1
|
Kashkin K, Kondratyeva L, Kopantzev E, Abramov I, Zhukova L, Chernov I. Deciphering of SOX9 Functions in Pancreatic Cancer Cells. Int J Mol Sci 2025; 26:2652. [PMID: 40141294 PMCID: PMC11941869 DOI: 10.3390/ijms26062652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
SOX9 is widely regarded as a key master regulator of gene transcription, responsible for the development and differentiation programs within tissue and organogenesis, particularly in the pancreas. SOX9 overexpression has been observed in multiple tumor types, including pancreatic cancer, and is discussed as a prognostic marker. In order to gain a more profound understanding of the role of SOX9 in pancreatic cancer, we have performed SOX9 knockdown in the COLO357 and PANC-1 cells using RNA interference, followed by full-transcriptome analysis of the siRNA-transfected cells. The molecular pathway enrichment analysis between SOX9-specific siRNA-transfected cells and control cells reveals the activation of processes associated with cellular signaling, cell differentiation, transcription, and methylation, alongside the suppression of genes involved in various stages of the cell cycle and apoptosis, upon the SOX9 knockdown. Alterations of the expression of transcription factors, epithelial-mesenchymal transition markers, oncogenes, tumor suppressor genes, and drug resistance-related genes upon SOX9 knockdown in comparison of primary and metastatic pancreatic cancer cells are discovered. The expression levels of genes comprising prognostic signatures for pancreatic cancer were also evaluated following SOX9 knockdown. Additional studies are needed to assess the properties and prognostic significance of SOX9 in pancreatic cancer using other biological models.
Collapse
Affiliation(s)
- Kirill Kashkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| | - Eugene Kopantzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| | - Ivan Abramov
- GBUZ Moscow Clinical Scientific and Practical Center Named After A.S. Loginov MHD (MCSC), 111123 Moscow, Russia; (I.A.); (L.Z.)
| | - Lyudmila Zhukova
- GBUZ Moscow Clinical Scientific and Practical Center Named After A.S. Loginov MHD (MCSC), 111123 Moscow, Russia; (I.A.); (L.Z.)
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.K.); (I.C.)
| |
Collapse
|
2
|
Sojoudi K, Solaimani M, Azizi H. Exosomal insights into ovarian cancer stem cells: revealing the molecular hubs. J Ovarian Res 2025; 18:20. [PMID: 39891297 PMCID: PMC11784003 DOI: 10.1186/s13048-025-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025] Open
Abstract
Ovarian cancer is a deadly disease, often diagnosed at advanced stages due to a lack of reliable biomarkers. Exosomes, which carry a variety of molecules such as proteins, lipids, DNA, and non-coding RNAs, have recently emerged as promising tools for early cancer detection. While exosomes have been studied in various cancer types, comprehensive network analyses of exosome proteins in ovarian cancer remain limited. In this study, we used a protein-protein interaction (PPI) network. Using the Clustermaker2 app and the MCODE algorithm, we identified six significant clusters within the network, highlighting regions involved in functional pathways. A four-fold algorithmic approach, including MCC, DMNC, Degree, and EPC, identified 12 common hub genes. STRING analysis and visualization techniques provided a detailed understanding of the biological processes associated with these hub genes. Notably, 91.7% of the identified hub genes were involved in translational processes, showing an important role in protein synthesis regulation in ovarian cancer. In addition, we identified the miRNAs and LncRNAs carried by ovarian cancer exosomes. These findings highlight potential biomarkers for early detection and therapeutic targets.
Collapse
Affiliation(s)
- Kiana Sojoudi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 49767, Iran
| | - Maryam Solaimani
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 49767, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 49767, Iran.
| |
Collapse
|
3
|
Shi J, Yang Y, Chen F, Zhou L, Wei H, Dong F, Wang X, Shan Y, Chen T. RPL36A activates ERK pathway and promotes colorectal cancer growth. Transl Oncol 2025; 51:102170. [PMID: 39489085 PMCID: PMC11567952 DOI: 10.1016/j.tranon.2024.102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Ribosomal protein L36A (RPL36A) was one of the most upregulated proteins in colorectal cancer (CRC), yet its role in colorectal cancer (CRC) remains largely unexplored, with limited studies investigating its expression and biological functions. In this investigation, we confirmed a marked upregulation of RPL36A in CRC tissues, correlating with an adverse prognosis. Silencing RPL36A markedly attenuated CRC cell malignant properties and tumor xenograft growth. Further mechanistic analysis indicated that RPL36A depletion diminished phosphorylated ERK levels, subsequently impacting the expression of c-Myc and ELK1, key downstream effectors in the MAPK/ERK pathway. Notably, the tumor-suppressive effects of RPL36A knockdown could be negated by an ERK activator. Collectively, our findings underscore the oncogenic function of RPL36A in CRC and propose it as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Jing Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People ' s Hospital, China; Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Yebin Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People ' s Hospital, China; Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Fangci Chen
- Department of Anorectal Surgery, First People's Hospital of LinPing District, Hangzhou, Hangzhou, Zhejiang, China
| | - Linpo Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People ' s Hospital, China; Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Haoran Wei
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People ' s Hospital, China; Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Fanhe Dong
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People ' s Hospital, China; Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Xiang Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Yuqiang Shan
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China.
| | - Tianwei Chen
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China.
| |
Collapse
|
4
|
Huang S, Wei G, Jia X, Tang Z, Chen Q, Li C, Yan W, Jin M, Li X, Chen Y, Zheng H, Chen G, Liao W, Liao Y, Wang Y, Li J, Bin J. CircRNA-RBAC induces cardiac repair by promoting ribosome biogenesis and cell cycle progression in cardiomyocytes. Int J Biol Macromol 2025; 287:138406. [PMID: 39643169 DOI: 10.1016/j.ijbiomac.2024.138406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Ribosome biogenesis (RiBi) is an essential process that controls the protein synthesis rate, but its function in regulating endogenous cardiac regeneration remains unknown. Herein, we investigated the function and underlying mechanism of RiBi-associated circRNAs in cardiomyocyte (CM) proliferation and cardiac regeneration. We used high-throughput sequencing, quantitative PCR and in situ hybridization techniques to identify an adult downregulated circRNA, RiBi-associated circRNA (RBAC), in CMs. A functional study further revealed that RBAC overexpression increased ribosome biogenesis activity and cell cycle progression in CMs, while silencing RBAC decreased ribosome biogenesis activity and cell cycle progression. Moreover, RBAC overexpression induced adult CM proliferation and improved cardiac function after myocardial infarction in adult mice. Mechanistically, RBAC controlled ribosome biogenesis and cell proliferation by regulating the proteasome-dependent degradation of Ddx21, thereby altering the localization of Rps14 and reducing Rb expression. Our findings indicate that RBAC upregulation might be a plausible therapeutic strategy to induce endogenous cardiac regeneration.
Collapse
Affiliation(s)
- Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Xiaoqian Jia
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Qiqi Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Wen Yan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Ming Jin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Yuegang Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Jianyong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
| |
Collapse
|
5
|
Hong Y, Lin Q, Zhang Y, Liu J, Zheng Z. Research Progress of Ribosomal Proteins in Reproductive Development. Int J Mol Sci 2024; 25:13151. [PMID: 39684863 DOI: 10.3390/ijms252313151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Ribosomal proteins constitute the principal components of ribosomes, and their functions span a wide spectrum. Recent investigations have unveiled their involvement in oocyte and embryo development, playing a pivotal role in reproductive development. Numerous pieces of evidence indicate that ribosomal proteins participate in the regulation of various cellular activities, including nucleolar stress, oxidative stress, cell proliferation and autophagy. Despite these findings, the precise mechanisms through which ribosomal proteins influence reproductive development via these cellular activities remain elusive. Therefore, elucidating the mechanisms of action is essential for a comprehensive understanding of the role and function of ribosomal proteins in reproductive development. This paper systematically reviews the progress in research on nucleolar stress, oxidative stress, cell proliferation and autophagy concerning ribosomal proteins during reproductive development. Furthermore, we explore the potential of ribosomal proteins as diagnostic markers for various diseases. Additionally, we propose the development of drugs and therapies targeting ribosomal proteins, underscoring the potential for novel medical interventions in the context of reproductive health.
Collapse
Affiliation(s)
- Yuqi Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jilong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhanhong Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Gan Y, Hao Q, Han T, Tong J, Yan Q, Zhong H, Gao B, Li Y, Xuan Z, Li P, Yao L, Xu Y, Jiang YZ, Shao ZM, Deng J, Chen J, Zhou X. Targeting BRIX1 via Engineered Exosomes Induces Nucleolar Stress to Suppress Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407370. [PMID: 39475053 DOI: 10.1002/advs.202407370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/16/2024] [Indexed: 12/19/2024]
Abstract
Elevated ribosome biogenesis correlates with the rapid growth and progression of cancer. Targeted blockade of ribosome biogenesis induces nucleolar stress, which preferentially leads to the elimination of malignant cells. In this study, it is reported that the nucleolar protein BRIX1 is a critical regulator for the homeostasis between ribosome biogenesis and p53 activation. BRIX1 facilitated the processing of pre-rRNA by supporting the formation of the PeBoW complex. In addition, BRIX1 prevented p53 activation in response to nucleolar stress by impairing the interactions between MDM2 and the ribosomal proteins, RPL5, and RPL11, thereby triggering the resistance of cancer cells to chemotherapy. Conversely, depletion of BRIX1 induced nucleolar stress, which in turn activated p53 through RPL5 and RPL11, consequently inhibiting the growth of tumors. Moreover, engineered exosomes are developed, which are surface-decorated with iRGD, a tumor-homing peptide, and loaded with siRNAs specific to BRIX1, for the treatment of cancer. iRGD-Exo-siBRIX1 significantly suppressed the growth of colorectal cancer and enhanced the efficacy of 5-FU chemotherapy in vivo. Overall, the study uncovers that BRIX1 functions as an oncoprotein to promote rRNA synthesis and dampen p53 activity, and also implies that targeted inhibition of BRIX1 via engineered exosomes can be a potent approach for cancer therapy.
Collapse
Affiliation(s)
- Yu Gan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Key laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Jing Tong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Qingya Yan
- Institutes of Health Central Plains, Xinxiang Key laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Hongguang Zhong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, 330006, P. R. China
| | - Bo Gao
- Umibio Co. Ltd., Shanghai, 201210, P. R. China
| | - Yanan Li
- Umibio Co. Ltd., Shanghai, 201210, P. R. China
| | | | - Pengfei Li
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Litong Yao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Yingying Xu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Yi-Zhou Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Zhi-Ming Shao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, 330006, P. R. China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P. R. China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
7
|
Hong M, Zhou X, Zeng C, Xu D, Xu T, Liao S, Wang K, Zhu C, Shan G, Huang X, Chen X, Feng X, Guang S. Nucleolar stress induces nucleolar stress body formation via the NOSR-1/NUMR-1 axis in Caenorhabditis elegans. Nat Commun 2024; 15:7256. [PMID: 39179648 PMCID: PMC11343841 DOI: 10.1038/s41467-024-51693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental stimuli not only alter gene expression profiles but also induce structural changes in cells. How distinct nuclear bodies respond to cellular stress is poorly understood. Here, we identify a subnuclear organelle named the nucleolar stress body (NoSB), the formation of which is induced by the inhibition of rRNA transcription or inactivation of rRNA processing and maturation in C. elegans. NoSB does not colocalize with other previously described subnuclear organelles. We conduct forward genetic screening and identify a bZIP transcription factor, named nucleolar stress response-1 (NOSR-1), that is required for NoSB formation. The inhibition of rRNA transcription or inactivation of rRNA processing and maturation increases nosr-1 expression. By using transcriptome analysis of wild-type animals subjected to different nucleolar stress conditions and nosr-1 mutants, we identify that the SR-like protein NUMR-1 (nuclear localized metal responsive) is the target of NOSR-1. Interestingly, NUMR-1 is a component of NoSB and itself per se is required for the formation of NoSB. We conclude that the NOSR-1/NUMR-1 axis likely responds to nucleolar stress and mediates downstream stress-responsive transcription programs and subnuclear morphology alterations in C. elegans.
Collapse
Affiliation(s)
- Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaotian Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chenming Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ting Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shimiao Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ge Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
8
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
9
|
Feng J, Li Y, Wang C, Wang Y, Wan Y, Zheng M, Chen T, Xiao X. Peripheral blood transcriptomic analysis identifies potential inflammation and immune signatures for central retinal artery occlusion. Sci Rep 2024; 14:7398. [PMID: 38548806 PMCID: PMC10978867 DOI: 10.1038/s41598-024-57052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Central retinal artery occlusion (CRAO) is an acute retinal ischaemic disease, but early diagnosis is challenging due to a lack of biomarkers. Blood samples were collected from CRAO patients and cataract patients. Gene expression profiles were distinct between arterial/venous CRAO blood (A-V group) and venous CRAO/control blood (V-C group) samples. Differentially expressed genes (DEGs) were subjected to GO and KEGG enrichment analyses. Hub genes were identified by Cytoscape and used to predict gene interactions via GeneMANIA. Immune cell infiltration was analysed by CIBERSORT. More than 1400 DEGs were identified in the A-V group and 112 DEGs in the V-C group compared to controls. The DEGs in both groups were enriched in the ribosome pathway, and those in the V-C group were also enriched in antigen processing/MHC pathways. Network analysis identified ribosomal proteins (RPS2 and RPS5) as the core genes of the A-V group and MHC genes (HLA-F) as the core genes of the V-C group. Coexpression networks showed ribosomal involvement in both groups, with additional immune responses in the V-C group. Immune cell analysis indicated increased numbers of neutrophils and T cells. Ribosomal and MHC-related genes were identified as potential CRAO biomarkers, providing research directions for prevention, diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Jiaqing Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Chuansen Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Yuedan Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Yuwei Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Mengxue Zheng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Ascanelli C, Dahir R, Wilson CH. Manipulating Myc for reparative regeneration. Front Cell Dev Biol 2024; 12:1357589. [PMID: 38577503 PMCID: PMC10991803 DOI: 10.3389/fcell.2024.1357589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
The Myc family of proto-oncogenes is a key node for the signal transduction of external pro-proliferative signals to the cellular processes required for development, tissue homoeostasis maintenance, and regeneration across evolution. The tight regulation of Myc synthesis and activity is essential for restricting its oncogenic potential. In this review, we highlight the central role that Myc plays in regeneration across the animal kingdom (from Cnidaria to echinoderms to Chordata) and how Myc could be employed to unlock the regenerative potential of non-regenerative tissues in humans for therapeutic purposes. Mastering the fine balance of harnessing the ability of Myc to promote transcription without triggering oncogenesis may open the door to many exciting opportunities for therapeutic development across a wide array of diseases.
Collapse
Affiliation(s)
| | | | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Lee H, Jung JH, Ko HM, Park H, Segall AM, Sheffmaker RL, Wang J, Frey WD, Pham N, Wang Y, Zhang Y, Jackson JG, Zeng SX, Lu H. RNA-binding motif protein 10 inactivates c-Myc by partnering with ribosomal proteins uL18 and uL5. Proc Natl Acad Sci U S A 2023; 120:e2308292120. [PMID: 38032932 DOI: 10.1073/pnas.2308292120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
RNA-binding motif protein 10 (RBM10) is a frequently mutated tumor suppressor in lung adenocarcinoma (LUAD). Yet, it remains unknown whether cancer-derived mutant RBM10 compromises its tumor suppression function and, if so, the molecular insight of the underlying mechanisms. Here, we show that wild-type RBM10 suppresses lung cancer cell growth and proliferation by inactivating c-Myc that is essential for cancer cell survival. RBM10 directly binds to c-Myc and promotes c-Myc's ubiquitin-dependent degradation, while RBM10 knockdown leads to the induction of c-Myc level and activity. This negative action on c-Myc is further boosted by ribosomal proteins (RPs) uL18 (RPL5) and uL5 (RPL11) via their direct binding to RBM10. Cancer-derived mutant RBM10-I316F fails to bind to uL18 and uL5 and to inactivate c-Myc, thus incapable of suppressing tumorigenesis. Our findings uncover RBM10 as a pivotal c-Myc repressor by cooperating with uL18 and uL5 in lung cancer cells, as its failure to do so upon mutation favors tumorigenesis.
Collapse
Affiliation(s)
- Hyemin Lee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Ji Hoon Jung
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Hyun Min Ko
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Heewon Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Allyson M Segall
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Neuroscience, Tulane University, New Orleans, LA 70118
| | - Roger L Sheffmaker
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Jieqiong Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Wesley D Frey
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Nathan Pham
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yiwei Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
12
|
Gong D, Rao X, Min Z, Liu X, Xin H, Zhou P, Yang L, Li D. UBE2S targets RPL26 for ubiquitination and degradation to promote non-small cell lung cancer progression via regulating c-Myc. Am J Cancer Res 2023; 13:3705-3720. [PMID: 37693154 PMCID: PMC10492117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Multiple studies have shown that E2 conjugating enzyme family are dysregulated in various cancers and associated with tumor progression and poor prognosis. In present study, we screened and confirmed that UBE2S is one of the E2 conjugating enzymes highly expressed in non-small cell lung cancer (NSCLC), and it plays an oncogenic role by enhancing cell proliferation, migration and stemness in vitro. Using immunoprecipitation technology combined with mass spectrometry assay, we identified ribosomal protein RPL26 as the substrate protein of UBE2S in NSCLC. At the molecular level, overexpression of UBE2S accelerated the ubiquitination and degradation of RPL26, thus upregulating c-Myc to enhance the progression of NSCLC. In addition, the results of a xenograft experiment showed that inhibiting UBE2S could suppress RPL26-c-Myc mediated NSCLC tumor growth in vivo. Our data provided mechanistic evidence supporting the existence of a novel UBE2S-RPL26-c-Myc axis and its critical contribution to progression of NSCLC.
Collapse
Affiliation(s)
- Dalian Gong
- Department of Life Science, College of Biology, Hunan UniversityChangsha 410012, Hunan, China
| | - Xinxu Rao
- Department of Life Science, College of Biology, Hunan UniversityChangsha 410012, Hunan, China
| | - Ziqian Min
- Department of Life Science, College of Biology, Hunan UniversityChangsha 410012, Hunan, China
| | - Xiaowen Liu
- Department of Life Science, College of Biology, Hunan UniversityChangsha 410012, Hunan, China
| | - Huan Xin
- Department of Life Science, College of Biology, Hunan UniversityChangsha 410012, Hunan, China
| | - Peijun Zhou
- Cancer Research Institute, Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
| | - Lifang Yang
- Cancer Research Institute, Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
| | - Dan Li
- Department of Life Science, College of Biology, Hunan UniversityChangsha 410012, Hunan, China
- Shenzhen Research Institute of Hunan UniversityShenzhen 518000, Guangdong, China
| |
Collapse
|
13
|
Gan Y, Deng J, Hao Q, Huang Y, Han T, Xu JG, Zhao M, Yao L, Xu Y, Xiong J, Lu H, Wang C, Chen J, Zhou X. UTP11 deficiency suppresses cancer development via nucleolar stress and ferroptosis. Redox Biol 2023; 62:102705. [PMID: 37087976 PMCID: PMC10149416 DOI: 10.1016/j.redox.2023.102705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
The eukaryotic ribosome is essential for cancer cell survival. Perturbation of ribosome biogenesis induces nucleolar stress or ribosomal stress, which restrains cancer growth, as rapidly proliferating cancer cells need more active ribosome biogenesis. In this study, we found that UTP11 plays an important role in the biosynthesis of 18S ribosomal RNAs (rRNA) by binding to the pre-rRNA processing factor, MPP10. UTP11 is overexpressed in human cancers and associated with poor prognoses. Interestingly, depletion of UTP11 inhibits cancer cell growth in vitro and in vivo through p53-depedednt and -independent mechanisms, whereas UTP11 overexpression promotes cancer cell growth and progression. On the one hand, the ablation of UTP11 impedes 18S rRNA biosynthesis to trigger nucleolar stress, thereby preventing MDM2-mediated p53 ubiquitination and degradation through ribosomal proteins, RPL5 and RPL11. On the other hand, UTP11 deficiency represses the expression of SLC7A11 by promoting the decay of NRF2 mRNA, resulting in reduced levels of glutathione (GSH) and enhanced ferroptosis. Altogether, our study uncovers a critical role for UTP11 in maintaining cancer cell survival and growth, as depleting UTP11 leads to p53-dependent cancer cell growth arrest and p53-independent ferroptosis.
Collapse
Affiliation(s)
- Yu Gan
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jin-Guo Xu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Wei W, Su Y. Function of CD8 +, conventional CD4 +, and regulatory CD4 + T cell identification in lung cancer. Comput Biol Med 2023; 160:106933. [PMID: 37156220 DOI: 10.1016/j.compbiomed.2023.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Lung cancer is the malignant tumor with the highest mortality rate in the world. There is obvious heterogeneity within the tumor. Single cell sequencing technology enables scholars to obtain information about the cell type, status, subpopulation distribution and communication behavior between cells in the tumor microenvironment from the cellular level. However, due to the problem of sequencing depth, some genes with low expression cannot be detected, which results in that most of the specific genes of immune cells cannot be recognized, and lead to defects in the functional identification of immune cells. In this paper, we used single cell sequencing data of 12346 T cells in 14 treatment-naïve non-small-cell lung cancer patients to identify immune cell-specific genes and infer the function of three types of T cells. The method, named GRAPH-LC, implemented this function by gene interaction network and graph learning methods. Graph learning methods are used to extract genes feature and dense neural network is used to identify immune cell-specific genes. The experiments on 10-cross validation shows that the AUROC and AUPR reached at least 0.802, 0.815 on identifying cell-specific genes of three types of T cells. And we did functional enrichment analysis on the top 15 expressed genes. By functional enrichment analysis, we got 95 GO terms and 39 KEGG pathways that related to three types of T cells. The use of this technology will help to deeply understand the mechanism of the occurrence and development of lung cancer, find new diagnostic markers and therapeutic targets, and provide a theoretical reference for the precise treatment of lung cancer patients in the future.
Collapse
Affiliation(s)
- Wei Wei
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, tianjin, China
| | - Yanjun Su
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, tianjin, China.
| |
Collapse
|
15
|
Yi Y, Zeng Y, Sam TW, Hamashima K, Tan RJR, Warrier T, Phua JX, Taneja R, Liou YC, Li H, Xu J, Loh YH. Ribosomal proteins regulate 2-cell-stage transcriptome in mouse embryonic stem cells. Stem Cell Reports 2023; 18:463-474. [PMID: 36638791 PMCID: PMC9968990 DOI: 10.1016/j.stemcr.2022.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
A rare sub-population of mouse embryonic stem cells (mESCs), the 2-cell-like cell, is defined by the expression of MERVL and 2-cell-stage-specific transcript (2C transcript). Here, we report that the ribosomal proteins (RPs) RPL14, RPL18, and RPL23 maintain the identity of mESCs and regulate the expression of 2C transcripts. Disregulation of the RPs induces DUX-dependent expression of 2C transcripts and alters the chromatin landscape. Mechanically, knockdown (KD) of RPs triggers the binding of RPL11 to MDM2, an interaction known to prevent P53 protein degradation. Increased P53 protein upon RP KD further activates its downstream pathways, including DUX. Our study delineates the critical roles of RPs in 2C transcript activation, ascribing a novel function to these essential proteins.
Collapse
Affiliation(s)
- Yao Yi
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tsz Wing Sam
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Rachel Jun Rou Tan
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Tushar Warrier
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jun Xiang Phua
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore; Joint Center for Single Cell Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
16
|
Dong Z, Li J, Dai W, Yu D, Zhao Y, Liu S, Li X, Zhang Z, Zhang R, Liang X, Kong Q, Jin S, Jiang H, Jiang W, Ding C. RRP15 deficiency induces ribosome stress to inhibit colorectal cancer proliferation and metastasis via LZTS2-mediated β-catenin suppression. Cell Death Dis 2023; 14:89. [PMID: 36750557 PMCID: PMC9905588 DOI: 10.1038/s41419-023-05578-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/09/2023]
Abstract
Ribosome biogenesis (RiBi) plays a pivotal role in carcinogenesis by regulating protein translation and stress response. Here, we find that RRP15, a nucleolar protein critical for RiBi and checkpoint control, is frequently upregulated in primary CRCs and higher RRP15 expression positively correlated with TNM stage (P < 0.0001) and poor survival of CRC patients (P = 0.0011). Functionally, silencing RRP15 induces ribosome stress, cell cycle arrest, and apoptosis, resulting in suppression of cell proliferation and metastasis. Overexpression of RRP15 promotes cell proliferation and metastasis. Mechanistically, ribosome stress induced by RRP15 deficiency facilitates translation of TOP mRNA LZTS2 (Leucine zipper tumor suppressor 2), leading to the nuclear export and degradation of β-catenin to suppress Wnt/β-catenin signaling in CRC. In conclusion, ribosome stress induced by RRP15 deficiency inhibits CRC cell proliferation and metastasis via suppressing the Wnt/β-catenin pathway, suggesting a potential new target in high-RiBi CRC patients.
Collapse
Affiliation(s)
- Zhixiong Dong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China.
| | - Jinhai Li
- Department of Liver and Gall Surgery, the Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325200, P. R. China
| | - Wenqing Dai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, 261000, P. R. China
| | - Dongbo Yu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Youjuan Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Shuanghui Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Xuanwen Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Zhengzheng Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Rui Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Xue Liang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Qingran Kong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Shengnan Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, 410013, P. R. China.
| | - Wei Jiang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| | - Chunming Ding
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China.
| |
Collapse
|
17
|
Comerford SA, Hinnant EA, Chen Y, Hammer RE. Hepatic ribosomal protein S6 (Rps6) insufficiency results in failed bile duct development and loss of hepatocyte viability; a ribosomopathy-like phenotype that is partially p53-dependent. PLoS Genet 2023; 19:e1010595. [PMID: 36656901 PMCID: PMC9888725 DOI: 10.1371/journal.pgen.1010595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Defective ribosome biogenesis (RiBi) underlies a group of clinically diverse human diseases collectively known as the ribosomopathies, core manifestations of which include cytopenias and developmental abnormalities that are believed to stem primarily from an inability to synthesize adequate numbers of ribosomes and concomitant activation of p53. The importance of a correctly functioning RiBi machinery for maintaining tissue homeostasis is illustrated by the observation that, despite having a paucity of certain cell types in early life, ribosomopathy patients have an increased risk for developing cancer later in life. This suggests that hypoproliferative states trigger adaptive responses that can, over time, become maladaptive and inadvertently drive unchecked hyperproliferation and predispose to cancer. Here we describe an experimentally induced ribosomopathy in the mouse and show that a normal level of hepatic ribosomal protein S6 (Rps6) is required for proper bile duct development and preservation of hepatocyte viability and that its insufficiency later promotes overgrowth and predisposes to liver cancer which is accelerated in the absence of the tumor-suppressor PTEN. We also show that the overexpression of c-Myc in the liver ameliorates, while expression of a mutant hyperstable form of p53 partially recapitulates specific aspects of the hepatopathies induced by Rps6 deletion. Surprisingly, co-deletion of p53 in the Rps6-deficient background fails to restore biliary development or significantly improve hepatic function. This study not only reveals a previously unappreciated dependence of the developing liver on adequate levels of Rps6 and exquisitely controlled p53 signaling, but suggests that the increased cancer risk in ribosomopathy patients may, in part, stem from an inability to preserve normal tissue homeostasis in the face of chronic injury and regeneration.
Collapse
Affiliation(s)
- Sarah A. Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Elizabeth A. Hinnant
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yidong Chen
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas. United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Proteomic Analysis of Human Breast Cancer MCF-7 Cells to Identify Cellular Targets of the Anticancer Pigment OR3 from Streptomyces coelicolor JUACT03. Appl Biochem Biotechnol 2023; 195:236-252. [PMID: 36070163 DOI: 10.1007/s12010-022-04128-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Search for ideal compounds with known pathways of anticancer mechanism is still a priority research focus for cancer, as it continues to be a major health challenge across the globe. Hence, in the present study, anticancer potential of a yellow pigment fraction, OR3, isolated from Streptomyces coelicolor JUACT03 was assessed on the breast cancer cell line MCF-7. TLC-fractionated OR3 pigment was subjected to HPLC and GC-MS analysis for characterization and identification of the bioactive component. MCF-7 cells were treated with IC50 concentration of OR3 and the molecular alterations were analyzed using mass spectrometry-based quantitative proteomic analysis. Bioinformatics tools such as STRING analysis and Ingenuity Pathway Analysis were performed to analyze proteomics data and to identify dysregulated signaling pathways. As per our obtained data, OR3 treatment decreased cell proliferation and induced apoptotic cell death due to significant dysregulation of protein expressions in MCF-7 cells. Altered expression included the ribosomal, mRNA processing and vesicle-mediated transport proteins as a result of OR3 treatment. Downregulation of MAPK proteins, NFkB, and estradiol signaling was identified in OR3-treated MCF-7 cells. Mainly eIF2, mTOR, and eIF4 signaling pathways were altered in OR3-treated cells. GC-MS data indicated the presence of novel compounds in OR3 fraction. It can be concluded that OR3 exhibits potent anticancer activity on the breast cancer cells mainly through altering the expression and affecting the signaling proteins which are involved in different cell proliferation/apoptotic pathways thereby causing inhibition of cancer cell proliferation, survival and metastasis.
Collapse
|
19
|
Bhattarai N, Cao B, Zeng SX, Lu H. Ribosomal Profiling by Gradient Fractionation of Cell Lysates. Methods Mol Biol 2023; 2666:149-155. [PMID: 37166663 DOI: 10.1007/978-1-0716-3191-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ribosomal profiling is a widely used technique for deep sequencing of ribosome-protected mRNA and for measuring ribosome status in cells. It is a powerful method that is typically employed for monitoring and measuring protein translation status and ribosome activity. Also, it has been used for monitoring the ribosomal stress-responsive events in the ribosome activity. Furthermore, this approach enables understanding of translational regulation, which is invisible in most proteomic approaches. Moreover, this method is known as an important approach for biological discovery such as identification of translation products. Hence, this methodology will be useful for studying cellular events engaging in ribosome assembly, ribosome biogenesis, ribosome activity, translation during the cell cycle, cell proliferation, and growth as well as the ribosomal stress response in mammalian cells.
Collapse
Affiliation(s)
- Nimisha Bhattarai
- Department of Biochemistry & Molecular Biology and Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bo Cao
- Xavier University of Louisiana College of Pharmacy, New Orleans, LA, USA
| | - Shelya X Zeng
- Department of Biochemistry & Molecular Biology and Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
20
|
Sakthivel D, Brown-Suedel A, Bouchier-Hayes L. The role of the nucleolus in regulating the cell cycle and the DNA damage response. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:203-241. [PMID: 37061332 DOI: 10.1016/bs.apcsb.2023.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The nucleolus has long been perceived as the site for ribosome biogenesis, but numerous studies suggest that the nucleolus carefully sequesters crucial proteins involved in multiple cellular functions. Among these, the role of nucleolus in cell cycle regulation is the most evident. The nucleolus is the first responder of growth-related signals to mediate normal cell cycle progression. The nucleolus also senses different cellular stress insults by activating diverse pathways that arrest the cell cycle, promote DNA repair, or initiate apoptosis. Here, we review the emerging concepts on how the ribosomal and nonribosomal nucleolar proteins mediate such cellular effects.
Collapse
|
21
|
Temaj G, Hadziselimovic R, Nefic H, Nuhii N. Ribosome biogenesis and ribosome therapy in cancer cells. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.81706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Introduction: The process of protein synthesis is a vital process for all kingdoms of life. The ribosome is a ribonucleoprotein complex that reads the genetic code, from messenger RNA (mRNA) to produce proteins and to tightly regulate and ensure cells growth. The fact that numerous diseases are caused by defect during the ribosome biogenesis is important to understand this pathway.
Materials and methods: We have analyzed the literature for ribosome biogenesis and its links with different diseases which have been found.
Results and discussion: We have discussed the key aspect of human ribosome biogenesis and its links to diseases. We have also proposed the potential of applying this knowledge to the development of a ribosomal stress-based cancer therapy.
Conclusion: Major challenges in the future will be to determine factors which play a pivotal role during ribosome biogenesis. Therefore, more anti-cancer drugs and gene therapy for genetic diseases will be developed against ribosomal biogenesis in the coming years.
Graphical abstract:
Collapse
|
22
|
Ribosome-Directed Therapies in Cancer. Biomedicines 2022; 10:biomedicines10092088. [PMID: 36140189 PMCID: PMC9495564 DOI: 10.3390/biomedicines10092088] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
The human ribosomes are the cellular machines that participate in protein synthesis, which is deeply affected during cancer transformation by different oncoproteins and is shown to provide cancer cell proliferation and therefore biomass. Cancer diseases are associated with an increase in ribosome biogenesis and mutation of ribosomal proteins. The ribosome represents an attractive anti-cancer therapy target and several strategies are used to identify specific drugs. Here we review the role of different drugs that may decrease ribosome biogenesis and cancer cell proliferation.
Collapse
|
23
|
Han T, Tong J, Wang M, Gan Y, Gao B, Chen J, Liu Y, Hao Q, Zhou X. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol 2022; 12:821366. [PMID: 35719981 PMCID: PMC9204002 DOI: 10.3389/fonc.2022.821366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
The poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) Olaparib is a widely used targeted therapy for a variety of solid tumors with homologous recombination deficiency (HRD) caused by mutation of BRCA1/2 or other DNA repair genes. The anti-tumor activity of Olaparib has been largely attributed to its ability to inhibit PARP enzymes and block DNA single-strand break (SSB) repair, which eventually leads to the most detrimental DNA damage, double-strand breaks (DSB), in HRD cells. Although PARPi was found to induce p53-dependent cell death, the underlying molecular mechanism remains incompletely understood. Here, we report that Olaparib treatment leads to p53 stabilization and activation of its downstream target genes in a dose- and time-dependent manner. Mechanistically, Olaparib triggers nucleolar stress by inhibiting biosynthesis of the precursor of ribosomal RNAs (pre-rRNA), resulting in enhanced interaction between ribosomal proteins (RPs), RPL5 and RPL11, and MDM2. Consistently, knockdown of RPL5 and RPL11 prevents Olaparib-induced p53 activation. More importantly, Olaparib efficiently suppresses breast and colorectal cancer cell survival and proliferation through activation of p53. Altogether, our study demonstrates that Olaparib activates the nucleolar stress-RPs-p53 pathway, suggesting rRNA biogenesis as a novel target for PARPi.
Collapse
Affiliation(s)
- Tao Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jing Tong
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengxin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yu Gan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Bo Gao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Youxun Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Yang L, Tan P, Sun H, Zeng Z, Pan Y. Integrative Dissection of Novel Lactate Metabolism-Related Signature in the Tumor Immune Microenvironment and Prognostic Prediction in Breast Cancer. Front Oncol 2022; 12:874731. [PMID: 35574387 PMCID: PMC9094627 DOI: 10.3389/fonc.2022.874731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/24/2022] [Indexed: 01/05/2023] Open
Abstract
The outcomes of some breast cancer patients remain poor due to being susceptible to recurrence, metastasis and drug resistance, and lactate metabolism has been described as a hallmark of cancer and a contributor to cancer progression and immune escape. Hence, it is worthy of seeking potentially novel biomarkers from lactate metabolism relevant perspectives for this particular cohort of patients. In this context, 205 available lactate metabolism-related genes (LMGs) were obtained by a search of multiple genesets, and the landscape of somatic mutation, copy number variation, and mRNA expression levels was investigated among these genes. Crucially, 9 overall survival-related LMGs were identified through univariate Cox regression analysis in The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases. Subsequently, a prognostic signature, defined as Lactate Metabolism Index (LMI), was established with 5 OS-related LMGs using Least Absolute Shrinkage and Selection Operator (LASSO) Cox hazard regression analysis in TCGA training set, and then validated in two external cohorts (METABRIC and GSE96058). From the comprehensive results, breast cancer patients with high LMI had considerably poorer survival probability across all cohorts, and the degree of clinical features tended to be more severe as the LMI value increased. Furthermore, a prognostic nomogram incorporating LMI, age, and AJCC stage was constructed and demonstrated great prediction performance for OS of breast cancer patients, which was evaluated by the calibration plot and the decision curve analysis. Moreover, the potential effect of different LMI values on levels of immune checkpoints, tumor-infiltrating immune cells, and cytokines were explored ultimately, and patients with higher LMI values might gain an immunosuppressive tumor microenvironment that contributed to immune escape of breast cancer and inferior prognosis. Collectively, all findings in the study indicated the potential prognostic value of LMI in breast cancer, providing further implications for the role of lactate metabolism in breast cancer prognosis, tumor immune microenvironment, and immunotherapy.
Collapse
Affiliation(s)
- Lu Yang
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peixin Tan
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hengwen Sun
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zijun Zeng
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi Pan
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
25
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
26
|
Single-Cell Transcriptomics Reveals the Expression of Aging- and Senescence-Associated Genes in Distinct Cancer Cell Populations. Cells 2021; 10:cells10113126. [PMID: 34831349 PMCID: PMC8623328 DOI: 10.3390/cells10113126] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human aging process is associated with molecular changes and cellular degeneration, resulting in a significant increase in cancer incidence with age. Despite their potential correlation, the relationship between cancer- and ageing-related transcriptional changes is largely unknown. In this study, we aimed to analyze aging-associated transcriptional patterns in publicly available bulk mRNA-seq and single-cell RNA-seq (scRNA-seq) datasets for chronic myelogenous leukemia (CML), colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer (LC), and pancreatic ductal adenocarcinoma (PDAC). Indeed, we detected that various aging/senescence-induced genes (ASIGs) were upregulated in malignant diseases compared to healthy control samples. To elucidate the importance of ASIGs during cell development, pseudotime analyses were performed, which revealed a late enrichment of distinct cancer-specific ASIG signatures. Notably, we were able to demonstrate that all cancer entities analyzed in this study comprised cell populations expressing ASIGs. While only minor correlations were detected between ASIGs and transcriptome-wide changes in PDAC, a high proportion of ASIGs was induced in CML, CRC, HCC, and LC samples. These unique cellular subpopulations could serve as a basis for future studies on the role of aging and senescence in human malignancies.
Collapse
|
27
|
Zhou Y, Gao X, Yuan M, Yang B, He Q, Cao J. Targeting Myc Interacting Proteins as a Winding Path in Cancer Therapy. Front Pharmacol 2021; 12:748852. [PMID: 34658888 PMCID: PMC8511624 DOI: 10.3389/fphar.2021.748852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
MYC, as a well-known oncogene, plays essential roles in promoting tumor occurrence, development, invasion and metastasis in many kinds of solid tumors and hematologic neoplasms. In tumors, the low expression and the short half-life of Myc are reversed, cause tumorigenesis. And proteins that directly interact with different Myc domains have exerted a significant impact in the process of Myc-driven carcinogenesis. Apart from affecting the transcription of Myc target genes, Myc interaction proteins also regulate the stability of Myc through acetylation, methylation, phosphorylation and other post-translational modifications, as well as competitive combination with Myc. In this review, we summarize a series of Myc interacting proteins and recent advances in the related inhibitors, hoping that can provide new opportunities for Myc-driven cancer treatment.
Collapse
Affiliation(s)
- Yihui Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
29
|
Hao Q, Li J, Zhang Q, Xu F, Xie B, Lu H, Wu X, Zhou X. Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med 2021; 11:e500. [PMID: 34459128 PMCID: PMC8335963 DOI: 10.1002/ctm2.500] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive histotype of epithelial ovarian cancer. The heterogeneity and molecular basis of this disease remain incompletely understood. METHODS To address this question, we have performed a single-cell transcriptomics analysis of matched primary and metastatic HGSOC samples. RESULTS A total of 13 571 cells are categorized into six distinct cell types, including epithelial cells, fibroblast cells, T cells, B cells, macrophages, and endothelial cells. A subset of aggressive epithelial cells with hyperproliferative and drug-resistant potentials is identified. Several new markers that are highly expressed in epithelial cells are characterized, and their roles in ovarian cancer cell growth and migration are further confirmed. Dysregulation of multiple signaling pathways, including the translational machinery, is associated with ovarian cancer metastasis through the trajectory analysis. Moreover, single-cell regulatory network inference and clustering (SCENIC) analysis reveals the gene regulatory networks and suggests the JUN signaling pathway as a potential therapeutic target for treatment of ovarian cancer, which is validated using the JUN/AP-1 inhibitor T-5224. Finally, our study depicts the epithelial-fibroblast cell communication atlas and identifies several important receptor-ligand complexes in ovarian cancer development. CONCLUSIONS This study uncovers new molecular features and the potential therapeutic target of HGSOC, which would advance the understanding and treatment of the disease.
Collapse
Affiliation(s)
- Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qinghua Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Bangxiang Xie
- Beijing YouAn Hospital, Capital Medical UniversityBeijing Institute of HepatologyBeijingChina
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer CenterTulane University School of MedicineNew OrleansLouisiana
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Medical Epigenetics, International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
30
|
Ribosomal RNA Transcription Regulation in Breast Cancer. Genes (Basel) 2021; 12:genes12040502. [PMID: 33805424 PMCID: PMC8066022 DOI: 10.3390/genes12040502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ribosome biogenesis is a complex process that is responsible for the formation of ribosomes and ultimately global protein synthesis. The first step in this process is the synthesis of the ribosomal RNA in the nucleolus, transcribed by RNA Polymerase I. Historically, abnormal nucleolar structure is indicative of poor cancer prognoses. In recent years, it has been shown that ribosome biogenesis, and rDNA transcription in particular, is dysregulated in cancer cells. Coupled with advancements in screening technology that allowed for the discovery of novel drugs targeting RNA Polymerase I, this transcriptional machinery is an increasingly viable target for cancer therapies. In this review, we discuss ribosome biogenesis in breast cancer and the different cellular pathways involved. Moreover, we discuss current therapeutics that have been found to affect rDNA transcription and more novel drugs that target rDNA transcription machinery as a promising avenue for breast cancer treatment.
Collapse
|
31
|
Bommi PV, Bowen CM, Reyes-Uribe L, Wu W, Katayama H, Rocha P, Parra ER, Francisco-Cruz A, Ozcan Z, Tosti E, Willis JA, Wu H, Taggart MW, Burks JK, Lynch PM, Edelmann W, Scheet PA, Wistuba II, Sinha KM, Hanash SM, Vilar E. The Transcriptomic Landscape of Mismatch Repair-Deficient Intestinal Stem Cells. Cancer Res 2021; 81:2760-2773. [PMID: 34003775 DOI: 10.1158/0008-5472.can-20-2896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Lynch syndrome is the most common cause of hereditary colorectal cancer and is secondary to germline alterations in one of four DNA mismatch repair (MMR) genes. Here we aimed to provide novel insights into the initiation of MMR-deficient (MMRd) colorectal carcinogenesis by characterizing the expression profile of MMRd intestinal stem cells (ISC). A tissue-specific MMRd mouse model (Villin-Cre;Msh2 LoxP/LoxP ) was crossed with a reporter mouse (Lgr5-EGFP-IRES-creERT2) to trace and isolate ISCs (Lgr5+) using flow cytometry. Three different ISC genotypes (Msh2-KO, Msh2-HET, and Msh2-WT) were isolated and processed for mRNA-seq and mass spectrometry, followed by bioinformatic analyses to identify expression signatures of complete MMRd and haplo-insufficiency. These findings were validated using qRT-PCR, IHC, and whole transcriptomic sequencing in mouse tissues, organoids, and a cohort of human samples, including normal colorectal mucosa, premalignant lesions, and early-stage colorectal cancers from patients with Lynch syndrome and patients with familial adenomatous polyposis (FAP) as controls. Msh2-KO ISCs clustered together with differentiated intestinal epithelial cells from all genotypes. Gene-set enrichment analysis indicated inhibition of replication, cell-cycle progression, and the Wnt pathway and activation of epithelial signaling and immune reaction. An expression signature derived from MMRd ISCs successfully distinguished MMRd neoplastic lesions of patients with Lynch syndrome from FAP controls. SPP1 was specifically upregulated in MMRd ISCs and colocalized with LGR5 in Lynch syndrome colorectal premalignant lesions and tumors. These results show that expression signatures of MMRd ISC recapitulate the initial steps of Lynch syndrome carcinogenesis and have the potential to unveil novel biomarkers of early cancer initiation. SIGNIFICANCE: The transcriptomic and proteomic profile of MMR-deficient intestinal stem cells displays a unique set of genes with potential roles as biomarkers of cancer initiation and early progression.
Collapse
Affiliation(s)
- Prashant V Bommi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles M Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenhui Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pedro Rocha
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alejandro Francisco-Cruz
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zuhal Ozcan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jason A Willis
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa W Taggart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Lynch
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Krishna M Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
32
|
Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer. Genome Med 2021; 13:42. [PMID: 33706810 PMCID: PMC7953710 DOI: 10.1186/s13073-021-00845-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Background Contemporary deep learning approaches show cutting-edge performance in a variety of complex prediction tasks. Nonetheless, the application of deep learning in healthcare remains limited since deep learning methods are often considered as non-interpretable black-box models. However, the machine learning community made recent elaborations on interpretability methods explaining data point-specific decisions of deep learning techniques. We believe that such explanations can assist the need in personalized precision medicine decisions via explaining patient-specific predictions. Methods Layer-wise Relevance Propagation (LRP) is a technique to explain decisions of deep learning methods. It is widely used to interpret Convolutional Neural Networks (CNNs) applied on image data. Recently, CNNs started to extend towards non-Euclidean domains like graphs. Molecular networks are commonly represented as graphs detailing interactions between molecules. Gene expression data can be assigned to the vertices of these graphs. In other words, gene expression data can be structured by utilizing molecular network information as prior knowledge. Graph-CNNs can be applied to structured gene expression data, for example, to predict metastatic events in breast cancer. Therefore, there is a need for explanations showing which part of a molecular network is relevant for predicting an event, e.g., distant metastasis in cancer, for each individual patient. Results We extended the procedure of LRP to make it available for Graph-CNN and tested its applicability on a large breast cancer dataset. We present Graph Layer-wise Relevance Propagation (GLRP) as a new method to explain the decisions made by Graph-CNNs. We demonstrate a sanity check of the developed GLRP on a hand-written digits dataset and then apply the method on gene expression data. We show that GLRP provides patient-specific molecular subnetworks that largely agree with clinical knowledge and identify common as well as novel, and potentially druggable, drivers of tumor progression. Conclusions The developed method could be potentially highly useful on interpreting classification results in the context of different omics data and prior knowledge molecular networks on the individual patient level, as for example in precision medicine approaches or a molecular tumor board. Supplementary Information The online version contains supplementary material available at (10.1186/s13073-021-00845-7).
Collapse
|
33
|
Bury M, Le Calvé B, Ferbeyre G, Blank V, Lessard F. New Insights into CDK Regulators: Novel Opportunities for Cancer Therapy. Trends Cell Biol 2021; 31:331-344. [PMID: 33676803 DOI: 10.1016/j.tcb.2021.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
Cyclins and their catalytic partners, the cyclin-dependent kinases (CDKs), control the transition between different phases of the cell cycle. CDK/cyclin activity is regulated by CDK inhibitors (CKIs), currently comprising the CDK-interacting protein/kinase inhibitory protein (CIP/KIP) family and the inhibitor of kinase (INK) family. Recent studies have identified a third group of CKIs, called ribosomal protein-inhibiting CDKs (RPICs). RPICs were discovered in the context of cellular senescence, a stable cell cycle arrest with tumor-suppressing abilities. RPICs accumulate in the nonribosomal fraction of senescent cells due to a decrease in rRNA biogenesis. Accordingly, RPICs are often downregulated in human cancers together with other ribosomal proteins, the tumor-suppressor functions of which are still under study. In this review, we discuss unique therapies that have been developed to target CDK activity in the context of cancer treatment or senescence-associated pathologies, providing novel tools for precision medicine.
Collapse
Affiliation(s)
- Marina Bury
- De Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | | | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada.
| | - Volker Blank
- Lady Davis Institute for Medical Research, Departments of Medicine and Physiology, McGill University, Montreal, QC, H3T 1E2, Canada.
| | - Frédéric Lessard
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
34
|
Lee S, Nam M, Lee AR, Lee J, Woo J, Kang NS, Balupuri A, Lee M, Kim SY, Ro H, Choi YW, Kim DU, Hoe KL. Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast. Biomol Ther (Seoul) 2021; 29:234-247. [PMID: 33223513 PMCID: PMC7921855 DOI: 10.4062/biomolther.2020.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022] Open
Abstract
We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.
Collapse
Affiliation(s)
- Sol Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Miyoung Nam
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ah-Reum Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewoong Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jihye Woo
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nam Sook Kang
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Anand Balupuri
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Seon-Young Kim
- Personalized Genomic Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyunju Ro
- Department of Biological Science, College of Bioscience & Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
35
|
MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochem Soc Trans 2021; 48:595-612. [PMID: 32267487 PMCID: PMC7200637 DOI: 10.1042/bst20190854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Ribosome biogenesis is the fine-tuned, essential process that generates mature ribosomal subunits and ultimately enables all protein synthesis within a cell. Novel regulators of ribosome biogenesis continue to be discovered in higher eukaryotes. While many known regulatory factors are proteins or small nucleolar ribonucleoproteins, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) are emerging as a novel modulatory layer controlling ribosome production. Here, we summarize work uncovering non-coding RNAs (ncRNAs) as novel regulators of ribosome biogenesis and highlight their links to diseases of defective ribosome biogenesis. It is still unclear how many miRNAs or lncRNAs are involved in phenotypic or pathological disease outcomes caused by impaired ribosome production, as in the ribosomopathies, or by increased ribosome production, as in cancer. In time, we hypothesize that many more ncRNA regulators of ribosome biogenesis will be discovered, which will be followed by an effort to establish connections between disease pathologies and the molecular mechanisms of this additional layer of ribosome biogenesis control.
Collapse
|
36
|
Redl E, Sheibani-Tezerji R, Cardona CDJ, Hamminger P, Timelthaler G, Hassler MR, Zrimšek M, Lagger S, Dillinger T, Hofbauer L, Draganić K, Tiefenbacher A, Kothmayer M, Dietz CH, Ramsahoye BH, Kenner L, Bock C, Seiser C, Ellmeier W, Schweikert G, Egger G. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance 2021; 4:e202000794. [PMID: 33310759 PMCID: PMC7768196 DOI: 10.26508/lsa.202000794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Elisa Redl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Melanie Rosalia Hassler
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Lorena Hofbauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Tiefenbacher
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Michael Kothmayer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Charles H Dietz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernard H Ramsahoye
- Centre for Genetic and Experimental Medicine, Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), CoreLab 2, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| |
Collapse
|
37
|
Xie J, Zhang W, Liang X, Shuai C, Zhou Y, Pan H, Yang Y, Han W. RPL32 Promotes Lung Cancer Progression by Facilitating p53 Degradation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:75-85. [PMID: 32516735 PMCID: PMC7281510 DOI: 10.1016/j.omtn.2020.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, and the overall survival rate of advanced lung cancer patients is unsatisfactory. Ribosomal proteins (RPs) play important roles in carcinogenesis. However, the role of RPL32 in lung cancer has not been demonstrated. Here, we report that RPL32 is aberrantly, highly expressed in lung cancer tissues and that the overexpression of RPL32 is correlated with the poor prognosis of these patients. RPL32 silencing significantly inhibited the proliferation of lung cancer cells, with an observed p53 accumulation and cell-cycle arrest. Mechanistically, knockdown of RPL32 resulted in ribosomal stress and affected rRNA maturation. RPL5 and RPL11 sensed stress and translocated from the nucleus to the nucleoplasm, where they bound to murine double minute 2 (MDM2), an important p53 E3 ubiquitin ligase, which resulted in p53 accumulation and inhibition of cancer cell proliferation. As lung cancer cells usually express high levels of Toll-like receptor 9 (TLR9), we conjugated RPL32 small interfering RNA (siRNA) to the TLR9 ligand CpG to generate CpG-RPL32 siRNA, which could stabilize and guide RPL32 siRNA to lung cancer cells. Excitingly, CpG-RPL32 siRNA displayed strong anticancer abilities in lung cancer xenografts. Therefore, RPL32 is expected to be a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong Shuai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yunhai Yang
- Cancer Center of Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
38
|
Hsu YH, Wang PH, Chang CM. Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113951. [PMID: 32498447 PMCID: PMC7312065 DOI: 10.3390/ijerph17113951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/23/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022]
Abstract
Clear cell carcinoma of the ovary (ovarian clear cell carcinoma (OCCC)) is one epithelial ovarian carcinoma that is known to have a poor prognosis and a tendency for being refractory to treatment due to unclear pathogenesis. Published investigations of OCCC have mainly focused only on individual genes and lack of systematic integrated research to analyze the pathogenesis of OCCC in a genome-wide perspective. Thus, we conducted an integrated analysis using transcriptome datasets from a public domain database to determine genes that may be implicated in the pathogenesis involved in OCCC carcinogenesis. We used the data obtained from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) DataSets. We found six interactive functional gene clusters in the pathogenesis network of OCCC, including ribosomal protein, eukaryotic translation initiation factors, lactate, prostaglandin, proteasome, and insulin-like growth factor. This finding from our integrated analysis affords us a global understanding of the interactive network of OCCC pathogenesis.
Collapse
Affiliation(s)
- Yueh-Han Hsu
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-H.H.); (P.-H.W.)
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-H.H.); (P.-H.W.)
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 440, Taiwan
- Female Cancer Foundation, Taipei 104, Taiwan
| | - Chia-Ming Chang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-H.H.); (P.-H.W.)
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-2-2875-7826; Fax: +886-2-5570-2788
| |
Collapse
|
39
|
Hao Q, Wang J, Chen Y, Wang S, Cao M, Lu H, Zhou X. Dual regulation of p53 by the ribosome maturation factor SBDS. Cell Death Dis 2020; 11:197. [PMID: 32198344 PMCID: PMC7083877 DOI: 10.1038/s41419-020-2393-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The Shwachman-Bodian Diamond syndrome (SBDS)-associated gene, SBDS, is involved in rRNA synthesis and ribosome maturation, but the role of SBDS in cancer is largely elusive. In this study, we found that SBDS is often overexpressed or amplified in human cancers, and high level of endogenous SBDS is significantly associated with unfavorable prognosis. Conversely, knockdown of SBDS leads to p53 stabilization and activation through the ribosomal stress-RPL5/RPL11-MDM2 pathway, resulting in the repression of cancer cell proliferation and invasion. Interestingly, ectopic SBDS in the nucleoplasm also suppresses tumor cell growth and proliferation in vitro and in vivo. Mechanistically, ectopically expressed SBDS triggered by, for example, ribosomal stress binds to the transactivation domain of p53 and perturbs the MDM2-p53 interaction, consequently leading to impaired p53 ubiquitination and proteasomal degradation. Altogether, our finding for the first time demonstrates the dual functions of SBDS in cancer development by coordinating ribosome biogenesis and p53 activity.
Collapse
Affiliation(s)
- Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jieqiong Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Yajie Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shanshan Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingming Cao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,The Shanghai Key Laboratory of Medical Epigenetics and the International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
40
|
Kampen KR, Sulima SO, Vereecke S, De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res 2020; 48:1013-1028. [PMID: 31350888 PMCID: PMC7026650 DOI: 10.1093/nar/gkz637] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomopathies are diseases caused by defects in ribosomal constituents or in factors with a role in ribosome assembly. Intriguingly, congenital ribosomopathies display a paradoxical transition from early symptoms due to cellular hypo-proliferation to an elevated cancer risk later in life. Another association between ribosome defects and cancer came into view after the recent discovery of somatic mutations in ribosomal proteins and rDNA copy number changes in a variety of tumor types, giving rise to somatic ribosomopathies. Despite these clear connections between ribosome defects and cancer, the molecular mechanisms by which defects in this essential cellular machinery are oncogenic only start to emerge. In this review, the impact of ribosomal defects on the cellular function and their mechanisms of promoting oncogenesis are described. In particular, we discuss the emerging hallmarks of ribosomopathies such as the appearance of ‘onco-ribosomes’ that are specialized in translating oncoproteins, dysregulation of translation-independent extra-ribosomal functions of ribosomal proteins, rewired cellular protein and energy metabolism, and extensive oxidative stress leading to DNA damage. We end by integrating these findings in a model that can provide an explanation how ribosomopathies could lead to the transition from hypo- to hyper-proliferation in bone marrow failure syndromes with elevated cancer risk.
Collapse
Affiliation(s)
- Kim R Kampen
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Sergey O Sulima
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Stijn Vereecke
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
41
|
Spiniello M, Steinbrink MI, Cesnik AJ, Miller RM, Scalf M, Shortreed MR, Smith LM. Comprehensive in vivo identification of the c-Myc mRNA protein interactome using HyPR-MS. RNA (NEW YORK, N.Y.) 2019; 25:1337-1352. [PMID: 31296583 PMCID: PMC6800478 DOI: 10.1261/rna.072157.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 05/10/2023]
Abstract
Proteins bind mRNA through their entire life cycle from transcription to degradation. We analyzed c-Myc mRNA protein interactors in vivo using the HyPR-MS method to capture the crosslinked mRNA by hybridization and then analyzed the bound proteins using mass spectrometry proteomics. Using HyPR-MS, 229 c-Myc mRNA-binding proteins were identified, confirming previously proposed interactors, suggesting new interactors, and providing information related to the roles and pathways known to involve c-Myc. We performed structural and functional analysis of these proteins and validated our findings with a combination of RIP-qPCR experiments, in vitro results released in past studies, publicly available RIP- and eCLIP-seq data, and results from software tools for predicting RNA-protein interactions.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Naples 80138, Italy
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, Naples 80131, Italy
| | - Maisie I Steinbrink
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
42
|
Bohnsack KE, Bohnsack MT. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J 2019; 38:e100278. [PMID: 31268599 PMCID: PMC6600647 DOI: 10.15252/embj.2018100278] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
The essential cellular process of ribosome biogenesis is at the nexus of various signalling pathways that coordinate protein synthesis with cellular growth and proliferation. The fact that numerous diseases are caused by defects in ribosome assembly underscores the importance of obtaining a detailed understanding of this pathway. Studies in yeast have provided a wealth of information about the fundamental principles of ribosome assembly, and although many features are conserved throughout eukaryotes, the larger size of human (pre-)ribosomes, as well as the evolution of additional regulatory networks that can modulate ribosome assembly and function, have resulted in a more complex assembly pathway in humans. Notably, many ribosome biogenesis factors conserved from yeast appear to have subtly different or additional functions in humans. In addition, recent genome-wide, RNAi-based screens have identified a plethora of novel factors required for human ribosome biogenesis. In this review, we discuss key aspects of human ribosome production, highlighting differences to yeast, links to disease, as well as emerging concepts such as extra-ribosomal functions of ribosomal proteins and ribosome heterogeneity.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Markus T Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
- Göttingen Center for Molecular BiosciencesGeorg‐August UniversityGöttingenGermany
| |
Collapse
|
43
|
Sulima SO, Kampen KR, De Keersmaecker K. Cancer Biogenesis in Ribosomopathies. Cells 2019; 8:E229. [PMID: 30862070 PMCID: PMC6468915 DOI: 10.3390/cells8030229] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022] Open
Abstract
Ribosomopathies are congenital diseases with defects in ribosome assembly and are characterized by elevated cancer risks. Additionally, somatic mutations in ribosomal proteins have recently been linked to a variety of cancers. Despite a clear correlation between ribosome defects and cancer, the molecular mechanisms by which these defects promote tumorigenesis are unclear. In this review, we focus on the emerging mechanisms that link ribosomal defects in ribosomopathies to cancer progression. This includes functional "onco-specialization" of mutant ribosomes, extra-ribosomal consequences of mutations in ribosomal proteins and ribosome assembly factors, and effects of ribosomal mutations on cellular stress and metabolism. We integrate some of these recent findings in a single model that can partially explain the paradoxical transition from hypo- to hyperproliferation phenotypes, as observed in ribosomopathies. Finally, we discuss the current and potential strategies, and the associated challenges for therapeutic intervention in ribosome-mutant diseases.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| | - Kim R Kampen
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
44
|
Lessard F, Brakier-Gingras L, Ferbeyre G. Ribosomal Proteins Control Tumor Suppressor Pathways in Response to Nucleolar Stress. Bioessays 2019; 41:e1800183. [PMID: 30706966 DOI: 10.1002/bies.201800183] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/18/2018] [Indexed: 01/05/2023]
Abstract
Ribosome biogenesis includes the making and processing of ribosomal RNAs, the biosynthesis of ribosomal proteins from their mRNAs in the cytosol and their transport to the nucleolus to assemble pre-ribosomal particles. Several stresses including cellular senescence reduce nucleolar rRNA synthesis and maturation increasing the availability of ribosome-free ribosomal proteins. Several ribosomal proteins can activate the p53 tumor suppressor pathway but cells without p53 can still arrest their proliferation in response to an imbalance between ribosomal proteins and mature rRNA production. Recent results on senescence-associated ribogenesis defects (SARD) show that the ribosomal protein S14 (RPS14 or uS11) can act as a CDK4/6 inhibitor linking ribosome biogenesis defects to the main engine of cell cycle progression. This work offers new insights into the regulation of the cell cycle and suggests novel avenues to design anticancer drugs.
Collapse
Affiliation(s)
- Frédéric Lessard
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Léa Brakier-Gingras
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada.,CRCHUM, 900 Saint-Denis - bureau R10.432, Montréal, Québec H2X 0A9, Canada
| |
Collapse
|
45
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
46
|
Abstract
The rates of ribosome production by a nucleolus and of protein biosynthesis by ribosomes are tightly correlated with the rate of cell growth and proliferation. All these processes must be matched and appropriately regulated to provide optimal cell functioning. Deregulation of certain factors, including oncogenes, controlling these processes, especially ribosome biosynthesis, can lead to cell transformation. Cancer cells are characterized by intense ribosome biosynthesis which is advantageous for their growth and proliferation. On the other hand, this feature can be engaged as an anticancer strategy. Numerous nucleolar factors such as nucleolar and ribosomal proteins as well as different RNAs, in addition to their role in ribosome biosynthesis, have other functions, including those associated with cancer biology. Some of them can contribute to cell transformation and cancer development. Others, under stress evoked by different factors which often hamper function of nucleoli and thus induce nucleolar/ribosomal stress, can participate in combating cancer cells. In this sense, intentional application of therapeutic agents affecting ribosome biosynthesis can cause either release of these molecules from nucleoli or their de novo biosynthesis to mediate the activation of pathways leading to elimination of harmful cells. This review underlines the role of a nucleolus not only as a ribosome constituting apparatus but also as a hub of both positive and negative control of cancer development. The article is mainly based on original papers concerning mechanisms in which the nucleolus is implicated directly or indirectly in processes associated with neoplasia.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|
47
|
Flavonoids Luteolin and Quercetin Inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction. J Food Drug Anal 2018; 26:1180-1191. [PMID: 29976410 PMCID: PMC9303038 DOI: 10.1016/j.jfda.2018.01.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Flavonoids luteolin and quercetin can inhibit growth and metastasis of cancer cells. In our previous report, luteolin and quercetin was shown to block Akt/mTOR/c-Myc signaling. Here, we found luteolin and quercetin reduced protein level and transactivation activity of RPS19 in A431-III cells, which is isolated from parental A431 (A431-P) cell line. Further investigation the inhibitory mechanism of luteolin and quercetin on RPS19, we found c-Myc binding sites on RPS19 promoter. The Akt inhibitor LY294002, mTOR inhibitor rapamycin and c-Myc inhibitor 10058-F4 significantly suppressed RPS19 expression and transactivation activities. Overexpression and knockdown of c-Myc in cancer cells show RPS19 expression was regulated by c-Myc. Furthermore, Knockdown and overexpression of RPS19 was used to analyze of the function of RPS19 in cancer cells. The epithelial-mesenchymal transition (EMT) markers and metastasis abilities of cancer cells were also regulated by RPS19. These data suggest that luteolin and quercetin might inhibit metastasis of cancer cells by blocking Akt/mTOR/c-Myc signaling pathway to suppress RPS19-activated EMT signaling.
Collapse
|
48
|
Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One 2018; 13:e0197246. [PMID: 29775471 PMCID: PMC5959063 DOI: 10.1371/journal.pone.0197246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus infections are important causes of morbidity and mortality worldwide, and currently available prevention and treatment methods are suboptimal. In recent years, genome-wide investigations have revealed numerous host factors that are required for influenza to successfully complete its life cycle. However, only a select, small number of influenza strains were evaluated using this platform, and there was considerable variation in the genes identified across different investigations. In an effort to develop a universally efficacious therapeutic strategy with limited potential for the emergence of resistance, this study was performed to investigate the effect of combinatorial RNA interference (RNAi) on inhibiting the replication of diverse influenza A virus subtypes and strains. Candidate genes were selected for targeting based on the results of multiple previous independent genome-wide studies. The effect of single and combinatorial RNAi on the replication of 12 diverse influenza A viruses, including three strains isolated from birds and one strain isolated from seals, was then evaluated in primary normal human bronchial epithelial cells. After excluding overly toxic siRNA, two siRNA combinations were identified that reduced mean viral replication by greater than 79 percent in all mammalian strains, and greater than 68 percent in all avian strains. Host-directed combinatorial RNAi effectively prevents growth of a broad range of influenza virus strains in vitro, and is a potential therapeutic candidate for further development and future in vivo studies.
Collapse
|
49
|
Abstract
The nucleolus is a prominent subnuclear compartment, where ribosome biosynthesis takes place. Recently, the nucleolus has gained attention for its novel role in the regulation of cellular stress. Nucleolar stress is emerging as a new concept, which is characterized by diverse cellular insult-induced abnormalities in nucleolar structure and function, ultimately leading to activation of p53 or other stress signaling pathways and alterations in cell behavior. Despite a number of comprehensive reviews on this concept, straightforward and clear-cut way criteria for a nucleolar stress state, regarding the factors that elicit this state, the morphological and functional alterations as well as the rationale for p53 activation are still missing. Based on literature of the past two decades, we herein summarize the evolution of the concept and provide hallmarks of nucleolar stress. Along with updated information and thorough discussion of existing confusions in the field, we pay particular attention to the current understanding of the sensing mechanisms, i.e., how stress is integrated by p53. In addition, we propose our own emphasis regarding the role of nucleolar protein NPM1 in the hallmarks of nucleolar stress and sensing mechanisms. Finally, the links of nucleolar stress to human diseases are briefly and selectively introduced.
Collapse
Affiliation(s)
- Kai Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jie Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
50
|
Fang E, Zhang X. Identification of breast cancer hub genes and analysis of prognostic values using integrated bioinformatics analysis. Cancer Biomark 2018; 21:373-381. [DOI: 10.3233/cbm-170550] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|