1
|
Fonseca D, Pisanelli G, Seoane R, Miorin L, García-Sastre A. TRIM65 regulates innate immune signaling by enhancing K6-linked ubiquitination of IRF3 and its chromatin recruitment. Cell Rep 2024; 43:114960. [PMID: 39580801 DOI: 10.1016/j.celrep.2024.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Viral infection triggers a rapid and effective cellular response primarily mediated by interferon β (IFNβ), which induces an antiviral state through complex signaling cascades. To maintain a robust antiviral response while preventing excessive activation, the induction of IFNβ and downstream signaling are tightly regulated. Members of the tripartite-motif (TRIM) family of E3 ubiquitin (Ub) ligases play crucial roles in modulating these processes. In this study, we demonstrate that TRIM65 interacts with interferon regulatory factor 3 (IRF3), a key transcription factor downstream of multiple innate immune signaling pathways, to regulate type-I IFN production. Specifically, TRIM65 activation enables interaction of TRIM65 BBCC domain with the IAD domain of IRF3. This interaction increases K6-linked ubiquitination of IRF3, enhancing IRF3 recruitment to chromatin and subsequent binding to the IFNβ promoter. This process boosts the expression of IFNβ and interferon-stimulated genes (ISGs), thereby strengthening the control of viral infection.
Collapse
Affiliation(s)
- Danae Fonseca
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via F. Delpino 1, 80137 Naples, Italy
| | - Rocío Seoane
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Shi JJ, Chen RY, Liu YJ, Li CY, Yu J, Tu FY, Sheng JX, Lu JF, Zhang LL, Yang GJ, Chen J. Unraveling the role of ubiquitin-conjugating enzyme 5 (UBC5) in disease pathogenesis: A comprehensive review. Cell Signal 2024; 124:111376. [PMID: 39236836 DOI: 10.1016/j.cellsig.2024.111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
While certain members of ubiquitin-coupled enzymes (E2s) have garnered attention as potential therapeutic targets across diverse diseases, research progress on Ubiquitin-Conjugating Enzyme 5 (UBC5)-a pivotal member of the E2s family involved in crucial cellular processes such as apoptosis, DNA repair, and signal transduction-has been relatively sluggish. Previous findings suggest that UBC5 plays a vital role in the ubiquitination of various target proteins implicated in diseases and homeostasis, particularly in various cancer types. This review comprehensively introduces the structure and biological functions of UBC5, with a specific focus on its contributions to the onset and advancement of diverse diseases. It suggests that targeting UBC5 holds promise as a therapeutic approach for disease therapy. Recent discoveries highlighting the high homology between UBC5, UBC1, and UBC4 have provided insight into the mechanism of UBC5 in protein degradation and the regulation of cellular functions. As our comprehension of the structural distinctions among UBC5 and its homologues, namely UBC1 and UBC4, advances, our understanding of UBC5's functional significance also expands.
Collapse
Affiliation(s)
- Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fei-Yang Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Xiang Sheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Garcia-Garcia J, Berge AKM, Overå KS, Larsen KB, Bhujabal Z, Brech A, Abudu YP, Lamark T, Johansen T, Sjøttem E. TRIM27 is an autophagy substrate facilitating mitochondria clustering and mitophagy via phosphorylated TBK1. FEBS J 2023; 290:1096-1116. [PMID: 36111389 DOI: 10.1111/febs.16628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/02/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Tripartite motif-containing protein 27 (TRIM27/also called RFP) is a multifunctional ubiquitin E3 ligase involved in numerous cellular functions, such as proliferation, apoptosis, regulation of the NF-kB pathway, endosomal recycling and the innate immune response. TRIM27 interacts directly with TANK-binding kinase 1 (TBK1) and regulates its stability. TBK1 in complex with autophagy receptors is recruited to ubiquitin chains assembled on the mitochondrial outer membrane promoting mitophagy. Here, we identify TRIM27 as an autophagy substrate, depending on ATG7, ATG9 and autophagy receptors for its lysosomal degradation. We show that TRIM27 forms ubiquitylated cytoplasmic bodies that co-localize with autophagy receptors. Surprisingly, we observed that induced expression of EGFP-TRIM27 in HEK293 FlpIn TRIM27 knockout cells mediates mitochondrial clustering. TRIM27 interacts with autophagy receptor SQSTM1/p62, and the TRIM27-mediated mitochondrial clustering is facilitated by SQSTM/p62. We show that phosphorylated TBK1 is recruited to the clustered mitochondria. Moreover, induced mitophagy activity is reduced in HEK293 FlpIn TRIM27 knockout cells, while re-introduction of EGFP-TRIM27 completely restores the mitophagy activity. Inhibition of TBK1 reduces mitophagy in HEK293 FlpIn cells and in the reconstituted EGFP-TRIM27-expressing cells, but not in HEK293 FlpIn TRIM27 knockout cells. Altogether, these data reveal novel roles for TRIM27 in mitophagy, facilitating mitochondrial clustering via SQSTM1/p62 and mitophagy via stabilization of phosphorylated TBK1 on mitochondria.
Collapse
Affiliation(s)
- Juncal Garcia-Garcia
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Anne Kristin McLaren Berge
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Katrine Stange Overå
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Kenneth Bowitz Larsen
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Zambarlal Bhujabal
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Yakubu Princely Abudu
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Trond Lamark
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Terje Johansen
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Eva Sjøttem
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| |
Collapse
|
4
|
Basu-Shrivastava M, Mojsa B, Mora S, Robbins I, Bossis G, Lassot I, Desagher S. Trim39 regulates neuronal apoptosis by acting as a SUMO-targeted E3 ubiquitin-ligase for the transcription factor NFATc3. Cell Death Differ 2022; 29:2107-2122. [PMID: 35449213 PMCID: PMC9613758 DOI: 10.1038/s41418-022-01002-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/29/2023] Open
Abstract
NFATc3 is the predominant member of the NFAT family of transcription factors in neurons, where it plays a pro-apoptotic role. Mechanisms controlling NFAT protein stability are poorly understood. Here we identify Trim39 as an E3 ubiquitin-ligase of NFATc3. Indeed, Trim39 binds and ubiquitinates NFATc3 in vitro and in cells where it reduces NFATc3 protein level and transcriptional activity. In contrast, silencing of endogenous Trim39 decreases NFATc3 ubiquitination and increases its activity, thereby resulting in enhanced neuronal apoptosis. We also show that Trim17 inhibits Trim39-mediated ubiquitination of NFATc3 by reducing both the E3 ubiquitin-ligase activity of Trim39 and the NFATc3/Trim39 interaction. Moreover, we identify Trim39 as a new SUMO-targeted E3 ubiquitin-ligase (STUbL). Indeed, mutation of SUMOylation sites in NFATc3 or SUMO-interacting motifs in Trim39 reduces NFATc3/Trim39 interaction and Trim39-induced ubiquitination of NFATc3. In addition, Trim39 preferentially ubiquitinates SUMOylated forms of NFATc3 in vitro. As a consequence, a SUMOylation-deficient mutant of NFATc3 exhibits increased stability and pro-apoptotic activity in neurons. Taken together, these data indicate that Trim39 modulates neuronal apoptosis by acting as a STUbL for NFATc3.
Collapse
Affiliation(s)
- Meenakshi Basu-Shrivastava
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Barbara Mojsa
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Centre for Gene Regulation and Expression, School of Life Science, University of Dundee, Dundee, UK
| | - Stéphan Mora
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Ian Robbins
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | | | - Iréna Lassot
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
5
|
Basu-Shrivastava M, Kozoriz A, Desagher S, Lassot I. To Ubiquitinate or Not to Ubiquitinate: TRIM17 in Cell Life and Death. Cells 2021; 10:1235. [PMID: 34069831 PMCID: PMC8157266 DOI: 10.3390/cells10051235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin-ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions. However, it can be highly induced in stress conditions which makes it a putative stress sensor required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as Parkinson's disease or cancer. Here, in addition to recent data that endorse this duality, we review what is currently known from public databases and the literature about TRIM17 gene regulation and expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology and human disorders.
Collapse
Affiliation(s)
| | - Alina Kozoriz
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| |
Collapse
|
6
|
Garcia-Garcia J, Overå KS, Khan W, Sjøttem E. Generation of the short TRIM32 isoform is regulated by Lys 247 acetylation and a PEST sequence. PLoS One 2021; 16:e0251279. [PMID: 33999923 PMCID: PMC8128265 DOI: 10.1371/journal.pone.0251279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/28/2021] [Indexed: 01/24/2023] Open
Abstract
TRIM32 is an E3 ligase implicated in diverse biological pathways and pathologies such as muscular dystrophy and cancer. TRIM32 are expressed both as full-length proteins, and as a truncated protein. The mechanisms for regulating these isoforms are poorly understood. Here we identify a PEST sequence in TRIM32 located in the unstructured region between the RING-BBox-CoiledCoil domains and the NHL repeats. The PEST sequence directs cleavage of TRIM32, generating a truncated protein similarly to the short isoform. We map three lysine residues that regulate PEST mediated cleavage and auto-ubiquitylation activity of TRIM32. Mimicking acetylation of lysine K247 completely inhibits TRIM32 cleavage, while the lysines K50 and K401 are implicated in auto-ubiquitylation activity. We show that the short isoform of TRIM32 is catalytic inactive, suggesting a dominant negative role. These findings uncover that TRIM32 is regulated by post-translational modifications of three lysine residues, and a conserved PEST sequence.
Collapse
Affiliation(s)
- Juncal Garcia-Garcia
- Department of Medical Biology, Autophagy Research Group, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Katrine Stange Overå
- Department of Medical Biology, Autophagy Research Group, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Waqas Khan
- Department of Medical Biology, Autophagy Research Group, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Eva Sjøttem
- Department of Medical Biology, Autophagy Research Group, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
7
|
Xie S, Zhang L, Dong D, Ge R, He Q, Fan C, Xie W, Zhou J, Li D, Liu M. HDAC6 regulates antibody-dependent intracellular neutralization of viruses via deacetylation of TRIM21. J Biol Chem 2020; 295:14343-14351. [PMID: 32796032 DOI: 10.1074/jbc.ra119.011006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/26/2020] [Indexed: 01/01/2023] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21) is a cytosolic antibody receptor that targets the internalized virus-antibody complex to the proteasome for degradation. However, the precise mechanism regulating TRIM21 activity is unknown. Here we show that TRIM21 is a substrate of histone deacetylase 6 (HDAC6) and that its function is regulated by acetylation. HDAC6 interacts with TRIM21 through its PRYSPRY motif and deacetylates TRIM21 at lysine 385 and lysine 387, thus promoting its homodimerization. Inhibiting HDAC6 activity increases TRIM21 acetylation, and hyperacetylation blocks TRIM21 dimerization and ubiquitination, preventing its binding to the virus-antibody complex and its degradation via the ubiquitin-proteasome pathway. HDAC6 depletion or inhibition increases virus accumulation in cells, indicative of an impaired capacity for antibody-dependent intracellular neutralization of viruses, whereas TRIM21 acetylation-deficient K385/387R mutant rescues HDAC6 depletion-caused ADIN impairment. These findings provide evidence for HDAC6 as a novel regulator of TRIM21-mediated intracellular innate immunity.
Collapse
Affiliation(s)
- Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Linlin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dan Dong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Ruixin Ge
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Qianqian He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Cunxian Fan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Wei Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
8
|
Celen AB, Sahin U. Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. FEBS J 2020; 287:3110-3140. [DOI: 10.1111/febs.15319] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Arda B. Celen
- Department of Molecular Biology and Genetics Center for Life Sciences and Technologies Bogazici University Istanbul Turkey
| | - Umut Sahin
- Department of Molecular Biology and Genetics Center for Life Sciences and Technologies Bogazici University Istanbul Turkey
| |
Collapse
|
9
|
Dong ZR, Zhou W, Sun D, Yan YC, Yang CC, Yang YF, Li HC, Zhi XT, Li T. Role of the E3 Ubiquitin Ligase TRIM4 in Predicting the Prognosis of Hepatocellular Carcinoma. J Cancer 2020; 11:4007-4014. [PMID: 32368282 PMCID: PMC7196267 DOI: 10.7150/jca.37164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
The E3 ubiquitin ligase TRIM4 has been reported to regulate the assembly of the antiviral signalling complex, induce mitochondrial aggregation and sensitize cells to H2O2-induced death. However, the relationship between TRIM4 and human malignancies, including hepatocellular carcinoma (HCC), is unclear. In this study, we detected the expression of TRIM4 in 134 pairs of HCC tissues and peritumoural tissues and investigated the association of TRIM4 expression with the prognosis of HCC. We found that the TRIM4 expression was much lower in HCC tissues than in peritumoural tissues and was significantly associated with vascular invasion, tumour capsule and Hong Kong Liver Cancer (HKLC) stage. Univariate and multivariate analyses revealed that the TRIM4 expression was an independent prognostic factor for overall survival (OS) and recurrence-free survival (RFS) in our HCC cohort. Patients with higher TRIM4 expression had a lower incidence of intrahepatic recurrence and a higher OS rate (p<0.001 and p<0.01, respectively). These results were further validated in another independent cohort of 200 HCC patients. In conclusion, the TRIM4 level in HCC tissues is an independent prognostic factor for HCC patients. Close clinical monitoring is recommended for patients with low TRIM4 expression.
Collapse
Affiliation(s)
- Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Wei Zhou
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Dong Sun
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Hai-Chao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Xu-Ting Zhi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| |
Collapse
|
10
|
Lassot I, Mora S, Lesage S, Zieba BA, Coque E, Condroyer C, Bossowski JP, Mojsa B, Marelli C, Soulet C, Tesson C, Carballo-Carbajal I, Laguna A, Mangone G, Vila M, Brice A, Desagher S. The E3 Ubiquitin Ligases TRIM17 and TRIM41 Modulate α-Synuclein Expression by Regulating ZSCAN21. Cell Rep 2019; 25:2484-2496.e9. [PMID: 30485814 DOI: 10.1016/j.celrep.2018.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
Although accumulating data indicate that increased α-synuclein expression is crucial for Parkinson disease (PD), mechanisms regulating the transcription of its gene, SNCA, are largely unknown. Here, we describe a pathway regulating α-synuclein expression. Our data show that ZSCAN21 stimulates SNCA transcription in neuronal cells and that TRIM41 is an E3 ubiquitin ligase for ZSCAN21. In contrast, TRIM17 decreases the TRIM41-mediated degradation of ZSCAN21. Silencing of ZSCAN21 and TRIM17 consistently reduces SNCA expression, whereas TRIM41 knockdown increases it. The mRNA levels of TRIM17, ZSCAN21, and SNCA are simultaneously increased in the midbrains of mice following MPTP treatment. In addition, rare genetic variants in ZSCAN21, TRIM17, and TRIM41 genes occur in patients with familial forms of PD. Expression of variants in ZSCAN21 and TRIM41 genes results in the stabilization of the ZSCAN21 protein. Our data thus suggest that deregulation of the TRIM17/TRIM41/ZSCAN21 pathway may be involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Stéphan Mora
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Suzanne Lesage
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Barbara A Zieba
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Emmanuelle Coque
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Christel Condroyer
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Jozef Piotr Bossowski
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Barbara Mojsa
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Cecilia Marelli
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Caroline Soulet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Christelle Tesson
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Graziella Mangone
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Alexis Brice
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
11
|
Lou M, Gao Z, Zhu T, Mao X, Wang Y, Yuan K, Tong J. TRIM59 as a novel molecular biomarker to predict the prognosis of patients with NSCLC. Oncol Lett 2019; 19:1400-1408. [PMID: 31966070 PMCID: PMC6956412 DOI: 10.3892/ol.2019.11199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
As a member of the tripartite motif family, tripartite motif-containing protein 59 (TRIM59) serves as an E3 ubiquitin ligase in various cellular processes, including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy and carcinogenesis. The present study aimed to investigate the expression and prognostic value of TRIM59 in patients with non-small cell lung cancer (NSCLC). Expression of TRIM59 in patients with NSCLC was measured by immunohistochemistry in tissue microarrays. Datasets from The Cancer Genome Atlas (TCGA) were used to further verify the expression level of TRIM59 in NSCLC, lung adenocarcinoma and lung squamous cell carcinoma (LUSC). The prognostic value of TRIM59 in NSCLC was also analyzed. Immunohistochemistry revealed that TRIM59 was primarily located in the cytoplasm of tumor cells. Analysis of TCGA datasets revealed that TRIM59 was more highly expressed in tumor tissues than in normal tissues (P<0.0001). Furthermore, the TRIM59 expression level was associated with tumor differentiation (P=0.012), while no association was observed between TRIM59 expression and any other clinicopathological parameters. However, the average overall survival rate of patients with NSCLC in the high TRIM59 expression group was significantly lower than that in the low expression group (P=0.014), especially in patients with LUSC (P=0.016) and patients with poor differentiation (P=0.033). The multivariate analysis indicated that high TRIM59 expression is an independent prognostic factor in patients with NSCLC (P=0.018) and was associated with poor prognosis in patients with NSCLC. Therefore, TRIM59 may serve as a novel molecular biomarker to predict the prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Ming Lou
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China.,Department of Heart and Lung Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Zhaojia Gao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Tao Zhu
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaoliang Mao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Yeming Wang
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Kai Yuan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China.,Department of Heart and Lung Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Jichun Tong
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
12
|
The mammalian CTLH complex is an E3 ubiquitin ligase that targets its subunit muskelin for degradation. Sci Rep 2019; 9:9864. [PMID: 31285494 PMCID: PMC6614414 DOI: 10.1038/s41598-019-46279-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
The multi-subunit C-terminal to LisH (CTLH) complex is the mammalian homologue of the yeast Gid E3 ubiquitin ligase complex. In this study, we investigated the human CTLH complex and characterized its E3 ligase activity. We confirm that the complex immunoprecipitated from human cells comprises RanBPM, ARMC8 α/β, muskelin, WDR26, GID4 and the RING domain proteins RMND5A and MAEA. We find that loss of expression of individual subunits compromises the stability of other complex members and that MAEA and RMND5A protein levels are interdependent. Using in vitro ubiquitination assays, we demonstrate that the CTLH complex has E3 ligase activity which is dependent on RMND5A and MAEA. We report that the complex can pair with UBE2D1, UBE2D2 and UBE2D3 E2 enzymes and that recombinant RMND5A mediates K48 and K63 poly-ubiquitin chains. Finally, we show a proteasome-dependent increase in the protein levels of CTLH complex member muskelin in RMND5A KO cells. Furthermore, muskelin ubiquitination is dependent on RMND5A, suggesting that it may be a target of the complex. Overall, we further the characterization of the CTLH complex as an E3 ubiquitin ligase complex in human cells and reveal a potential autoregulation mechanism.
Collapse
|
13
|
Deol KK, Lorenz S, Strieter ER. Enzymatic Logic of Ubiquitin Chain Assembly. Front Physiol 2019; 10:835. [PMID: 31333493 PMCID: PMC6624479 DOI: 10.3389/fphys.2019.00835] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
14
|
Analysis of the Zn-Binding Domains of TRIM32, the E3 Ubiquitin Ligase Mutated in Limb Girdle Muscular Dystrophy 2H. Cells 2019; 8:cells8030254. [PMID: 30884854 PMCID: PMC6468550 DOI: 10.3390/cells8030254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/02/2019] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
Members of the tripartite motif family of E3 ubiquitin ligases are characterized by the presence of a conserved N-terminal module composed of a RING domain followed by one or two B-box domains, a coiled-coil and a variable C-terminal region. The RING and B-box are both Zn-binding domains but, while the RING is found in a large number of proteins, the B-box is exclusive to the tripartite motif (TRIM) family members in metazoans. Whereas the RING has been extensively characterized and shown to possess intrinsic E3 ligase catalytic activity, much less is known about the role of the B-box domains. In this study, we adopted an in vitro approach using recombinant point- and deletion-mutants to characterize the contribution of the TRIM32 Zn-binding domains to the activity of this E3 ligase that is altered in a genetic form of muscular dystrophy. We found that the RING domain is crucial for E3 ligase activity and E2 specificity, whereas a complete B-box domain is involved in chain assembly rate modulation. Further, in vitro, the RING domain is necessary to modulate TRIM32 oligomerization, whereas, in cells, both the RING and B-box cooperate to specify TRIM32 subcellular localization, which if altered may impact the pathogenesis of diseases.
Collapse
|
15
|
Zhou Z, Wei K, Zhang J. The two TRIM25 isoforms were differentially induced in Larimichthys crocea post poly (I:C) stimulation. FISH & SHELLFISH IMMUNOLOGY 2019; 86:672-679. [PMID: 30529437 DOI: 10.1016/j.fsi.2018.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
In this study, we identified and characterized a tripartite motif containing 25 (TRIM25) gene homologue, LcTRIM25, from large yellow croaker (Larimichthys crocea). Two isoforms of LcTRIM25, which were generated via alternative splicing, were identified via a molecular analysis of cDNA clones. The long isoform of LcTRIM25 (termed as LcTRIM25-L) contained the full open reading frame of the gene, encoded a protein of 698 amino acid residues, and possessed 11 exons. The short isoform of LcTRIM25 (termed as LcTRIM25-S) contained 9 exons and encoded a protein of 665 amino acid residues. The two LcTRIM25 isoforms contained a conserved Really Interesting New Gene (RING) domain, a B-box2 domain, a Coiled-coil domain (CCD), and variable C-terminal PRY/SPRY domains. Phylogenetic analysis showed that the two LcTRIM25 isoforms of the large yellow croaker was clustered together with their counterparts from other teleost fish. The Real-time PCR analysis showed that the LcTRIM25-L and LcTRIM25-S isoforms were both ubiquitously expressed in nine examined tissues in the large yellow croaker, with predominant expressions in the liver. The expression levels of the two isoforms of LcTRIM25 were rapidly and significantly upregulated in vivo after poly (I:C) stimulation in peripheral blood, head kidney, spleen and liver. Moreover, LcTRIM25-L and LcTRIM25-S showed differential expression post poly(I:C) stimulation. LcTRIM25 may have a dual role in innate immunity via alternative gene splicing. These results indicated that LcTRIM25 is likely to be involved in antiviral immune responses.
Collapse
Affiliation(s)
- Zhenzhen Zhou
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ke Wei
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
16
|
Ma Y, Dai HY, Zhang F, Zhao D. TRIM66 expression in non-small cell lung cancer: A new predictor of prognosis. Cancer Biomark 2018; 20:309-315. [PMID: 28946563 DOI: 10.3233/cbm-170207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The tripartite motif-containing protein (TRIM) family is involved in important biological processes such as the cell cycle, cell apoptosis, and innate immunity of virus. This study aimed to investigate TRIM66 expression and its predictive role in non-small cell lung cancer (NSCLC) patients. METHODS We detected the expression levels of TRIM66 protein and TRIM66 mRNA in NSCLC tissues, and evaluated the prognostic role of TRIM66 in NSCLC. RESULTS TRIMM66 was highly expressed in NSCLC tissues compared with normal paracancerous tissues (P= 0.001). The high TRIM66 expression closely associated with lymph node metastasis and TNM stage in NSCLC patients (P< 0.05). Kaplan-Meier survival model indicated that survival time of NSCLC patients in the high TRIM66 expression group were markedly lower than those in the low expression group (P< 0.05). Cox regression analysis showed that high expression of TRIM66 is associated with poor prognosis in NSCLC patients. CONCLUSION TRIM66 can be serve as an important molecular marker for predicting the prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Yan Ma
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China.,Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Huan-Yu Dai
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China.,Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Feng Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Da Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
17
|
Walsh LA, Alvarez MJ, Sabio EY, Reyngold M, Makarov V, Mukherjee S, Lee KW, Desrichard A, Turcan Ş, Dalin MG, Rajasekhar VK, Chen S, Vahdat LT, Califano A, Chan TA. An Integrated Systems Biology Approach Identifies TRIM25 as a Key Determinant of Breast Cancer Metastasis. Cell Rep 2018; 20:1623-1640. [PMID: 28813674 DOI: 10.1016/j.celrep.2017.07.052] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022] Open
Abstract
At the root of most fatal malignancies are aberrantly activated transcriptional networks that drive metastatic dissemination. Although individual metastasis-associated genes have been described, the complex regulatory networks presiding over the initiation and maintenance of metastatic tumors are still poorly understood. There is untapped value in identifying therapeutic targets that broadly govern coordinated transcriptional modules dictating metastatic progression. Here, we reverse engineered and interrogated a breast cancer-specific transcriptional interaction network (interactome) to define transcriptional control structures causally responsible for regulating genetic programs underlying breast cancer metastasis in individual patients. Our analyses confirmed established pro-metastatic transcription factors, and they uncovered TRIM25 as a key regulator of metastasis-related transcriptional programs. Further, in vivo analyses established TRIM25 as a potent regulator of metastatic disease and poor survival outcome. Our findings suggest that identifying and targeting keystone proteins, like TRIM25, can effectively collapse transcriptional hierarchies necessary for metastasis formation, thus representing an innovative cancer intervention strategy.
Collapse
Affiliation(s)
- Logan A Walsh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariano J Alvarez
- Department of Systems Biology, Columbia University, New York, NY, USA; DarwinHealth, Inc., New York, NY, USA
| | - Erich Y Sabio
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marsha Reyngold
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Ken-Wing Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexis Desrichard
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Şevin Turcan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin G Dalin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Linda T Vahdat
- Department of Medicine, Weill Cornell Medical Center, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA.
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cellular and Developmental Biology, Weill Cornell Medical College, New York, NY, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Wang P, Benhenda S, Wu H, Lallemand-Breitenbach V, Zhen T, Jollivet F, Peres L, Li Y, Chen SJ, Chen Z, de Thé H, Meng G. RING tetramerization is required for nuclear body biogenesis and PML sumoylation. Nat Commun 2018; 9:1277. [PMID: 29599493 PMCID: PMC5876331 DOI: 10.1038/s41467-018-03498-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/20/2018] [Indexed: 12/02/2022] Open
Abstract
ProMyelocyticLeukemia nuclear bodies (PML NBs) are stress-regulated domains directly implicated in acute promyelocytic leukemia eradication. Most TRIM family members bind ubiquitin E2s and many acquire ligase activity upon RING dimerization. In contrast, PML binds UBC9, the SUMO E2 enzyme. Here, using X-ray crystallography and SAXS characterization, we demonstrate that PML RING tetramerizes through highly conserved PML-specific sequences, which are required for NB assembly and PML sumoylation. Conserved residues implicated in RING dimerization of other TRIMs also contribute to PML tetramer stability. Wild-type PML rescues the ability of some RING mutants to form NBs as well as their sumoylation. Impaired RING tetramerization abolishes PML/RARA-driven leukemogenesis in vivo and arsenic-induced differentiation ex vivo. Our studies thus identify RING tetramerization as a key step in the NB macro-molecular scaffolding. They suggest that higher order RING interactions allow efficient UBC9 recruitment and thus change the biochemical nature of TRIM-facilitated post-translational modifications. Promyelocytic leukemia protein (PML) is a scaffolding protein that organizes PML nuclear bodies. Here the authors present the tetrameric crystal structure of the PML RING domain and show that RING tetramerization is functionally important for nuclear body formation and PML sumoylation.
Collapse
Affiliation(s)
- Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shirine Benhenda
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China
| | - Haiyan Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.,Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Valérie Lallemand-Breitenbach
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China.,Collège de France, Paris Sciences Lettres research university, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Tao Zhen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Florence Jollivet
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China
| | - Laurent Peres
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China
| | - Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China.,Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China. .,Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China. .,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China. .,Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.
| | - Hugues de Thé
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France. .,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China. .,Collège de France, Paris Sciences Lettres research university, 11 place Marcelin Berthelot, 75005, Paris, France. .,Service de Biochimie, Hôpital St. Louis, Assistance Publique Hôpitaux de Paris, Paris, 75475, France.
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China. .,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China.
| |
Collapse
|
19
|
Choudhury NR, Heikel G, Trubitsyna M, Kubik P, Nowak JS, Webb S, Granneman S, Spanos C, Rappsilber J, Castello A, Michlewski G. RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination. BMC Biol 2017; 15:105. [PMID: 29117863 PMCID: PMC5678581 DOI: 10.1186/s12915-017-0444-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND TRIM25 is a novel RNA-binding protein and a member of the Tripartite Motif (TRIM) family of E3 ubiquitin ligases, which plays a pivotal role in the innate immune response. However, there is scarce knowledge about its RNA-related roles in cell biology. Furthermore, its RNA-binding domain has not been characterized. RESULTS Here, we reveal that the RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain, which we postulate to be a novel RNA-binding domain. Using CLIP-seq and SILAC-based co-immunoprecipitation assays, we uncover TRIM25's endogenous RNA targets and protein binding partners. We demonstrate that TRIM25 controls the levels of Zinc Finger Antiviral Protein (ZAP). Finally, we show that the RNA-binding activity of TRIM25 is important for its ubiquitin ligase activity towards itself (autoubiquitination) and its physiologically relevant target ZAP. CONCLUSIONS Our results suggest that many other proteins with the PRY/SPRY domain could have yet uncharacterized RNA-binding potential. Together, our data reveal new insights into the molecular roles and characteristics of RNA-binding E3 ubiquitin ligases and demonstrate that RNA could be an essential factor in their enzymatic activity.
Collapse
Affiliation(s)
- Nila Roy Choudhury
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Gregory Heikel
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Maryia Trubitsyna
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Roger Land Building, Edinburgh, EH9 3FF, UK
| | - Peter Kubik
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Jakub Stanislaw Nowak
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, CH Waddington Building, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
- Department of Biotechnology, Technische Universität Berlin, 13353, Berlin, Germany
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Gracjan Michlewski
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
20
|
Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease. Proc Natl Acad Sci U S A 2017; 114:11392-11397. [PMID: 29073062 DOI: 10.1073/pnas.1705748114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Advances in human genetics have dramatically expanded our understanding of complex heritable diseases. Genome-wide association studies have identified an allelic series of CARD9 variants associated with increased risk of or protection from inflammatory bowel disease (IBD). The predisposing variant of CARD9 is associated with increased NF-κB-mediated cytokine production. Conversely, the protective variant lacks a functional C-terminal domain and is unable to recruit the E3 ubiquitin ligase TRIM62. Here, we used biochemical insights into CARD9 variant proteins to create a blueprint for IBD therapeutics and recapitulated the mechanism of the CARD9 protective variant using small molecules. We developed a multiplexed bead-based technology to screen compounds for disruption of the CARD9-TRIM62 interaction. We identified compounds that directly and selectively bind CARD9, disrupt TRIM62 recruitment, inhibit TRIM62-mediated ubiquitinylation of CARD9, and demonstrate cellular activity and selectivity in CARD9-dependent pathways. Taken together, small molecules targeting CARD9 illustrate a path toward improved IBD therapeutics.
Collapse
|
21
|
Todaro DR, Augustus-Wallace AC, Klein JM, Haas AL. The mechanism of neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2)/NEDD4L-catalyzed polyubiquitin chain assembly. J Biol Chem 2017; 292:19521-19536. [PMID: 28972136 DOI: 10.1074/jbc.m117.817882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 11/06/2022] Open
Abstract
The mechanism of Nedd4-2 has been quantitatively explored for the first time using biochemically defined kinetic assays examining rates of 125I-polyubiquitin chain assembly as a functional readout. We demonstrate that Nedd4-2 exhibits broad specificity for E2 paralogs of the Ubc4/5 clade to assemble Lys63-linked polyubiquitin chains. Full-length Nedd4-2 catalyzes free 125I-polyubiquitin chain assembly by hyperbolic Michaelis-Menten kinetics with respect to Ubc5B∼ubiquitin thioester concentration (Km = 44 ± 6 nm; kcat = 0.020 ± 0.007 s-1) and substrate inhibition above 0.5 μm (Ki = 2.5 ± 1.3 μm) that tends to zero velocity, requiring ordered binding at two functionally distinct E2∼ubiquitin-binding sites. The Ubc5BC85A product analog non-competitively inhibits Nedd4-2 (Ki = 2.0 ± 0.5 μm), consistent with the presence of the second E2-binding site. In contrast, the isosteric Ubc5BC85S-ubiquitin oxyester substrate analog exhibits competitive inhibition at the high-affinity Site 1 (Ki = 720 ± 340 nm) and non-essential activation at the lower-affinity Site 2 (Kact = 750 ± 260 nm). Additional studies utilizing Ubc5BF62A, defective in binding the canonical E2 site, demonstrate that the cryptic Site 1 is associated with thioester formation, whereas binding at the canonical site (Site 2) is associated with polyubiquitin chain elongation. Finally, previously described Ca2+-dependent C2 domain-mediated autoinhibition of Nedd4-2 is not observed under our reported experimental conditions. These studies collectively demonstrate that Nedd4-2 catalyzes polyubiquitin chain assembly by an ordered two-step mechanism requiring two dynamically linked E2∼ubiquitin-binding sites analogous to that recently reported for E6AP, the founding member of the Hect ligase family.
Collapse
Affiliation(s)
- Dustin R Todaro
- From the Department of Biochemistry and Molecular Biology and
| | | | | | - Arthur L Haas
- From the Department of Biochemistry and Molecular Biology and .,the Stanley S. Scott Cancer Center, Louisiana State University School of Medicine, New Orleans, Louisiana 70112
| |
Collapse
|
22
|
Martín-Vicente M, Medrano LM, Resino S, García-Sastre A, Martínez I. TRIM25 in the Regulation of the Antiviral Innate Immunity. Front Immunol 2017; 8:1187. [PMID: 29018447 PMCID: PMC5614919 DOI: 10.3389/fimmu.2017.01187] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5–mitochondrial antiviral signaling protein–TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Luz M Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Ronchi VP, Kim ED, Summa CM, Klein JM, Haas AL. In silico modeling of the cryptic E2∼ubiquitin-binding site of E6-associated protein (E6AP)/UBE3A reveals the mechanism of polyubiquitin chain assembly. J Biol Chem 2017; 292:18006-18023. [PMID: 28924046 DOI: 10.1074/jbc.m117.813477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
To understand the mechanism for assembly of Lys48-linked polyubiquitin degradation signals, we previously demonstrated that the E6AP/UBE3A ligase harbors two functionally distinct E2∼ubiquitin-binding sites: a high-affinity Site 1 required for E6AP Cys820∼ubiquitin thioester formation and a canonical Site 2 responsible for subsequent chain elongation. Ordered binding to Sites 1 and 2 is here revealed by observation of UbcH7∼ubiquitin-dependent substrate inhibition of chain formation at micromolar concentrations. To understand substrate inhibition, we exploited the PatchDock algorithm to model in silico UbcH7∼ubiquitin bound to Site 1, validated by chain assembly kinetics of selected point mutants. The predicted structure buries an extensive solvent-excluded surface bringing the UbcH7∼ubiquitin thioester bond within 6 Å of the Cys820 nucleophile. Modeling onto the active E6AP trimer suggests that substrate inhibition arises from steric hindrance between Sites 1 and 2 of adjacent subunits. Confirmation that Sites 1 and 2 function in trans was demonstrated by examining the effect of E6APC820A on wild-type activity and single-turnover pulse-chase kinetics. A cyclic proximal indexation model proposes that Sites 1 and 2 function in tandem to assemble thioester-linked polyubiquitin chains from the proximal end attached to Cys820 before stochastic en bloc transfer to the target protein. Non-reducing SDS-PAGE confirms assembly of the predicted Cys820-linked 125I-polyubiquitin thioester intermediate. Other studies suggest that Glu550 serves as a general base to generate the Cys820 thiolate within the low dielectric binding interface and Arg506 functions to orient Glu550 and to stabilize the incipient anionic transition state during thioester exchange.
Collapse
Affiliation(s)
| | - Elizabeth D Kim
- From the Department of Biochemistry and Molecular Biology and
| | - Christopher M Summa
- the Department of Computer Science, University of New Orleans, New Orleans, Louisiana 70148
| | | | - Arthur L Haas
- From the Department of Biochemistry and Molecular Biology and .,the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112 and
| |
Collapse
|
24
|
The TRIMendous Role of TRIMs in Virus-Host Interactions. Vaccines (Basel) 2017; 5:vaccines5030023. [PMID: 28829373 PMCID: PMC5620554 DOI: 10.3390/vaccines5030023] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/23/2022] Open
Abstract
The innate antiviral response is integral in protecting the host against virus infection. Many proteins regulate these signaling pathways including ubiquitin enzymes. The ubiquitin-activating (E1), -conjugating (E2), and -ligating (E3) enzymes work together to link ubiquitin, a small protein, onto other ubiquitin molecules or target proteins to mediate various effector functions. The tripartite motif (TRIM) protein family is a group of E3 ligases implicated in the regulation of a variety of cellular functions including cell cycle progression, autophagy, and innate immunity. Many antiviral signaling pathways, including type-I interferon and NF-κB, are TRIM-regulated, thus influencing the course of infection. Additionally, several TRIMs directly restrict viral replication either through proteasome-mediated degradation of viral proteins or by interfering with different steps of the viral replication cycle. In addition, new studies suggest that TRIMs can exert their effector functions via the synthesis of unconventional polyubiquitin chains, including unanchored (non-covalently attached) polyubiquitin chains. TRIM-conferred viral inhibition has selected for viruses that encode direct and indirect TRIM antagonists. Furthermore, new evidence suggests that the same antagonists encoded by viruses may hijack TRIM proteins to directly promote virus replication. Here, we describe numerous virus–TRIM interactions and novel roles of TRIMs during virus infections.
Collapse
|
25
|
Ebner P, Versteeg GA, Ikeda F. Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol 2017; 52:425-460. [PMID: 28524749 PMCID: PMC5490640 DOI: 10.1080/10409238.2017.1325829] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
Abstract
Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.
Collapse
|
26
|
Structural basis for the recognition and degradation of host TRIM proteins by Salmonella effector SopA. Nat Commun 2017; 8:14004. [PMID: 28084320 PMCID: PMC5241803 DOI: 10.1038/ncomms14004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022] Open
Abstract
The hallmark of Salmonella Typhimurium infection is an acute intestinal inflammatory response, which is mediated through the action of secreted bacterial effector proteins. The pro-inflammatory Salmonella effector SopA is a HECT-like E3 ligase, which was previously proposed to activate host RING ligases TRIM56 and TRIM65. Here we elucidate an inhibitory mechanism of TRIM56 and TRIM65 targeting by SopA. We present the crystal structure of SopA in complex with the RING domain of human TRIM56, revealing the atomic details of their interaction and the basis for SopA selectivity towards TRIM56 and TRIM65. Structure-guided biochemical analysis shows that SopA inhibits TRIM56 E3 ligase activity by occluding the E2-interacting surface of TRIM56. We further demonstrate that SopA ubiquitinates TRIM56 and TRIM65, resulting in their proteasomal degradation during infection. Our results provide the basis for how a bacterial HECT ligase blocks host RING ligases and exemplifies the multivalent power of bacterial effectors during infection.
Collapse
|
27
|
Lazzari E, Meroni G. TRIM32 ubiquitin E3 ligase, one enzyme for several pathologies: From muscular dystrophy to tumours. Int J Biochem Cell Biol 2016; 79:469-477. [PMID: 27458054 DOI: 10.1016/j.biocel.2016.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023]
Abstract
TRIM32 is a member of the TRIpartite Motif family characterised by the presence of an N-terminal three-domain-module that includes a RING domain, which confers E3 ubiquitin ligase activity, one or two B-box domains and a Coiled-Coil region that mediates oligomerisation. Several TRIM32 substrates were identified including muscular proteins and proteins involved in cell cycle regulation and cell motility. As ubiquitination is a versatile post-translational modification that can affect target turnover, sub-cellular localisation or activity, it is likely that diverse substrates may be differentially affected by TRIM32-mediated ubiquitination, reflecting its multi-faceted roles in muscle physiology, cancer and immunity. With particular relevance for muscle physiology, mutations in TRIM32 are associated with autosomal recessive Limb-Girdle Muscular Dystrophy 2H, a muscle-wasting disease with variable clinical spectrum ranging from almost asymptomatic to wheelchair-bound patients. In this review, we will focus on the ability of TRIM32 to mark specific substrates for proteasomal degradation discussing how the TRIM32-proteasome axis may (i) be important for muscle homeostasis and for the pathogenesis of muscular dystrophy; and (ii) define either an oncogenic or tumour suppressive role for TRIM32 in the context of different types of cancer.
Collapse
Affiliation(s)
- Elisa Lazzari
- Department of Life Sciences, University of Trieste and Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Germana Meroni
- Department of Life Sciences, University of Trieste and Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| |
Collapse
|
28
|
Koliopoulos MG, Esposito D, Christodoulou E, Taylor IA, Rittinger K. Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. EMBO J 2016; 35:1204-18. [PMID: 27154206 PMCID: PMC4864278 DOI: 10.15252/embj.201593741] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/06/2016] [Indexed: 12/30/2022] Open
Abstract
TRIM E3 ubiquitin ligases regulate a wide variety of cellular processes and are particularly important during innate immune signalling events. They are characterized by a conserved tripartite motif in their N-terminal portion which comprises a canonical RING domain, one or two B-box domains and a coiled-coil region that mediates ligase dimerization. Self-association via the coiled-coil has been suggested to be crucial for catalytic activity of TRIMs; however, the precise molecular mechanism underlying this observation remains elusive. Here, we provide a detailed characterization of the TRIM ligases TRIM25 and TRIM32 and show how their oligomeric state is linked to catalytic activity. The crystal structure of a complex between the TRIM25 RING domain and an ubiquitin-loaded E2 identifies the structural and mechanistic features that promote a closed E2~Ub conformation to activate the thioester for ubiquitin transfer allowing us to propose a model for the regulation of activity in the full-length protein. Our data reveal an unexpected diversity in the self-association mechanism of TRIMs that might be crucial for their biological function.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Mill Hill LaboratoryMolecular Structure of Cell Signalling LaboratoryThe Francis Crick InstituteLondonUK
| | - Diego Esposito
- Mill Hill LaboratoryMolecular Structure of Cell Signalling LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Ian A Taylor
- Mill Hill LaboratoryMacromolecular Structure LaboratoryThe Francis Crick InstituteLondonUK
| | - Katrin Rittinger
- Mill Hill LaboratoryMolecular Structure of Cell Signalling LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
29
|
Kozakova L, Vondrova L, Stejskal K, Charalabous P, Kolesar P, Lehmann AR, Uldrijan S, Sanderson CM, Zdrahal Z, Palecek JJ. The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. Cell Cycle 2015; 14:920-30. [PMID: 25590999 PMCID: PMC4614679 DOI: 10.1080/15384101.2014.1000112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The MAGE (Melanoma-associated antigen) protein family members are structurally related to each other by a MAGE-homology domain comprised of 2 winged helix motifs WH/A and WH/B. This family specifically evolved in placental mammals although single homologs designated NSE3 (non-SMC element) exist in most eukaryotes. NSE3, together with its partner proteins NSE1 and NSE4 form a tight subcomplex of the structural maintenance of chromosomes SMC5–6 complex. Previously, we showed that interactions of the WH/B motif of the MAGE proteins with their NSE4/EID partners are evolutionarily conserved (including the MAGEA1-NSE4 interaction). In contrast, the interaction of the WH/A motif of NSE3 with NSE1 diverged in the MAGE paralogs. We hypothesized that the MAGE paralogs acquired new RING-finger-containing partners through their evolution and form MAGE complexes reminiscent of NSE1-NSE3-NSE4 trimers. In this work, we employed the yeast 2-hybrid system to screen a human RING-finger protein library against several MAGE baits. We identified a number of potential MAGE-RING interactions and confirmed several of them (MDM4, PCGF6, RNF166, TRAF6, TRIM8, TRIM31, TRIM41) in co-immunoprecipitation experiments. Among these MAGE-RING pairs, we chose to examine MAGEA1-TRIM31 in detail and showed that both WH/A and WH/B motifs of MAGEA1 bind to the coiled-coil domain of TRIM31 and that MAGEA1 interaction stimulates TRIM31 ubiquitin-ligase activity. In addition, TRIM31 directly binds to NSE4, suggesting the existence of a TRIM31-MAGEA1-NSE4 complex reminiscent of the NSE1-NSE3-NSE4 trimer. These results suggest that MAGEA1 functions as a co-factor of TRIM31 ubiquitin-ligase and that the TRIM31-MAGEA1-NSE4 complex may have evolved from an ancestral NSE1-NSE3-NSE4 complex.
Collapse
Affiliation(s)
- Lucie Kozakova
- a From the Mendel Center for Plant Genomics and Proteomics; Central European Institute of Technology; Masaryk University ; Brno , Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fu B, Wang L, Ding H, Schwamborn JC, Li S, Dorf ME. TRIM32 Senses and Restricts Influenza A Virus by Ubiquitination of PB1 Polymerase. PLoS Pathog 2015; 11:e1004960. [PMID: 26057645 PMCID: PMC4461266 DOI: 10.1371/journal.ppat.1004960] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/18/2015] [Indexed: 02/02/2023] Open
Abstract
Polymerase basic protein 1 (PB1) is the catalytic core of the influenza A virus (IAV) RNA polymerase complex essential for viral transcription and replication. Understanding the intrinsic mechanisms which block PB1 function could stimulate development of new anti-influenza therapeutics. Affinity purification coupled with mass spectrometry (AP-MS) was used to identify host factors interacting with PB1. Among PB1 interactors, the E3 ubiquitin ligase TRIM32 interacts with PB1 proteins derived from multiple IAV strains. TRIM32 senses IAV infection by interacting with PB1 and translocates with PB1 to the nucleus following influenza infection. Ectopic TRIM32 expression attenuates IAV infection. Conversely, RNAi depletion and knockout of TRIM32 increase susceptibility of tracheal and lung epithelial cells to IAV infection. Reconstitution of trim32-/- mouse embryonic fibroblasts with TRIM32, but not a catalytically inactive mutant, restores viral restriction. Furthermore, TRIM32 directly ubiquitinates PB1, leading to PB1 protein degradation and subsequent reduction of polymerase activity. Thus, TRIM32 is an intrinsic IAV restriction factor which senses and targets the PB1 polymerase for ubiquitination and protein degradation. TRIM32 represents a model of intrinsic immunity, in which a host protein directly senses and counters viral infection in a species specific fashion by directly limiting viral replication. Influenza A virus presents a continued threat to global health with considerable economic and social impact. Vaccinations against influenza are not always effective, and many influenza strains have developed resistance to current antiviral drugs. Thus, it is imperative to find new strategies for the prevention and treatment of influenza. Influenza RNA-dependent RNA polymerase is a multifunctional protein essential for both transcription and replication of the viral genome. However, we have little understanding of the mechanisms regulating viral RNA polymerase activity or the innate cellular defenses against this critical viral enzyme. We describe how the E3 ubiquitin ligase, TRIM32, inhibits the activity of the influenza RNA polymerase and defends respiratory epithelial cells against infection with influenza A viruses. TRIM32 directly senses the PB1 subunit of the influenza virus RNA polymerase complex and targets it for ubiquitination and proteasomal degradation, thereby reducing viral polymerase activity.
Collapse
Affiliation(s)
- Bishi Fu
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lingyan Wang
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hao Ding
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Shitao Li
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail: (SL); (MED)
| | - Martin E. Dorf
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SL); (MED)
| |
Collapse
|
31
|
Tomar D, Singh R. TRIM family proteins: emerging class of RING E3 ligases as regulator of NF-κB pathway. Biol Cell 2014; 107:22-40. [DOI: 10.1111/boc.201400046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/06/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Dhanendra Tomar
- Department of Cell Biology; School of Biological Sciences and Biotechnology; Indian Institute of Advanced Research; Gandhinagar India
| | - Rajesh Singh
- Department of Biochemistry; Faculty of Science; The M.S. University of Baroda; Vadodara 390 002 Gujarat India
| |
Collapse
|
32
|
Edwards DJ, Streich FC, Ronchi VP, Todaro DR, Haas AL. Convergent evolution in the assembly of polyubiquitin degradation signals by the Shigella flexneri IpaH9.8 ligase. J Biol Chem 2014; 289:34114-28. [PMID: 25342744 DOI: 10.1074/jbc.m114.609164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The human pathogen Shigella flexneri subverts host function and defenses by deploying a cohort of effector proteins via a type III secretion system. The IpaH family of 10 such effectors mimics ubiquitin ligases but bears no sequence or structural homology to their eukaryotic counterpoints. Using rates of (125)I-polyubiquitin chain formation as a functional read out, IpaH9.8 displays V-type positive cooperativity with respect to varying concentrations of its Ubc5B∼(125)I-ubiquitin thioester co-substrate in the nanomolar range ([S]½ = 140 ± 32 nm; n = 1.8 ± 0.1) and cooperative substrate inhibition at micromolar concentrations ([S]½ = 740 ± 240 nm; n = 1.7 ± 0.2), requiring ordered binding to two functionally distinct sites per subunit. The isosteric substrate analog Ubc5BC85S-ubiquitin oxyester acts as a competitive inhibitor of wild-type Ubc5B∼(125)I-ubiquitin thioester (Ki = 117 ± 29 nm), whereas a Ubc5BC85A product analog shows noncompetitive inhibition (Ki = 2.2 ± 0.5 μm), consistent with the two-site model. Re-evaluation of a related IpaH3 crystal structure (PDB entry 3CVR) identifies a symmetric dimer consistent with the observed cooperativity. Genetic disruption of the predicted IpaH9.8 dimer interface reduces the solution molecular weight and significantly ablates the kcat but not [S]½ for polyubiquitin chain formation. Other studies demonstrate that cooperativity requires the N-terminal leucine-rich repeat-targeting domain and is transduced through Phe(395). Additionally, these mechanistic features are conserved in a distantly related SspH2 Salmonella enterica ligase. Kinetic parallels between IpaH9.8 and the recently revised mechanism for E6AP/UBE3A (Ronchi, V. P., Klein, J. M., and Haas, A. L. (2013) E6AP/UBE3A ubiquitin ligase harbors two E2∼ubiquitin binding sites. J. Biol. Chem. 288, 10349-10360) suggest convergent evolution of the catalytic mechanisms for prokaryotic and eukaryotic ligases.
Collapse
Affiliation(s)
| | | | | | - Dustin R Todaro
- From the Department of Biochemistry and Molecular Biology and
| | - Arthur L Haas
- From the Department of Biochemistry and Molecular Biology and the Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana 70112
| |
Collapse
|
33
|
Abstract
Attachment of ubiquitin (Ub) and ubiquitin-like proteins (Ubls) to cellular proteins regulates numerous cellular processes including transcription, the cell cycle, stress responses, DNA repair, apoptosis, immune responses, and autophagy, to name a few. The mechanistically parallel but functionally distinct conjugation pathways typically require the concerted activities of three types of protein: E1 Ubl-activating enzymes, E2 Ubl carrier proteins, and E3 Ubl ligases. E1 enzymes initiate pathway specificity for each cascade by recognizing and activating cognate Ubls, followed by catalyzing Ubl transfer to cognate E2 protein(s). Under certain circumstances, the E2 Ubl complex can direct ligation to the target protein, but most often requires the cooperative activity of E3 ligases. Reviewed here are recent structural and functional studies that improve our mechanistic understanding of E1-, E2-, and E3-mediated Ubl conjugation.
Collapse
|
34
|
The ability of TRIM3 to induce growth arrest depends on RING-dependent E3 ligase activity. Biochem J 2014; 458:537-45. [PMID: 24393003 DOI: 10.1042/bj20131288] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutation of the TRIM (tripartite motif)-NHL family members brat and mei-P26 perturb the differentiation of transit-amplifying progenitor cells resulting in tumour-like phenotypes. The NHL (named after the NCL1, HT2A and LIN41 repeat) domain is essential for their growth suppressive activity, and they can induce cell-cycle exit in a RING-independent manner. TRIM3 is the only bona fide tumour suppressor in the mammalian TRIM-NHL subfamily and similar to the other members of this family, its ability to inhibit cell proliferation depends on the NHL domain. However, whether the RING domain was required for TRIM3-dependent cell-cycle exit had not been investigated. In the present study, we establish that the RING domain is required for TRIM3-induced growth suppression. Furthermore, we show that this domain is necessary to promote ubiquitination of p21 in a reconstituted in vitro system where UbcH5a is the preferred E2. Thus the ability of TRIM3 to suppress growth is associated with its ability to ubiquitinate proteins.
Collapse
|
35
|
|
36
|
Printsev I, Yen L, Sweeney C, Carraway KL. Oligomerization of the Nrdp1 E3 ubiquitin ligase is necessary for efficient autoubiquitination but not ErbB3 ubiquitination. J Biol Chem 2014; 289:8570-8. [PMID: 24519943 DOI: 10.1074/jbc.m113.527036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the ErbB3 receptor tyrosine kinase protein in breast and other cancers contributes to tumor malignancy and therapeutic resistance. The RBCC/TRIM family RING finger E3 ubiquitin ligase Nrdp1 mediates the ubiquitination of ErbB3 in normal mammary epithelial cells to facilitate receptor degradation and suppress steady-state receptor levels. Post-transcriptional loss of Nrdp1 in patient breast tumors allows ErbB3 overexpression and receptor contribution to tumor progression, and elevated lability through autoubiquitination contributes to the observed loss of Nrdp1 in tumors relative to normal tissue. To begin to understand the mechanisms underlying Nrdp1 protein self-regulation through lability, we investigated the structural determinants required for efficient autoubiquitination and ErbB3 ubiquitination. Using mutagenesis, chemical cross-linking, size exclusion chromatography, and native polyacrylamide gel electrophoresis, we demonstrate that Nrdp1 self-associates into a stable oligomeric complex in cells. Deletion of its coiled-coil domain abrogates oligomerization but does not affect Nrdp1-mediated ErbB3 ubiquitination or degradation. On the other hand, the presence of the coiled-coil domain is necessary for efficient Nrdp1 autoubiquitination via a trans mechanism, indicating that Nrdp1 ubiquitination of its various targets is functionally separable. Finally, a GFP fusion of the coiled-coil domain stabilizes Nrdp1 and potentiates ErbB3 ubiquitination and degradation. These observations point to a model whereby the coiled-coil domain plays a key role in regulating Nrdp1 lability by promoting its assembly into an oligomeric complex, and raise the possibility that inhibition of ligase oligomerization via its coiled-coil domain could be of therapeutic benefit to breast cancer patients by restoring Nrdp1 protein.
Collapse
Affiliation(s)
- Ignat Printsev
- From the Department of Biochemistry and Molecular Medicine and the UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817
| | | | | | | |
Collapse
|
37
|
Miranzo-Navarro D, Magor KE. Activation of duck RIG-I by TRIM25 is independent of anchored ubiquitin. PLoS One 2014; 9:e86968. [PMID: 24466302 PMCID: PMC3900705 DOI: 10.1371/journal.pone.0086968] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 12/18/2013] [Indexed: 12/28/2022] Open
Abstract
Retinoic acid inducible gene I (RIG-I) is a viral RNA sensor crucial in defense against several viruses including measles, influenza A and hepatitis C. RIG-I activates type-I interferon signalling through the adaptor for mitochondrial antiviral signaling (MAVS). The E3 ubiquitin ligase, tripartite motif containing protein 25 (TRIM25), activates human RIG-I through generation of anchored K63-linked polyubiquitin chains attached to lysine 172, or alternatively, through the generation of unanchored K63-linked polyubiquitin chains that interact non-covalently with RIG-I CARD domains. Previously, we identified RIG-I of ducks, of interest because ducks are the host and natural reservoir of influenza viruses, and showed it initiates innate immune signaling leading to production of interferon-beta (IFN-β). We noted that K172 is not conserved in RIG-I of ducks and other avian species, or mouse. Because K172 is important for both mechanisms of activation of human RIG-I, we investigated whether duck RIG-I was activated by TRIM25, and if other residues were the sites for attachment of ubiquitin. Here we show duck RIG-I CARD domains are ubiquitinated for activation, and ubiquitination depends on interaction with TRIM25, as a splice variant that cannot interact with TRIM25 is not ubiquitinated, and cannot be activated. We expressed GST-fusion proteins of duck CARD domains and characterized TRIM25 modifications of CARD domains by mass spectrometry. We identified two sites that are ubiquitinated in duck CARD domains, K167 and K193, and detected K63 linked polyubiquitin chains. Site directed mutagenesis of each site alone, does not alter the ubiquitination profile of the duck CARD domains. However, mutation of both sites resulted in loss of all attached ubiquitin and polyubiquitin chains. Remarkably, the double mutant duck RIG-I CARD still interacts with TRIM25, and can still be activated. Our results demonstrate that anchored ubiquitin chains are not necessary for TRIM25 activation of duck RIG-I.
Collapse
Affiliation(s)
- Domingo Miranzo-Navarro
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Katharine E. Magor
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Ronchi VP, Klein JM, Edwards DJ, Haas AL. The active form of E6-associated protein (E6AP)/UBE3A ubiquitin ligase is an oligomer. J Biol Chem 2013; 289:1033-48. [PMID: 24273172 DOI: 10.1074/jbc.m113.517805] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Employing 125I-polyubiquitin chain formation as a functional readout of ligase activity, biochemical and biophysical evidence demonstrates that catalytically active E6-associated protein (E6AP)/UBE3A is an oligomer. Based on an extant structure previously discounted as an artifact of crystal packing forces, we propose that the fully active form of E6AP is a trimer, analysis of which reveals a buried surface of 7508Å2 and radially symmetric interacting residues that are conserved within the Hect (homologous to E6AP C terminus) ligase superfamily. An absolutely conserved interaction between Phe(727) and a hydrophobic pocket present on the adjacent subunit is critical for trimer stabilization because mutation disrupts the oligomer and decreases kcat 62-fold but fails to affect E2 ubiquitin binding or subsequent formation of the Hect domain Cys(820) ubiquitin thioester catalytic intermediate. Exogenous N-acetylphenylalanylamide reversibly antagonizes Phe(727)-dependent trimer formation and catalytic activity (Ki12 mM), as does a conserved-helical peptide corresponding to residues 474–490 of E6A Pisoform 1 (Ki22M) reported to bind the hydrophobic pocket of other Hect ligases, presumably blocking Phe(727) intercalation and trimer formation. Conversely, oncogenic human papillomavirus-16/18 E6 protein significantly enhances E6AP catalytic activity by promoting trimer formation (Kactivation 1.5 nM) through the ability of E6 to form homodimers. Recombinant E6 protein additionally rescues the kcat defect of the Phe(727) mutation and that of a specific loss-of-function Angelman syndrome mutation that promotes trimer destabilization. The present findings codify otherwise disparate observations regarding the mechanism of E6AP and related Hect ligases in addition to suggesting therapeutic approaches for modulating ligase activity.
Collapse
|