1
|
Deng S, Liao J, Li H, Xu J, Fan J, Xia J, Wang J, Lei L, Chen M, Han Y, Zhai R, Zhou C, Zhou R, Cheng C, Song H. Streptococcus suis subtilisin-like serine proteases SspA-1 and SspA-2 interplay with complement C3a and C5a to facilitate bacterial immune evasion and infection. Virulence 2024; 15:2301246. [PMID: 38170683 PMCID: PMC10795781 DOI: 10.1080/21505594.2023.2301246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Streptococcus suis (S. suis), a significant zoonotic bacterial pathogen impacting swine and human, is associated with severe systemic diseases such as streptococcal toxic shock-like syndrome, meningitis, septicaemia, and abrupt fatality. The multifaceted roles of complement components C5a and C3a extend to orchestrating inflammatory cells recruitment, oxidative burst induction, and cytokines release. Despite the pivotal role of subtilisin-like serine proteases in S. suis pathogenicity, their involvement in immune evasion remains underexplored. In the present study, we identify two cell wall-anchored subtilisin-like serine proteases in S. suis, SspA-1 and SspA-2, as binding partners for C3a and C5a. Through Co-Immunoprecipitation, Enzyme-Linked Immunosorbent and Far-Western Blotting Assays, we validate their interactions with the aforementioned components. However, SspA-1 and SspA-2 have no cleavage activity against complement C3a and C5a performed by Cleavage assay. Chemotaxis assays reveal that recombinant SspA-1 and SspA-2 effectively attenuate monocyte chemotaxis towards C3a and C5a. Notably, the ΔsspA-1, ΔsspA-1, and ΔsspA-1/2 mutant strains exhibit compromised survival in blood, and resistance of opsonophagocytosis, alongside impaired survival in blood and in vivo colonization compared to the parental strain SC-19. Critical insights from the murine and Galleria mellonella larva infection models further underscore the significance of sspA-1 in altering mortality rates. Collectively, our findings indicate that SspA-1 and SspA-2 are novel binding proteins for C3a and C5a, thereby shedding light on their pivotal roles in S. suis immune evasion and the pathogenesis.
Collapse
Affiliation(s)
- Simin Deng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Junhui Liao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Haojie Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jingyan Fan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jing Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Lei Lei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Yue Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Ruidong Zhai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Chang Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Rui Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
2
|
Yang R, Li S, Guo J, Wang Y, Dong Z, Wang Q, Bai H, Ning C, Zhu X, Bai J, Hu S, Xiao Y, Li Z, Zhou Z. Serine protease RAYM_01812 (SspA) inhibits complement-mediated killing and monocyte chemotaxis and contributes to virulence of Riemerella anatipestifer in ducks. Virulence 2024; 15:2421219. [PMID: 39450484 PMCID: PMC11540087 DOI: 10.1080/21505594.2024.2421219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Riemerella anatipestifer (RA) is a significant poultry pathogen causing acute septicemia and inflammation. The function of protease RAYM_01812, responsible for gelatin degradation, is unexplored in RA pathogenesis. To elucidate its role, we generated a deletion mutant ΔRAYM_01812 (ΔRAYM) and complementary CΔRAYM_01812 (CΔRAYM) strain and revealed the protease's role in extracellular gelatinase activity. By expressing full-length 76 kDa RAYM_01812 protein without signal peptide as well as seven partial structural domains fragments, we evidence that the N-terminal propeptide acts as an enzymatic activity inhibitor and it gets cleaved at A112. Also, we show that the β-fold sheet domain is necessary for enhancing the enzymatic protease activity. Sequential auto-proteolysis forms a stable 40 kDa enzyme. Then, testing the strains in duck sera indicated that the absence or presence of RAYM_01812 results in reduced or enhanced bacterial survival, respectively. Furthermore, we found that the protease is able to cleave IgY antibodies as well as the complement factors C3a and C5a, that the protease reduces C3a- or C5a-mediated monocyte chemotaxis, and results in enhanced membrane attack complex (MAC) formation on the surface of ΔRAYM compared to CΔRAYM. This suggests that RAYM_01812 plays a crucial role in protecting against the serum complement-mediated bactericidal effect through inhibiting MAC formation and monocyte chemotaxis. Animal infection assays showed a 1090-fold reduced virulence of ΔRAYM compared to RA-YM, evidenced by decreased tissue loading and weaker histopathological changes. In conclusion, RAYM_01812 acts as a vital virulence factor, enabling host innate immune defence escape through complement killing evasion and monocyte chemotaxis inhibition.
Collapse
Affiliation(s)
- Rongkun Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jie Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Yanhua Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zeyuan Dong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hongying Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Congran Ning
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaotong Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiao Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Hota S, Kumar M. Unveiling the impact of Leptospira TolC efflux protein on host tissue adherence, complement evasion, and diagnostic potential. Infect Immun 2024; 92:e0041924. [PMID: 39392312 PMCID: PMC11556070 DOI: 10.1128/iai.00419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
The TolC family protein of Leptospira is a type I outer membrane efflux protein. Phylogenetic analysis revealed significant sequence conservation among pathogenic Leptospira species (83%-98% identity) compared with intermediate and saprophytic species. Structural modeling indicated a composition of six β-strands and 10 α-helices arranged in two repeats, resembling bacterial outer membrane efflux proteins. Recombinant TolC (rTolC), expressed in a heterologous host and purified via Ni-NTA chromatography, maintained its secondary structural integrity, as verified by circular dichroism spectroscopy. Polyclonal antibodies against rTolC detected native TolC expression in pathogenic Leptospira but not in nonpathogenic ones. Immunoassays and detergent fractionation assays indicated surface localization of TolC. The rTolC's recognition by sera from leptospirosis-infected hosts across species suggests its utility as a diagnostic marker. Notably, rTolC demonstrated binding affinity for various extracellular matrix components, including collagen and chondroitin sulfate A, as well as plasma proteins such as factor H, C3b, and plasminogen, indicating potential roles in tissue adhesion and immune evasion. Functional assays demonstrated that rTolC-bound FH retained cofactor activity for C3b cleavage, highlighting TolC's role in complement regulation. The rTolC protein inhibited both the alternative and the classical pathway-mediated membrane attack complex (MAC) deposition in vitro. Blocking surface-expressed TolC on leptospires using specific antibodies reduced FH acquisition by Leptospira and increased MAC deposition on the spirochete. These findings indicate that TolC contributes to leptospiral virulence by promoting host tissue colonization and evading the immune response, presenting it as a potential target for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Saswat Hota
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
4
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Loh JM, Aghababa H, Proft T. Eluding the immune system's frontline defense: Secreted complement evasion factors of pathogenic Gram-positive cocci. Microbiol Res 2023; 277:127512. [PMID: 37826985 DOI: 10.1016/j.micres.2023.127512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
The human complement system is an important part of the innate immune response in the fight against invasive bacteria. Complement responses can be activated independently by the classical pathway, the lectin pathway, or the alternative pathway, each resulting in the formation of a C3 convertase that produces the anaphylatoxin C3a and the opsonin C3b by specifically cutting C3. Other important features of complement are the production of the chemotactic C5a peptide and the generation of the membrane attack complex to lyse intruding pathogens. Invasive pathogens like Staphylococcus aureus and several species of the genus Streptococcus have developed a variety of complement evasion strategies to resist complement activity thereby increasing their virulence and potential to cause disease. In this review, we focus on secreted complement evasion factors that assist the bacteria to avoid opsonization and terminal pathway lysis. We also briefly discuss the potential role of complement evasion factors for the development of vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Jacelyn Ms Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Haniyeh Aghababa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
6
|
Troese MJ, Burlet E, Cunningham MW, Alvarez K, Bentley R, Thomas N, Carwell S, Morefield GL. Group A Streptococcus Vaccine Targeting the Erythrogenic Toxins SpeA and SpeB Is Safe and Immunogenic in Rabbits and Does Not Induce Antibodies Associated with Autoimmunity. Vaccines (Basel) 2023; 11:1504. [PMID: 37766180 PMCID: PMC10534881 DOI: 10.3390/vaccines11091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Group A streptococcus (GAS) is a global pathogen associated with significant morbidity and mortality for which there is currently no licensed vaccine. Vaccine development has been slow, mostly due to safety concerns regarding streptococcal antigens associated with autoimmunity and related complications. For a GAS vaccine to be safe, it must be ensured that the antigens used in the vaccine do not elicit an antibody response that can cross-react with host tissues. In this study, we evaluated the safety of our GAS vaccine candidate called VaxiStrep in New Zealand White rabbits. VaxiStrep is a recombinant fusion protein comprised of streptococcal pyrogenic exotoxin A (SpeA) and exotoxin B (SpeB), also known as erythrogenic toxins, adsorbed to an aluminum adjuvant. The vaccine elicited a robust immune response against the two toxins in the rabbits without any adverse events or toxicity. No signs of autoimmune pathology were detected in the rabbits' brains, hearts, and kidneys via immunohistochemistry, and serum antibodies did not cross-react with cardiac or neuronal tissue proteins associated with rheumatic heart disease or Sydenham chorea (SC). This study further confirms that VaxiStrep does not elicit autoantibodies and is safe to be tested in a first-in-human trial.
Collapse
Affiliation(s)
| | | | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathy Alvarez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecca Bentley
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
7
|
Anders HJ, Kitching AR, Leung N, Romagnani P. Glomerulonephritis: immunopathogenesis and immunotherapy. Nat Rev Immunol 2023; 23:453-471. [PMID: 36635359 PMCID: PMC9838307 DOI: 10.1038/s41577-022-00816-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/14/2023]
Abstract
'Glomerulonephritis' (GN) is a term used to describe a group of heterogeneous immune-mediated disorders characterized by inflammation of the filtration units of the kidney (the glomeruli). These disorders are currently classified largely on the basis of histopathological lesion patterns, but these patterns do not align well with their diverse pathological mechanisms and hence do not inform optimal therapy. Instead, we propose grouping GN disorders into five categories according to their immunopathogenesis: infection-related GN, autoimmune GN, alloimmune GN, autoinflammatory GN and monoclonal gammopathy-related GN. This categorization can inform the appropriate treatment; for example, infection control for infection-related GN, suppression of adaptive immunity for autoimmune GN and alloimmune GN, inhibition of single cytokines or complement factors for autoinflammatory GN arising from inborn errors in innate immunity, and plasma cell clone-directed or B cell clone-directed therapy for monoclonal gammopathies. Here we present the immunopathogenesis of GN and immunotherapies in use and in development and discuss how an immunopathogenesis-based GN classification can focus research, and improve patient management and teaching.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Munich, Germany.
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Department of Paediatric Nephrology, Monash Health, Clayton, VIC, Australia
| | - Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Paola Romagnani
- Department of Experimental and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|
8
|
Praseetha S, Sukumaran ST, Dan M, Augustus AR, Pandian SK, Sugathan S. The Anti-Biofilm Potential of Linalool, a Major Compound from Hedychium larsenii, against Streptococcus pyogenes and Its Toxicity Assessment in Danio rerio. Antibiotics (Basel) 2023; 12:545. [PMID: 36978412 PMCID: PMC10044342 DOI: 10.3390/antibiotics12030545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
The anti-biofilm and anti-virulence potential of the essential oil (E.O.) extracted from Hedychium larsenii M. Dan & Sathish was determined against Streptococcus pyogenes. A crystal violet assay was employed to quantify the biofilm. Linalool, a monoterpene alcohol from the E.O., showed concentration-dependent biofilm inhibition, with a maximum of 91% at a concentration of 0.004% (v/v). The AlamarBlueTM assay also confirmed Linalool's non-bactericidal anti-biofilm efficacy (0.004%). Linalool treatment impeded micro-colony formation, mature biofilm architecture, surface coverage, and biofilm thickness and impaired cell surface hydrophobicity and EPS production. Cysteine protease synthesis was quantified using the Azocasein assay, and Linalool treatment augmented its production. This suggests that Linalool destabilizes the biofilm matrix. It altered the expression of core regulons covRS, mga, srv, and ropB, and genes associated with virulence and biofilm formation, such as speB, dltA, slo, hasA, and ciaH, as revealed by qPCR analysis. Cytotoxicity analysis using human kidney cells (HEK) and the histopathological analysis in Danio rerio proved Linalool to be a druggable molecule against the biofilms formed by S. pyogenes. This is the first report on Linalool's anti-biofilm and anti-virulence potential against S. pyogenes.
Collapse
Affiliation(s)
- Sarath Praseetha
- Department of Biotechnology, Kariavattom Campus, University of Kerala, Thiruvananthapuram Pin-695 581, Kerala, India
| | - Swapna Thacheril Sukumaran
- Department of Botany, Kariavattom Campus, University of Kerala, Thiruvananthapuram Pin-695 581, Kerala, India
| | - Mathew Dan
- Plant Genetic Resource Division, Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Palode, Thiruvananthapuram Pin-695 562, Kerala, India
| | - Akshaya Rani Augustus
- Department of Biotechnology, Alagappa University, Karaikudi Pin-630 003, Tamil Nadu, India
| | | | - Shiburaj Sugathan
- Department of Botany, Kariavattom Campus, University of Kerala, Thiruvananthapuram Pin-695 581, Kerala, India
| |
Collapse
|
9
|
Freire CA, Silva RM, Ruiz RC, Pimenta DC, Bryant JA, Henderson IR, Barbosa AS, Elias WP. Secreted Autotransporter Toxin (Sat) Mediates Innate Immune System Evasion. Front Immunol 2022; 13:844878. [PMID: 35251044 PMCID: PMC8891578 DOI: 10.3389/fimmu.2022.844878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies are used by Escherichia coli to evade the host innate immune system in the blood, such as the cleavage of complement system proteins by secreted proteases. Members of the Serine Proteases Autotransporters of Enterobacteriaceae (SPATE) family have been described as presenting proteolytic effects against complement proteins. Among the SPATE-encoding genes sat (secreted autotransporter toxin) has been detected in high frequencies among strains of E. coli isolated from bacteremia. Sat has been characterized for its cytotoxic action, but the possible immunomodulatory effects of Sat have not been investigated. Therefore, this study aimed to evaluate the proteolytic effects of Sat on complement proteins and the role in pathogenesis of BSI caused by extraintestinal E. coli (ExPEC). E. coli EC071 was selected as a Sat-producing ExPEC strain. Whole-genome sequencing showed that sat sequences of EC071 and uropathogenic E. coli CFT073 present 99% identity. EC071 was shown to be resistant to the bactericidal activity of normal human serum (NHS). Purified native Sat was used in proteolytic assays with proteins of the complement system and, except for C1q, all tested substrates were cleaved by Sat in a dose and time-dependent manner. Moreover, E. coli DH5α survived in NHS pre-incubated with Sat. EC071-derivative strains harboring sat knockout and in trans complementations producing either active or non-active Sat were tested in a murine sepsis model. Lethality was reduced by 50% when mice were inoculated with the sat mutant strain. The complemented strain producing active Sat partially restored the effect caused by the wild-type strain. The results presented in this study show that Sat presents immunomodulatory effects by cleaving several proteins of the three complement system pathways. Therefore, Sat plays an important role in the establishment of bloodstream infections and sepsis.
Collapse
Affiliation(s)
- Claudia A Freire
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Rosa M Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rita C Ruiz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica, Instituto Butantan, São Paulo, Brazil
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.,Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Angela S Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
10
|
Jin S, Wetzel D, Schirmer M. Deciphering mechanisms and implications of bacterial translocation in human health and disease. Curr Opin Microbiol 2022; 67:102147. [PMID: 35461008 DOI: 10.1016/j.mib.2022.102147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
Abstract
Significant increases in potential microbial translocation, especially along the oral-gut axis, have been identified in many immune-related and inflammatory diseases, such as inflammatory bowel disease, colorectal cancer, rheumatoid arthritis, and liver cirrhosis, for which we currently have no cure or long-term treatment options. Recent advances in computational and experimental omics approaches now enable strain tracking, functional profiling, and strain isolation in unprecedented detail, which has the potential to elucidate the causes and consequences of microbial translocation. In this review, we discuss current evidence for the detection of bacterial translocation, examine different translocation axes with a primary focus on the oral-gut axis, and outline currently known translocation mechanisms and how they adversely affect the host in disease. Finally, we conclude with an overview of state-of-the-art computational and experimental tools for strain tracking and highlight the required next steps to elucidate the role of bacterial translocation in human health.
Collapse
Affiliation(s)
- Shen Jin
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Daniela Wetzel
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Melanie Schirmer
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
11
|
Aghababa H, Ting YT, Pilapitiya D, Loh JM, Young PG, Proft T. Complement evasion factor (CEF), a novel immune evasion factor of Streptococcus pyogenes. Virulence 2022; 13:225-240. [PMID: 35094646 PMCID: PMC8803112 DOI: 10.1080/21505594.2022.2027629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Streptococcus pyogenes, a leading human pathogen, is responsible for a wide range of diseases, including skin and soft tissue infections and severe invasive diseases. S. pyogenes produces a large arsenal of virulence factors, including several immune evasion factors. We have identified an open reading frame (spy0136) in the S. pyogenes SF370 genome encoding a protein of unknown function. Using recombinant Spy0136 in a pull-down assay with human plasma and ELISA, we have identified four complement proteins (C1r, C1s, C3, and C5) as binding partners. Treatment of the complement proteins with PNGase F abrogated binding to C1s, C3, and C5, indicating glycan-dependent interactions. rSpy0136 inhibited complement-mediated hemolysis and interfered with all three complement pathways in a Wieslab complement assay. Furthermore, rSpy0136 inhibited deposition of the C3b opsonin and the membrane attack complex (MAC) on the surface of S. pyogenes. We therefore named the previously unknown protein ‘complement evasion factor’ (CEF). An S. pyogenes Δspy0136/cef deletion mutant showed decreased virulence in an in-vitro whole blood killing assay and a Galleria mellonella (wax moth) infection model. Furthermore, an L. lactis spy0136/cef gain-of-function mutant showed increased survival during growth in whole human blood. Analysis of serum samples from patients with invasive S. pyogenes revealed Spy0136/CEF sero-conversion indicating expression during disease. In summary, we have identified a novel S. pyogenes immune evasion factor that binds to several complement proteins to interfere with complement function. This is the first example of a S. pyogenes virulence factor binding to several different target proteins via glycan-dependent interactions.
Collapse
Affiliation(s)
- Haniyeh Aghababa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Yi Tian Ting
- School of Biological Sciences, the University of Auckland, Auckland, New Zealand
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Devaki Pilapitiya
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jacelyn M.S. Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries. The University of Auckland, Auckland, New Zealand
| | - Paul G. Young
- School of Biological Sciences, the University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries. The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries. The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Abstract
The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.
Collapse
|
13
|
Kuo CF, Chen WY, Yu HH, Tsai YH, Chang YC, Chang CP, Tsao N. IL-33/ST2 Axis Plays a Protective Effect in Streptococcus pyogenes Infection through Strengthening of the Innate Immunity. Int J Mol Sci 2021; 22:10566. [PMID: 34638904 PMCID: PMC8509005 DOI: 10.3390/ijms221910566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022] Open
Abstract
Group A Streptococcus (GAS) causes invasive human diseases with the cytokine storm. Interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis is known to drive TH2 response, while its effect on GAS infection is unclear. We used an air pouch model to examine the effect of the IL-33/ST2 axis on GAS-induced necrotizing fasciitis. GAS infection induced IL-33 expression in wild-type (WT) C57BL/6 mice, whereas the IL-33- and ST2-knockout mice had higher mortality rates, more severe skin lesions and higher bacterial loads in the air pouches than those of WT mice after infection. Surveys of infiltrating cells in the air pouch of GAS-infected mice at the early stage found that the number and cell viability of infiltrating cells in both gene knockout mice were lower than those of WT mice. The predominant effector cells in GAS-infected air pouches were neutrophils. Absence of the IL-33/ST2 axis enhanced the expression of inflammatory cytokines, but not TH1 or TH2 cytokines, in the air pouch after infection. Using in vitro assays, we found that the IL-33/ST2 axis not only enhanced neutrophil migration but also strengthened the bactericidal activity of both sera and neutrophils. These results suggest that the IL-33/ST2 axis provided the protective effect on GAS infection through enhancing the innate immunity.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- School of Medicine, I-Shou University, Kaohsiung City 824005, Taiwan;
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung City 824005, Taiwan
| | - Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 833401, Taiwan;
| | - Hai-Han Yu
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung City 824005, Taiwan; (H.-H.Y.); (Y.-H.T.)
| | - Yu-Hsuan Tsai
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung City 824005, Taiwan; (H.-H.Y.); (Y.-H.T.)
| | - Ya-Chu Chang
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung City 824005, Taiwan;
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Nina Tsao
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung City 824005, Taiwan; (H.-H.Y.); (Y.-H.T.)
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung City 824005, Taiwan;
| |
Collapse
|
14
|
Hammers D, Carothers K, Lee S. The Role of Bacterial Proteases in Microbe and Host-microbe Interactions. Curr Drug Targets 2021; 23:222-239. [PMID: 34370632 DOI: 10.2174/1389450122666210809094100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Secreted proteases are an important class of factors used by bacterial to modulate their extracellular environment through the cleavage of peptides and proteins. These proteases can range from broad, general proteolytic activity to high degrees of substrate specificity. They are often involved in interactions between bacteria and other species, even across kingdoms, allowing bacteria to survive and compete within their niche. As a result, many bacterial proteases are of clinical importance. The immune system is a common target for these enzymes, and bacteria have evolved ways to use these proteases to alter immune responses for their benefit. In addition to the wide variety of human proteins that can be targeted by bacterial proteases, bacteria also use these secreted factors to disrupt competing microbes, ranging from outright antimicrobial activity to disrupting processes like biofilm formation. OBJECTIVE In this review, we address how bacterial proteases modulate host mechanisms of protection from infection and injury, including immune factors and cell barriers. We also discuss the contributions of bacterial proteases to microbe-microbe interactions, including antimicrobial and anti-biofilm dynamics. CONCLUSION Bacterial secreted proteases represent an incredibly diverse group of factors that bacteria use to shape and thrive in their microenvironment. Due to the range of activities and targets of these proteases, some have been noted for having potential as therapeutics. The vast array of bacterial proteases and their targets remains an expanding field of research, and this field has many important implications for human health.
Collapse
Affiliation(s)
- Daniel Hammers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Shaun Lee
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| |
Collapse
|
15
|
Dhillon A, Deme JC, Furlong E, Roem D, Jongerius I, Johnson S, Lea SM. Molecular Basis for Bordetella pertussis Interference with Complement, Coagulation, Fibrinolytic, and Contact Activation Systems: the Cryo-EM Structure of the Vag8-C1 Inhibitor Complex. mBio 2021; 12:e02823-20. [PMID: 33758081 PMCID: PMC8092270 DOI: 10.1128/mbio.02823-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/18/2021] [Indexed: 12/27/2022] Open
Abstract
Complement, contact activation, coagulation, and fibrinolysis are serum protein cascades that need strict regulation to maintain human health. Serum glycoprotein, a C1 inhibitor (C1-INH), is a key regulator (inhibitor) of serine proteases of all the above-mentioned pathways. Recently, an autotransporter protein, virulence-associated gene 8 (Vag8), produced by the whooping cough pathogen, Bordetella pertussis, was shown to bind to C1-INH and interfere with its function. Here, we present the structure of the Vag8-C1-INH complex determined using cryo-electron microscopy at a 3.6-Å resolution. The structure shows a unique mechanism of C1-INH inhibition not employed by other pathogens, where Vag8 sequesters the reactive center loop of C1-INH, preventing its interaction with the target proteases.IMPORTANCE The structure of a 10-kDa protein complex is one of the smallest to be determined using cryo-electron microscopy at high resolution. The structure reveals that C1-INH is sequestered in an inactivated state by burial of the reactive center loop in Vag8. By so doing, the bacterium is able to simultaneously perturb the many pathways regulated by C1-INH. Virulence mechanisms such as the one described here assume more importance given the emerging evidence about dysregulation of contact activation, coagulation, and fibrinolysis leading to COVID-19 pneumonia.
Collapse
Affiliation(s)
- Arun Dhillon
- Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Justin C Deme
- Sir William Dunn School of Pathology, Oxford, United Kingdom
- Central Oxford Structural Molecular Imaging Centre, Oxford, United Kingdom
| | - Emily Furlong
- Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Dorina Roem
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Ilse Jongerius
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Steven Johnson
- Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, Oxford, United Kingdom
- Central Oxford Structural Molecular Imaging Centre, Oxford, United Kingdom
| |
Collapse
|
16
|
Rodriguez-Iturbe B. Autoimmunity in Acute Poststreptococcal GN: A Neglected Aspect of the Disease. J Am Soc Nephrol 2021; 32:534-542. [PMID: 33531351 PMCID: PMC7920173 DOI: 10.1681/asn.2020081228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acute poststreptococcal GN (APSGN) is the prototype of immune complex GN and is associated with manifestations of autoimmune reactivity that have been neglected as epiphenomena. Recently, studies have demonstrated transient antifactor B autoantibodies that activate the alternative complement pathway, bringing self-immunity to a central position in the pathogenesis of APSGN. Therefore, examining other manifestations of autoimmunity that have been reported in association with poststreptococcal GN is of interest. This article reviews the renal and extrarenal manifestations of autoimmune reactivity in APSGN and considers their potential relevance in modifying the usually benign clinical course of the disease. It also discusses related aspects of the nephritogenic antigens, complement activation, and genetic elements associated with immune reactivity and their potential relevance to the familial incidence of the disease.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Department of Nephrology, Instituto Nacional de Nutrición y Ciencias Médicas "Salvador Zubirán" and Instituto Nacional de Cardiología "Ignacio Chávez," Mexico City, Mexico
| |
Collapse
|
17
|
Sharma S, Bhatnagar R, Gaur D. Complement Evasion Strategies of Human Pathogenic Bacteria. Indian J Microbiol 2020; 60:283-296. [PMID: 32655196 PMCID: PMC7329968 DOI: 10.1007/s12088-020-00872-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Human pathogens need to overcome an elaborate network of host defense mechanisms in order to establish their infection, colonization, proliferation and eventual dissemination. The interaction of pathogens with different effector molecules of the immune system results in their neutralization and elimination from the host. The complement system is one such integral component of innate immunity that is critically involved in the early recognition and elimination of the pathogen. Hence, under this immune pressure, all virulent pathogens capable of inducing active infections have evolved immune evasive strategies that primarily target the complement system, which plays an essential and central role for host defense. Recent reports on several bacterial pathogens have elucidated the molecular mechanisms underlying complement evasion, inhibition of opsonic phagocytosis and cell lysis. This review aims to comprehensively summarize the recent findings on the various strategies adopted by pathogenic bacteria to escape complement-mediated clearance.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| |
Collapse
|
18
|
Flow Cytometry-Based Assays to Quantify Complement Deposition and Neutrophil Uptake of Group A Streptococcus. Methods Mol Biol 2020; 2136:233-241. [PMID: 32430825 DOI: 10.1007/978-1-0716-0467-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Quantification of complement deposition and subsequent neutrophil-mediated uptake provides an important way to assess the role of different bacterial factors in evasion of the host innate immune response. Here, we describe flow cytometry-based methods to allow quantification of deposition of the complement opsonin C3 on the bacterial surface and subsequent uptake by primary human neutrophils. The assays outlined below provide key methods to determine whether specific bacterial factors are involved in the evasion of complement-mediated immunity, using widely accessible reagents and equipment.
Collapse
|
19
|
Streptococcus pyogenes Transcriptome Changes in the Inflammatory Environment of Necrotizing Fasciitis. Appl Environ Microbiol 2019; 85:AEM.01428-19. [PMID: 31471300 PMCID: PMC6803311 DOI: 10.1128/aem.01428-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection, is principally caused by S. pyogenes. The inflammatory environment at the site of infection causes global gene expression changes for survival of the bacterium and pathogenesis. However, no known study regarding transcriptomic profiling of S. pyogenes in cases of necrotizing fasciitis has been presented. We identified 483 bacterial genes whose expression was consistently altered during infection. Our results showed that S. pyogenes infection induces drastic upregulation of the expression of virulence-associated genes and shifts metabolic pathway usage. In particular, high-level expression of toxins, such as cytolysins, proteases, and nucleases, was observed at infection sites. In addition, genes identified as consistently enriched included those related to metabolism of arginine and histidine as well as carbohydrate uptake and utilization. Conversely, genes associated with the oxidative stress response and cell division were consistently downregulated during infection. The present findings provide useful information for establishing novel treatment strategies. Streptococcus pyogenes is a major cause of necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection. At the host infection site, the local environment and interactions between the host and bacteria have effects on bacterial gene expression profiles, while the gene expression pattern of S. pyogenes related to this disease remains unknown. In this study, we used a mouse model of necrotizing fasciitis and performed RNA-sequencing (RNA-seq) analysis of S. pyogenes M1T1 strain 5448 by isolating total RNA from infected hind limbs obtained at 24, 48, and 96 h postinfection. RNA-seq analysis results identified 483 bacterial genes whose expression was consistently altered in the infected hindlimbs compared to their expression under in vitro conditions. Genes showing consistent enrichment during infection included 306 encoding molecules involved in virulence, carbohydrate utilization, amino acid metabolism, trace-metal transport, and the vacuolar ATPase transport system. Surprisingly, drastic upregulation of 3 genes, encoding streptolysin S precursor (sagA), cysteine protease (speB), and secreted DNase (spd), was noted in the present mouse model (log2 fold change, >6.0, >9.4, and >7.1, respectively). Conversely, the number of consistently downregulated genes was 177, including those associated with the oxidative stress response and cell division. These results suggest that in necrotizing fasciitis, S. pyogenes shows an altered metabolism, decreased cell proliferation, and upregulation of expression of major toxins. Our findings are considered to provide critical information for developing novel treatment strategies and vaccines for necrotizing fasciitis. IMPORTANCE Necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection, is principally caused by S. pyogenes. The inflammatory environment at the site of infection causes global gene expression changes for survival of the bacterium and pathogenesis. However, no known study regarding transcriptomic profiling of S. pyogenes in cases of necrotizing fasciitis has been presented. We identified 483 bacterial genes whose expression was consistently altered during infection. Our results showed that S. pyogenes infection induces drastic upregulation of the expression of virulence-associated genes and shifts metabolic pathway usage. In particular, high-level expression of toxins, such as cytolysins, proteases, and nucleases, was observed at infection sites. In addition, genes identified as consistently enriched included those related to metabolism of arginine and histidine as well as carbohydrate uptake and utilization. Conversely, genes associated with the oxidative stress response and cell division were consistently downregulated during infection. The present findings provide useful information for establishing novel treatment strategies.
Collapse
|
20
|
Andreoni F, Ugolini F, Keller N, Neff A, Nizet V, Hollands A, Marques Maggio E, Zinkernagel AS, Schuepbach RA. Immunoglobulin Attenuates Streptokinase-Mediated Virulence in Streptococcus dysgalactiae Subspecies equisimilis Necrotizing Fasciitis. J Infect Dis 2019; 217:270-279. [PMID: 29099935 PMCID: PMC7263839 DOI: 10.1093/infdis/jix560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/28/2017] [Indexed: 01/18/2023] Open
Abstract
Background Necrotizing fasciitis (NF) retains a very high mortality rate despite prompt and adequate antibiotic treatment and surgical debridement. Necrotizing fasciitis has recently been associated withStreptococcus dysgalactiae subspeciesequisimilis (SDSE). Methods We investigated the causes of a very severe clinical manifestation of SDSE-NF by assessing both host and pathogen factors. Results We found a lack of streptokinase-function blocking antibodies in the patient resulting in increased streptokinase-mediated fibrinolysis and bacterial spread. At the same time, the clinical SDSE isolate produced very high levels of streptokinase. Exogenous immunoglobulin Gs (ex-IgGs) efficiently blocked streptokinase-mediated fibrinolysis in vitro, indicating a protective role against the action of streptokinase. In vivo, SDSE infection severity was also attenuated by ex-IgGs in a NF mouse model. Conclusions These findings illustrate for the first time that the lack of specific antibodies against streptococcal virulence factors, such as streptokinase, may contribute to NF disease severity. This can be counteracted by ex-IgGs.
Collapse
Affiliation(s)
- Federica Andreoni
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Fabio Ugolini
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Nadia Keller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Andrina Neff
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Victor Nizet
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, San Diego, California.,Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, California
| | - Andrew Hollands
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, San Diego, California
| | - Ewerton Marques Maggio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
21
|
Shannon BA, McCormick JK, Schlievert PM. Toxins and Superantigens of Group A Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0054-2018. [PMID: 30737912 PMCID: PMC11590448 DOI: 10.1128/microbiolspec.gpp3-0054-2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pyogenes (i.e., the group A Streptococcus) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of S. pyogenes is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in S. pyogenes disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A Streptococcus, as well as their roles in the pathogenesis of human disease.
Collapse
Affiliation(s)
- Blake A Shannon
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - John K McCormick
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
22
|
Laabei M, Ermert D. Catch Me if You Can: Streptococcus pyogenes Complement Evasion Strategies. J Innate Immun 2018; 11:3-12. [PMID: 30269134 DOI: 10.1159/000492944] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
The human host has evolved elaborate protection mechanisms to prevent infection from the billions of microorganisms to which it host is exposed and is home. One of these systems, complement, is an evolutionary ancient arm of innate immunity essential for combatting bacterial infection. Complement permits the efficient labelling of bacteria with opsonins, supports phagocytosis, and facilitates phagocyte recruitment to the site of infection through the production of chemoattractants. However, it is by no means perfect, and certain organisms engage in an evolutionary arms race with the host where complement has become a major target to promote immune evasion. Streptococcus pyogenes is a major human pathogen that causes significant morbidity and mortality globally. S. pyogenes is also a member of an elite group of bacterial pathogens possessing a sophisticated arsenal of virulence determinants capable of interfering with complement. In this review, we focus on these complement evasins, their mechanism of action, and their importance in disease progression. Finally, we highlight new therapeutic options for fighting S. pyogenes, by interfering with one of its main mechanisms of complement evasion.
Collapse
|
23
|
Balasubramanian N, Varatharaju G, Shanmugaiah V, Balakrishnan K, Thirunarayan MA. Molecular Cloning and Docking of speB Gene Encoding Cysteine Protease With Antibiotic Interaction in Streptococcus pyogenes NBMKU12 From the Clinical Isolates. Front Microbiol 2018; 9:1658. [PMID: 30131773 PMCID: PMC6091236 DOI: 10.3389/fmicb.2018.01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/03/2018] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes causes a variety of diseases ranging from mild diseases to severe invasive infections which result in significant morbidity and mortality. This study focuses on the antibiotic resistance of S. pyogenes and their interaction with cysteine protease. Around 36 beta-hemolytic isolates were collected from the clinical lab, of which seven isolates (19.4%) were identified as Streptococcus pyogenes. One of the seven isolates was collected from a urinary tract infection, which was identified by antibody agglutination and MALTI-TOF-MS, and it is designated as S. pyogenes NBMKU12. Around 8.3 to 66.6 % of the isolates were found to be resistant to one or more antimicrobial agents, especially, penicillin-G resistance was exhibited by 29.1% of the isolates. In the NBMKU12 isolate, the beta lactem (TEM) gene was detected among the 13 antibiotic genes for which it was tested. Furthermore, when analysis for presence of 13 virulence genes were carried out in NBMKU12 isolate, only speJ and speB were detected. The speB (streptococcal pyrogenic exotoxin B) encoding cysteine protease gene was cloned. This was followed by performing DNA sequencing to understand the putative cysteine protease interaction with antibiotics, inhibitors, and substrate. The speB gene consists of 1197 nucleotides and encodes a protein with multiple domains, including a signal peptide (aa 1-22), an inhibitor region (aa 27-156), and a catalytic cysteine domain (aa 160-367). The signal peptide cleavage site is predicted between Ala22 and Asn23. The putative 398 amino acid residues were found to have a theoretical pI of 8.76 and a molecular mass of 43,204.36 Da. The tested culture supernatants of NBMKU12 isolate exhibited the proteolytic activity against casein, papaya and pineapple used as substrates. The proteolytic activity suggests the expression of speB gene. Molecular docking analysis of cysteine protease showed that erythromycin (bond length 2.41 Å), followed by chloramphenicol (2.51 Å), exhibited a strong interaction; while penicillin-G (3.24 Å) exhibited a weak interaction, and this factor could be considered as a cause for penicillin-G resistance. The present study contributes to a better understanding of speB gene encoding cysteine protease, antibiotic resistance, and their interaction in the isolate, S. pyogenes NBMKU12. The antibiotics and cysteine protease interaction study confirms the resistance or sensitivity of S. pyogenes. Hence, it could be hypothesized that the isolate NBMKU12 is resistant to most of the tested antibiotics, and this resistance might be a cause for mutation.
Collapse
Affiliation(s)
- Natesan Balasubramanian
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Govintharaj Varatharaju
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Vellasamy Shanmugaiah
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Karuppiah Balakrishnan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | |
Collapse
|
24
|
Ermert D, Weckel A, Magda M, Mörgelin M, Shaughnessy J, Rice PA, Björck L, Ram S, Blom AM. Human IgG Increases Virulence of Streptococcus pyogenes through Complement Evasion. THE JOURNAL OF IMMUNOLOGY 2018; 200:3495-3505. [PMID: 29626087 DOI: 10.4049/jimmunol.1800090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
Streptococcus pyogenes is an exclusively human pathogen that can provoke mild skin and throat infections but can also cause fatal septicemia. This gram-positive bacterium has developed several strategies to evade the human immune system, enabling S. pyogenes to survive in the host. These strategies include recruiting several human plasma proteins, such as the complement inhibitor, C4b-binding protein (C4BP), and human (hu)-IgG through its Fc region to the bacterial surface to evade immune recognition. We identified a novel virulence mechanism whereby IgG-enhanced binding of C4BP to five of 12 tested S. pyogenes strains expressed diverse M proteins that are important surface-expressed virulence factors. Importantly, all strains that bound C4BP in the absence of IgG bound more C4BP when IgG was present. Further studies with an M1 strain that additionally expressed protein H, also a member of the M protein family, revealed that binding of hu-IgG Fc to protein H increased the affinity of protein H for C4BP. Increased C4BP binding accentuated complement downregulation, resulting in diminished bacterial killing. Accordingly, mortality from S. pyogenes infection in hu-C4BP transgenic mice was increased when hu-IgG or its Fc portion alone was administered concomitantly. Electron microscopy analysis of human tissue samples with necrotizing fasciitis confirmed increased C4BP binding to S. pyogenes when IgG was present. Our findings provide evidence of a paradoxical function of hu-IgG bound through Fc to diverse S. pyogenes isolates that increases their virulence and may counteract the beneficial effects of IgG opsonization.
Collapse
Affiliation(s)
- David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden; .,Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Antonin Weckel
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden
| | - Michal Magda
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden
| |
Collapse
|
25
|
Sumitomo T, Mori Y, Nakamura Y, Honda-Ogawa M, Nakagawa S, Yamaguchi M, Matsue H, Terao Y, Nakata M, Kawabata S. Streptococcal Cysteine Protease-Mediated Cleavage of Desmogleins Is Involved in the Pathogenesis of Cutaneous Infection. Front Cell Infect Microbiol 2018; 8:10. [PMID: 29416987 PMCID: PMC5787553 DOI: 10.3389/fcimb.2018.00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pyogenes is responsible for a wide variety of cutaneous infections ranging from superficial impetigo to fulminant invasive necrotizing fasciitis. Dysfunction of desmosomes is associated with the pathogenesis of cutaneous diseases. We identified streptococcal pyrogenic exotoxin B (SpeB) as a proteolytic factor that cleaves the extracellular domains of desmoglein 1 and 3. In an epicutaneous infection model, lesional skin infected with an speB deletion mutant were significantly smaller as compared to those caused by the wild-type strain. Furthermore, immunohistological analysis indicated cleavage of desmogleins that developed around the invasion site of the wild-type strain. In contrast, the speB mutant was preferentially found on the epidermis surface layer. Taken together, our findings provide evidence that SpeB-mediated degradation of desmosomes has a pathogenic role in development of S. pyogenes cutaneous infection.
Collapse
Affiliation(s)
- Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yasushi Mori
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Division of Special Care Dentistry, Osaka University Dental Hospital, Osaka, Japan
| | - Yuumi Nakamura
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mariko Honda-Ogawa
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroyuki Matsue
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
26
|
Oehmcke-Hecht S, Nass LE, Wichura JB, Mikkat S, Kreikemeyer B, Fiedler T. Deletion of the L-Lactate Dehydrogenase Gene ldh in Streptococcus pyogenes Leads to a Loss of SpeB Activity and a Hypovirulent Phenotype. Front Microbiol 2017; 8:1841. [PMID: 28983299 PMCID: PMC5613712 DOI: 10.3389/fmicb.2017.01841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/08/2017] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pyogenes uses lactic acid fermentation for the generation of ATP. Here, we analyzed the impact of a deletion of the L-lactate dehydrogenase gene ldh on the virulence of S. pyogenes M49. While the ldh deletion does not cause a general growth deficiency in laboratory media, the growth in human blood and plasma is significantly hampered. The ldh deletion strain is furthermore less virulent in a Galleria mellonella infection model. We show that the ldh deletion leads to a decrease in the activity of the cysteine protease SpeB, an important secreted virulence factor of S. pyogenes. The reduced SpeB activity is caused by a hampered autocatalytic activation of the SpeB zymogen into the mature SpeB. The missing SpeB activity furthermore leads to increased plasmin activation and a reduced activation of the contact system on the surface of S. pyogenes. All these effects can be reversed when ldh is reintroduced into the mutant via a plasmid. The results demonstrate a previously unappreciated role for LDH in modulation of SpeB maturation.
Collapse
Affiliation(s)
- Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Leif E Nass
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Jan B Wichura
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical CentreRostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Tomas Fiedler
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| |
Collapse
|
27
|
Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLoS Pathog 2017; 13:e1006493. [PMID: 28806402 PMCID: PMC5555575 DOI: 10.1371/journal.ppat.1006493] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
The complement cascade is crucial for clearance and control of invading pathogens, and as such is a key target for pathogen mediated host modulation. C3 is the central molecule of the complement cascade, and plays a vital role in opsonization of bacteria and recruitment of neutrophils to the site of infection. Streptococcal species have evolved multiple mechanisms to disrupt complement-mediated innate immunity, among which ScpA (C5a peptidase), a C5a inactivating enzyme, is widely conserved. Here we demonstrate for the first time that pyogenic streptococcal species are capable of cleaving C3, and identify C3 and C3a as novel substrates for the streptococcal ScpA, which are functionally inactivated as a result of cleavage 7 amino acids upstream of the natural C3 convertase. Cleavage of C3a by ScpA resulted in disruption of human neutrophil activation, phagocytosis and chemotaxis, while cleavage of C3 generated abnormally-sized C3a and C3b moieties with impaired function, in particular reducing C3 deposition on the bacterial surface. Despite clear effects on human complement, expression of ScpA reduced clearance of group A streptococci in vivo in wildtype and C5 deficient mice, and promoted systemic bacterial dissemination in mice that lacked both C3 and C5, suggesting an additional complement-independent role for ScpA in streptococcal pathogenesis. ScpA was shown to mediate streptococcal adhesion to both human epithelial and endothelial cells, consistent with a role in promoting bacterial invasion within the host. Taken together, these data show that ScpA is a multi-functional virulence factor with both complement-dependent and independent roles in streptococcal pathogenesis. The complement pathway is critical in the innate immune response to bacterial pathogens. It consists of a self-perpetuating proteolytic cascade initiated via three distinct pathways that converge at the central complement protein, C3. Pathogens must evade complement-mediated immunity to cause disease, and inactivation of the C3 protein can dampen all effectors of this pathway. Streptococcal species are the causative agents of an array of infections ranging from the benign to lethal. Using the human pathogen Group A Streptococcus as a representative species, we show that the enzyme ScpA, which is conserved amongst the pyogenic streptococci, cleaves human C3a and also C3, releasing abnormally sized and functionally-impaired fragments. As a result, invading streptococci were less well opsonized and host immune cells not properly activated, reducing bacterial phagocytosis and clearance. Despite manifest in vitro activity against complement factors and human neutrophils, ScpA was still able to contribute to systemic bacterial spread in mice lacking C3 and C5. ScpA was also demonstrated to mediate streptococcal adhesion to both epithelial and endothelial cells, which may enhance bacterial systemic spread. Our study highlights the likely importance of both complement-independent and complement-dependent roles for ScpA in streptococcal pathogenesis.
Collapse
|
28
|
Oda M, Domon H, Kurosawa M, Isono T, Maekawa T, Yamaguchi M, Kawabata S, Terao Y. Streptococcus pyogenes Phospholipase A 2 Induces the Expression of Adhesion Molecules on Human Umbilical Vein Endothelial Cells and Aorta of Mice. Front Cell Infect Microbiol 2017; 7:300. [PMID: 28713783 PMCID: PMC5491884 DOI: 10.3389/fcimb.2017.00300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
The Streptococcus pyogenes phospholipase A2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes, which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the ΔslaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.
Collapse
Affiliation(s)
- Masataka Oda
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan.,Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Mie Kurosawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University, Graduate School of DentistryOsaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University, Graduate School of DentistryOsaka, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| |
Collapse
|
29
|
Amamura TA, Fraga TR, Vasconcellos SA, Barbosa AS, Isaac L. Pathogenic Leptospira Secreted Proteases Target the Membrane Attack Complex: A Potential Role for Thermolysin in Complement Inhibition. Front Microbiol 2017; 8:958. [PMID: 28611756 PMCID: PMC5447677 DOI: 10.3389/fmicb.2017.00958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/12/2017] [Indexed: 12/24/2022] Open
Abstract
Leptospirosis is a zoonosis caused by spirochetes from the genus Leptospira. This disease is common in tropical and subtropical areas, constituting a serious public health problem. Pathogenic Leptospira have the ability to escape the human Complement System, being able to survive when in contact with normal human serum. In a previous study, our group demonstrated that supernatants of pathogenic Leptospira (SPL) inhibit the three activation pathways of the Complement System. This inhibition can be directly correlated with the activity of secreted proteases, which cleave the Complement molecules C3, Factor B (Alternative Pathway), C4 and C2 (Classical and Lectin Pathways). In this work, we analyze the activity of the leptospiral proteases on the components of Terminal Pathway of Complement, called the membrane attack complex (MAC). We observed that proteases present in SPL from different Leptospira strains were able to cleave the purified proteins C5, C6, C7, C8, and C9, while culture supernatant from non-pathogenic Leptospira strains (SNPL) had no significant proteolytic activity on these substrates. The cleavages occurred in a time-dependent and specificity manner. No cleavage was observed when we used whole serum as a source of C5-C9 proteins, probably because of the abundant presence of plasma protease inhibitors such as α2-macroglobulin. Complement protein cleavage by SPL was inhibited by 1,10-phenanthroline, indicating the involvement of metalloproteases. Furthermore, 1,10-phenanthroline- treated normal human serum diminished pathogenic leptospira survival. We also analyzed the proteolytic activity of thermolysin (LIC13322) a metalloprotease expressed exclusively by pathogenic Leptospira strains. Recombinant thermolysin was capable of cleaving the component C6, either purified or as part of the SC5b-9 complex. Furthermore, we found that the MAC proteins C6-C9 interact with thermolysin, indicating that this metalloprotease may have an additional inhibitory effect on these molecules by direct interactions. Finally, a functional assay demonstrated that thermolysin was able to inhibit MAC-dependent erythrocytes lysis. We conclude that proteases secreted exclusively by pathogenic Leptospira strains are capable of degrading several Complement effector molecules, representing potential targets for the development of new therapies and prophylactic approaches in leptospirosis.
Collapse
Affiliation(s)
- Thais A Amamura
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Tatiana R Fraga
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | | | | | - Lourdes Isaac
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| |
Collapse
|
30
|
Kuo CF, Tsao N, Hsieh IC, Lin YS, Wu JJ, Hung YT. Immunization with a streptococcal multiple-epitope recombinant protein protects mice against invasive group A streptococcal infection. PLoS One 2017; 12:e0174464. [PMID: 28355251 PMCID: PMC5371370 DOI: 10.1371/journal.pone.0174464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) causes clinical diseases, including pharyngitis, scarlet fever, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. A number of group A streptococcus vaccine candidates have been developed, but only one 26-valent recombinant M protein vaccine has entered clinical trials. Differing from the design of a 26-valent recombinant M protein vaccine, we provide here a vaccination using the polyvalence epitope recombinant FSBM protein (rFSBM), which contains four different epitopes, including the fibronectin-binding repeats domain of streptococcal fibronectin binding protein Sfb1, the C-terminal immunogenic segment of streptolysin S, the C3-binding motif of streptococcal pyrogenic exotoxin B, and the C-terminal conserved segment of M protein. Vaccination with the rFSBM protein successfully prevented mortality and skin lesions caused by several emm strains of GAS infection. Anti-FSBM antibodies collected from the rFSBM-immunized mice were able to opsonize at least six emm strains and can neutralize the hemolytic activity of streptolysin S. Furthermore, the internalization of GAS into nonphagocytic cells is also reduced by anti-FSBM serum. These findings suggest that rFSBM can be applied as a vaccine candidate to prevent different emm strains of GAS infection.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Nina Tsao
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - I-Chen Hsieh
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Hung
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Honda-Ogawa M, Sumitomo T, Mori Y, Hamd DT, Ogawa T, Yamaguchi M, Nakata M, Kawabata S. Streptococcus pyogenes Endopeptidase O Contributes to Evasion from Complement-mediated Bacteriolysis via Binding to Human Complement Factor C1q. J Biol Chem 2017; 292:4244-4254. [PMID: 28154192 DOI: 10.1074/jbc.m116.749275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/18/2017] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites.
Collapse
Affiliation(s)
- Mariko Honda-Ogawa
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Tomoko Sumitomo
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Yasushi Mori
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry.,Division of Special Care Dentistry, Osaka University Dental Hospital, and
| | - Dalia Talat Hamd
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Taiji Ogawa
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaya Yamaguchi
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Masanobu Nakata
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Shigetada Kawabata
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry,
| |
Collapse
|
32
|
Hovingh ES, van den Broek B, Jongerius I. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion. Front Microbiol 2016; 7:2004. [PMID: 28066340 PMCID: PMC5167704 DOI: 10.3389/fmicb.2016.02004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.
Collapse
Affiliation(s)
- Elise S. Hovingh
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| | - Bryan van den Broek
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| |
Collapse
|
33
|
Viszwapriya D, Prithika U, Deebika S, Balamurugan K, Pandian SK. In vitro and in vivo antibiofilm potential of 2,4-Di- tert -butylphenol from seaweed surface associated bacterium Bacillus subtilis against group A streptococcus. Microbiol Res 2016; 191:19-31. [DOI: 10.1016/j.micres.2016.05.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 02/08/2023]
|
34
|
Sanchez-Pulido L, Ponting CP. Vasohibins: new transglutaminase-like cysteine proteases possessing a non-canonical Cys-His-Ser catalytic triad. Bioinformatics 2016; 32:1441-5. [PMID: 26794318 PMCID: PMC4866520 DOI: 10.1093/bioinformatics/btv761] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Vasohibin-1 and Vasohibin-2 regulate angiogenesis, tumour growth and metastasis. Their molecular functions, however, were previously unknown, in large part owing to their perceived lack of homology to proteins of known structure and function. To identify their functional amino acids and domains, their molecular activity and their evolutionary history, we undertook an in-depth analysis of Vasohibin sequences. We find that Vasohibin proteins are previously undetected members of the transglutaminase-like cysteine protease superfamily, and all possess a non-canonical Cys-His-Ser catalytic triad. We further propose a calcium-dependent activation mechanism for Vasohibin proteins. These findings can now be used to design constructs for protein structure determination and to develop enzyme inhibitors as angiogenic regulators to treat metastasis and tumour growth. CONTACT luis.sanchezpulido@dpag.ox.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
35
|
Persson H, Söderberg JJ, Vindebro R, Johansson BP, von Pawel-Rammingen U. Proteolytic processing of the streptococcal IgG endopeptidase IdeS modulates the functional properties of the enzyme and results in reduced immunorecognition. Mol Immunol 2015; 68:176-84. [DOI: 10.1016/j.molimm.2015.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023]
|
36
|
Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ. Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 2015; 17:1721-41. [PMID: 26433203 DOI: 10.1111/cmi.12531] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (Streptococcus agalactiae) and Streptococcus pneumoniae (pneumococcus) are host-adapted bacterial pathogens among the leading infectious causes of human morbidity and mortality. These microbes and related members of the genus Streptococcus produce an array of toxins that act against human cells or tissues, resulting in impaired immune responses and subversion of host physiological processes to benefit the invading microorganism. This toxin repertoire includes haemolysins, proteases, superantigens and other agents that ultimately enhance colonization and survival within the host and promote dissemination of the pathogen.
Collapse
Affiliation(s)
- Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jason N Cole
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anna Henningham
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
37
|
Sumitomo T. Group A Streptococcus translocates across an epithelial barrier via degradation of intercellular junctions. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Villas Boas IM, Pidde-Queiroz G, Magnoli FC, Gonçalves-de-Andrade RM, van den Berg CW, Tambourgi DV. A serine protease isolated from the bristles of the Amazonic caterpillar, Premolis semirufa, is a potent complement system activator. PLoS One 2015; 10:e0118615. [PMID: 25760458 PMCID: PMC4356561 DOI: 10.1371/journal.pone.0118615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
Background The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called “Pararamose”, characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs. Although complement mediated inflammation may aid the host defense, inappropriate or excessive activation of the complement system and generation of anaphylatoxins can lead to inflammatory disorder and pathologies. The aim of the present study was to evaluate, in vitro, whether the Premolis semirufa’s bristles extract could interfere with the human complement system. Results The bristles extract was able to inhibit the haemolytic activity of the alternative pathway, as well as the activation of the lectin pathway, but had no effect on the classical pathway, and this inhibition seemed to be caused by activation and consumption of complement components. The extract induced the production of significant amounts of all three anaphylatoxins, C3a, C4a and C5a, promoted direct cleavage of C3, C4 and C5 and induced a significant generation of terminal complement complexes in normal human serum. By using molecular exclusion chromatography, a serine protease of 82 kDa, which activates complement, was isolated from P. semirufa bristles extract. The protease, named here as Ps82, reduced the haemolytic activity of the alternative and classical pathways and inhibited the lectin pathway. In addition, Ps82 induced the cleavage of C3, C4 and C5 and the generation of C3a and C4a in normal human serum and it was capable to cleave human purified C5 and generate C5a. The use of Phenanthroline, metalloprotease inhibitor, in the reactions did not significantly interfere with the activity of the Ps82, whereas the presence of PMSF, serine protease inhibitor, totally blocked the activity. Conclusion These data show that a serine protease present in the Premolis semirufa’s bristles extract has the ability to activate the complement system, which may contribute to the inflammatory process presented in humans after envenomation.
Collapse
Affiliation(s)
| | | | | | | | - Carmen W. van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
39
|
Kuo CF, Tsao N, Cheng MH, Yang HC, Wang YC, Chen YP, Lin KJ. Application of the C3-binding motif of streptococcal pyrogenic exotoxin B to protect mice from invasive group a streptococcal infection. PLoS One 2015; 10:e0117268. [PMID: 25629609 PMCID: PMC4309557 DOI: 10.1371/journal.pone.0117268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/22/2014] [Indexed: 12/27/2022] Open
Abstract
Group A streptococcus (GAS) is an important human pathogen that produces several extracellular exotoxins to facilitate invasion and infection. Streptococcal pyrogenic exotoxin B (SPE B) has been demonstrated to be an important virulence factor of GAS. Our previous studies indicate that SPE B cleaves complement 3 (C3) and inhibits the activation of complement pathways. In this study, we constructed and expressed recombinant fragments of SPE B to examine the C3-binding site of SPE B. Using enzyme-linked immunosorbent assays and pull-down assays, we found that the C-terminal domain, containing amino-acid residues 345–398, of SPE B was the major binding site of human serum C3. We further identified a major, Ala376-Pro398, and a minor C3-binding motif, Gly346-Gly360, that both mediated the binding of C3 complement. Immunization with the C3-binding motifs protected mice against challenge with a lethal dose of non-invasive M49 strain GAS but not invasive M1 strains. To achieve higher efficiency against invasive M1 GAS infection, a combination of synthetic peptides derived from C-terminal epitope of streptolysin S (SLSpp) and from the major C3-binding motif of SPE B (PP6, Ala376-Pro398) was used to elicit specific immune response to those two important streptococcal exotoxins. Death rates and the severity of skin lesions decreased significantly in PP6/SLSpp-immunized mice that were infected with invasive M1 strains of GAS. These results indicate a combination of the C3-binding motif of SPE B and the protective epitope of SLS could be used as a subunit vaccine against invasive M1 strains group A streptococcal infection.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, I-Shou University, Kaohsiung City, Taiwan
- * E-mail:
| | - Nina Tsao
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Miao-Hui Cheng
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Hsiu-Chen Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Yu-Chieh Wang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Ying-Pin Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Kai-Jen Lin
- Department of Pathology, E-DA Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
40
|
HAMADA S, KAWABATA S, NAKAGAWA I. Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:539-59. [PMID: 26666305 PMCID: PMC4773581 DOI: 10.2183/pjab.91.539] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Group A streptococcus (GAS) or Streptococcus pyogenes causes various diseases ranging from self-limiting sore throat to deadly invasive diseases. The genome size of GAS is 1.85-1.9 Mb, and genomic rearrangement has been demonstrated. GAS possesses various surface-associated substances such as hyaluronic capsule, M proteins, and fibronectin/laminin/immunoglobulin-binding proteins. These are related to the virulence and play multifaceted and mutually reflected roles in the pathogenesis of GAS infections. Invasion of GAS into epithelial cells and deeper tissues provokes immune and non-immune defense or inflammatory responses including the recruitment of neutrophils, macrophages, and dendritic cells in hosts. GAS frequently evades host defense mechanisms by using its virulence factors. Extracellular products of GAS may perturb cellular and subcellular functions and degrade tissues enzymatically, which leads to the aggravation of local and/or systemic disorders in the host. In this review, we summarize some important cellular and extracellular substances that may affect pathogenic processes during GAS infections, and the host responses to these.
Collapse
Affiliation(s)
- Shigeyuki HAMADA
- Research Institute for Microbial Diseases, Japan-Thailand Collaboration Center for Emerging and Reemerging Infections, Osaka University, Osaka, Japan
- Correspondence should be addressed: S. Hamada, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan (e-mail: )
| | - Shigetada KAWABATA
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Ichiro NAKAGAWA
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Park SJ, Kim SK, So YI, Park HY, Li XH, Yeom DH, Lee MN, Lee BL, Lee JH. Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa modulates insect innate immunity. Mol Microbiol 2014; 94:1298-314. [PMID: 25315216 DOI: 10.1111/mmi.12830] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 12/25/2022]
Abstract
In Pseudomonas aeruginosa, quorum sensing (QS) plays an essential role in pathogenesis and the QS response controls many virulence factors. Using a mealworm, Tenebrio molitor as a host model, we found that Protease IV, a QS-regulated exoprotease of P. aeruginosa functions as a key virulence effector causing the melanization and death of T. molitor larvae. Protease IV was able to degrade zymogens of spätzle processing enzyme (SPE) and SPE-activating enzyme (SAE) without the activation of the antimicrobial peptide (AMP) production. Since SPE and SAE function to activate spätzle, a ligand of Toll receptor in the innate immune system of T. molitor, we suggest that Protease IV may interfere with the activation of the Toll signaling. Independently of the Toll pathway, the melanization response, another innate immunity was still generated, since Protease IV directly converted Tenebrio prophenoloxidase into active phenoloxidase. Protease IV also worked as an important factor in the virulence to brine shrimp and nematode. These results suggest that Protease IV provides P. aeruginosa with a sophisticated way to escape the immune attack of host by interfering with the production of AMPs.
Collapse
Affiliation(s)
- Su-Jin Park
- College of Pharmacy, Pusan National University, Pusan, 609-735, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Increasing disease caused by beta-haemolytic streptococci indicates the need for improved understanding of pathogenesis. RECENT FINDINGS Streptococcus pyogenes, or group A Streptococcus (GAS), causes significant disease worldwide. The closely related Streptococcus dysgalactiae subspecies equisimilis (SDSE) is increasingly recognized as causing a similar disease spectrum. Whole-genome sequencing applied to the study of outbreaks may reveal factors that contribute to pathogenesis and changes in epidemiology. The role of quorum sensing in biofilm formation, and interspecies communication with other streptococci, is discussed. GAS has evolved multiple mechanisms to evade the humoral arm of innate immunity, including complement, which is well known in protecting the host from bacteria, and the coagulation-fibrinolytic system, which is increasingly recognized as an innate immune effector. SUMMARY Molecular biology has enhanced our understanding of the intricate balance of host-pathogen interactions that result in clearance or establishment of invasive streptococcal infection. Although the skin and oropharynx remain the usual ecological niche of GAS and SDSE, occasionally the bacteria find themselves within deeper tissues and blood. Recent research has armed us with better knowledge of bacterial adaptations to this alternative environment. However, the challenge is to translate this knowledge into clinical practice, through the development of novel therapeutic options and ultimately a vaccine against GAS.
Collapse
|
43
|
Unique genomic arrangements in an invasive serotype M23 strain of Streptococcus pyogenes identify genes that induce hypervirulence. J Bacteriol 2014; 196:4089-102. [PMID: 25225265 DOI: 10.1128/jb.02131-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first genome sequence of a group A Streptococcus pyogenes serotype M23 (emm23) strain (M23ND), isolated from an invasive human infection, has been completed. The genome of this opacity factor-negative (SOF(-)) strain is composed of a circular chromosome of 1,846,477 bp. Gene profiling showed that this strain contained six phage-encoded and 24 chromosomally inherited well-known virulence factors, as well as 11 pseudogenes. The bacterium has acquired four large prophage elements, ΦM23ND.1 to ΦM23ND.4, harboring genes encoding streptococcal superantigen (ssa), streptococcal pyrogenic exotoxins (speC, speH, and speI), and DNases (spd1 and spd3), with phage integrase genes being present at one flank of each phage insertion, suggesting that the phages were integrated by horizontal gene transfer. Comparative analyses revealed unique large-scale genomic rearrangements that result in genomic rearrangements that differ from those of previously sequenced GAS strains. These rearrangements resulted in an imbalanced genomic architecture and translocations of chromosomal virulence genes. The covS sensor in M23ND was identified as a pseudogene, resulting in the attenuation of speB function and increased expression of the genes for the chromosomal virulence factors multiple-gene activator (mga), M protein (emm23), C5a peptidase (scpA), fibronectin-binding proteins (sfbI and fbp54), streptolysin O (slo), hyaluronic acid capsule (hasA), streptokinase (ska), and DNases (spd and spd3), which were verified by PCR. These genes are responsible for facilitating host epithelial cell binding and and/or immune evasion, thus further contributing to the virulence of M23ND. In conclusion, strain M23ND has become highly pathogenic as the result of a combination of multiple genetic factors, particularly gene composition and mutations, prophage integrations, unique genomic rearrangements, and regulated expression of critical virulence factors.
Collapse
|
44
|
Saeki Y, Ishihara K. Infection-immunity liaison: pathogen-driven autoimmune-mimicry (PDAIM). Autoimmun Rev 2014; 13:1064-9. [PMID: 25182200 DOI: 10.1016/j.autrev.2014.08.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/26/2014] [Indexed: 12/19/2022]
Abstract
Autoimmunity causes pathological conditions resulting in autoimmune diseases (ADs). Although autoimmunity is a mystery, immunological dogma suggests that autoreactive cell reactivation (ACR) breaks self-tolerance and induces autoimmunity. Thus, ACR is a royal pathway for ADs. Cumulative evidence implicates environmental factors as secondary triggers of ADs in the genetically susceptible hosts. Infection is the most likely trigger. Although several mechanisms have been proposed to explain how infectious agents trigger ADs, ACR is assumed to be an essential pathway. Here, by showing some exemplary ADs, we propose two novel pathways, "molecular modification pathway" and "hyper-immune-inflammatory response pathway", which induce AD-like conditions directly by infectious agents without ACR. These AD-like conditions are actually not true "ADs" according to the current definition. Therefore, we define them as "pathogen-driven autoimmune-mimicry (PDAIM)". Confirming PDAIM will open perspectives in developing novel fundamental and non-immunosuppressive therapies for ADs. The idea should also provide novel insights into both the mechanisms of autoimmunity and the pathogenesis of ADs.
Collapse
Affiliation(s)
- Yukihiko Saeki
- Department of Clinical Research, National Hospital Organization (NHO) Osaka Minami Medical Center, 2-1 Kidohigashi-machi, Kawachinagano City, Osaka 586-8521, Japan.
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan
| |
Collapse
|
45
|
Mayfield JA, Liang Z, Agrahari G, Lee SW, Donahue DL, Ploplis VA, Castellino FJ. Mutations in the control of virulence sensor gene from Streptococcus pyogenes after infection in mice lead to clonal bacterial variants with altered gene regulatory activity and virulence. PLoS One 2014; 9:e100698. [PMID: 24968349 PMCID: PMC4072638 DOI: 10.1371/journal.pone.0100698] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/28/2014] [Indexed: 01/23/2023] Open
Abstract
The cluster of virulence sensor (CovS)/responder (CovR) two-component operon (CovRS) regulates ∼15% of the genes of the Group A Streptococcal pyogenes (GAS) genome. Bacterial clones containing inactivating mutations in the covS gene have been isolated from patients with virulent invasive diseases. We report herein an assessment of the nature and types of covS mutations that can occur in both virulent and nonvirulent GAS strains, and assess whether a nonvirulent GAS can attain enhanced virulence through this mechanism. A group of mice were infected with a globally-disseminated clonal M1T1 GAS (isolate 5448), containing wild-type (WT) CovRS (5448/CovR+S+), or less virulent engineered GAS strains, AP53/CovR+S+ and Manfredo M5/CovR+S+. SpeB negative GAS clones from wound sites and/or from bacteria disseminated to the spleen were isolated and the covS gene was subjected to DNA sequence analysis. Numerous examples of inactivating mutations were found in CovS in all regions of the gene. The mutations found included frame-shift insertions and deletions, and in-frame small and large deletions in the gene. Many of the mutations found resulted in early translation termination of CovS. Thus, the covS gene is a genomic mutagenic target that gives GAS enhanced virulence. In cases wherein CovS− was discovered, these clonal variants exhibited high lethality, further suggesting that randomly mutated covS genes occur during the course of infection, and lead to the development of a more invasive infection.
Collapse
Affiliation(s)
- Jeffrey A. Mayfield
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Garima Agrahari
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shaun W. Lee
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Deborah L. Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
46
|
Okumura CYM, Nizet V. Subterfuge and sabotage: evasion of host innate defenses by invasive gram-positive bacterial pathogens. Annu Rev Microbiol 2014; 68:439-58. [PMID: 25002085 DOI: 10.1146/annurev-micro-092412-155711] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of a severe invasive bacterial infection in an otherwise healthy individual is one of the most striking and fascinating aspects of human medicine. A small cadre of gram-positive pathogens of the genera Streptococcus and Staphylococcus stand out for their unique invasive disease potential and sophisticated ability to counteract the multifaceted components of human innate defense. This review illustrates how these leading human disease agents evade host complement deposition and activation, impede phagocyte recruitment and activation, resist the microbicidal activities of host antimicrobial peptides and reactive oxygen species, escape neutrophil extracellular traps, and promote and accelerate phagocyte cell death through the action of pore-forming cytolysins. Understanding the molecular basis of bacterial innate immune resistance can open new avenues for therapeutic intervention geared to disabling specific virulence factors and resensitizing the pathogen to host innate immune clearance.
Collapse
Affiliation(s)
- Cheryl Y M Okumura
- Department of Biology, Occidental College, Los Angeles, California 90041;
| | | |
Collapse
|
47
|
Premjani V, Tilley D, Gruenheid S, Le Moual H, Samis JA. Enterohemorrhagic Escherichia coli OmpT regulates outer membrane vesicle biogenesis. FEMS Microbiol Lett 2014; 355:185-92. [PMID: 24813639 DOI: 10.1111/1574-6968.12463] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) infection from food or water often results in severe diarrheal disease and is a leading cause of death globally. Outer membrane vesicles (OMVs) secreted from E. coli induce lethality in mice. The omptin outer membrane protease OmpT from E. coli inactivates antimicrobial peptides and may enhance colonization of the uroepithelium, but its precise function remains unclear. Given OmpT is an outer membrane protease, we hypothesized it may have a role in OMV biogenesis. To further characterize the effect of OmpT on OMV production, a genetic approach using wild type, an ompT deletion mutant and an ompT overexpressing construct in EHEC were employed. ompT gene deletion markedly decreased OMV production and stainable lipid but increased vesicle diameter. Conversely, ompT overexpression profoundly increased OMV biogenesis but decreased stainable lipid, protein content, and vesicle diameter. Alterations in EHEC ompT gene expression have an impact on the biogenesis, composition, and size of OMVs. Changes in ompT gene expression may dynamically alter OMV formation, composition, and diameter in response to different host environments and contribute to cell-free intercellular communication to enhance bacterial growth and survival.
Collapse
Affiliation(s)
- Veena Premjani
- Applied Biosciences Program, Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | | | | | | | | |
Collapse
|
48
|
Abstract
Acute rheumatic fever is an inflammatory sequela of Group A Streptococcal pharyngitis that affects multiple organ systems. The incidence of acute rheumatic fever has been declining even before the use of antibiotics became widespread, however the disease remains a significant cause of morbidity and mortality in children, particularly in developing countries and has been estimated to affect 19 per 100,000 children worldwide. Acute rheumatic fever is a clinical diagnosis, and therefore subject to the judgment of the clinician. Because of the variable presentation, the Jones criteria were first developed in 1944 to aid clinicians in the diagnosis of acute rheumatic fever. The Jones criteria have been modified throughout the years, most recently in 1992 to aid clinicians in the diagnosis of initial attacks of acute rheumatic fever and to minimize overdiagnosis of the disease. Diagnosis of acute rheumatic fever is based on the presence of documented preceding Group A Streptococcal infection, in addition to the presence of two major manifestations or one major and two minor manifestations of the Jones criteria. Without documentation of antecedent Group A Streptococcal infection, the diagnosis is much less likely except in a few rare scenarios. Carditis, polyarthritis and Sydenham's chorea are the most common major manifestations of acute rheumatic fever. However, despite the predominance of these major manifestations of acute rheumatic fever, there can be significant overlap with other disorders such as Lyme disease, serum sickness, drug reactions, and post-Streptococcal reactive arthritis. This overlap between disease processes has led to continued investigation of the pathophysiology as well as development of new biomarkers and laboratory studies to aid in the diagnosis of acute rheumatic fever and distinction from other disease processes.
Collapse
Affiliation(s)
- Rebecca J Burke
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Thomas Jefferson University, 1600 Rockland Road, Wilmington, DE 19803, United States
| | - Christopher Chang
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Thomas Jefferson University, 1600 Rockland Road, Wilmington, DE 19803, United States.
| |
Collapse
|
49
|
Ender M, Andreoni F, Zinkernagel AS, Schuepbach RA. Streptococcal SpeB cleaved PAR-1 suppresses ERK phosphorylation and blunts thrombin-induced platelet aggregation. PLoS One 2013; 8:e81298. [PMID: 24278414 PMCID: PMC3838405 DOI: 10.1371/journal.pone.0081298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The family of 4 related protease-activated receptors (PAR-1, 2, 3 & 4) expressed by mammalian cells allow to sense for and react to extracellular proteolytic activity. Since major human bacterial pathogens secret a wide array of protease(-s) we investigated whether they interfere with human PAR function. METHODOLOGY/PRINCIPAL FINDINGS Supernatants from cultures of major human bacterial pathogens were assayed for the presence of protease(-s) capable to cleave overexpressed human PAR-1, 2, 3 and 4 reporter constructs. Group A streptococcus (GAS) was found to secret a PAR-1-cleaving protease. Experiments involving genetical and pharmacological gain and loss of function identified streptococcal pyrogenic exotoxin B SpeB as the protease responsible. On the host's side analysis of overexpressed PAR-1 carrying alanine substitutions and deletions showed the amino acid residue leucine44 on PAR-1's extracellular N-terminus to be the only cleavage site. Complementary studies on endogenously expressed PAR-1 using PAR-1 blocking antibodies further supported our conclusion. Through PAR-1 cleavage SpeB efficiently blunted thrombin-induced induction of the ERK-pathway in endothelial cells and prevented platelets aggregation in response to thrombin. CONCLUSIONS/SIGNIFICANCE Our results identify a novel function of the streptococcal virulence factor SpeB. By cleaving human PAR-1 at the N-terminal amino acid residue leucine44 SpeB rendered endothelial cells unresponsive to thrombin and prevented human platelets from thrombin-induced aggregation. These results suggest that by blunting PAR-1 signaling, SpeB modulates various innate host responses directed against invasive GAS potentially helping the invasive bacteria to escape. This may allow to tailor additional treatments in the future since upon invasion of the blood stream endothelial cells as well as platelets and mononuclear cells respond to PAR-1 agonists aiming to prevent further bacterial dissemination.
Collapse
Affiliation(s)
- Miriam Ender
- Division of Surgical Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Andreoni
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annelies Sophie Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto Andreas Schuepbach
- Division of Surgical Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|