1
|
de Mendonça Fernandes GM, Wang W, Ahmadian SS, Jones D, Peng J, Giglio P, Venere M, Otero JJ. Epitranscriptomic analysis reveals clinical and molecular signatures in glioblastoma. Acta Neuropathol Commun 2025; 13:74. [PMID: 40217422 PMCID: PMC11987271 DOI: 10.1186/s40478-025-01966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/18/2025] [Indexed: 04/14/2025] Open
Abstract
This study characterizes the glioblastoma (GB) epitranscriptomic landscape in patient who evolve to progressive disease (PD) or pseudo-progressive disease (psPD). Novel differences in N6-Methyladenosine (m6A) RNA methylation patterns between these groups are identified in the first biopsy. Retrospective data of patients that were eventually deemed to have progressive disease or pseudoprogressive disease was captured from the electronic health record, and RNA from the first resection specimen was utilized to evaluate N6-methyladenosine (m6A) biomarkers from FFPE samples. Molecular analysis of m6A methylation modified RNA employed ACA-based RNase MazF digestion. After Quantitative Normalization with ComBat to mitigate batch effects, we identifed differentially methylated transcripts and gene expression analyses, co-expression networks analyses with WGCNA, and subsequently performed gene set GO and KEGG enrichment analyses. Enrichments for metabolic biological processes and pathways were identified in our differential methylated transcripts and select module eigengene networks highlighted key co-expressed genes intricately tied to distinct phenotypes/traits in patients that would ultimately be deemed PD or psPD. Our study identified key genes and pathways modified by m6A RNA methylation associated with cell metabolism alterations, highlighting the importance of understanding m6A mechanisms leading to the oncometabolite accumulation governing PD versus psPD patients. Furthermore, these data indicate that epitranscriptomal differences between PD versus psPD are detected early in the disease course.
Collapse
Affiliation(s)
| | - Wesley Wang
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Saman Seyed Ahmadian
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jing Peng
- Center for Biostatistics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Pierre Giglio
- Department of Neuro-oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Monica Venere
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - José Javier Otero
- Departament of Cellular and Molecular Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, FL, USA.
- Departament of Neuropathology and Clinical Informatics, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
2
|
Pominova D, Ryabova A, Skobeltsin A, Markova I, Romanishkin I. Spectroscopic Study of Methylene Blue Interaction with Coenzymes and its Effect on Tumor Metabolism. Sovrem Tekhnologii Med 2025; 17:18-25. [PMID: 40071073 PMCID: PMC11892571 DOI: 10.17691/stm2025.17.1.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Indexed: 03/14/2025] Open
Abstract
The aim of the investigation is to study the interaction of methylene blue (MB) with NADH, FADH2 coenzymes and lactate, and to evaluate a long-term effect of its intravenous or oral introduction on tumor metabolism in vivo. Materials and Methods The MB interaction with NADH, FADH2 coenzymes and lactate was studied using absorption spectrophotometry. A long-term effect of MB on tumor metabolism in vivo was investigated on a mice model of Ehrlich carcinoma. The effect of MB on tumor metabolism in vivo was assessed using time-resolved fluorescence microscopy based on the NADH fluorescence lifetime. Results NADH has been established to be the main coenzyme with which MB interacts. The reduction of the lactate quantity is mediated by the shift of tumor metabolism as a result of MB interaction with the NADH. In the experiments in vivo, no noticeable tumor growth rate reduction was observed in the groups with intravenous MB introduction in comparison with the control. In the group receiving MB with drinking water, a decrease of the tumor growth rate, reduction of oxygenation level, and a1/a2 metabolic index were observed, which confirms the shift from glycolysis to oxidative phosphorylation. Conclusion The possibility of using MB for the tumor metabolism correction and growth rate reduction has been demonstrated, however, the time of therapy and MB concentration should be optimized to obtain more pronounced therapeutic effect.
Collapse
Affiliation(s)
- D.V. Pominova
- PhD, Senior Researcher, Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia; Associate Professor, Department 87 “Laser Micro-, Nano-, and Biotechnologies, Engineering Physics Institute for Biomedicine”; National Research Nuclear University MEPhI, 31 Kashirskoye Highway, Moscow, 115409, Russia
| | - A.V. Ryabova
- Senior Researcher, Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia; Associate Professor, Department 87 “Laser Micro-, Nano-, and Biotechnologies, Engineering Physics Institute for Biomedicine”; National Research Nuclear University MEPhI, 31 Kashirskoye Highway, Moscow, 115409, Russia
| | - A.S. Skobeltsin
- Junior Researcher, Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia; Senior Teacher, Department 87 “Laser Micro-, Nano-, and Biotechnologies, Engineering Physics Institute for Biomedicine”; National Research Nuclear University MEPhI, 31 Kashirskoye Highway, Moscow, 115409, Russia
| | - I.V. Markova
- PhD Student; National Research Nuclear University MEPhI, 31 Kashirskoye Highway, Moscow, 115409, Russia; Engineer, of Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia
| | - I.D. Romanishkin
- Junior Researcher, Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia
| |
Collapse
|
3
|
Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A, Mokhtari K, Shahpasand K, Farahani N, Meybodi TE, Entezari M, Taheriazam A, Hushmandi K, Hashemi M. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol Cancer 2025; 24:58. [PMID: 40011944 DOI: 10.1186/s12943-025-02267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor in adults, characterized by a poor prognosis and significant resistance to existing treatments. Despite progress in therapeutic strategies, the median overall survival remains approximately 15 months. A hallmark of GBM is its intricate molecular profile, driven by disruptions in multiple signaling pathways, including PI3K/AKT/mTOR, Wnt, NF-κB, and TGF-β, critical to tumor growth, invasion, and treatment resistance. This review examines the epidemiology, molecular mechanisms, and therapeutic prospects of targeting these pathways in GBM, highlighting recent insights into pathway interactions and discovering new therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Ashkan Pouyan
- Department of Neurosurgery, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Masoud Ghorbanlo
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Jahanshahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ziaei
- Department of Neurosurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Salami
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Koorosh Shahpasand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tohid Emami Meybodi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Epidemiology, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Yi Z, Jia Y, Lu R, Li C, Wen L, Yin X, Yi J, Li L. E2F1-driven CENPM expression promotes glycolytic reprogramming and tumorigenicity in glioblastoma. Cell Biol Toxicol 2024; 41:4. [PMID: 39707034 PMCID: PMC11662047 DOI: 10.1007/s10565-024-09945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024]
Abstract
Centromere protein M (CENPM), traditionally associated with chromosome segregation, is now recognized for its significant role in cancer biology. Particularly in glioblastoma (GBM), where less is known about CENPM compared to other centromere proteins (CENPs), it appears crucially involved in regulating tumor cell proliferation, invasion, and metabolic reprogramming-key factors in GBM's aggressiveness. Initial analyses using the GEPIA database (TCGA/GTEx datasets) reveal distinct patterns of CENPM expression in GBM, suggesting its potential as a therapeutic target. Our study manipulated CENPM expression through shRNA-mediated knockdown and vector-based overexpression in GBM cell lines LN229 and U251. Knockdown resulted in a 50% reduction in cell proliferation and a 70% decrease in invasion, accompanied by diminished glycolytic markers such as glucose consumption, lactate production, and ATP levels. Conversely, overexpression of CENPM enhanced both metabolic activity and invasive capacities. The introduction of the glycolytic inhibitor 2-DG effectively reversed the effects of CENPM modulation, highlighting a dependency on glycolytic pathways. Moreover, we identified E2F1 as a key regulator of CENPM, linking it to GBM's metabolic alterations. In vivo studies using a BALB/c nude mouse xenograft model demonstrated that CENPM knockdown significantly inhibits tumor growth, with treated groups showing a 60% reduction in tumor volume over four weeks. These findings underscore the E2F1-CENPM axis as a promising target for therapeutic strategies, aiming to disrupt the metabolic and invasive pathways facilitated by CENPM in GBM. These insights establish a foundation for targeting the metabolic dependencies of tumor cells, potentially leading to innovative treatments for GBM.
Collapse
Affiliation(s)
- Zhiqiang Yi
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yanfei Jia
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Runchun Lu
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Chunwei Li
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Long Wen
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xiangdong Yin
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Junfei Yi
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Liang Li
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
5
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
6
|
Du K, Grocott L, Anichini G, O’Neill K, Syed N. Amino Acid Deprivation in Glioblastoma: The Role in Survival and the Tumour Microenvironment-A Narrative Review. Biomedicines 2024; 12:2481. [PMID: 39595047 PMCID: PMC11592029 DOI: 10.3390/biomedicines12112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common and aggressive primary brain tumour, characterised by its invasive nature and complex metabolic profile. Emerging research highlights the role of amino acids (AAs) in glioblastoma metabolism, influencing tumour growth and the surrounding microenvironment. METHODS This narrative review synthesises recent pre-clinical studies focusing on the metabolic functions of AAs in glioblastoma. Key areas include the effects of AA deprivation on tumour growth, adaptive mechanisms, and the tumour microenvironment. RESULTS The effects related to arginine, glutamine, methionine, and cysteine deprivation have been more extensively reported. Arginine deprivation in arginine-auxotrophic glioblastomas induces apoptosis and affects cell adhesion, while glutamine deprivation disrupts metabolic pathways and enhances autophagy. Methionine and cysteine deprivation impact lipid metabolism and ferroptosis. Tumour adaptive mechanisms present challenges, and potential compensatory responses have been identified. The response of the microenvironment to AA deprivation, including immune modulation, is critical to determining therapeutic outcomes. CONCLUSIONS Targeting AA metabolism offers a promising approach for glioblastoma treatment, with potential targeted drugs showing clinical promise. However, the complexity of tumour adaptive mechanisms and their impact on the microenvironment necessitates further research to optimise combination therapies and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Keven Du
- Imperial College School of Medicine, Imperial College London, London SW7 2AZ, UK; (K.D.); (L.G.)
| | - Leila Grocott
- Imperial College School of Medicine, Imperial College London, London SW7 2AZ, UK; (K.D.); (L.G.)
| | - Giulio Anichini
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (K.O.); (N.S.)
| | - Kevin O’Neill
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (K.O.); (N.S.)
| | - Nelofer Syed
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (K.O.); (N.S.)
| |
Collapse
|
7
|
Lee M, Yoo JH, Kim I, Kang S, Lee W, Kim S, Han KS. The compartment-specific manipulation of the NAD +/NADH ratio affects the metabolome and the function of glioblastoma. Sci Rep 2024; 14:20575. [PMID: 39232046 PMCID: PMC11375122 DOI: 10.1038/s41598-024-71462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of cancer in the brain and has an inferior prognosis because of the lack of suitable medicine, largely due to its tremendous invasion. GBM has selfish metabolic pathways to promote migration, invasion, and proliferation compared to normal cells. Among various metabolic pathways, NAD (nicotinamide adenine dinucleotide) is essential in generating ATP and is used as a resource for cancer cells. LbNOX (Lactobacillus brevis NADH oxidase) is an enzyme that can directly manipulate the NAD+/NADH ratio. In this study, we found that an increased NAD+/NADH ratio by LbNOX or mitoLbNOX reduced intracellular glutamate and calcium responses and reduced invasion capacity in GBM. However, the invasion was not affected in GBM by rotenone, an ETC (Electron Transport Chain) complex I inhibitor, or nicotinamide riboside, a NAD+ precursor, suggesting that the crucial factor is the NAD+/NADH ratio rather than the absolute quantity of ATP or NAD+ for the invasion of GBM. To develop a more accurate and effective GBM treatment, our findings highlight the importance of developing a new medicine that targets the regulation of the NAD+/NADH ratio, given the current lack of effective treatment options for this brain cancer.
Collapse
Affiliation(s)
- Myunghoon Lee
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Hong Yoo
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Inseo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sinbeom Kang
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Sungjin Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Kyung-Seok Han
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
8
|
Liu Y, Chen Y, Gao M, Luo J, Wang Y, Wang Y, Gao Y, Yang L, Wang J, Wang N. Association between glioma and neurodegenerative diseases risk: a two-sample bi-directional Mendelian randomization analysis. Front Neurol 2024; 15:1413015. [PMID: 39015316 PMCID: PMC11250058 DOI: 10.3389/fneur.2024.1413015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Background Earlier observational studies have demonstrated a correlation between glioma and the risk of neurodegenerative diseases (NDs), but the causality and direction of their associations remain unclear. The objective of this study was to ascertain the causal link between glioma and NDs using Mendelian randomization (MR) methodology. Methods Genome-wide association study (GWAS) data were used in a two-sample bi-directional MR analysis. From the largest meta-analysis GWAS, encompassing 18,169 controls and 12,488 cases, summary statistics data on gliomas was extracted. Summarized statistics for NDs, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) were obtained from the GWAS of European ancestry. Inverse variance weighted (IVW) method was elected as the core MR approach with weighted median (WM) method and MR-Egger method as complementary methods. In addition, sensitivity analyses were performed. A Bonferroni correction was used to correct the results. Results Genetically predicted glioma had been related to decreased risk of AD. Specifically, for all glioma (IVW: OR = 0.93, 95% CI = 0.90-0.96, p = 4.88 × 10-6) and glioblastoma (GBM) (IVW: OR = 0.93, 95% CI = 0.91-0.95, p = 5.11 × 10-9). We also found that genetically predicted all glioma has a suggestive causative association with MS (IVW: OR = 0.90, 95% CI = 0.81-1.00, p = 0.045). There was no evidence of causal association between glioma and ALS or PD. According to the results of reverse MR analysis, no discernible causal connection of NDs was found on glioma. Sensitivity analyses validated the robustness of the above associations. Conclusion We report evidence in support of potential causal associations of different glioma subtypes with AD and MS. More studies are required to uncover the underlying mechanisms of these findings.
Collapse
Affiliation(s)
- Yang Liu
- Department of Endocrinology, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Youqi Chen
- Bethune First Hospital of Jilin University, Changchun, China
| | - Ming Gao
- Bethune First Hospital of Jilin University, Changchun, China
| | - Jia Luo
- Bethune First Hospital of Jilin University, Changchun, China
| | - Yanan Wang
- Bethune First Hospital of Jilin University, Changchun, China
| | - Yihan Wang
- Bethune Third Hospital of Jilin University, Changchun, China
| | - Yu Gao
- Clinical College, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Laiyu Yang
- Bethune Third Hospital of Jilin University, Changchun, China
| | - Jingning Wang
- Bethune First Hospital of Jilin University, Changchun, China
| | - Ningxin Wang
- Bethune First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Onciul R, Brehar FM, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Dumitrascu DI, Serban M, Ciurea AV. Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Curr Issues Mol Biol 2024; 46:2402-2443. [PMID: 38534769 DOI: 10.3390/cimb46030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas constitute a diverse and complex array of tumors within the central nervous system (CNS), characterized by a wide range of prognostic outcomes and responses to therapeutic interventions. This literature review endeavors to conduct a thorough investigation of gliomas, with a particular emphasis on glioblastoma (GBM), beginning with their classification and epidemiological characteristics, evaluating their relative importance within the CNS tumor spectrum. We examine the immunological context of gliomas, unveiling the intricate immune environment and its ramifications for disease progression and therapeutic strategies. Moreover, we accentuate critical developments in understanding tumor behavior, focusing on recent research breakthroughs in treatment responses and the elucidation of cellular signaling pathways. Analyzing the most novel transcriptomic studies, we investigate the variations in gene expression patterns in glioma cells, assessing the prognostic and therapeutic implications of these genetic alterations. Furthermore, the role of epigenetic modifications in the pathogenesis of gliomas is underscored, suggesting that such changes are fundamental to tumor evolution and possible therapeutic advancements. In the end, this comparative oncological analysis situates GBM within the wider context of neoplasms, delineating both distinct and shared characteristics with other types of tumors.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | | | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
10
|
Yang SH, Sun Y, Berry R, Choudhury GR, Winters A, Chaudhari K, Liu R. Glutamate Provides Cytoprotective Effect for Astrocytes Against Ischemic Insult and Promotes Astrogliosis. Aging Dis 2024; 15:2742-2751. [PMID: 38377020 PMCID: PMC11567245 DOI: 10.14336/ad.2023.0726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 02/22/2024] Open
Abstract
Glutamate-mediated excitotoxicity has been extensively explored as a therapeutic target for the development of potential treatments of neurological disorders including stroke. However, the effect of glutamate on astrocytes under pathological conditions has been less studied. Using primary astrocyte culture, we determined the effect of glutamate on astrocytes against ischemic insult. Glutamate provided a cytoprotective effect and acted as an alternative substrate for ATP production in primary astrocytes against oxygen glucose deprivation reoxygenation insult, which was blocked by glutamate uptake inhibition. The cytoprotective effect of glutamate appears to be astrocyte-specific, as glutamate dose-dependently induces cytotoxic action in murine hippocampal HT-22 cell line. Interestingly, the cytoprotective effect of glutamate against glucose deprivation was short-last, as no protection was observed after 3-day glucose deprivation. We determined the metabolic phenotype of primary astrocyte cultured in glucose or glutamate. Primary astrocytes cultured in glutamate displayed a different metabolic phenotype when compared to those cultured in glucose, evidenced by higher basal and maximal oxygen consumption rate (OCR), higher ATP production and proton leak-coupled OCR, as well as lower glycolysis. Furthermore, glutamate exposure resulted in astrocyte activation, evidenced by an increase in astrocyte size and GFAP expression. Our study demonstrated that glutamate exerts a dual effect on astrocytes under ischemic condition. Glutamate provides an alternative substrate for energy metabolism in the absence of glucose, thereby protecting astrocytes against ischemic insults. On the other hand, glutamate exposure induces astrogliosis. Modulation of glutamate uptake and metabolism in astrocytes may provide novel targets for alleviating ischemic injury and improving function recovery after ischemic stroke.
Collapse
Affiliation(s)
- Shao-Hua Yang
- Correspondence should be addressed to: Dr. Shao-Hua Yang (), University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | | - Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| |
Collapse
|
11
|
Patel KS, Yao J, Cho NS, Sanvito F, Tessema K, Alvarado A, Dudley L, Rodriguez F, Everson R, Cloughesy TF, Salamon N, Liau LM, Kornblum HI, Ellingson BM. pH-Weighted amine chemical exchange saturation transfer echo planar imaging visualizes infiltrating glioblastoma cells. Neuro Oncol 2024; 26:115-126. [PMID: 37591790 PMCID: PMC10768991 DOI: 10.1093/neuonc/noad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Given the invasive nature of glioblastoma, tumor cells exist beyond the contrast-enhancing (CE) region targeted during treatment. However, areas of non-enhancing (NE) tumors are difficult to visualize and delineate from edematous tissue. Amine chemical exchange saturation transfer echo planar imaging (CEST-EPI) is a pH-sensitive molecular magnetic resonance imaging technique that was evaluated in its ability to identify infiltrating NE tumors and prognosticate survival. METHODS In this prospective study, CEST-EPI was obtained in 30 patients and areas with elevated CEST contrast ("CEST+" based on the asymmetry in magnetization transfer ratio: MTRasym at 3 ppm) within NE regions were quantitated. Median MTRasym at 3 ppm and volume of CEST + NE regions were correlated with progression-free survival (PFS). In 20 samples from 14 patients, image-guided biopsies of these areas were obtained to correlate MTRasym at 3 ppm to tumor and non-tumor cell burden using immunohistochemistry. RESULTS In 15 newly diagnosed and 15 recurrent glioblastoma, higher median MTRasym at 3ppm within CEST + NE regions (P = .007; P = .0326) and higher volumes of CEST + NE tumor (P = .020; P < .001) were associated with decreased PFS. CE recurrence occurred in areas of preoperative CEST + NE regions in 95.4% of patients. MTRasym at 3 ppm was correlated with presence of tumor, cell density, %Ki-67 positivity, and %CD31 positivity (P = .001; P < .001; P < .001; P = .001). CONCLUSIONS pH-weighted amine CEST-EPI allows for visualization of NE tumor, likely through surrounding acidification of the tumor microenvironment. The magnitude and volume of CEST + NE tumor correlates with tumor cell density, degree of proliferating or "active" tumor, and PFS.
Collapse
Affiliation(s)
- Kunal S Patel
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Nicholas S Cho
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Kaleab Tessema
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Alvaro Alvarado
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Lindsey Dudley
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Fausto Rodriguez
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Richard Everson
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Harley I Kornblum
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Benjamin M Ellingson
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
12
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
13
|
Zhang R, Wang C, Zheng X, Li S, Zhang W, Kang Z, Yin S, Chen J, Chen F, Li W. Warburg effect-related risk scoring model to assess clinical significance and immunity characteristics of glioblastoma. Cancer Med 2023; 12:20639-20654. [PMID: 37864422 PMCID: PMC10660605 DOI: 10.1002/cam4.6627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM), the most common primary malignant brain tumor, has a poor prognosis, with a median survival of only 14.6 months. The Warburg effect is an abnormal energy metabolism, which is the main cause of the acidic tumor microenvironment. This study explored the role of the Warburg effect in the prognosis and immune microenvironment of GBM. METHODS A prognostic risk score model of Warburg effect-related genes (Warburg effect signature) was constructed using GBM cohort data from The Cancer Genome Atlas. Cox analysis was performed to identify independent prognostic factors. Next, the nomogram was built to predict the prognosis for GBM patients. Finally, the drug sensitivity analysis was utilized to find the drugs that specifically target Warburg effect-related genes. RESULTS Age, radiotherapy, chemotherapy, and WRGs score were confirmed as independent prognostic factors for GBM by Cox analyses. The C-index (0.633 for the training set and 0.696 for the validation set) and area under curve (>0.7) indicated that the nomogram exhibited excellent performance. The calibration curve also indicates excellent consistency of the nomogram between predictions and actual observations. In addition, immune microenvironment analysis revealed that patients with high WRGs scores had high immunosuppressive scores, a high abundance of immunosuppressive cells, and a low response to immunotherapy. The Cell Counting Kit-8 assays showed that the drugs targeting Warburg effect-related genes could inhibit the GBM cells growth in vitro. CONCLUSION Our research showed that the Warburg effect is connected with the prognosis and immune microenvironment of GBM. Therefore, targeting Warburg effect-related genes may provide novel therapeutic options.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Can Wang
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaohong Zheng
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shenglan Li
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Weichunbai Zhang
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhuang Kang
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shuo Yin
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jinyi Chen
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Feng Chen
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Li
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
14
|
Schwartz L, Aparicio-Alonso M, Henry M, Radman M, Attal R, Bakkar A. Toxicity of the spike protein of COVID-19 is a redox shift phenomenon: A novel therapeutic approach. Free Radic Biol Med 2023; 206:106-110. [PMID: 37392949 DOI: 10.1016/j.freeradbiomed.2023.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 07/03/2023]
Abstract
We previously demonstrated that most diseases display a form of anabolism due to mitochondrial impairment: in cancer, a daughter cell is formed; in Alzheimer's disease, amyloid plaques; in inflammation cytokines and lymphokines. The infection by Covid-19 follows a similar pattern. Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction. This unrelenting anabolism leads to the cytokine storm, chronic fatigue, chronic inflammation or neurodegenerative diseases. Drugs such as Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism. Similarly, coMeBining Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism.
Collapse
Affiliation(s)
| | | | - Marc Henry
- Institut Lebel, Faculté de chimie, Université de Strasbourg, 67000, Strasbourg, France
| | - Miroslav Radman
- Mediterranean Institute for Life Sciences (MedILS), 21000, Split, Croatia
| | - Romain Attal
- Cité des Sciences et de l'Industrie, 30 avenue Corentin-Cariou, 75019, Paris, France
| | - Ashraf Bakkar
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| |
Collapse
|
15
|
Fan WT, Liu XF, Liang RC. Raf/MEK/ERK Signaling Pathway Is Involved in the Inhibition of Glioma Cell Proliferation and Invasion in the Ketogenic Microenvironment. Curr Med Sci 2023; 43:759-767. [PMID: 37498407 DOI: 10.1007/s11596-023-2724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/24/2022] [Indexed: 07/28/2023]
Abstract
OBJECTIVE A high-fat, low-carbohydrate ketogenic diet has been used to treat malignant glioma, in which the Raf/MEK/ERK signaling pathway is overactivated. However, whether the Raf/MEK/ERK signaling pathway is involved in the therapeutic effect of ketone bodies remains unknown. In this study, we investigated the effects of a major ketone body, 3-hydroxybutyric acid (3-HBA), on the proliferation and metastasis of malignant glioblastoma cells and the underlying mechanism. METHODS Two human malignant glioblastoma cell lines (U87 and U251) were treated with different concentrations of 3-HBA with or without the Raf inhibitor PAF C-16 for 24 h. Cell proliferation, cell cycle, cell invasion, and phospholipase D1 (PLD1) activity were determined. Protein and gene expression levels of Raf/MEK/ERK signaling pathway members were examined. RESULTS 3-HBA significantly decreased cell proliferation, invasion, and intracellular PLD1 activity in both U87 and U251 glioblastoma cell lines. 3-HBA treatment significantly increased the proportion of cells in the G1 phase and decreased the proportion of cells in S phase in U87 cells. In the U251 line, the proportion of treated cells in S phase was increased and proportion of cells in G2 was decreased. 3-HBA treatment also significantly decreased the protein expression levels of Raf, MEK, p-MEK, ERK, p-ERK, and PLD1 while increasing p53 expression; an effect that was similar to treatment with the Raf inhibitor. Co-treatment of 3-HBA with the Raf inhibitor further enhanced the effects of the 3-HBA in both cell lines. CONCLUSION We confirmed that a ketogenic microenvironment can inhibit glioma cell proliferation and invasion by downregulating the expression of PLD1 through the Raf/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Wen-Tao Fan
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, China
| | - Xiao-Fei Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, China
| | - Ri-Chu Liang
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, China.
| |
Collapse
|
16
|
Xu X, Zhou S, Tao Y, Zhong Z, Shao Y, Yi Y. Development and validation of a two glycolysis-related LncRNAs prognostic signature for glioma and in vitro analyses. Cell Div 2023; 18:10. [PMID: 37355624 DOI: 10.1186/s13008-023-00092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Mounting evidence suggests that there is a complex regulatory relationship between long non-coding RNAs (lncRNAs) and the glycolytic process during glioma development. This study aimed to investigate the prognostic role of glycolysis-related lncRNAs in glioma and their impact on the tumor microenvironment. METHODS This study utilized glioma transcriptome data from public databases to construct, evaluate, and validate a prognostic signature based on differentially expressed (DE)-glycolysis-associated lncRNAs through consensus clustering, DE-lncRNA analysis, Cox regression analysis, and receiver operating characteristic (ROC) curves. The clusterProfiler package was applied to reveal the potential functions of the risk score-related differentially expressed genes (DEGs). ESTIMATE and Gene Set Enrichment Analysis (GSEA) were utilized to evaluate the relationship between prognostic signature and the immune landscape of gliomas. Furthermore, the sensitivity of patients to immune checkpoint inhibitor (ICI) treatment based on the prognostic feature was predicted with the assistance of the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Finally, qRT-PCR was used to verify the difference in the expression of the lncRNAs in glioma cells and normal cell. RESULTS By consensus clustering based on glycolytic gene expression profiles, glioma patients were divided into two clusters with significantly different overall survival (OS), from which 2 DE-lncRNAs, AL390755.1 and FLJ16779, were obtained. Subsequently, Cox regression analysis demonstrated that all of these lncRNAs were associated with OS in glioma patients and constructed a prognostic signature with a robust prognostic predictive efficacy. Functional enrichment analysis revealed that DEGs associated with risk scores were involved in immune responses, neurons, neurotransmitters, synapses and other terms. Immune landscape analysis suggested an extreme enrichment of immune cells in the high-risk group. Moreover, patients in the low-risk group were likely to benefit more from ICI treatment. qRT-PCR results showed that the expression of AL390755.1 and FLJ16779 was significantly different in glioma and normal cells. CONCLUSION We constructed a novel prognostic signature for glioma patients based on glycolysis-related lncRNAs. Besides, this project had provided a theoretical basis for the exploration of new ICI therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Xiaoping Xu
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China.
| | - Shijun Zhou
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China
| | - Yuchuan Tao
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China
| | - Zhenglan Zhong
- Department of Health Examination, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China
| | - Yongxiang Shao
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China
| | - Yong Yi
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China
| |
Collapse
|
17
|
Kao Y, Chou CH, Huang LC, Tsai CK. Momordicine I suppresses glioma growth by promoting apoptosis and impairing mitochondrial oxidative phosphorylation. EXCLI JOURNAL 2023; 22:482-498. [PMID: 37534227 PMCID: PMC10391611 DOI: 10.17179/excli2023-6129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023]
Abstract
Glioblastoma (GBM) is the most common type of primary brain tumor. Patients with GBM have poor survival outcomes. Isolated components of Momordica charantia have anticancer effects. However, the bioactivity of M. charantia extracts against GBM remains unknown. We tested four major extracts of M. charantia and found that momordicine I reduced glioma cell viability without serious cytotoxic effects on astrocytes. Momordicine I suppressed glioma cell colony formation, proliferation, migration, and invasion. Momordicine I also induced apoptosis, intracellular reactive oxygen species (ROS) production, and senescence in glioma cells. Moreover, momordicine I decreased the oxidative phosphorylation capacity of glioma cells and inhibited tumor sphere formation in temozolomide (TMZ)-resistant GBM cells. We further explored whether the antiglioma effect of momordicine I may be related to cell cycle modulation and DLGPA5 expression. Our results indicate that the cytotoxic effect of momordicine I on glioma cells suggests its potential therapeutic application to GBM treatment. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Ying Kao
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Zhongxing Branch, Taipei 10341, Taiwan
- Taipei City University, Taipei 100234, Taiwan
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
18
|
Watson DC, Bayik D, Storevik S, Moreino SS, Sprowls SA, Han J, Augustsson MT, Lauko A, Sravya P, Røsland GV, Troike K, Tronstad KJ, Wang S, Sarnow K, Kay K, Lunavat TR, Silver DJ, Dayal S, Joseph JV, Mulkearns-Hubert E, Ystaas LAR, Deshpande G, Guyon J, Zhou Y, Magaut CR, Seder J, Neises L, Williford SE, Meiser J, Scott AJ, Sajjakulnukit P, Mears JA, Bjerkvig R, Chakraborty A, Daubon T, Cheng F, Lyssiotis CA, Wahl DR, Hjelmeland AB, Hossain JA, Miletic H, Lathia JD. GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. NATURE CANCER 2023; 4:648-664. [PMID: 37169842 PMCID: PMC10212766 DOI: 10.1038/s43018-023-00556-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host-tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development.
Collapse
Affiliation(s)
- Dionysios C Watson
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Defne Bayik
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Simon Storevik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | | | - Jianhua Han
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Adam Lauko
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Medical Scientist Training Program, Case Western Reserve University, Cleveland, OH, USA
| | - Palavalasa Sravya
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Katie Troike
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Sabrina Wang
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Kristen Kay
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Taral R Lunavat
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurology, Molecular Neurogenetics Unit-West, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel J Silver
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sahil Dayal
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Erin Mulkearns-Hubert
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Joris Guyon
- University of Bordeaux, INSERM, BRIC, Pessac, France
| | - Yadi Zhou
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Juliana Seder
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Laura Neises
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Andrew J Scott
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason A Mears
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Abhishek Chakraborty
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, Bordeaux, France
| | - Feixiong Cheng
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| | - Justin D Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
19
|
de Ávila Narciso Gomes R, Marmolejo-Garza A, Haan FJ, García TM, Chen T, Mauthe M, Moreira Franco Parisotto YE, Murakami MM, Marie SKN, Baptista MS, Dolga AM, Trombetta-Lima M. Mitochondrial dysfunction mediates neuronal cell response to DMMB photodynamic therapy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119429. [PMID: 36608805 DOI: 10.1016/j.bbamcr.2022.119429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is a process in which a photosensitizer (PS) is exposed to specific wavelengths and generates reactive oxygen species (ROS) which act within nanometers. The low invasive nature and directed cytotoxicity of this approach render it attractive to the treatment of different conditions, including the ones that affect the central nervous system (CNS). The effect of PDT on healthy neurons is one main concern over its use in the CNS, since neuronal-like cells were shown to be particularly sensitive to certain PSs. Among available PSs, 1,9-dimethyl-methylene blue (DMMB) stands out as being resistant to reduction to its inactive leuco form and by being able to produce high levels of singlet‑oxygen. In this study, we aimed to investigate DMMB photodamage mechanisms in the hippocampal cell line HT22. Our results demonstrate that DMMB-PDT decrease in cell viability was linked with an increase in cell death and overall ROS production. Besides, it resulted in a significant increase in mitochondrial ROS production and decreased mitochondria membrane potential. Furthermore, DMMB-PDT significantly increased the presence of acidic autolysosomes, which was accompanied by an increase in ATG1 and ATG8 homologue GaBarap1 expression, and decreased DRAM1 expression. Taken together our results indicated that mitochondrial and autophagic dysfunction underlie DMMB-PDT cytotoxicity in neuronal cells.
Collapse
Affiliation(s)
- Raphael de Ávila Narciso Gomes
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands; Chemistry Institute, Biochemistry Department, University of São Paulo (USP), 05508-000 São Paulo, Brazil
| | - Alejandro Marmolejo-Garza
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands; Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Floris-Jan Haan
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands
| | - Teresa Mitchell García
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands
| | - Tingting Chen
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | | | - Mario Minor Murakami
- Medical School, Neurology Department, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | | | - Maurício S Baptista
- Chemistry Institute, Biochemistry Department, University of São Paulo (USP), 05508-000 São Paulo, Brazil
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands.
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands; Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
20
|
Friedenberg MD, Lita A, Gilbert MR, Larion M, Celiku O. Probabilistic model checking of cancer metabolism. Sci Rep 2022; 12:18870. [PMID: 36344581 PMCID: PMC9640632 DOI: 10.1038/s41598-022-21846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer cell metabolism is often deregulated as a result of adaption to meeting energy and biosynthesis demands of rapid growth or direct mutation of key metabolic enzymes. Better understanding of such deregulation can provide new insights on targetable vulnerabilities, but is complicated by the difficulty in probing cell metabolism at different levels of resolution and under different experimental conditions. We construct computational models of glucose and glutamine metabolism with focus on the effect of IDH1/2-mutations in cancer using a combination of experimental metabolic flux data and patient-derived gene expression data. Our models demonstrate the potential of computational exploration to reveal biologic behavior: they show that an exogenously-mutated IDH1 experimental model utilizes glutamine as an alternative carbon source for lactate production under hypoxia, but does not fully-recapitulate the patient phenotype under normoxia. We also demonstrate the utility of using gene expression data as a proxy for relative differences in metabolic activity. We use the approach of probabilistic model checking and the freely-available Probabilistic Symbolic Model Checker to construct and reason about model behavior.
Collapse
Affiliation(s)
| | - Adrian Lita
- grid.48336.3a0000 0004 1936 8075National Cancer Institute, Bethesda, MD 20892 USA
| | - Mark R. Gilbert
- grid.48336.3a0000 0004 1936 8075National Cancer Institute, Bethesda, MD 20892 USA
| | - Mioara Larion
- grid.48336.3a0000 0004 1936 8075National Cancer Institute, Bethesda, MD 20892 USA
| | - Orieta Celiku
- grid.48336.3a0000 0004 1936 8075National Cancer Institute, Bethesda, MD 20892 USA
| |
Collapse
|
21
|
Silver A, Feier D, Ghosh T, Rahman M, Huang J, Sarkisian MR, Deleyrolle LP. Heterogeneity of glioblastoma stem cells in the context of the immune microenvironment and geospatial organization. Front Oncol 2022; 12:1022716. [PMID: 36338705 PMCID: PMC9628999 DOI: 10.3389/fonc.2022.1022716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma (GBM) is an extremely aggressive and incurable primary brain tumor with a 10-year survival of just 0.71%. Cancer stem cells (CSCs) are thought to seed GBM's inevitable recurrence by evading standard of care treatment, which combines surgical resection, radiotherapy, and chemotherapy, contributing to this grim prognosis. Effective targeting of CSCs could result in insights into GBM treatment resistance and development of novel treatment paradigms. There is a major ongoing effort to characterize CSCs, understand their interactions with the tumor microenvironment, and identify ways to eliminate them. This review discusses the diversity of CSC lineages present in GBM and how this glioma stem cell (GSC) mosaicism drives global intratumoral heterogeneity constituted by complex and spatially distinct local microenvironments. We review how a tumor's diverse CSC populations orchestrate and interact with the environment, especially the immune landscape. We also discuss how to map this intricate GBM ecosystem through the lens of metabolism and immunology to find vulnerabilities and new ways to disrupt the equilibrium of the system to achieve improved disease outcome.
Collapse
Affiliation(s)
- Aryeh Silver
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Diana Feier
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Tanya Ghosh
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Jianping Huang
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Matthew R. Sarkisian
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Loic P. Deleyrolle
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,*Correspondence: Loic P. Deleyrolle,
| |
Collapse
|
22
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
23
|
The Hallmarks of Glioblastoma: Heterogeneity, Intercellular Crosstalk and Molecular Signature of Invasiveness and Progression. Biomedicines 2022; 10:biomedicines10040806. [PMID: 35453557 PMCID: PMC9031586 DOI: 10.3390/biomedicines10040806] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
In 2021 the World Health Organization published the fifth and latest version of the Central Nervous System tumors classification, which incorporates and summarizes a long list of updates from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy work. Among the adult-type diffuse gliomas, glioblastoma represents most primary brain tumors in the neuro-oncology practice of adults. Despite massive efforts in the field of neuro-oncology diagnostics to ensure a proper taxonomy, the identification of glioblastoma-tumor subtypes is not accompanied by personalized therapies, and no improvements in terms of overall survival have been achieved so far, confirming the existence of open and unresolved issues. The aim of this review is to illustrate and elucidate the state of art regarding the foremost biological and molecular mechanisms that guide the beginning and the progression of this cancer, showing the salient features of tumor hallmarks in glioblastoma. Pathophysiology processes are discussed on molecular and cellular levels, highlighting the critical overlaps that are involved into the creation of a complex tumor microenvironment. The description of glioblastoma hallmarks shows how tumoral processes can be linked together, finding their involvement within distinct areas that are engaged for cancer-malignancy establishment and maintenance. The evidence presented provides the promising view that glioblastoma represents interconnected hallmarks that may led to a better understanding of tumor pathophysiology, therefore driving the development of new therapeutic strategies and approaches.
Collapse
|
24
|
Hagiwara A, Yao J, Raymond C, Cho NS, Everson R, Patel K, Morrow DH, Desousa BR, Mareninov S, Chun S, Nathanson DA, Yong WH, Andrei G, Divakaruni AS, Salamon N, Pope WB, Nghiemphu PL, Liau LM, Cloughesy TF, Ellingson BM. "Aerobic glycolytic imaging" of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging. Neuroimage Clin 2022; 32:102882. [PMID: 34911188 PMCID: PMC8609049 DOI: 10.1016/j.nicl.2021.102882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/24/2023]
Abstract
Aerobic glycolytic imaging combines pH-, oxygen-, and perfusion-weighted MRI. Aerobic glycolytic imaging depicts abnormal glucose metabolism of gliomas. IDH wild-type gliomas show higher aerobic glycolytic index compared with mutants. Aerobic glycolytic index in IDH wild-type glioma is correlated with glucose uptake. Aerobic glycolytic index in IDH mutant glioma is correlated to lactate transporters.
Purpose To quantify abnormal metabolism of diffuse gliomas using “aerobic glycolytic imaging” and investigate its biological correlation. Methods All subjects underwent a pH-weighted amine chemical exchange saturation transfer spin-and-gradient-echo echoplanar imaging (CEST-SAGE-EPI) and dynamic susceptibility contrast perfusion MRI. Relative oxygen extraction fraction (rOEF) was estimated as the ratio of reversible transverse relaxation rate R2′ to normalized relative cerebral blood volume. An aerobic glycolytic index (AGI) was derived by the ratio of pH-weighted image contrast (MTRasym at 3.0 ppm) to rOEF. AGI was compared between different tumor types (N = 51, 30 IDH mutant and 21 IDH wild type). Metabolic MR parameters were correlated with 18F-FDG uptake (N = 8, IDH wild-type glioblastoma), expression of key glycolytic proteins using immunohistochemistry (N = 38 samples, 21 from IDH mutant and 17 from IDH wild type), and bioenergetics analysis on purified tumor cells (N = 7, IDH wild-type high grade). Results AGI was significantly lower in IDH mutant than wild-type gliomas (0.48 ± 0.48 vs. 0.70 ± 0.48; P = 0.03). AGI was strongly correlated with 18F-FDG uptake both in non-enhancing tumor (Spearman, ρ = 0.81; P = 0.01) and enhancing tumor (ρ = 0.81; P = 0.01). AGI was significantly correlated with glucose transporter 3 (ρ = 0.71; P = 0.004) and hexokinase 2 (ρ = 0.73; P = 0.003) in IDH wild-type glioma, and monocarboxylate transporter 1 (ρ = 0.59; P = 0.009) in IDH mutant glioma. Additionally, a significant correlation was found between AGI derived from bioenergetics analysis and that estimated from MRI (ρ = 0.79; P = 0.04). Conclusion AGI derived from molecular MRI was correlated with glucose uptake (18F-FDG and glucose transporter 3/hexokinase 2) and cellular AGI in IDH wild-type gliomas, whereas AGI in IDH mutant gliomas appeared associated with monocarboxylate transporter density.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas S Cho
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Richard Everson
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kunal Patel
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danielle H Morrow
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Brandon R Desousa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sergey Mareninov
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Saewon Chun
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - William H Yong
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Gafita Andrei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Phioanh L Nghiemphu
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA; UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 2021; 54:101389. [PMID: 34749013 PMCID: PMC8637646 DOI: 10.1016/j.molmet.2021.101389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aberrant metabolism is recognized as a hallmark of cancer, a pillar necessary for cellular proliferation. Regarding bioenergetics (ATP generation), most cancers display a preference not only toward aerobic glycolysis ("Warburg effect") and glutaminolysis (mitochondrial substrate level-phosphorylation) but also toward other metabolites such as lactate, pyruvate, and fat-derived sources. These secondary metabolites can assist in proliferation but cannot fully cover ATP demands. SCOPE OF REVIEW The concept of a static metabolic profile is challenged by instances of heterogeneity and flexibility to meet fuel/anaplerotic demands. Although metabolic therapies are a promising tool to improve therapeutic outcomes, either via pharmacological targets or press-pulse interventions, metabolic plasticity is rarely considered. Lack of bioenergetic analysis in vitro and patient-derived models is hindering translational potential. Here, we review the bioenergetics of cancer and propose a simple analysis of major metabolic pathways, encompassing both affordable and advanced techniques. A comprehensive compendium of Seahorse XF bioenergetic measurements is presented for the first time. MAJOR CONCLUSIONS Standardization of principal readouts might help researchers to collect a complete metabolic picture of cancer using the most appropriate methods depending on the sample of interest.
Collapse
Affiliation(s)
- Tomás Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, 28668, Madrid, Spain.
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223, Madrid, Spain.
| |
Collapse
|
26
|
GRPEL2 Knockdown Exerts Redox Regulation in Glioblastoma. Int J Mol Sci 2021; 22:ijms222312705. [PMID: 34884508 PMCID: PMC8657957 DOI: 10.3390/ijms222312705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant brain tumors are responsible for catastrophic morbidity and mortality globally. Among them, glioblastoma multiforme (GBM) bears the worst prognosis. The GrpE-like 2 homolog (GRPEL2) plays a crucial role in regulating mitochondrial protein import and redox homeostasis. However, the role of GRPEL2 in human glioblastoma has yet to be clarified. In this study, we investigated the function of GRPEL2 in glioma. Based on bioinformatics analyses from the Cancer Gene Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we inferred that GRPEL2 expression positively correlates with WHO tumor grade (p < 0.001), IDH mutation status (p < 0.001), oligodendroglial differentiation (p < 0.001), and overall survival (p < 0.001) in glioma datasets. Functional validation in LN229 and GBM8401 GBM cells showed that GRPEL2 knockdown efficiently inhibited cellular proliferation. Moreover, GRPEL2 suppression induced cell cycle arrest at the sub-G1 phase. Furthermore, GRPEL2 silencing decreased intracellular reactive oxygen species (ROS) without impending mitochondria membrane potential. The cellular oxidative respiration measured with a Seahorse XFp analyzer exhibited a reduction of the oxygen consumption rate (OCR) in GBM cells by siGRPEL2, which subsequently enhanced autophagy and senescence in glioblastoma cells. Taken together, GRPEL2 is a novel redox regulator of mitochondria bioenergetics and a potential target for treating GBM in the future.
Collapse
|
27
|
Yamagishi JF, Hatakeyama TS. Microeconomics of Metabolism: The Warburg Effect as Giffen Behaviour. Bull Math Biol 2021; 83:120. [PMID: 34718881 PMCID: PMC8558188 DOI: 10.1007/s11538-021-00952-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Metabolic behaviours of proliferating cells are often explained as a consequence of rational optimization of cellular growth rate, whereas microeconomics formulates consumption behaviours as optimization problems. Here, we pushed beyond the analogy to precisely map metabolism onto the theory of consumer choice. We thereby revealed the correspondence between long-standing mysteries in both fields: the Warburg effect, a seemingly wasteful but ubiquitous strategy where cells favour aerobic glycolysis over more energetically efficient oxidative phosphorylation, and Giffen behaviour, the unexpected consumer behaviour where a good is demanded more as its price rises. We identified the minimal, universal requirements for the Warburg effect: a trade-off between oxidative phosphorylation and aerobic glycolysis and complementarity, i.e. impossibility of substitution for different metabolites. Thus, various hypotheses for the Warburg effect are integrated into an identical optimization problem with the same universal structure. Besides, the correspondence between the Warburg effect and Giffen behaviour implies that oxidative phosphorylation is counter-intuitively stimulated when its efficiency is decreased by metabolic perturbations such as drug administration or mitochondrial dysfunction; the concept of Giffen behaviour bridges the Warburg effect and the reverse Warburg effect. This highlights that the application of microeconomics to metabolism can offer new predictions and paradigms for both biology and economics.
Collapse
Affiliation(s)
- Jumpei F Yamagishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tetsuhiro S Hatakeyama
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
28
|
Bitorina AV, Oligschlaeger Y, Ding L, Yadati T, Westheim A, Houben T, Vaes RDW, Olde Damink SWM, Theys J, Shiri-Sverdlov R. OxLDL as an Inducer of a Metabolic Shift in Cancer Cells. J Cancer 2021; 12:5817-5824. [PMID: 34475995 PMCID: PMC8408103 DOI: 10.7150/jca.56307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Recent evidence established a link between disturbed lipid metabolism and increased risk for cancer. One of the most prominent features related to disturbed lipid metabolism is an increased production of oxidized low-density-lipoproteins (oxLDL), which results from elevated oxidative stress. OxLDL is known to have detrimental effects on healthy cells and plays a primary role in diseases related to the metabolic syndrome. Nevertheless, so far, the exact role of oxLDL in cancer cell metabolism is not yet known. To examine changes in metabolic profile induced by oxLDL, pancreatic KLM-1 cells were treated with oxLDL in a concentration- (25 or 50 µg/ml) and/or time-dependent (4 hr or 8 hr) manner and the impact of oxLDL on oxygen consumption rates (OCR) as well as extracellular acidification rates (ECAR) was analyzed using Seahorse technology. Subsequently, to establish the link between oxLDL and glycolysis, stabilization of the master regulator hypoxia-inducible factor 1-alpha (HIF-1α) was measured by means of Western blot. Furthermore, autophagic responses were assessed by measuring protein levels of the autophagosomal marker LC3B-II. Finally, the therapeutic potential of natural anti-oxLDL IgM antibodies in reversing these effects was tested. Incubation of KLM-1 cells with oxLDL shifted the energy balance towards a more glycolytic phenotype, which is an important hallmark of cancer cells. These data were supported by measurement of increased oxLDL-mediated HIF-1α stabilization. In line, oxLDL incubation also increased the levels of LC3B-II, suggesting an elevated autophagic response. Importantly, antibodies against oxLDL were able to reverse these oxLDL-mediated metabolic effects. Our data provides a novel proof-of-concept that oxLDL induces a shift in energy balance. These data not only support a role for oxLDL in the progression of cancer but also suggest the possibility of targeting oxLDL as a therapeutic option in cancer.
Collapse
Affiliation(s)
- Albert V Bitorina
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Lingling Ding
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Tulasi Yadati
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Annemarie Westheim
- Department of Precision Medicine, School for Oncology & Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Tom Houben
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Rianne D W Vaes
- Department of Surgery, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- Department of Precision Medicine, School for Oncology & Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
29
|
Glutathione S-Transferase M3 Is Associated with Glycolysis in Intrinsic Temozolomide-Resistant Glioblastoma Multiforme Cells. Int J Mol Sci 2021; 22:ijms22137080. [PMID: 34209254 PMCID: PMC8268701 DOI: 10.3390/ijms22137080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor. The 5-year relative survival rate of patients with GBM remains <30% on average despite aggressive treatments, and secondary therapy fails in 90% of patients. In chemotherapeutic failure, detoxification proteins are crucial to the activity of chemotherapy drugs. Usually, glutathione S-transferase (GST) superfamily members act as detoxification enzymes by activating xenobiotic metabolites through conjugation with glutathione in healthy cells. However, some overexpressed GSTs not only increase GST activity but also trigger chemotherapy resistance and tumorigenesis-related signaling transductions. Whether GSTM3 is involved in GBM chemoresistance remains unclear. In the current study, we found that T98G, a GBM cell line with pre-existing temozolomide (TMZ) resistance, has high glycolysis and GSTM3 expression. GSTM3 knockdown in T98G decreased glycolysis ability through lactate dehydrogenase A activity reduction. Moreover, it increased TMZ toxicity and decreased invasion ability. Furthermore, we provide next-generation sequencing-based identification of significantly changed messenger RNAs of T98G cells with GSTM3 knockdown for further research. GSTM3 was downregulated in intrinsic TMZ-resistant T98G with a change in the expression levels of some essential glycolysis-related genes. Thus, GSTM3 was associated with glycolysis in chemotherapeutic resistance in T98G cells. Our findings provide new insight into the GSTM3 mechanism in recurring GBM.
Collapse
|
30
|
One-Carbon Metabolism Associated Vulnerabilities in Glioblastoma: A Review. Cancers (Basel) 2021; 13:cancers13123067. [PMID: 34205450 PMCID: PMC8235277 DOI: 10.3390/cancers13123067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Glioblastoma tumours are the most malignant and common type of central nervous system tumours. Despite aggressive treatment measures, disease recurrence in patients with glioblastoma is inevitable and survival rates remain low. Glioblastoma cells, like other cancer cells, can leverage metabolic pathways to increase their rate of proliferation, maintain self-renewal, and develop treatment resistance. Furthermore, many of the metabolic strategies employed by cancer cells are similar to those employed by stem cells in order to maintain self-renewal and proliferation. One-carbon metabolism and de novo purine synthesis are metabolic pathways that are essential for biosynthesis of macromolecules and have been found to be essential for tumourigenesis. In this review, we summarize the evidence showing the significance of 1-C-mediated de novo purine synthesis in glioblastoma cell proliferation and tumourigenesis, as well as evidence suggesting the effectiveness of targeting this metabolic pathway as a therapeutic modality. Abstract Altered cell metabolism is a hallmark of cancer cell biology, and the adaptive metabolic strategies of cancer cells have been of recent interest to many groups. Metabolic reprogramming has been identified as a critical step in glial cell transformation, and the use of antimetabolites against glioblastoma has been investigated. One-carbon (1-C) metabolism and its associated biosynthetic pathways, particularly purine nucleotide synthesis, are critical for rapid proliferation and are altered in many cancers. Purine metabolism has also been identified as essential for glioma tumourigenesis. Additionally, alterations of 1-C-mediated purine synthesis have been identified as commonly present in brain tumour initiating cells (BTICs) and could serve as a phenotypic marker of cells responsible for tumour recurrence. Further research is required to elucidate mechanisms through which metabolic vulnerabilities may arise in BTICs and potential ways to therapeutically target these metabolic processes. This review aims to summarize the role of 1-C metabolism-associated vulnerabilities in glioblastoma tumourigenesis and progression and investigate the therapeutic potential of targeting this pathway in conjunction with other treatment strategies.
Collapse
|
31
|
Dagdelen DN, Akkulak A, Donmez Yalcin G. The investigation of glutamate transporter 1 (GLT-1) degradation pathway in glioblastoma cells. Mol Biol Rep 2021; 48:3495-3502. [PMID: 34003424 DOI: 10.1007/s11033-021-06407-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/08/2021] [Indexed: 11/25/2022]
Abstract
Glioblastoma multiform is a primary brain tumor derived from glial cells. The aim of this study is to investigate how glutamate metabolism is regulated by glutamate transporter 1 (GLT-1) degradation pathway in glioblastoma and glial cell lines. The protein expression levels of GLT-1, total ubiquitin, protein kinase C (PKC) proteins involved in the GLT-1 degradation pathway were measured by the western blot technique. Additionally, in glial and glioblastoma cells, the level of glutamate accumulated in the medium and the lysates was measured with the glutamate assay. GLT-1 protein expression was increased significantly in glioblastoma cells. The expression levels of the PKC protein and total ubiquitin were found to be decreased in glioblastoma cells although not significantly. The glutamate accumulated in the medium and lysates of glioblastoma cells is reduced compared to glial cells. Further research regarding excitotoxicity in glioblastoma focusing on GLT-1 degradation or activation pathway may create new opportunities of drug and treatment development.
Collapse
Affiliation(s)
- Duriye Nur Dagdelen
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Aysenur Akkulak
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Gizem Donmez Yalcin
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey.
| |
Collapse
|
32
|
Sahuri-Arisoylu M, Mould RR, Shinjyo N, Bligh SWA, Nunn AVW, Guy GW, Thomas EL, Bell JD. Acetate Induces Growth Arrest in Colon Cancer Cells Through Modulation of Mitochondrial Function. Front Nutr 2021; 8:588466. [PMID: 33937302 PMCID: PMC8081909 DOI: 10.3389/fnut.2021.588466] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Acetate is one of the main short chain fatty acids produced in the colon when fermentable carbohydrates are digested. It has been shown to affect normal metabolism, modulating mitochondrial function, and fatty acid oxidation. Currently, there is no clear consensus regarding the effects of acetate on tumorigenesis and cancer metabolism. Here, we investigate the metabolic effects of acetate on colon cancer. HT29 and HCT116 colon cancer cell lines were treated with acetate and its effect on mitochondrial proliferation, reactive oxygen species, density, permeability transition pore, cellular bioenergetics, gene expression of acetyl-CoA synthetase 1 (ACSS1) and 2 (ACSS2), and lipid levels were investigated. Acetate was found to reduce proliferation of both cell lines under normoxia as well as reducing glycolysis; it was also found to increase both oxygen consumption and ROS levels. Cell death observed was independent of ACSS1/2 expression. Under hypoxic conditions, reduced proliferation was maintained in the HT29 cell line but no longer observed in the HCT116 cell line. ACSS2 expression together with cellular lipid levels was increased in both cell lines under hypoxia which may partly protect cells from the anti-proliferative effects of reversed Warburg effect caused by acetate. The findings from this study suggest that effect of acetate on proliferation is a consequence of its impact on mitochondrial metabolism and during normoxia is independent of ACCS1/2 expression.
Collapse
Affiliation(s)
- Meliz Sahuri-Arisoylu
- Research Centre of Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom.,Health Innovation Ecosystem, University of Westminster, London, United Kingdom
| | - Rhys R Mould
- Research Centre of Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Noriko Shinjyo
- Research Centre of Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - S W Annie Bligh
- Research Centre of Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom.,School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, China
| | - Alistair V W Nunn
- Research Centre of Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Geoffrey W Guy
- Research Centre of Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Elizabeth Louise Thomas
- Research Centre of Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Jimmy D Bell
- Research Centre of Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
33
|
Chakravarty M, Ganguli P, Murahari M, Sarkar RR, Peters GJ, Mayur YC. Study of Combinatorial Drug Synergy of Novel Acridone Derivatives With Temozolomide Using in-silico and in-vitro Methods in the Treatment of Drug-Resistant Glioma. Front Oncol 2021; 11:625899. [PMID: 33791212 PMCID: PMC8006935 DOI: 10.3389/fonc.2021.625899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is one of the critical challenges faced in the treatment of Glioma. There are only limited drugs available in the treatment of Glioma and among them Temozolomide (TMZ) has shown some effectiveness in treating Glioma patients, however, the rate of recovery remains poor due to the inability of this drug to act on the drug resistant tumor sub-populations. Hence, in this study three novel Acridone derivative drugs AC2, AC7, and AC26 have been proposed. These molecules when combined with TMZ show major tumor cytotoxicity that is effective in suppressing growth of cancer cells in both drug sensitive and resistant sub-populations of a tumor. In this study a novel mathematical model has been developed to explore the various drug combinations that may be useful for the treatment of resistant Glioma and show that the combinations of TMZ and Acridone derivatives have a synergistic effect. Also, acute toxicity studies of all three acridone derivatives were carried out for 14 days and were found safe for oral administration of 400 mg/kg body weight on albino Wistar rats. Molecular Docking studies of acridone derivatives with P-glycoprotein (P-gp), multiple resistant protein (MRP), and O6-methylguanine-DNA methyltransferase (MGMT) revealed different binding affinities to the transporters contributing to drug resistance. It is observed that while the Acridone derivatives bind with these drug resistance causing proteins, the TMZ can produce its cytotoxicity at a much lower concentration leading to the synergistic effect. The in silico analysis corroborate well with our experimental findings using TMZ resistant (T-98) and drug sensitive (U-87) Glioma cell lines and we propose three novel drug combinations (TMZ with AC2, AC7, and AC26) and dosages that show high synergy, high selectivity and low collateral toxicity for the use in the treatment of drug resistant Glioma, which could be future drugs in the treatment of Glioblastoma.
Collapse
Affiliation(s)
- Malobika Chakravarty
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Piyali Ganguli
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Godefridus Johannes Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.,Laboratory Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Amsterdam, Netherlands
| | - Y C Mayur
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
34
|
Che P, Yu L, Friedman GK, Wang M, Ke X, Wang H, Zhang W, Nabors B, Ding Q, Han X. Integrin αvβ3 Engagement Regulates Glucose Metabolism and Migration through Focal Adhesion Kinase (FAK) and Protein Arginine Methyltransferase 5 (PRMT5) in Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13051111. [PMID: 33807786 PMCID: PMC7961489 DOI: 10.3390/cancers13051111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming promotes glioblastoma cell migration and invasion. Integrin αvβ3 is one of the major integrin family members in glioblastoma multiforme cell surface mediating interactions with extracellular matrix proteins that are important for glioblastoma progression. The role of αvβ3 integrin in regulating metabolic reprogramming and its mechanism of action have not been determined in glioblastoma cells. Integrin αvβ3 engagement with osteopontin promotes glucose uptake and aerobic glycolysis, while inhibiting mitochondrial oxidative phosphorylation. Blocking or downregulation of integrin αvβ3 inhibits glucose uptake and aerobic glycolysis and promotes mitochondrial oxidative phosphorylation, resulting in decreased migration and growth in glioblastoma cells. Pharmacological inhibition of focal adhesion kinase (FAK) or downregulation of protein arginine methyltransferase 5 (PRMT5) blocks metabolic shift toward glycolysis and inhibits glioblastoma cell migration and invasion. These results support that integrin αvβ3 and osteopontin engagement plays an important role in promoting the metabolic shift toward glycolysis and inhibiting mitochondria oxidative phosphorylation in glioblastoma cells. The metabolic shift in cell energy metabolism is coupled to changes in migration, invasion, and growth, which are mediated by downstream FAK and PRMT5 in glioblastoma cells.
Collapse
Affiliation(s)
- Pulin Che
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
| | - Lei Yu
- Guiyang Maternal and Child Health Hospital, Guiyang 550001, China;
| | - Gregory K. Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Meimei Wang
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China;
| | - Huafeng Wang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
- School of Life Science, Shanxi Normal University, Linfen City 041004, China
| | - Wenbin Zhang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
| | - Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
| | - Qiang Ding
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
- Correspondence: (Q.D.); (X.H.)
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
- Correspondence: (Q.D.); (X.H.)
| |
Collapse
|
35
|
Caniglia JL, Jalasutram A, Asuthkar S, Sahagun J, Park S, Ravindra A, Tsung AJ, Guda MR, Velpula KK. Beyond glucose: alternative sources of energy in glioblastoma. Theranostics 2021; 11:2048-2057. [PMID: 33500708 PMCID: PMC7797684 DOI: 10.7150/thno.53506] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. With a designation of WHO Grade IV, it is also the most lethal primary brain tumor with a median survival of just 15 months. This is often despite aggressive treatment that includes surgical resection, radiation therapy, and chemotherapy. Based on the poor outcomes and prevalence of the tumor, the demand for innovative therapies continues to represent a pressing issue for clinicians and researchers. In terms of therapies targeting metabolism, the prevalence of the Warburg effect has led to a focus on targeting glucose metabolism to halt tumor progression. While glucose is the dominant source of growth substrate in GBM, a number of unique metabolic pathways are exploited in GBM to meet the increased demand for replication and progression. In this review we aim to explore how metabolites from fatty acid oxidation, the urea cycle, the glutamate-glutamine cycle, and one-carbon metabolism are shunted toward energy producing pathways to meet the high energy demand in GBM. We will also explore how the process of autophagy provides a reservoir of nutrients to support viable tumor cells. By so doing, we aim to establish a foundation of implicated metabolic mechanisms supporting growth and tumorigenesis of GBM within the literature. With the sparse number of therapeutic interventions specifically targeting metabolic pathways in GBM, we hope that this review expands further insight into the development of novel treatment modalities.
Collapse
Affiliation(s)
- John L. Caniglia
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Anvesh Jalasutram
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Joseph Sahagun
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Simon Park
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Aditya Ravindra
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Andrew J. Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria
- Illinois Neurological Institute, Peoria, IL
| | - Maheedhara R. Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Kiran K. Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria
- Department of Pediatrics, University of Illinois College of Medicine at Peoria
| |
Collapse
|
36
|
Datta S, Sears T, Cortopassi G, Woolard K, Angelastro JM. Repurposing FDA approved drugs inhibiting mitochondrial function for targeting glioma-stem like cells. Biomed Pharmacother 2020; 133:111058. [PMID: 33378970 DOI: 10.1016/j.biopha.2020.111058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma Multiforme (GBM) tumors contain a small population of glioma stem-like cells (GSCs) among the various differentiated GBM cells (d-GCs). GSCs drive tumor recurrence, and resistance to Temozolomide (TMZ), the standard of care (SoC) for GBM chemotherapy. In order to investigate a potential link between GSC specific mitochondria function and SoC resistance, two patient-derived GSC lines were evaluated for differences in their mitochondrial metabolism. In both the lines, GSCs had significantly lower mitochondrial -content, and -function compared to d-GCs. In vitro, the standard mitochondrial-specific inhibitors oligomycin A, antimycin A, and rotenone selectively inhibited GSC proliferation to a greater extent than d-GCs and human primary astrocytes. These findings indicate that mitochondrial inhibition can be a potential GSC-targeted therapeutic strategy in GBM with minimal off-target toxicity. Mechanistically the standard mitochondrial inhibitors elicit their GSC-selective cytotoxic effects through the induction of apoptosis or autophagy pathways. We tested for GSC proliferation in the presence of 3 safe FDA-approved drugs--trifluoperazine, mitoxantrone, and pyrvinium pamoate, all of which are also known mitochondrial-targeting agents. The SoC GBM therapeutic TMZ did not trigger cytotoxicity in glioma stem cells, even at 100 μM concentration. By contrast, trifluoperazine, mitoxantrone, and pyrvinium pamoate exerted antiproliferative effects in GSCs about 30-50 fold more effectively than temozolomide. Thus, we hereby demonstrate that FDA-approved mitochondrial inhibitors induce GSC-selective cytotoxicity, and targeting mitochondrial function could present a potential therapeutic option for GBM treatment.
Collapse
Affiliation(s)
- Sandipan Datta
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Thomas Sears
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kevin Woolard
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
37
|
Oleamide Induces Cell Death in Glioblastoma RG2 Cells by a Cannabinoid Receptor-Independent Mechanism. Neurotox Res 2020; 38:941-956. [PMID: 32930995 DOI: 10.1007/s12640-020-00280-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/06/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
The endocannabinoid system has been associated with antiproliferative effects in several types of tumors through cannabinoid receptor-mediated cell death mechanisms. Oleamide (ODA) is a CB1/CB2 agonist associated with cell growth and migration by adhesion and/or ionic signals associated with Gap junctions. Antiproliferative mechanisms related to ODA remain unknown. In this work, we evaluated the effects of ODA on cell viability and morphological changes in a rat RG2 glioblastoma cell line and compared these effects with primary astrocyte cultures from 8-day postnatal rats. RG2 and primary astrocyte cultures were treated with ODA at increasing concentrations (25, 50, 100, and 200 μM) for different periods of time (12, 24, and 48 h). Changes in RG2 cell viability and morphology induced by ODA were assessed by viability/mitochondrial activity test and phase contrast microscopy, respectively. The ratios of necrotic and apoptotic cell death, and cell cycle alterations, were evaluated by flow cytometry. The roles of CB1 and CB2 receptors on ODA-induced changes were explored with specific receptor antagonists. ODA (100 μM) induced somatic damage, detachment of somatic bodies, cytoplasmic polarization, and somatic shrinkage in RG2 cells at 24 and 48 h. In contrast, primary astrocytes treated at the same ODA concentrations exhibited cell aggregation but not cell damage. ODA (100 μM) increased apoptotic cell death and cell arrest in the G1 phase at 24 h in the RG2 line. The effects induced by ODA on cell viability of RG2 cells were independent of CB1 and CB2 receptors or changes in intracellular calcium transient. Results of this novel study suggest that ODA exerts specific antiproliferative effects on RG2 glioblastoma cells through unconventional apoptotic mechanisms not involving canonical signals.
Collapse
|
38
|
Sharanek A, Burban A, Laaper M, Heckel E, Joyal JS, Soleimani VD, Jahani-Asl A. OSMR controls glioma stem cell respiration and confers resistance of glioblastoma to ionizing radiation. Nat Commun 2020; 11:4116. [PMID: 32807793 PMCID: PMC7431428 DOI: 10.1038/s41467-020-17885-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma contains a rare population of self-renewing brain tumor stem cells (BTSCs) which are endowed with properties to proliferate, spur the growth of new tumors, and at the same time, evade ionizing radiation (IR) and chemotherapy. However, the drivers of BTSC resistance to therapy remain unknown. The cytokine receptor for oncostatin M (OSMR) regulates BTSC proliferation and glioblastoma tumorigenesis. Here, we report our discovery of a mitochondrial OSMR that confers resistance to IR via regulation of oxidative phosphorylation, independent of its role in cell proliferation. Mechanistically, OSMR is targeted to the mitochondrial matrix via the presequence translocase-associated motor complex components, mtHSP70 and TIM44. OSMR interacts with NADH ubiquinone oxidoreductase 1/2 (NDUFS1/2) of complex I and promotes mitochondrial respiration. Deletion of OSMR impairs spare respiratory capacity, increases reactive oxygen species, and sensitizes BTSCs to IR-induced cell death. Importantly, suppression of OSMR improves glioblastoma response to IR and prolongs lifespan. The suppression of the receptor for oncostatin M (OSMR) can prevent glioblastoma cell growth. Here, the authors demonstrate a role for OSMR in modulating glioma stem cell respiration and its impact on resistance to ionizing radiation.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Audrey Burban
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Matthew Laaper
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.,Integrated program in Neuroscience, Montreal Neurological Institute, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Emilie Heckel
- Departments of Pediatrics, Pharmacology and Ophthalmology, Université de Montréal, CHU Sainte-Justine, Montréal, QC, H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Jean-Sebastien Joyal
- Departments of Pediatrics, Pharmacology and Ophthalmology, Université de Montréal, CHU Sainte-Justine, Montréal, QC, H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.,Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC, H3A OC7, Canada
| | - Arezu Jahani-Asl
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada. .,Integrated program in Neuroscience, Montreal Neurological Institute, 3801 University Street, Montréal, QC, H3A 2B4, Canada. .,Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, 5100 Maisonneuve Blvd West, Suite 720, H4A3T2, Montréal, QC, Canada.
| |
Collapse
|
39
|
Ji CC, Hu YY, Cheng G, Liang L, Gao B, Ren YP, Liu JT, Cao XL, Zheng MH, Li SZ, Wan F, Han H, Fei Z. A ketogenic diet attenuates proliferation and stemness of glioma stem‑like cells by altering metabolism resulting in increased ROS production. Int J Oncol 2019; 56:606-617. [PMID: 31894296 DOI: 10.3892/ijo.2019.4942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/01/2019] [Indexed: 11/05/2022] Open
Abstract
Abnormal metabolism serves a critical role in the development and progression of different types of malignancies including glioblastoma (GBM), and may therefore serve as a promising target for treatment of cancer. Preclinical studies have indicated that a ketogenic diet (KD) may exhibit beneficial effects in patients with GBM; however, the underlying mechanisms remain incompletely understood. The aim of the present study was to evaluate the effects of a KD on glioma stem‑like cells (GSCs), by culturing patient‑derived primary GSCs as well as a GSC cell line in glucose‑restricted, β‑hydroxybutyrate‑containing medium (BHB‑Glow) which was used to mimic clinical KD treatment. GSCs cultured in BHB‑Glow medium exhibited reduced proliferation and increased apoptosis compared with cells grown in the control medium. Furthermore, decreased expression of stem cell markers, diminished self‑renewal in vitro, and reduced tumorigenic capacity in vivo, providing evidence that the stemness of GSCs was compromised. Mechanistically, culturing in BHB‑Glow medium reduced glucose uptake and inhibited glycolysis in GSCs. Furthermore, culturing in the BHB‑Glow medium resulted in morphological and functional disturbances to the mitochondria of GSCs. These metabolic changes may have reduced ATP production, promoted lactic acid accumulation, and thus, increased the production of reactive oxygen species (ROS) in GSCs. The expression levels and activation of mammalian target of rapamycin, hypoxia‑inducible factor 1 and B‑cell lymphoma 2 were decreased, consistent with the reduced proliferation of GSCs in BHB‑Glow medium. ROS scavenging reversed the inhibitory effects of a KD on GSCs. Taken together, the results demonstrate that treatment with KD inhibited proliferation of GSCs, increased apoptosis and attenuated the stemness in GSCs by increasing ROS production.
Collapse
Affiliation(s)
- Chen-Chen Ji
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi-Yang Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guang Cheng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ying-Peng Ren
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jin-Tao Liu
- Department of Orthopedic Surgery, 413 Hospital, Zhoushan, Zhejiang 316000, P.R. China
| | - Xiu-Li Cao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Min-Hua Zheng
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - San-Zhong Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hua Han
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
40
|
Qu C, Yan C, Cao W, Li F, Qu Y, Guan K, Si C, Yu Z, Qu Z. miR-128-3p contributes to mitochondrial dysfunction and induces apoptosis in glioma cells via targeting pyruvate dehydrogenase kinase 1. IUBMB Life 2019; 72:465-475. [PMID: 31828927 DOI: 10.1002/iub.2212] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Glioma, like most cancers, possesses a unique bioenergetic state of aerobic glycolysis known as the Warburg effect, which is a dominant phenotype of most tumor cells. Glioma tumors exhibit high glycolytic metabolism with increased lactate production. Data derived from the gene expression profiling interactive analysis (GEPIA) database show that pyruvate dehydrogenase kinase 1 (PDK1) is significantly highly expressed in glioma tissues compared with corresponding normal tissues. PDK1 is a key enzyme in the transition of glycolysis to tricarboxylic acid cycle, via inactivating PDH and converting oxidative phosphorylation to Warburg effect, resulting in increment of lactate production. Silencing of PDK1 expression resulted in reduced lactate and ATP, accumulation of ROS, mitochondrial damage, decreased cell growth, and increased cell apoptosis. Aberrant expression of miR-128 has been observed in many human malignancies. Mechanistically, we discover that overexpressed miR-128-3p disturbs the Warburg effect in glioma cells via reducing PDK1. Our experiments confirmed that the miR-128-3p/PDK1 axis played a pivotal role in cancer cell metabolism and growth. Collectively, these findings suggest that therapeutic strategies to modulate the Warburg effect, such as targeting of PDK1, might act as a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Changda Qu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yan
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weifan Cao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fangqin Li
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yewei Qu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ke Guan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengqing Si
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ze Yu
- Guangzhou Institute of Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Zhangyi Qu
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
41
|
Medeiros HCD, Colturato-Kido C, Ferraz LS, Costa CA, Moraes VWR, Paredes-Gamero EJ, Tersariol ILS, Rodrigues T. AMPK activation induced by promethazine increases NOXA expression and Beclin-1 phosphorylation and drives autophagy-associated apoptosis in chronic myeloid leukemia. Chem Biol Interact 2019; 315:108888. [PMID: 31682805 DOI: 10.1016/j.cbi.2019.108888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 01/12/2023]
Abstract
Relapse and drug resistance is still major challenges in the treatment of leukemia. Promethazine, an antihistaminic phenothiazine derivative, has been used to prevent chemotherapy-induced emesis, although there is no report about its antitumor potential. Thus, we evaluated the promethazine cytotoxicity against several leukemia cells and the underlying mechanisms were investigated. Promethazine exhibited potent and selective cytotoxicity against all leukemia cell types in vitro at clinically relevant concentrations. Philadelphia positive chronic myeloid leukemia (CML) K562 cells were the most sensitive cell line. The cytotoxicity of promethazine in these cells was triggered by the activation of AMPK and inhibition of PI3K/AKT/mTOR pathway. The subsequent downstream effects were NOXA increase, MCL-1 decrease, and Beclin-1 activation, resulting in autophagy-associated apoptosis. These data highlight targeting autophagy may represent an interesting strategy in CML therapy, and also the antitumor potential of promethazine by acting in AMPK and PI3K/AKT/mTOR signaling pathways. Since this drug is currently used with relative low side effects, its repurposing may represent a new therapeutic opportunity for leukemia treatment.
Collapse
Affiliation(s)
- Hyllana C D Medeiros
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Carina Colturato-Kido
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Letícia S Ferraz
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Claudia A Costa
- Interdisciplinary Center of Biochemistry Investigation (CIIB), University of Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil
| | - Vivian W R Moraes
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Edgar Julian Paredes-Gamero
- School of Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Ivarne L S Tersariol
- Department of Biochemistry, São Paulo School of Medicine, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
42
|
Wishart DS. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol Rev 2019; 99:1819-1875. [PMID: 31434538 DOI: 10.1152/physrev.00035.2018] [Citation(s) in RCA: 598] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metabolomics uses advanced analytical chemistry techniques to enable the high-throughput characterization of metabolites from cells, organs, tissues, or biofluids. The rapid growth in metabolomics is leading to a renewed interest in metabolism and the role that small molecule metabolites play in many biological processes. As a result, traditional views of metabolites as being simply the "bricks and mortar" of cells or just the fuel for cellular energetics are being upended. Indeed, metabolites appear to have much more varied and far more important roles as signaling molecules, immune modulators, endogenous toxins, and environmental sensors. This review explores how metabolomics is yielding important new insights into a number of important biological and physiological processes. In particular, a major focus is on illustrating how metabolomics and discoveries made through metabolomics are improving our understanding of both normal physiology and the pathophysiology of many diseases. These discoveries are yielding new insights into how metabolites influence organ function, immune function, nutrient sensing, and gut physiology. Collectively, this work is leading to a much more unified and system-wide perspective of biology wherein metabolites, proteins, and genes are understood to interact synergistically to modify the actions and functions of organelles, organs, and organisms.
Collapse
Affiliation(s)
- David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Chinopoulos C, Seyfried TN. Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis. ASN Neuro 2019; 10:1759091418818261. [PMID: 30909720 PMCID: PMC6311572 DOI: 10.1177/1759091418818261] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant of the primary adult brain cancers. Ultrastructural and biochemical evidence shows that GBM cells exhibit mitochondrial abnormalities incompatible with energy production through oxidative phosphorylation (OxPhos). Under such conditions, the mitochondrial F0-F1 ATP synthase operates in reverse at the expense of ATP hydrolysis to maintain a moderate membrane potential. Moreover, expression of the dimeric M2 isoform of pyruvate kinase in GBM results in diminished ATP output, precluding a significant ATP production from glycolysis. If ATP synthesis through both glycolysis and OxPhos was impeded, then where would GBM cells obtain high-energy phosphates for growth and invasion? Literature is reviewed suggesting that the succinate-CoA ligase reaction in the tricarboxylic acid cycle can substantiate sufficient ATP through mitochondrial substrate-level phosphorylation (mSLP) to maintain GBM growth when OxPhos is impaired. Production of high-energy phosphates would be supported by glutaminolysis—a hallmark of GBM metabolism—through the sequential conversion of glutamine → glutamate → alpha-ketoglutarate → succinyl CoA → succinate. Equally important, provision of ATP through mSLP would maintain the adenine nucleotide translocase in forward mode, thus preventing the reverse-operating F0-F1 ATP synthase from depleting cytosolic ATP reserves. Because glucose and glutamine are the primary fuels driving the rapid growth of GBM and most tumors for that matter, simultaneous restriction of these two substrates or inhibition of mSLP should diminish cancer viability, growth, and invasion.
Collapse
|
44
|
Guda MR, Labak CM, Omar SI, Asuthkar S, Airala S, Tuszynski J, Tsung AJ, Velpula KK. GLUT1 and TUBB4 in Glioblastoma Could be Efficacious Targets. Cancers (Basel) 2019; 11:cancers11091308. [PMID: 31491891 PMCID: PMC6771132 DOI: 10.3390/cancers11091308] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and deadly brain tumor, portending a median 13-month survival even following gross total resection with adjuvant chemotherapy and radiotherapy. This prognosis necessitates improved therapies for the disease. A target of interest for novel chemotherapies is the Warburg Effect, which describes the tumor's shift away from oxidative phosphorylation towards glycolysis. Here, we elucidate GLUT1 (Glucose transporter 1) and one of its associated binding partners, TUBB4 (Tubulin 4), as potentially druggable targets in GBM. Using data mining approach, we demonstrate that GLUT1 is overexpressed as a function of tumor grade in astrocytoma's and that its overexpression is associated with poorer prognosis. Using both mass spectrometry performed on hGBM (human glioblastoma patient specimen) and in silico modeling, we show that GLUT1 interacts with TUBB4, and more accurately demonstrates GLUT1's binding with fasentin. Proximity ligation assay (PLA) and immunoprecipitation studies confirm GLUT1 interaction with TUBB4. Treatment of GSC33 and GSC28 cells with TUBB4 inhibitor, CR-42-24, reduces the expression of GLUT1 however, TUBB4 expression is unaltered upon fasentin treatment. Using human pluripotent stem cell antibody array, we demonstrate reduced levels of Oct3/4, Nanog, Sox2, Sox17, Snail and VEGFR2 (Vascular endothelial growth factor receptor 2) upon CR-42-24 treatment. Overall, our data confirm that silencing TUBB4 or GLUT1 reduce GSC tumorsphere formation, self-renewal and proliferation in vitro. These findings suggest GLUT1 and its binding partner TUBB4 as druggable targets that warrant further investigation in GBM.
Collapse
Affiliation(s)
- Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Collin M Labak
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Sara Ibrahim Omar
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Subra Airala
- Department of Health Professions, Rollins College, Winter Park, FL 32789, USA
| | - Jack Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Illinois Neurological Institute, Peoria, IL 61605, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
| |
Collapse
|
45
|
Zhou W, Wahl DR. Metabolic Abnormalities in Glioblastoma and Metabolic Strategies to Overcome Treatment Resistance. Cancers (Basel) 2019; 11:cancers11091231. [PMID: 31450721 PMCID: PMC6770393 DOI: 10.3390/cancers11091231] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor and is nearly universally fatal. Targeted therapy and immunotherapy have had limited success in GBM, leaving surgery, alkylating chemotherapy and ionizing radiation as the standards of care. Like most cancers, GBMs rewire metabolism to fuel survival, proliferation, and invasion. Emerging evidence suggests that this metabolic reprogramming also mediates resistance to the standard-of-care therapies used to treat GBM. In this review, we discuss the noteworthy metabolic features of GBM, the key pathways that reshape tumor metabolism, and how inhibiting abnormal metabolism may be able to overcome the inherent resistance of GBM to radiation and chemotherapy.
Collapse
Affiliation(s)
- Weihua Zhou
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Dong Z, Zhong X, Lei Q, Chen F, Cui H. Transcriptional activation of SIRT6 via FKHRL1/FOXO3a inhibits the Warburg effect in glioblastoma cells. Cell Signal 2019; 60:100-113. [PMID: 31004738 DOI: 10.1016/j.cellsig.2019.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and malignant form of brain tumors. However, its molecular mechanisms of tumorigenesis and cancer development remains to elucidate. Here, we reported FKHRL1, also called as FOXO3a, was an anti-cancer factor that inhibited the Warburg effect in GBM. Clinical data analysis revealed that FKHRL1 expression was positively correlated with the prognosis of patients with GBM. FKHRL1 silencing promoted glycolysis and cell growth of HEB gliocytes. Besides, FKHRL1 expression was tightly correlated with the expression of SIRT6 and a cluster of glycolytic genes that controlling the Warburg effect in glioma samples. Interestingly, the expression of SIRT6 was reduced after FKHRL1 knockdown, while its expression was upregulated when FKHRL1 was overexpressed in human U251 GBM cell line. In addition, SIRT6 restoration recovered the upregulated aerobic glycolysis induced by FKHRL1 knockdown. Meanwhile, SIRT6 knockdown also rescued the decrease of glucose metabolism induced by FKHRL1 overexpression. Luciferase assay and chromatin immunoprecipitation (ChIP) assay revealed that FKHRL1 bound to the promoter region of SIRT6 and enhanced its expression. Both in vitro and in vivo experiments further confirmed that FKHRL1-SIRT6 axis played a pivotal role in cell metabolism and tumor growth. Our results indicate that FKHRL1-SIRT6 axis regulates cell metabolism and may provide clues for GBM treatment.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
| | - Xiaoxia Zhong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
| | - Qian Lei
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
47
|
Li S, Gao J, Zhuang X, Zhao C, Hou X, Xing X, Chen C, Liu Q, Liu S, Luo Y. Cyclin G2 Inhibits the Warburg Effect and Tumour Progression by Suppressing LDHA Phosphorylation in Glioma. Int J Biol Sci 2019; 15:544-555. [PMID: 30745841 PMCID: PMC6367585 DOI: 10.7150/ijbs.30297] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Cyclin G2 has been identified as a tumour suppressor in several cancers. However, its regulatory roles and underlying mechanisms in tumours are still unknown. In this study, we demonstrated that cyclin G2 was expressed at low levels in glioma, which was as a poor prognostic factor for this disease. We also found that, cyclin G2 could suppress cell proliferation, initiate cell apoptosis and reduce aerobic glycolysis, suggesting that cyclin G2 plays a tumour suppressive role in glioma. Mechanistically, cyclin G2 could negatively regulate tyrosine-10 phosphorylation of a critical glycolytic enzyme, lactate dehydrogenase A, through direct interaction. Taken together, these results indicate that cyclin G2 acts as a tumour suppressor in glioma by repressing glycolysis and tumour progression through its interaction with LDHA.
Collapse
Affiliation(s)
- Sen Li
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xinbin Zhuang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiaoyu Hou
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Chen Chen
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Shuang Liu
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
48
|
Dong Z, Cui H. Epigenetic modulation of metabolism in glioblastoma. Semin Cancer Biol 2018; 57:45-51. [PMID: 30205139 DOI: 10.1016/j.semcancer.2018.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Epigenetic and metabolic alterations incancer cells are highly associated. Glioblastoma multiforme (GBM) is a complicated pathological process with dysregulated methylation and histone modifications. Metabolic modulation of epigenetics in gliomas was previously summarized. However, epigenetic modulation is also important in metabolic decision. Recently, there has been a tremendous increase in understanding of DNA methylation, chromatin modulation, and non-coding RNAs in the regulation of cell metabolism, especially glycolytic metabolism in GBM. In this review, we summarize DNA methylation, histone alteration, and non-coding RNA mediated epigenetic modulation of metabolism in GBM and discuss the future research directions in this area and its applications in GBM treatment.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Biology, Southwest University, Beibei, Chongqing, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Biology, Southwest University, Beibei, Chongqing, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China.
| |
Collapse
|
49
|
Iorio F, Garcia-Alonso L, Brammeld JS, Martincorena I, Wille DR, McDermott U, Saez-Rodriguez J. Pathway-based dissection of the genomic heterogeneity of cancer hallmarks' acquisition with SLAPenrich. Sci Rep 2018; 8:6713. [PMID: 29713020 PMCID: PMC5928049 DOI: 10.1038/s41598-018-25076-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer hallmarks are evolutionary traits required by a tumour to develop. While extensively characterised, the way these traits are achieved through the accumulation of somatic mutations in key biological pathways is not fully understood. To shed light on this subject, we characterised the landscape of pathway alterations associated with somatic mutations observed in 4,415 patients across ten cancer types, using 374 orthogonal pathway gene-sets mapped onto canonical cancer hallmarks. Towards this end, we developed SLAPenrich: a computational method based on population-level statistics, freely available as an open source R package. Assembling the identified pathway alterations into sets of hallmark signatures allowed us to connect somatic mutations to clinically interpretable cancer mechanisms. Further, we explored the heterogeneity of these signatures, in terms of ratio of altered pathways associated with each individual hallmark, assuming that this is reflective of the extent of selective advantage provided to the cancer type under consideration. Our analysis revealed the predominance of certain hallmarks in specific cancer types, thus suggesting different evolutionary trajectories across cancer lineages. Finally, although many pathway alteration enrichments are guided by somatic mutations in frequently altered high-confidence cancer genes, excluding these driver mutations preserves the hallmark heterogeneity signatures, thus the detected hallmarks' predominance across cancer types. As a consequence, we propose the hallmark signatures as a ground truth to characterise tails of infrequent genomic alterations and identify potential novel cancer driver genes and networks.
Collapse
Affiliation(s)
- Francesco Iorio
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
| | - Luz Garcia-Alonso
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Jonathan S Brammeld
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Iňigo Martincorena
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - David R Wille
- GlaxoSmithKline, Gunnels Wood Rd, Stevenage Herts, SG1 2NY, UK
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, MTZ Pauwelstrasse 19, Aachen, 52074, Germany.
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
| |
Collapse
|
50
|
Chen S, Zhang Y, Wang H, Zeng YY, Li Z, Li ML, Li FF, You J, Zhang ZM, Tzeng CM. WW domain-binding protein 2 acts as an oncogene by modulating the activity of the glycolytic enzyme ENO1 in glioma. Cell Death Dis 2018; 9:347. [PMID: 29497031 PMCID: PMC5832848 DOI: 10.1038/s41419-018-0376-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023]
Abstract
WW domain-binding protein 2 (WBP2) has been demonstrated as oncogenic in breast cancer. Many studies have revealed the WBP2 gene as a high-risk gene for leukoariaosis and cerebral white matter lesions is important in the pathologic stage of glioma development. This study aimed to illustrate the underlying mechanism by which WBP2 regulates the process of glioma development. The expression pattern of WBP2 in several tumor cells was determined, clarifying the carcinogenic action of WBP2 in glioma cells. Overexpression of WBP2 in glioma cells promoted cell proliferation and migration, and the number of S-phase cells, whereas the depletion of WBP2 by RNAi-mediated knockdown restrained cell growth and cell cycle progression. Upregulation of WBP2 significantly enhanced the tumorigenic ability of U251 cells in vivo. MS/GST pulldown assay identified α-enolase (ENO1) and Homer protein homolog 3 (Homer3) as novel potent interaction partners of WBP2. Knockdown of ENO1 or Homer3 allowed cell growth and migration to return to normal levels. Furthermore, in vitro and in vivo experiments indicated that the oncogenic role of WBP2 in glioma was through modulating ENO1 and glycolysis activity via the ENO1-PI3K/Akt signaling pathway. Collectively, these results reveal that WBP2 plays a vital role in the occurrence and development of glioma, indicating a target gene for glioblastoma treatment.
Collapse
Affiliation(s)
- Shuai Chen
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, P.R. China.,Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, P.R. China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, P.R. China
| | - Ya Zhang
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, P.R. China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, P.R. China
| | - Han Wang
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, P.R. China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, P.R. China
| | - Yu-Ying Zeng
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, P.R. China
| | - Zhi Li
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, P.R. China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, P.R. China
| | - Ming-Li Li
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, P.R. China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, P.R. China
| | - Fang-Fang Li
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, P.R. China.,INNOVA Cell Theranostics/Clinics and TRANSLA Health Group, Yangzhou, Jiangsu, P.R. China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, P.R. China
| | - Jun You
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, P.R. China
| | - Zhi-Ming Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, P.R. China. .,Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, P.R. China.
| | - Chi-Meng Tzeng
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, P.R. China. .,INNOVA Cell Theranostics/Clinics and TRANSLA Health Group, Yangzhou, Jiangsu, P.R. China. .,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, P.R. China. .,College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China. .,Jiansu Provincial Institute of Translation Medicine and Women-Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|