Inhibition of Class A β‐Lactamases. Chemistry 2020; 26:9639-9651. [DOI: 10.1002/chem.202001261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Chandan Kumar Das
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
- Current Address: Lehrstuhl für Theoretische ChemieRuhr Universität Bochum 44780 Bochum Germany
| | - Nisanth N. Nair
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
6
|
Coates L. Ion permeation in potassium ion channels. Acta Crystallogr D Struct Biol 2020; 76:326-331. [PMID: 32254056 PMCID: PMC7137105 DOI: 10.1107/s2059798320003599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 11/11/2022] Open
Abstract
The study of ion channels dates back to the 1950s and the groundbreaking electrophysiology work of Hodgin and Huxley, who used giant squid axons to probe how action potentials in neurons were initiated and propagated. More recently, several experiments using different structural biology techniques and approaches have been conducted to try to understand how potassium ions permeate through the selectivity filter of potassium ion channels. Two mechanisms of permeation have been proposed, and each of the two mechanisms is supported by different experiments. The key structural biology experiments conducted so far to try to understand how ion permeation takes place in potassium ion channels are reviewed and discussed. Protein crystallography has made, and continues to make, key contributions in this field, often through the use of anomalous scattering. Other structural biology techniques used to study the contents of the selectivity filter include solid-state nuclear magnetic resonance and two-dimensional infrared spectroscopy, both of which make clever use of isotopic labeling techniques, while molecular-dynamics simulations of ion flow through the selectivity filter have been enabled by the growing number of potassium ion channel structures deposited in the Protein Data Bank.
Collapse
Affiliation(s)
- Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
7
|
Mechanism of proton transfer in class A β-lactamase catalysis and inhibition by avibactam. Proc Natl Acad Sci U S A 2020; 117:5818-5825. [PMID: 32123084 DOI: 10.1073/pnas.1922203117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gram-negative bacteria expressing class A β-lactamases pose a serious health threat due to their ability to inactivate all β-lactam antibiotics. The acyl-enzyme intermediate is a central milestone in the hydrolysis reaction catalyzed by these enzymes. However, the protonation states of the catalytic residues in this complex have never been fully analyzed experimentally due to inherent difficulties. To help unravel the ambiguity surrounding class A β-lactamase catalysis, we have used ultrahigh-resolution X-ray crystallography and the recently approved β-lactamase inhibitor avibactam to trap the acyl-enzyme complex of class A β-lactamase CTX-M-14 at varying pHs. A 0.83-Å-resolution CTX-M-14 complex structure at pH 7.9 revealed a neutral state for both Lys73 and Glu166. Furthermore, the avibactam hydroxylamine-O-sulfonate group conformation varied according to pH, and this conformational switch appeared to correspond to a change in the Lys73 protonation state at low pH. In conjunction with computational analyses, our structures suggest that Lys73 has a perturbed acid dissociation constant (pKa) compared with acyl-enzyme complexes with β-lactams, hindering its function to deprotonate Glu166 and the initiation of the deacylation reaction. Further NMR analysis demonstrated Lys73 pKa to be ∼5.2 to 5.6. Together with previous ultrahigh-resolution crystal structures, these findings enable us to follow the proton transfer process of the entire acylation reaction and reveal the critical role of Lys73. They also shed light on the stability and reversibility of the avibactam carbamoyl acyl-enzyme complex, highlighting the effect of substrate functional groups in influencing the protonation states of catalytic residues and subsequently the progression of the reaction.
Collapse
|
8
|
Langan PS, Sullivan B, Weiss KL, Coates L. Probing the role of the conserved residue Glu166 in a class A β-lactamase using neutron and X-ray protein crystallography. Acta Crystallogr D Struct Biol 2020; 76:118-123. [PMID: 32038042 PMCID: PMC7008513 DOI: 10.1107/s2059798319016334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 11/10/2022] Open
Abstract
The amino-acid sequence of the Toho-1 β-lactamase contains several conserved residues in the active site, including Ser70, Lys73, Ser130 and Glu166, some of which coordinate a catalytic water molecule. This catalytic water molecule is essential in the acylation and deacylation parts of the reaction mechanism through which Toho-1 inactivates specific antibiotics and provides resistance to its expressing bacterial strains. To investigate the function of Glu166 in the acylation part of the catalytic mechanism, neutron and X-ray crystallographic studies were performed on a Glu166Gln mutant. The structure of this class A β-lactamase mutant provides several insights into its previously reported reduced drug-binding kinetic rates. A joint refinement of both X-ray and neutron diffraction data was used to study the effects of the Glu166Gln mutation on the active site of Toho-1. This structure reveals that while the Glu166Gln mutation has a somewhat limited impact on the positions of the conserved amino acids within the active site, it displaces the catalytic water molecule from the active site. These subtle changes offer a structural explanation for the previously observed decreases in the binding of non-β-lactam inhibitors such as the recently developed diazobicyclooctane inhibitor avibactam.
Collapse
Affiliation(s)
- Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Brendan Sullivan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
9
|
Dynamical Behavior of β-Lactamases and Penicillin- Binding Proteins in Different Functional States and Its Potential Role in Evolution. ENTROPY 2019. [PMCID: PMC7514474 DOI: 10.3390/e21111130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
β-Lactamases are enzymes produced by bacteria to hydrolyze β-lactam-based antibiotics, and pose serious threat to public health through related antibiotic resistance. Class A β-lactamases are structurally and functionally related to penicillin-binding proteins (PBPs). Despite the extensive studies of the structures, catalytic mechanisms and dynamics of both β-lactamases and PBPs, the potentially different dynamical behaviors of these proteins in different functional states still remain elusive in general. In this study, four evolutionarily related proteins, including TEM-1 and TOHO-1 as class A β-lactamases, PBP-A and DD-transpeptidase as two PBPs, are subjected to molecular dynamics simulations and various analyses to characterize their dynamical behaviors in different functional states. Penicillin G and its ring opening product serve as common ligands for these four proteins of interest. The dynamic analyses of overall structures, the active sites with penicillin G, and three catalytically important residues commonly shared by all four proteins reveal unexpected cross similarities between Class A β-lactamases and PBPs. These findings shed light on both the hidden relations among dynamical behaviors of these proteins and the functional and evolutionary relations among class A β-lactamases and PBPs.
Collapse
|
10
|
Pemberton OA, Jaishankar P, Akhtar A, Adams JL, Shaw LN, Renslo AR, Chen Y. Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine- and Metallocarbapenemases. J Med Chem 2019; 62:8480-8496. [PMID: 31483651 DOI: 10.1021/acs.jmedchem.9b00728] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gram-negative pathogens expressing serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), especially those with carbapenemase activity, threaten the clinical utility of almost all β-lactam antibiotics. Here we describe the discovery of a heteroaryl phosphonate scaffold that exhibits noncovalent cross-class inhibition of representative carbapenemases, specifically the SBL KPC-2 and the MBLs NDM-1 and VIM-2. The most potent lead, compound 16, exhibited low nM to low μM inhibition of KPC-2, NDM-1, and VIM-2. Compound 16 potentiated imipenem efficacy against resistant clinical and laboratory bacterial strains expressing carbapenemases while showing some cytotoxicity toward human HEK293T cells only at concentrations above 100 μg/mL. Complex structures with KPC-2, NDM-1, and VIM-2 demonstrate how these inhibitors achieve high binding affinity to both enzyme classes. These findings provide a structurally and mechanistically new scaffold for drug discovery targeting multidrug resistant Gram-negative pathogens and more generally highlight the active site features of carbapenemases that can be leveraged for lead discovery.
Collapse
Affiliation(s)
- Orville A Pemberton
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center , University of California, San Francisco , 600 16th Street, Genentech Hall N574 , San Francisco , California 94158 , United States
| | - Afroza Akhtar
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| | - Jessie L Adams
- Department of Cell Biology, Microbiology & Molecular Biology , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology & Molecular Biology , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center , University of California, San Francisco , 600 16th Street, Genentech Hall N574 , San Francisco , California 94158 , United States
| | - Yu Chen
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| |
Collapse
|
11
|
Sullivan B, Archibald R, Azadmanesh J, Vandavasi VG, Langan PS, Coates L, Lynch V, Langan P. BraggNet: integrating Bragg peaks using neural networks. J Appl Crystallogr 2019; 52:854-863. [PMID: 31396028 PMCID: PMC6662992 DOI: 10.1107/s1600576719008665] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/17/2019] [Indexed: 10/14/2023] Open
Abstract
Neutron crystallography offers enormous potential to complement structures from X-ray crystallography by clarifying the positions of low-Z elements, namely hydrogen. Macromolecular neutron crystallography, however, remains limited, in part owing to the challenge of integrating peak shapes from pulsed-source experiments. To advance existing software, this article demonstrates the use of machine learning to refine peak locations, predict peak shapes and yield more accurate integrated intensities when applied to whole data sets from a protein crystal. The artificial neural network, based on the U-Net architecture commonly used for image segmentation, is trained using about 100 000 simulated training peaks derived from strong peaks. After 100 training epochs (a round of training over the whole data set broken into smaller batches), training converges and achieves a Dice coefficient of around 65%, in contrast to just 15% for negative control data sets. Integrating whole peak sets using the neural network yields improved intensity statistics compared with other integration methods, including k-nearest neighbours. These results demonstrate, for the first time, that neural networks can learn peak shapes and be used to integrate Bragg peaks. It is expected that integration using neural networks can be further developed to increase the quality of neutron, electron and X-ray crystallography data.
Collapse
Affiliation(s)
- Brendan Sullivan
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Rick Archibald
- Computer Science and Mathematics Division, Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Jahaun Azadmanesh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Venu Gopal Vandavasi
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Patricia S. Langan
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Vickie Lynch
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Paul Langan
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
12
|
Ashkar R, Bilheux HZ, Bordallo H, Briber R, Callaway DJE, Cheng X, Chu XQ, Curtis JE, Dadmun M, Fenimore P, Fushman D, Gabel F, Gupta K, Herberle F, Heinrich F, Hong L, Katsaras J, Kelman Z, Kharlampieva E, Kneller GR, Kovalevsky A, Krueger S, Langan P, Lieberman R, Liu Y, Losche M, Lyman E, Mao Y, Marino J, Mattos C, Meilleur F, Moody P, Nickels JD, O'Dell WB, O'Neill H, Perez-Salas U, Peters J, Petridis L, Sokolov AP, Stanley C, Wagner N, Weinrich M, Weiss K, Wymore T, Zhang Y, Smith JC. Neutron scattering in the biological sciences: progress and prospects. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1129-1168. [PMID: 30605130 DOI: 10.1107/s2059798318017503] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022]
Abstract
The scattering of neutrons can be used to provide information on the structure and dynamics of biological systems on multiple length and time scales. Pursuant to a National Science Foundation-funded workshop in February 2018, recent developments in this field are reviewed here, as well as future prospects that can be expected given recent advances in sources, instrumentation and computational power and methods. Crystallography, solution scattering, dynamics, membranes, labeling and imaging are examined. For the extraction of maximum information, the incorporation of judicious specific deuterium labeling, the integration of several types of experiment, and interpretation using high-performance computer simulation models are often found to be particularly powerful.
Collapse
Affiliation(s)
- Rana Ashkar
- Department of Physics, Virginia Polytechnic Institute and State University, 850 West Campus Drive, Blacksburg, VA 24061, USA
| | - Hassina Z Bilheux
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | - Robert Briber
- Materials Science and Engineeering, University of Maryland, 1109 Chemical and Nuclear Engineering Building, College Park, MD 20742, USA
| | - David J E Callaway
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Xiaolin Cheng
- Department of Medicinal Chemistry and Pharmacognosy, Ohio State University College of Pharmacy, 642 Riffe Building, Columbus, OH 43210, USA
| | - Xiang Qiang Chu
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, People's Republic of China
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Paul Fenimore
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Frank Gabel
- Institut Laue-Langevin, Université Grenoble Alpes, CEA, CNRS, IBS, 38042 Grenoble, France
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederick Herberle
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Frank Heinrich
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Liang Hong
- Department of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - John Katsaras
- Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, AL 35294, USA
| | - Gerald R Kneller
- Centre de Biophysique Moléculaire, CNRS, Université d'Orléans, Chateau de la Source, Avenue du Parc Floral, Orléans, France
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Susan Krueger
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Paul Langan
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Raquel Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yun Liu
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Mathias Losche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Edward Lyman
- Department of Physics and Astrophysics, University of Delaware, Newark, DE 19716, USA
| | - Yimin Mao
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - John Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Flora Meilleur
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Peter Moody
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, England
| | - Jonathan D Nickels
- Department of Physics, Virginia Polytechnic Institute and State University, 850 West Campus Drive, Blacksburg, VA 24061, USA
| | - William B O'Dell
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Hugh O'Neill
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Ursula Perez-Salas
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | - Loukas Petridis
- Materials Science and Engineeering, University of Maryland, 1109 Chemical and Nuclear Engineering Building, College Park, MD 20742, USA
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Christopher Stanley
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Norman Wagner
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Michael Weinrich
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Kevin Weiss
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Troy Wymore
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, People's Republic of China
| | - Yang Zhang
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Jeremy C Smith
- Department of Medicinal Chemistry and Pharmacognosy, Ohio State University College of Pharmacy, 642 Riffe Building, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Klein R, Linciano P, Celenza G, Bellio P, Papaioannou S, Blazquez J, Cendron L, Brenk R, Tondi D. In silico identification and experimental validation of hits active against KPC-2 β-lactamase. PLoS One 2018; 13:e0203241. [PMID: 30496182 PMCID: PMC6264499 DOI: 10.1371/journal.pone.0203241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/06/2018] [Indexed: 01/25/2023] Open
Abstract
Bacterial resistance has become a worldwide concern, particularly after the emergence of resistant strains overproducing carbapenemases. Among these, the KPC-2 carbapenemase represents a significant clinical challenge, being characterized by a broad substrate spectrum that includes aminothiazoleoxime and cephalosporins such as cefotaxime. Moreover, strains harboring KPC-type β-lactamases are often reported as resistant to available β-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam). Therefore, the identification of novel non β-lactam KPC-2 inhibitors is strongly necessary to maintain treatment options. This study explored novel, non-covalent inhibitors active against KPC-2, as putative hit candidates. We performed a structure-based in silico screening of commercially available compounds for non-β-lactam KPC-2 inhibitors. Thirty-two commercially available high-scoring, fragment-like hits were selected for in vitro validation and their activity and mechanism of action vs the target was experimentally evaluated using recombinant KPC-2. N-(3-(1H-tetrazol-5-yl)phenyl)-3-fluorobenzamide (11a), in light of its ligand efficiency (LE = 0.28 kcal/mol/non-hydrogen atom) and chemistry, was selected as hit to be directed to chemical optimization to improve potency vs the enzyme and explore structural requirement for inhibition in KPC-2 binding site. Further, the compounds were evaluated against clinical strains overexpressing KPC-2 and the most promising compound reduced the MIC of the β-lactam antibiotic meropenem by four-fold.
Collapse
Affiliation(s)
- Raphael Klein
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Pasquale Linciano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Giuseppe Celenza
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie, Università dell’Aquila,L’Aquila, Italy
| | - Pierangelo Bellio
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie, Università dell’Aquila,L’Aquila, Italy
| | - Sofia Papaioannou
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Jesus Blazquez
- Department of Microbial Biotechnology, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Campus de la Universidad Autonoma-Cantoblanco, Madrid, Spain
| | - Laura Cendron
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Bergen, Norway
- * E-mail: (DT); (RB)
| | - Donatella Tondi
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
- * E-mail: (DT); (RB)
| |
Collapse
|
14
|
Deuterated phytantriol - A versatile compound for probing material distribution in liquid crystalline lipid phases using neutron scattering. J Colloid Interface Sci 2018; 534:399-407. [PMID: 30245337 DOI: 10.1016/j.jcis.2018.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/22/2022]
Abstract
Phytantriol is an interfacially-active lipid that is chemically robust, non-digestible and forms particles with internal bicontinuous cubic phase structures (cubosomes) when dispersed with non-ionic surfactants at ambient and physiological temperatures. The liquid crystalline internal structure of phytantriol-based cubosomes can be changed to alter the interfacial contact area/topology with the aqueous dispersant to trigger bioactive payload release or to alter the local membrane curvature around bound or embedded proteins. To enable the study of payload distribution, structure and transformation kinetics within phytantriol particles by neutron scattering techniques it is desirable to have access to a deuterated version of this molecule but to date a synthetic route has not been available. The first successful synthesis of phytantriol-d39 is presented here alongside a preliminary physical characterisation of related particle structures when phytantriol-d39 is dispersed using two non-ionic surfactants, Tween® 80 and Pluronic® F127. Synchrotron small angle X-ray scattering (SAXS) was used to confirm that phytantriol-d39-based nanoparticles in D2O form similar liquid crystalline structures to those of their natural isotopic abundance (phytantriol/H2O) counterparts as a function of temperature. Finally, small angle neutron scattering (SANS) with solvent contrast to match out the phytantriol-d39 structuring was used to show that the spatial correlations between the Tween® and Pluronic® non-ionic surfactant molecules are different within dispersed phytantriol-d39 particles with different liquid crystalline structures in D2O. The surfactant molecules in phytantriol-d39/Tween® 80 particles with Im3m cubic structures were found to follow a self-avoiding walk, whereas in phytantriol-d39/Pluronic® F127 particles with Pn3m cubic structures they were found to follow a more rod-like packing arrangement.
Collapse
|
15
|
Kwon H, Langan PS, Coates L, Raven EL, Moody PCE. The rise of neutron cryo-crystallography. Acta Crystallogr D Struct Biol 2018; 74:792-799. [PMID: 30082515 PMCID: PMC6079629 DOI: 10.1107/s205979831800640x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/25/2018] [Indexed: 11/10/2022] Open
Abstract
The use of boiled-off liquid nitrogen to maintain protein crystals at 100 K during X-ray data collection has become almost universal. Applying this to neutron protein crystallography offers the opportunity to significantly broaden the scope of biochemical problems that can be addressed, although care must be taken in assuming that direct extrapolation to room temperature is always valid. Here, the history to date of neutron protein cryo-crystallography and the particular problems and solutions associated with the mounting and cryocooling of the larger crystals needed for neutron crystallography are reviewed. Finally, the outlook for further cryogenic neutron studies using existing and future neutron instrumentation is discussed.
Collapse
Affiliation(s)
- Hanna Kwon
- Henry Wellcome Laboratories for Structural Biology, Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, England
| | - Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Emma L. Raven
- Leicester Institute of Structural and Chemical Biology, Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, England
| | - Peter C. E. Moody
- Henry Wellcome Laboratories for Structural Biology, Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, England
| |
Collapse
|
16
|
Goins CM, Dajnowicz S, Smith MD, Parks JM, Ronning DR. Mycolyltransferase from Mycobacterium tuberculosis in covalent complex with tetrahydrolipstatin provides insights into antigen 85 catalysis. J Biol Chem 2018; 293:3651-3662. [PMID: 29352107 PMCID: PMC5846135 DOI: 10.1074/jbc.ra117.001681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis antigen 85 (Ag85) enzymes catalyze the transfer of mycolic acid (MA) from trehalose monomycolate to produce the mycolyl arabinogalactan (mAG) or trehalose dimycolate (TDM). These lipids define the protective mycomembrane of mycobacteria. The current model of substrate binding within the active sites of Ag85s for the production of TDM is not sterically and geometrically feasible; additionally, this model does not account for the production of mAG. Furthermore, this model does not address how Ag85s limit the hydrolysis of the acyl-enzyme intermediate while catalyzing acyl transfer. To inform an updated model, we obtained an Ag85 acyl-enzyme intermediate structure that resembles the mycolated form. Here, we present a 1.45-Å X-ray crystal structure of M. tuberculosis Ag85C covalently modified by tetrahydrolipstatin (THL), an esterase inhibitor that suppresses M. tuberculosis growth and mimics structural attributes of MAs. The mode of covalent inhibition differs from that observed in the reversible inhibition of the human fatty-acid synthase by THL. Similarities between the Ag85-THL structure and previously determined Ag85C structures suggest that the enzyme undergoes structural changes upon acylation, and positioning of the peptidyl arm of THL limits hydrolysis of the acyl-enzyme adduct. Molecular dynamics simulations of the modeled mycolated-enzyme form corroborate the structural analysis. From these findings, we propose an alternative arrangement of substrates that rectifies issues with the previous model and suggest a direct role for the β-hydroxy of MA in the second half-reaction of Ag85 catalysis. This information affords the visualization of a complete mycolyltransferase catalytic cycle.
Collapse
Affiliation(s)
- Christopher M. Goins
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390
| | - Steven Dajnowicz
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390, ,Biology and Soft Matter Division and
| | - Micholas D. Smith
- University of Tennessee and Oak Ridge National Laboratory (UT/ORNL) Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, and ,Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Jerry M. Parks
- University of Tennessee and Oak Ridge National Laboratory (UT/ORNL) Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, and
| | - Donald R. Ronning
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390, , To whom correspondence should be addressed:
Dept. of Chemistry and Biochemistry, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606-3390. Tel.:
419-530-1585; E-mail:
| |
Collapse
|
17
|
Neutron macromolecular crystallography. Emerg Top Life Sci 2018; 2:39-55. [DOI: 10.1042/etls20170083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Abstract
Neutron diffraction techniques permit direct determination of the hydrogen (H) and deuterium (D) positions in crystal structures of biological macromolecules at resolutions of ∼1.5 and 2.5 Å, respectively. In addition, neutron diffraction data can be collected from a single crystal at room temperature without radiation damage issues. By locating the positions of H/D-atoms, protonation states and water molecule orientations can be determined, leading to a more complete understanding of many biological processes and drug-binding. In the last ca. 5 years, new beamlines have come online at reactor neutron sources, such as BIODIFF at Heinz Maier-Leibnitz Zentrum and IMAGINE at Oak Ridge National Laboratory (ORNL), and at spallation neutron sources, such as MaNDi at ORNL and iBIX at the Japan Proton Accelerator Research Complex. In addition, significant improvements have been made to existing beamlines, such as LADI-III at the Institut Laue-Langevin. The new and improved instrumentations are allowing sub-mm3 crystals to be regularly used for data collection and permitting the study of larger systems (unit-cell edges >100 Å). Owing to this increase in capacity and capability, many more studies have been performed and for a wider range of macromolecules, including enzymes, signalling proteins, transport proteins, sugar-binding proteins, fluorescent proteins, hormones and oligonucleotides; of the 126 structures deposited in the Protein Data Bank, more than half have been released since 2013 (65/126, 52%). Although the overall number is still relatively small, there are a growing number of examples for which neutron macromolecular crystallography has provided the answers to questions that otherwise remained elusive.
Collapse
|
18
|
Langan PS, Vandavasi VG, Cooper CJ, Weiss KL, Ginell SL, Parks JM, Coates L. Substrate Binding Induces Conformational Changes in a Class A β-lactamase That Prime It for Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Venu Gopal Vandavasi
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Connor J. Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephan L. Ginell
- Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Jerry M. Parks
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
19
|
Lewandowski EM, Lethbridge KG, Sanishvili R, Skiba J, Kowalski K, Chen Y. Mechanisms of proton relay and product release by Class A β-lactamase at ultrahigh resolution. FEBS J 2017; 285:87-100. [PMID: 29095570 DOI: 10.1111/febs.14315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/15/2017] [Accepted: 10/28/2017] [Indexed: 01/25/2023]
Abstract
The β-lactam antibiotics inhibit penicillin-binding proteins (PBPs) by forming a stable, covalent, acyl-enzyme complex. During the evolution from PBPs to Class A β-lactamases, the β-lactamases acquired Glu166 to activate a catalytic water and cleave the acyl-enzyme bond. Here we present three product complex crystal structures of CTX-M-14 Class A β-lactamase with a ruthenocene-conjugated penicillin-a 0.85 Å resolution structure of E166A mutant complexed with the penilloate product, a 1.30 Å resolution complex structure of the same mutant with the penicilloate product, and a 1.18 Å resolution complex structure of S70G mutant with a penicilloate product epimer-shedding light on the catalytic mechanisms and product inhibition of PBPs and Class A β-lactamases. The E166A-penilloate complex captured the hydrogen bonding network following the protonation of the leaving group and, for the first time, unambiguously show that the ring nitrogen donates a proton to Ser130, which in turn donates a proton to Lys73. These observations indicate that in the absence of Glu166, the equivalent lysine would be neutral in PBPs and therefore capable of serving as the general base to activate the catalytic serine. Together with previous results, this structure suggests a common proton relay network shared by Class A β-lactamases and PBPs, from the catalytic serine to the lysine, and ultimately to the ring nitrogen. Additionally, the E166A-penicilloate complex reveals previously unseen conformational changes of key catalytic residues during the release of the product, and is the first structure to capture the hydrolyzed product in the presence of an unmutated catalytic serine. DATABASE Structural data are available in the PDB database under the accession numbers 5TOP, 5TOY, and 5VLE.
Collapse
Affiliation(s)
- Eric M Lewandowski
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Kathryn G Lethbridge
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Ruslan Sanishvili
- GMCA@APS, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, IL, USA
| | - Joanna Skiba
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
20
|
Bommer M, Coates L, Dau H, Zouni A, Dobbek H. Protein crystallization and initial neutron diffraction studies of the photosystem II subunit PsbO. Acta Crystallogr F Struct Biol Commun 2017; 73:525-531. [PMID: 28876232 PMCID: PMC5619745 DOI: 10.1107/s2053230x17012171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/22/2017] [Indexed: 11/10/2022] Open
Abstract
The PsbO protein of photosystem II stabilizes the active-site manganese cluster and is thought to act as a proton antenna. To enable neutron diffraction studies, crystals of the β-barrel core of PsbO were grown in capillaries. The crystals were optimized by screening additives in a counter-diffusion setup in which the protein and reservoir solutions were separated by a 1% agarose plug. Crystals were cross-linked with glutaraldehyde. Initial neutron diffraction data were collected from a 0.25 mm3 crystal at room temperature using the MaNDi single-crystal diffractometer at the Spallation Neutron Source, Oak Ridge National Laboratory.
Collapse
Affiliation(s)
- Martin Bommer
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Holger Dau
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dobbek
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
21
|
Active-Site Protonation States in an Acyl-Enzyme Intermediate of a Class A β-Lactamase with a Monobactam Substrate. Antimicrob Agents Chemother 2016; 61:AAC.01636-16. [PMID: 27795378 PMCID: PMC5192116 DOI: 10.1128/aac.01636-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022] Open
Abstract
The monobactam antibiotic aztreonam is used to treat cystic fibrosis patients with chronic pulmonary infections colonized by Pseudomonas aeruginosa strains expressing CTX-M extended-spectrum β-lactamases. The protonation states of active-site residues that are responsible for hydrolysis have been determined previously for the apo form of a CTX-M β-lactamase but not for a monobactam acyl-enzyme intermediate. Here we used neutron and high-resolution X-ray crystallography to probe the mechanism by which CTX-M extended-spectrum β-lactamases hydrolyze monobactam antibiotics. In these first reported structures of a class A β-lactamase in an acyl-enzyme complex with aztreonam, we directly observed most of the hydrogen atoms (as deuterium) within the active site. Although Lys 234 is fully protonated in the acyl intermediate, we found that Lys 73 is neutral. These findings are consistent with Lys 73 being able to serve as a general base during the acylation part of the catalytic mechanism, as previously proposed.
Collapse
|
22
|
Langan PS, Vandavasi VG, Weiss KL, Cooper JB, Ginell SL, Coates L. The structure of Toho1 β-lactamase in complex with penicillin reveals the role of Tyr105 in substrate recognition. FEBS Open Bio 2016; 6:1170-1177. [PMID: 28255534 PMCID: PMC5324766 DOI: 10.1002/2211-5463.12132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/06/2022] Open
Abstract
The role of the conserved residue Tyr105 in class A β‐lactamases has been the subject of investigation using both structural studies and saturation mutagenesis. Both have shown that while it does not need to be strictly conserved for activity, it is important for substrate recognition. With this in mind we determined the crystal structure of Toho1 β‐lactamase at 15 K to 1.10 Å resolution in complex with penicillin. As expected a ring‐opened penicillin molecule bound to Ser70 the catalytic nucleophile, can clearly be seen in electron density in the active site. In addition to the trapped penicillin, however, are two additional intact ring‐closed penicillin molecules, captured by the enzyme through noncovalent interactions at the edge of the active site.
Collapse
Affiliation(s)
- Patricia S Langan
- Biology and Soft Matter Division Oak Ridge National Laboratory TN USA
| | | | - Kevin L Weiss
- Biology and Soft Matter Division Oak Ridge National Laboratory TN USA
| | | | | | - Leighton Coates
- Biology and Soft Matter Division Oak Ridge National Laboratory TN USA
| |
Collapse
|
23
|
Yuan B, He R, Shen W, Xu Y, Liu X, Li M. Theoretical Investigation on Mechanism of the PPh3-Catalyzed Isomerization of Allenic Sulfones to 2-Arylsulfonyl 1,3-Dienes: Effects of Additive as the Proton-Shuttle. ChemistrySelect 2016. [DOI: 10.1002/slct.201600631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Binfang Yuan
- School of Chemistry and Chemical Engineering; Southwest University
| | - Rongxing He
- School of Chemistry and Chemical Engineering; Southwest University
| | - Wei Shen
- School of Chemistry and Chemical Engineering; Southwest University
| | - Yanyan Xu
- School of Chemistry and Chemical Engineering; Southwest University
| | - Xiaorui Liu
- School of Chemistry and Chemical Engineering; Southwest University
| | - Ming Li
- School of Chemistry and Chemical Engineering; Southwest University
| |
Collapse
|
24
|
O'Dell WB, Bodenheimer AM, Meilleur F. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins. Arch Biochem Biophys 2016; 602:48-60. [DOI: 10.1016/j.abb.2015.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
25
|
Borbulevych O, Martin RI, Tickle IJ, Westerhoff LM. XModeScore: a novel method for accurate protonation/tautomer-state determination using quantum-mechanically driven macromolecular X-ray crystallographic refinement. Acta Crystallogr D Struct Biol 2016; 72:586-98. [PMID: 27050137 PMCID: PMC4822566 DOI: 10.1107/s2059798316002837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 11/16/2022] Open
Abstract
Gaining an understanding of the protein-ligand complex structure along with the proper protonation and explicit solvent effects can be important in obtaining meaningful results in structure-guided drug discovery and structure-based drug discovery. Unfortunately, protonation and tautomerism are difficult to establish with conventional methods because of difficulties in the experimental detection of H atoms owing to the well known limitations of X-ray crystallography. In the present work, it is demonstrated that semiempirical, quantum-mechanics-based macromolecular crystallographic refinement is sensitive to the choice of a protonation-state/tautomer form of ligands and residues, and can therefore be used to explore potential states. A novel scoring method, called XModeScore, is described which enumerates the possible protomeric/tautomeric modes, refines each mode against X-ray diffraction data with the semiempirical quantum-mechanics (PM6) Hamiltonian and scores each mode using a combination of energetic strain (or ligand strain) and rigorous statistical analysis of the difference electron-density distribution. It is shown that using XModeScore it is possible to consistently distinguish the correct bound protomeric/tautomeric modes based on routine X-ray data, even at lower resolutions of around 3 Å. These X-ray results are compared with the results obtained from much more expensive and laborious neutron diffraction studies for three different examples: tautomerism in the acetazolamide ligand of human carbonic anhydrase II (PDB entries 3hs4 and 4k0s), tautomerism in the 8HX ligand of urate oxidase (PDB entries 4n9s and 4n9m) and the protonation states of the catalytic aspartic acid found within the active site of an aspartic protease (PDB entry 2jjj). In each case, XModeScore applied to the X-ray diffraction data is able to determine the correct protonation state as defined by the neutron diffraction data. The impact of QM-based refinement versus conventional refinement on XModeScore is also discussed.
Collapse
Affiliation(s)
- Oleg Borbulevych
- QuantumBio Inc., 2790 West College Avenue, State College, PA 16801, USA
| | - Roger I. Martin
- QuantumBio Inc., 2790 West College Avenue, State College, PA 16801, USA
| | - Ian J. Tickle
- Astex Pharmaceuticals, 436 Science Park, Milton Road, Cambridge CB4 0QA, England
| | | |
Collapse
|
26
|
Gerlits O, Wymore T, Das A, Shen CH, Parks JM, Smith JC, Weiss KL, Keen DA, Blakeley MP, Louis JM, Langan P, Weber IT, Kovalevsky A. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site. Angew Chem Int Ed Engl 2016; 55:4924-7. [PMID: 26958828 DOI: 10.1002/anie.201509989] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/27/2016] [Indexed: 11/11/2022]
Abstract
Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.
Collapse
Affiliation(s)
- Oksana Gerlits
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Troy Wymore
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Amit Das
- Solid State Physics Division, BARC, Trombay, Mumbai, 400085, India
| | - Chen-Hsiang Shen
- Departments of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kevin L Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Matthew P Blakeley
- Large-Scale Structures Group, Institut Laue Langevin, 71 avenue des Martyrs - CS 20156, 38042, Grenoble Cedex 9, France
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892-0520, USA
| | - Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Irene T Weber
- Departments of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
27
|
Gerlits O, Wymore T, Das A, Shen CH, Parks JM, Smith JC, Weiss KL, Keen DA, Blakeley MP, Louis JM, Langan P, Weber IT, Kovalevsky A. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oksana Gerlits
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Troy Wymore
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Amit Das
- Solid State Physics Division; BARC; Trombay Mumbai 400085 India
| | - Chen-Hsiang Shen
- Departments of Chemistry and Biology; Georgia State University; Atlanta GA 30302 USA
| | - Jerry M. Parks
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Kevin L. Weiss
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - David A. Keen
- ISIS Facility; Rutherford Appleton Laboratory; Harwell Oxford Didcot OX11 0QX UK
| | - Matthew P. Blakeley
- Large-Scale Structures Group; Institut Laue Langevin; 71 avenue des Martyrs - CS 20156 38042 Grenoble Cedex 9 France
| | - John M. Louis
- Laboratory of Chemical Physics; National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health, DHHS; Bethesda MD 20892-0520 USA
| | - Paul Langan
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Irene T. Weber
- Departments of Chemistry and Biology; Georgia State University; Atlanta GA 30302 USA
| | - Andrey Kovalevsky
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| |
Collapse
|
28
|
King DT, Sobhanifar S, Strynadka NCJ. One ring to rule them all: Current trends in combating bacterial resistance to the β-lactams. Protein Sci 2016; 25:787-803. [PMID: 26813250 DOI: 10.1002/pro.2889] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/27/2023]
Abstract
From humble beginnings of a contaminated petri dish, β-lactam antibiotics have distinguished themselves among some of the most powerful drugs in human history. The devastating effects of antibiotic resistance have nevertheless led to an "arms race" with disquieting prospects. The emergence of multidrug resistant bacteria threatens an ever-dwindling antibiotic arsenal, calling for new discovery, rediscovery, and innovation in β-lactam research. Here the current state of β-lactam antibiotics from a structural perspective was reviewed.
Collapse
Affiliation(s)
- Dustin T King
- Department of Biochemistry and Molecular Biology and Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Solmaz Sobhanifar
- Department of Biochemistry and Molecular Biology and Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| |
Collapse
|
29
|
Yepuri NR, Darwish TA, Krause-Heuer AM, Leung AE, Delhom R, Wacklin HP, Holden PJ. Synthesis of Perdeuterated 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine ([D 82 ]POPC) and Characterisation of Its Lipid Bilayer Membrane Structure by Neutron Reflectometry. Chempluschem 2016; 81:315-321. [PMID: 31968790 DOI: 10.1002/cplu.201500452] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 11/05/2022]
Abstract
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), an unsaturated acyl chain containing lipid, is often the predominant lipid in eukaryotic cell membranes in which it is crucial for the fluidity of membranes under physiological conditions. Commercially available, partially deuterated [D31 ]1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine ([D31 ]POPC) does not provide sufficient isotopic contrast for detailed structural studies of multicomponent membranes through neutron techniques. Herein, a relatively straightforward and generic chemical deuteration method is discussed for the asymmetric synthesis of perdeuterated [D31 ]1-palmitoyl-[D33 ]2-oleoyl-sn-[D5 ]glycero-[D13 ]3-phosphocholine ([D82 ]POPC) that also allows selective deuteration of any of its constituent groups. Neutron reflectivity of a [D82 ]POPC-supported bilayer was used to experimentally determine the neutron scattering length density profile of the lipid. The acyl chains of [D82 ]POPC are closely contrast-matched to heavy water, whereas the very high scattering length density of the deuterated glycerophosphocholine head groups provides good contrast to membrane-binding agents in both deuterated and non-deuterated solvent environments.
Collapse
Affiliation(s)
- Nageshwar R Yepuri
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Anwen M Krause-Heuer
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Anna E Leung
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Robin Delhom
- European Spallation Source ERIC, Box 176, 22100, Lund, Sweden.,Institut Laue Langevin (ILL), 71 av des Martyrs, 38042, Grenoble, France
| | - Hanna P Wacklin
- European Spallation Source ERIC, Box 176, 22100, Lund, Sweden.,Division of Physical Chemistry, Department of Chemistry, Lund Universit, P.O. Box 124, 22100, Lund, Sweden
| | - Peter J Holden
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| |
Collapse
|
30
|
Nichols DA, Hargis JC, Sanishvili R, Jaishankar P, Defrees K, Smith E, Wang KK, Prati F, Renslo AR, Woodcock HL, Chen Y. Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X-ray Crystallography. J Am Chem Soc 2015; 137:8086-95. [PMID: 26057252 PMCID: PMC4530788 DOI: 10.1021/jacs.5b00749] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligand binding can change the pKa of protein residues and influence enzyme catalysis. Herein, we report three ultrahigh resolution X-ray crystal structures of CTX-M β-lactamase, directly visualizing protonation state changes along the enzymatic pathway: apo protein at 0.79 Å, precovalent complex with nonelectrophilic ligand at 0.89 Å, and acylation transition state (TS) analogue at 0.84 Å. Binding of the noncovalent ligand induces a proton transfer from the catalytic Ser70 to the negatively charged Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73, with a length of 2.53 Å and the shared hydrogen equidistant from the heteroatoms. QM/MM reaction path calculations determined the proton transfer barrier to be 1.53 kcal/mol. The LBHB is absent in the other two structures although Glu166 remains neutral in the covalent complex. Our data represents the first X-ray crystallographic example of a hydrogen engaged in an enzymatic LBHB, and demonstrates that desolvation of the active site by ligand binding can provide a protein microenvironment conducive to LBHB formation. It also suggests that LBHBs may contribute to stabilization of the TS in general acid/base catalysis together with other preorganized features of enzyme active sites. These structures reconcile previous experimental results suggesting alternatively Glu166 or Lys73 as the general base for acylation, and underline the importance of considering residue protonation state change when modeling protein-ligand interactions. Additionally, the observation of another LBHB (2.47 Å) between two conserved residues, Asp233 and Asp246, suggests that LBHBs may potentially play a special structural role in proteins.
Collapse
Affiliation(s)
- Derek A. Nichols
- University of South Florida College of Medicine, Dept of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612
| | | | - Ruslan Sanishvili
- GMCA@APS, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 1700 4 Street, Byers Hall S504, San Francisco, CA 94158
| | - Kyle Defrees
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 1700 4 Street, Byers Hall S504, San Francisco, CA 94158
| | - Emmanuel Smith
- University of South Florida College of Medicine, Dept of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612
| | - Kenneth K. Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 1700 4 Street, Byers Hall S504, San Francisco, CA 94158
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
| | - Yu Chen
- University of South Florida College of Medicine, Dept of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612
| |
Collapse
|
31
|
Affiliation(s)
- John T Groves
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Nicholas C Boaz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
32
|
Coates L, Tomanicek S, Schrader TE, Weiss KL, Ng JD, Jüttner P, Ostermann A. Cryogenic neutron protein crystallography: routine methods and potential benefits. J Appl Crystallogr 2014. [DOI: 10.1107/s1600576714010772] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The use of cryocooling in neutron diffraction has been hampered by several technical challenges, such as the need for specialized equipment and techniques. This article reports the recent development and deployment of equipment and strategies that allow routine neutron data collection on cryocooled crystals using off-the-shelf components. This system has several advantages compared to a closed displex cooling system, such as fast cooling coupled with easier crystal mounting and centering. The ability to routinely collect cryogenic neutron data for analysis will significantly broaden the range of scientific questions that can be examined by neutron protein crystallography. Cryogenic neutron data collection for macromolecules has recently become available at the new Biological Diffractometer BIODIFF at the FRM II and the Macromolecular Diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge National Laboratory. To evaluate the benefits of a cryocooled neutron structure, a full neutron data set was collected on the BIODIFF instrument on a Toho-1 β-lactamase structure at 100 K.
Collapse
|
33
|
Golden EA, Vrielink A. Looking for Hydrogen Atoms: Neutron Crystallography Provides Novel Insights Into Protein Structure and Function. Aust J Chem 2014. [DOI: 10.1071/ch14337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutron crystallography allows direct localization of hydrogen positions in biological macromolecules. Within enzymes, hydrogen atoms play a pivotal role in catalysis. Recent advances in instrumentation and sample preparation have helped to overcome the difficulties of performing neutron diffraction experiments on protein crystals. The application of neutron macromolecular crystallography to a growing number of proteins has yielded novel structural insights. The ability to accurately position water molecules, hydronium ions, and hydrogen atoms within protein structures has helped in the study of low-barrier hydrogen bonds and hydrogen-bonding networks. The determination of protonation states of protein side chains, substrates, and inhibitors in the context of the macromolecule has provided important insights into enzyme chemistry and ligand binding affinities, which can assist in the design of potent therapeutic agents. In this review, we give an overview of the method and highlight advances in knowledge attained through the application of neutron protein crystallography.
Collapse
|
34
|
Abstract
New developments in macromolecular neutron crystallography have led to an increasing number of structures published over the last decade. Hydrogen atoms, normally invisible in most X-ray crystal structures, become visible with neutrons. Using X-rays allows one to see structure, while neutrons allow one to reveal the chemistry inherent in these macromolecular structures. A number of surprising and sometimes controversial results have emerged; because it is difficult to see or predict hydrogen atoms in X-ray structures, when they are seen by neutrons they can be in unexpected locations with important chemical and biological consequences. Here we describe examples of chemistry seen with neutrons for the first time in biological macromolecules over the past few years.
Collapse
Affiliation(s)
- Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | |
Collapse
|
35
|
Busch S, Pardo LC, O'Dell WB, Bruce CD, Lorenz CD, McLain SE. On the structure of water and chloride ion interactions with a peptide backbone in solution. Phys Chem Chem Phys 2013; 15:21023-33. [DOI: 10.1039/c3cp53831a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|