1
|
Amrita, Chakraborti S, Dey S. Physicochemical features of subunit interfaces and their role in self-assembly across the ferritin superfamily. Structure 2025; 33:401-415.e2. [PMID: 39740669 DOI: 10.1016/j.str.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Ferritins are ubiquitous and play a critical role in iron homeostasis. They are classified into four main subfamilies: classical, bacterial, bacterioferritin, and Dps. These are characterized by subunits with a four-helical bundle domain and interact through three distinct regions-one antiparallel interface (IntA) and two perpendicular interfaces (IntB and IntC), collectively forming a cage-like structure. Here, we attempt to characterize the variability of these interfaces across subfamilies. We found that IntA is essential for the dimeric unit assembly and is likely to assemble first, followed by the smaller interfaces of IntB and IntC (in any order), which are crucial for cage formation. These interfaces are unique in that they are less packed, although chemically stable, and their size lies between that of protein-protein complex and obligate homodimers. This study provides a detailed exploration of the ferritin interfaces, offering insights into their assembly and their importance as carrier proteins.
Collapse
Affiliation(s)
- Amrita
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Jodhpur, Rajasthan, India
| | - Soumyananda Chakraborti
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Dist.-Medchal, 500 078, Hyderabad, Telangana, India.
| | - Sucharita Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Jodhpur, Rajasthan, India.
| |
Collapse
|
2
|
Shebanova A, Perrin QM, Zhu K, Gudlur S, Chen Z, Sun Y, Huang C, Lim ZW, Mondarte EA, Sun R, Lim S, Yu J, Miao Y, Parikh AN, Ludwig A, Miserez A. Cellular Uptake of Phase-Separating Peptide Coacervates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402652. [PMID: 39214144 PMCID: PMC11558145 DOI: 10.1002/advs.202402652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Indexed: 09/04/2024]
Abstract
Peptide coacervates self-assembling via liquid-liquid phase separation are appealing intracellular delivery vehicles of macromolecular therapeutics (proteins, DNA, mRNA) owing to their non-cytotoxicity, high encapsulation capacity, and efficient cellular uptake. However, the mechanisms by which these viscoelastic droplets cross the cellular membranes remain unknown. Here, using multimodal imaging, data analytics, and biochemical inhibition assays, we identify the key steps by which droplets enter the cell. We find that the uptake follows a non-canonical pathway and instead integrates essential features of macropinocytosis and phagocytosis, namely active remodeling of the actin cytoskeleton and appearance of filopodia-like protrusions. Experiments using giant unilamellar vesicles show that the coacervates attach to the bounding membrane in a charge- and cholesterol-dependent manner but do not breach the lipid bilayer barrier. Cell uptake in the presence of small molecule inhibitors - interfering with actin and tubulin polymerization - confirm the active role of cytoskeleton remodeling, most prominently evident in electron microscopy imaging. These findings suggest a peculiar internalization mechanism for viscoelastic, glassy coacervate droplets combining features of non-specific uptake of fluids by macropinocytosis and particulate uptake of phagocytosis. The broad implications of this study will enable to enhance the efficacy and utility of coacervate-based strategies for intracellular delivery of macromolecular therapeutics.
Collapse
Affiliation(s)
- Anastasia Shebanova
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Quentin Moana Perrin
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Kexin Zhu
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
| | - Sushanth Gudlur
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Zilin Chen
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Yue Sun
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Congxi Huang
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Zhi Wei Lim
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Evan Angelo Mondarte
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Ruoxuan Sun
- School of Chemistry, Chemical Engineering and BiotechnologyNTU70 Nanyang DriveSingapore637457Singapore
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and BiotechnologyNTU70 Nanyang DriveSingapore637457Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
| | - Jing Yu
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
| | - Yansong Miao
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
| | - Atul N. Parikh
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
- Departments of Biomedical Engineering and Materials Science & EngineeringUniversity of CaliforniaDavisCA95616USA
| | - Alexander Ludwig
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
- NTU Institute of Structural BiologyNTU59 Nanyang DriveSingapore636921Singapore
| | - Ali Miserez
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
| |
Collapse
|
3
|
Sun R, Lim S. Ferritin cages as building blocks for higher-order assembly through copper-sulfur bonds for HER analysis. RSC Adv 2024; 14:24791-24796. [PMID: 39114434 PMCID: PMC11305402 DOI: 10.1039/d4ra02931c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
Higher-order assembly of ferritins has been achieved on copper substrate by introducing cysteines on their surfaces with thiol groups as the active moiety. To elucidate the assembly mechanism, Raman spectroscopy was utilized to characterize the interaction between the copper substrate and the modified ferritin, AfFtnAA/E94C. The resulting higher-order architecture shows enhanced hydrogen evolution reaction activity.
Collapse
Affiliation(s)
- Ruoxuan Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 70 Nanyang Drive 637457 Singapore
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 70 Nanyang Drive 637457 Singapore
| |
Collapse
|
4
|
Bou‐Abdallah F, Fish J, Terashi G, Zhang Y, Kihara D, Arosio P. Unveiling the stochastic nature of human heteropolymer ferritin self-assembly mechanism. Protein Sci 2024; 33:e5104. [PMID: 38995055 PMCID: PMC11241160 DOI: 10.1002/pro.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
Despite ferritin's critical role in regulating cellular and systemic iron levels, our understanding of the structure and assembly mechanism of isoferritins, discovered over eight decades ago, remains limited. Unveiling how the composition and molecular architecture of hetero-oligomeric ferritins confer distinct functionality to isoferritins is essential to understanding how the structural intricacies of H and L subunits influence their interactions with cellular machinery. In this study, ferritin heteropolymers with specific H to L subunit ratios were synthesized using a uniquely engineered plasmid design, followed by high-resolution cryo-electron microscopy analysis and deep learning-based amino acid modeling. Our structural examination revealed unique architectural features during the self-assembly mechanism of heteropolymer ferritins and demonstrated a significant preference for H-L heterodimer formation over H-H or L-L homodimers. Unexpectedly, while dimers seem essential building blocks in the protein self-assembly process, the overall mechanism of ferritin self-assembly is observed to proceed randomly through diverse pathways. The physiological significance of these findings is discussed including how ferritin microheterogeneity could represent a tissue-specific adaptation process that imparts distinctive tissue-specific functions to isoferritins.
Collapse
Affiliation(s)
- Fadi Bou‐Abdallah
- Department of ChemistryState University of New YorkPotsdamNew YorkUSA
| | - Jeremie Fish
- Department of Electrical & Computer EngineeringCoulter School of Engineering, Clarkson UniversityPotsdamNew YorkUSA
| | - Genki Terashi
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Yuanyuan Zhang
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Daisuke Kihara
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Paolo Arosio
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| |
Collapse
|
5
|
Wu Y, Huo C, Ming T, Liu Y, Su C, Qiu X, Lu C, Zhou J, Li Y, Zhang Z, Han J, Feng Y, Su X. Structural and Functional Insights into the Roles of Potential Metal-Binding Sites in Apostichopus japonicus Ferritin. Polymers (Basel) 2022; 14:5378. [PMID: 36559745 PMCID: PMC9785301 DOI: 10.3390/polym14245378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Ferritin is widely acknowledged as a conservative iron storage protein found in almost all living kingdoms. Apostichopus japonicus (Selenka) is among the oldest echinoderm fauna and has unique regenerative potential, but the catalytic mechanism of iron oxidation in A. japonicus ferritin (AjFER) remains elusive. We previously identified several potential metal-binding sites at the ferroxidase center, the three- and four-fold channels in AjFER. Herein, we prepared AjFER, AjFER-E25A/E60A/E105A, AjFER-D129A/E132A, and AjFER-E168A mutants, investigated their structures, and functionally characterized these ferritins with respect to Fe2+ uptake using X-ray techniques together with biochemical analytical methods. A crystallographic model of the AjFER-D129A/E132A mutant, which was solved to a resolution of 1.98 Å, suggested that the substitutions had a significant influence on the quaternary structure of the three-fold channel compared to that of AjFER. The structures of these ferritins in solution were determined based on the molecular envelopes of AjFER and its variants by small-angle X-ray scattering, and the structures were almost consistent with the characteristics of well-folded and globular-shaped proteins. Comparative biochemical analyses indicated that site-directed mutagenesis of metal-binding sites in AjFER presented relatively low rates of iron oxidation and thermostability, as well as weak iron-binding affinity, suggesting that these potential metal-binding sites play critical roles in the catalytic activity of ferritin. These findings provide profound insight into the structure-function relationships related to marine invertebrate ferritins.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
| | - Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Yan Liu
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Ying Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
- College of Life Sciences, Tonghua Normal University, Tonghua 134000, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| |
Collapse
|
6
|
Sudarev VV, Dolotova SM, Bukhalovich SM, Bazhenov SV, Ryzhykau YL, Uversky VN, Bondarev NA, Osipov SD, Mikhailov AE, Kuklina DD, Murugova TN, Manukhov IV, Rogachev AV, Gordeliy VI, Gushchin IY, Kuklin AI, Vlasov AV. Ferritin self-assembly, structure, function, and biotechnological applications. Int J Biol Macromol 2022; 224:319-343. [DOI: 10.1016/j.ijbiomac.2022.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
7
|
Gupta NK, Okamoto N, Karuppannan SK, Pasula RR, Ziyu Z, Qi DC, Lim S, Nakamura M, Nijhuis CA. The Role of Structural Order in the Mechanism of Charge Transport across Tunnel Junctions with Various Iron-Storing Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203338. [PMID: 36103613 DOI: 10.1002/smll.202203338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In biomolecular electronics, the role of structural order in charge transport (CT) is poorly understood. It has been reported that the metal oxide cores of protein cages (e.g., iron oxide and ferrihydrite nanoparticles (NPs) present in ferritin and E2-LFtn, which is E2 protein engineered with an iron-binding sequence) play an important role in the mechanism of CT. At the same time, the NP core also plays a major role in the structural integrity of the proteins. This paper describes the role of structural order in CT across tunnel junctions by comparing three iron-storing proteins. They are (1) DNA binding protein from starved cells (Dps, diameter (∅) = 9 nm); (2) engineered archaeal ferritin (AfFtn-AA, ∅ = 12 nm); and (3) engineered E2 of pyruvate dehydrogenase enzyme complex (E2-LFtn, ∅ = 25 nm). Both holo-Dps and apo-Dps proteins undergo CT by coherent tunneling because their globular architecture and relative structural stability provide a coherent conduction pathway. In contrast, apo-AfFtn-AA forms a disordered structure across which charges have to tunnel incoherently, but holo-AfFtn-AA retains its globular structure and supports coherent tunneling. The large E2-LFtn always forms disordered structures across which charges incoherently tunnel regardless of the presence of the NP core. These findings highlight the importance of structural order in the mechanism of CT across biomolecular tunnel junctions.
Collapse
Affiliation(s)
- Nipun Kumar Gupta
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| | - Naofumi Okamoto
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Senthil Kumar Karuppannan
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
- National Quantum Fabless Foundry (NQFF), Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis Building, Singapore, 138634, Singapore
| | - Rupali Reddy Pasula
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Zhang Ziyu
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Dong-Chen Qi
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 59 Nanyang Drive, Experimental Medicine Building, Singapore, 636921, Singapore
| | - Masakazu Nakamura
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, and Center for Brain-Inspired Nano Systems (BRAINS), Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
8
|
Sun J, Dong Y, Li X, Wang F, Zhang Y. Chitosan binding to a novel alfalfa phytoferritin nanocage loaded with baicalein: Simulated digestion and absorption evaluation. Food Chem 2022; 386:132716. [PMID: 35358860 DOI: 10.1016/j.foodchem.2022.132716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
Abstract
Phytoferritin was explored as an attractive nanocarrier to encapsulate bioactive compounds due to its excellent stability and biocompatibility. In the present study, a novel phytoferritin derived from alfalfa (Medicago sativa) was successfully expressed, purified and characterized. Results confirmed that alfalfa ferritin, self-assembled by 24 subunits, formed a spherical hollow structure. Baicalein exhibits superior antioxidant properties and nutritious values, but low bioavailability and solubility limit its application. Herein, we fabricated water-soluble chitosan-ferritin-baicalein nanoparticles to overcome its drawbacks. It was calculated that one apoferritin cage could encapsulate 52 molecules of baicalein. Moreover, chitosan-ferritin-baicalein nanoparticles prolonged the release of baicalein in simulated gastrointestinal tract digestion. Caco-2 cell monolayer absorption analysis demonstrated that baicalein encapsulated within ferritin-chitosan double layers was more efficient in cellular transportation. These results indicated that alfalfa ferritin, as a novel cage-like protein, has potential application in improving the bioavailability of insoluble bioactive molecules.
Collapse
Affiliation(s)
- Jinmiao Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering,Nanjing Forestry University, Nanjing 210037, PR China
| | - Yixin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering,Nanjing Forestry University, Nanjing 210037, PR China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering,Nanjing Forestry University, Nanjing 210037, PR China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering,Nanjing Forestry University, Nanjing 210037, PR China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering,Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
9
|
Unlocking the Treasure Box: The Role of HEPES Buffer in Disassembling an Uncommon Ferritin Nanoparticle. SEPARATIONS 2022. [DOI: 10.3390/separations9080222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ferritins are ideal nanoparticles as drug delivery systems due to their hollow-sphere structure and the ability to target specific receptors on the cell surface. Here, we develop and characterize a new ferritin derived from the chimeric humanized A. fulgidus one, already designed to recognize the TfR1 receptor. Starting from the synthetic gene of this chimeric protein, we replaced two positively charged amino acids with two alanine residues to close the large triangular pores on its surface. These mutations make the protein nanoparticle suitable to incorporate even small therapeutics without leakage. Size-exclusion chromatography shows that the assembling/disassembling of this new protein cage can be easily fine-tuned by varying the HEPES buffer and MgCl2 concentration. The protein cage can be opened using 150 mM HEPES buffer without magnesium ions. Adding this divalent cation to the solution promotes the quick assembly of the ferritin as a 24-mer. The development of this new protein cage paves the way for encapsulation and delivery studies of small molecules for therapeutic and diagnostic purposes.
Collapse
|
10
|
Biomolecular control over local gating in bilayer graphene induced by ferritin. iScience 2022; 25:104128. [PMID: 35434555 PMCID: PMC9010634 DOI: 10.1016/j.isci.2022.104128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
Electrical field-induced charge modulation in graphene-based devices at the nanoscale with ultrahigh density carrier accumulation is important for various practical applications. In bilayer graphene (BLG), inversion symmetry can simply be broken by an external electric field. However, control over charge carrier density at the nanometer scale is a challenging task. We demonstrate local gating of BLG in the nanometer range by adsorption of AfFtnAA (which is a bioengineered ferritin, an iron-storing globular protein with ∅ = 12 nm). Low-temperature electrical transport measurements with field-effect transistors with these AfFtnAA/BLG surfaces show hysteresis with two Dirac peaks. One peak at a gate voltage VBG = 35 V is associated with pristine BLG, while the second peak at VBG = 5 V results from local doping by ferritin. This charge trapping at the biomolecular length scale offers a straightforward and non-destructive method to alter the local electronic structure of BLG. Local gating with 12 nm resolution by charge trapping in ferritin. Adsorption of ferritin on graphene via non-invasive self-assembly. Charging controlled via iron oxide loading of ferritin. Visualization of individual ferritins on graphene by atomic force microscopy.
Collapse
|
11
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Vallerinteavide Mavelli G, Sadeghi S, Vaidya SS, Kong SN, Drum CL. Nanoencapsulation as a General Solution for Lyophilization of Labile Substrates. Pharmaceutics 2021; 13:1790. [PMID: 34834205 PMCID: PMC8622885 DOI: 10.3390/pharmaceutics13111790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Protein macromolecules occur naturally at the nanoscale. The use of a dedicated nanoparticle as a lyophilization excipient, however, has not been reported. Because biopolymeric and lipid nanoparticles often denature protein macromolecules and commonly lack the structural rigidity to survive the freeze-drying process, we hypothesized that surrounding an individual protein substrate with a nanoscale, thermostable exoshell (tES) would prevent aggregation and protect the substrate from denaturation during freezing, sublimation, and storage. We systematically investigated the properties of tES, including secondary structure and its homogeneity, throughout the process of lyophilization and found that tES have a near 100% recovery following aqueous reconstitution. We then tested the hypothesis that tES could encapsulate a model substrate, horseradish peroxidase (HRP), using charge complementation and pH-mediated controlled assembly. HRP were encapsulated within the 8 nm internal tES aqueous cavity using a simplified loading procedure. Time-course experiments demonstrated that unprotected HRP loses 95% of activity after 1 month of lyophilized storage. After encapsulation within tES nanoparticles, 70% of HRP activity was recovered, representing a 14-fold improvement and this effect was reproducible across a range of storage temperatures. To our knowledge, these results represent the first reported use of nanoparticle encapsulation to stabilize a functional macromolecule during lyophilization. Thermostable nanoencapsulation may be a useful method for the long-term storage of labile proteins.
Collapse
Affiliation(s)
- Girish Vallerinteavide Mavelli
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Samira Sadeghi
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*Star), Singapore 138672, Singapore
| | - Siddhesh Sujit Vaidya
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Shik Nie Kong
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Chester Lee Drum
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| |
Collapse
|
13
|
Liu Q, Shaukat A, Kyllönen D, Kostiainen MA. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021; 13:1551. [PMID: 34683843 PMCID: PMC8537137 DOI: 10.3390/pharmaceutics13101551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Daniella Kyllönen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
- HYBER Center, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
14
|
Kumar A, Nandwana V, Ryoo SR, Ravishankar S, Sharma B, Pervushin K, Dravid VP, Lim S. Magnetoferritin enhances T 2 contrast in magnetic resonance imaging of macrophages. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112282. [PMID: 34474835 DOI: 10.1016/j.msec.2021.112282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 01/15/2023]
Abstract
Imaging of immune cells has wide implications in understanding disease progression and staging. While optical imaging is limited in penetration depth due to light properties, magnetic resonance (MR) imaging provides a more powerful tool for the imaging of deep tissues where immune cells reside. Due to poor MR signal to noise ratio, tracking of such cells typically requires contrast agents. This report presents an in-depth physical characterization and application of archaeal magnetoferritin for MR imaging of macrophages - an important component of the innate immune system that is the first line of defense and first responder in acute inflammation. Magnetoferritin is synthesized by loading iron in apoferritin in anaerobic condition at 65 °C. The loading method results in one order of magnitude enhancement of r1 and r2 relaxivities compared to standard ferritin synthesized by aerobic loading of iron at room temperature. Detailed characterizations of the magnetoferritin revealed a crystalline core structure that is distinct from previously reported ones indicating magnetite form. The magnetite core is more stable in the presence of reducing agents and has higher peroxidase-like activities compared to the core in standard loading. Co-incubation of macrophage cells with magnetoferritin in-vitro shows significantly higher enhancement in T2-MRI contrast of the immune cells compared to standard ferritin.
Collapse
Affiliation(s)
- Ambrish Kumar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore; NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553
| | - Vikas Nandwana
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA
| | - Soo-Ryoon Ryoo
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA
| | - Samyukta Ravishankar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore
| | - Bhargy Sharma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551
| | - Konstantin Pervushin
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551
| | - Vinayak P Dravid
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA; Applied Physics Program, Norhtwestern University, Evanston, IL 60208, USA
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore; NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553.
| |
Collapse
|
15
|
Kumar M, Markiewicz-Mizera J, Janna Olmos JD, Wilk P, Grudnik P, Biela AP, Jemioła-Rzemińska M, Górecki A, Chakraborti S, Heddle JG. A single residue can modulate nanocage assembly in salt dependent ferritin. NANOSCALE 2021; 13:11932-11942. [PMID: 34195748 DOI: 10.1039/d1nr01632f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cage forming proteins have numerous potential applications in biomedicine and biotechnology, where the iron storage ferritin is a widely used example. However, controlling ferritin cage assembly/disassembly remains challenging, typically requiring extreme conditions incompatible with many desirable cargoes, particularly for more fragile biopharmaceuticals. Recently, a ferritin from the hyperthermophile bacterium Thermotoga maritima (TmFtn) has been shown to have reversible assembly under mild conditions, offering greater potential biocompatibility in terms of cargo access and encapsulation. Like Archeoglobus fulgidus ferritin (AfFtn), TmFtn forms 24mer cages mediated by metal ions (Mg2+). We have solved the crystal structure of the wild type TmFtn and several mutants displaying different assembly/disassembly properties. These data combined with other biophysical studies allow us to suggest candidate interfacial amino acids crucial in controlling assembly. This work deepens our understanding of how these ferritin complexes assemble and is a useful step towards production of triggerable ferritins in which these properties can be finely designed and controlled.
Collapse
Affiliation(s)
- Mantu Kumar
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-392 Krakow, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Self-assembling ferritin-dendrimer nanoparticles for targeted delivery of nucleic acids to myeloid leukemia cells. J Nanobiotechnology 2021; 19:172. [PMID: 34107976 PMCID: PMC8190868 DOI: 10.1186/s12951-021-00921-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In recent years, the use of ferritins as nano-vehicles for drug delivery is taking center stage. Compared to other similar nanocarriers, Archaeoglobus fulgidus ferritin is particularly interesting due to its unique ability to assemble-disassemble under very mild conditions. Recently this ferritin was engineered to get a chimeric protein targeted to human CD71 receptor, typically overexpressed in cancer cells. RESULTS Archaeoglobus fulgidus chimeric ferritin was used to generate a self-assembling hybrid nanoparticle hosting an aminic dendrimer together with a small nucleic acid. The positively charged dendrimer can indeed establish electrostatic interactions with the chimeric ferritin internal surface, allowing the formation of a protein-dendrimer binary system. The 4 large triangular openings on the ferritin shell represent a gate for negatively charged small RNAs, which access the internal cavity attracted by the dense positive charge of the dendrimer. This ternary protein-dendrimer-RNA system is efficiently uptaken by acute myeloid leukemia cells, typically difficult to transfect. As a proof of concept, we used a microRNA whose cellular delivery and induced phenotypic effects can be easily detected. In this article we have demonstrated that this hybrid nanoparticle successfully delivers a pre-miRNA to leukemia cells. Once delivered, the nucleic acid is released into the cytosol and processed to mature miRNA, thus eliciting phenotypic effects and morphological changes similar to the initial stages of granulocyte differentiation. CONCLUSION The results here presented pave the way for the design of a new family of protein-based transfecting agents that can specifically target a wide range of diseased cells.
Collapse
|
17
|
Li H, Xia X, Tan X, Zang J, Wang Z, Ei-Seedi HR, Du M. Advancements of nature nanocage protein: preparation, identification and multiple applications of ferritins. Crit Rev Food Sci Nutr 2021; 62:7117-7128. [PMID: 33860692 DOI: 10.1080/10408398.2021.1911925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ferritin is an important iron storage protein, which is widely existed in all forms of life. Ferritin can regulate iron homeostasis when iron ions are lacking or enriched in the body, so as to avoid iron deficiency diseases and iron poisoning. Ferritin presents a hollow nanocage, which can store ions or other small molecular substances in the cavity. Therefore, ferritin shows its potential as a functional nanomaterial that can deliver nutrients or drugs in a targeted manner to improve bioavailability. Due to the special structure, the research on ferritin has attracted more and more attention in recent years. In this paper, the structural characteristics of ferritin were introduced, and the natural purification and prokaryotic expression methods of ferritin from different sources were described. At the same time, ferritin can bind to small molecules, so that it has the activity of small molecules, to construct a new type of ferritin. As a result, ferritin plays an important role as a nutrient substance, in targeted transport, and disease monitoring, etc. In conclusion, the yield of ferritin can be improved by means of molecular biology. Meanwhile, molecular modification can be used to make ferritin have unique activity and function, which lays a foundation for subsequent research. HighlightsThe molecular and structural properties of ferritins were clearly described.Isolation and purification technologies of ferritin were compared.Characterization, functions and molecular modifications mechanism of ferritin were reviewed.The applications of ferritin in pharmaceutical and food industry were prospected.
Collapse
Affiliation(s)
- Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Hesham R Ei-Seedi
- Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
18
|
Kaku TS, Lim S. Protein nanoparticles in molecular, cellular, and tissue imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1714. [PMID: 33821568 DOI: 10.1002/wnan.1714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
The quest to develop ideal nanoparticles capable of molecular, cellular, and tissue level imaging is ongoing. Since certain imaging probes and nanoparticles face drawbacks such as low aqueous solubility, increased ROS generation leading to DNA damage, apoptosis, and high cellular/organ toxicities, the development of versatile and biocompatible nanocarriers becomes necessary. Protein nanoparticles (PNPs) are one such promising class of nanocarriers that possess most of the desirable properties of an ideal nanocarrier for bioimaging applications. PNPs demonstrate high aqueous solubility, minimal cytotoxicity, and multi-cargo loading capacity. They are also amenable to surface-functionalization, as well as modulation of their hydrophobicity and hydrophilicity. The use of PNPs for bioimaging applications has made rapid advancements in the past two decades. Being comparatively less explored, the field opens up a plethora of opportunities and focus areas to engineer ideal bioimaging protein nanocarriers. The use of PNPs as carriers of their natural ligands as well as other heavy metals and fluorescent probes, along with drug molecules for combined theranostic applications has been reported. In addition, surface functionalization to impart specificity of targeting the PNPs has been shown to reduce nonspecific cellular interactions, thus reducing systemic toxicity. PNPs have been explored for their application in imaging of numerous cancers, cardiovascular diseases as well as imaging of the brain using near infrared fluorescence (NIRF) imaging, magnetic resonance imaging (MRI), X-ray computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), ultrasound (US), and photoacoustic (PA) imaging. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Tanvi Sushil Kaku
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Palombarini F, Di Fabio E, Boffi A, Macone A, Bonamore A. Ferritin Nanocages for Protein Delivery to Tumor Cells. Molecules 2020; 25:E825. [PMID: 32070033 PMCID: PMC7070480 DOI: 10.3390/molecules25040825] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
The delivery of therapeutic proteins is one of the greatest challenges in the treatment of human diseases. In this frame, ferritins occupy a very special place. Thanks to their hollow spherical structure, they are used as modular nanocages for the delivery of anticancer drugs. More recently, the possibility of encapsulating even small proteins with enzymatic or cytotoxic activity is emerging. Among all ferritins, particular interest is paid to the Archaeoglobus fulgidus one, due to its peculiar ability to associate/dissociate in physiological conditions. This protein has also been engineered to allow recognition of human receptors and used in vitro for the delivery of cytotoxic proteins with extremely promising results.
Collapse
Affiliation(s)
| | | | | | - Alberto Macone
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.P.); (E.D.F.); (A.B.)
| | - Alessandra Bonamore
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.P.); (E.D.F.); (A.B.)
| |
Collapse
|
20
|
Macone A, Masciarelli S, Palombarini F, Quaglio D, Boffi A, Trabuco MC, Baiocco P, Fazi F, Bonamore A. Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells. Sci Rep 2019; 9:11749. [PMID: 31409839 PMCID: PMC6692331 DOI: 10.1038/s41598-019-48037-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
In this work, we have exploited the unique properties of a chimeric archaeal-human ferritin to encapsulate, deliver and release cytochrome c and induce apoptosis in a myeloid leukemia cell line. The chimeric protein combines the versatility in 24-meric assembly and cargo incorporation capability of Archaeglobus fulgidus ferritin with specific binding of human H ferritin to CD71, the "heavy duty" carrier responsible for transferrin-iron uptake. Delivery of ferritin-encapsulated cytochrome C to the Acute Promyelocytic Leukemia (APL) NB4 cell line, highly resistant to transfection by conventional methods, was successfully achieved in vitro. The effective liberation of cytochrome C within the cytosolic environment, demonstrated by double fluorescent labelling, induced apoptosis in the cancer cells.
Collapse
Affiliation(s)
- Alberto Macone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Pizzale Aldo Moro 5, 00185, Rome, Italy.
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Federica Palombarini
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Pizzale Aldo Moro 5, 00185, Rome, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Pizzale Aldo Moro 5, 00185, Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Pizzale Aldo Moro 5, 00185, Rome, Italy
| | - Matilde Cardoso Trabuco
- Center for Life Nano Science @ Sapienza, Italian Institute of Technology, Viale Regina Elena 291, Rome, 00161, Italy
| | - Paola Baiocco
- Center for Life Nano Science @ Sapienza, Italian Institute of Technology, Viale Regina Elena 291, Rome, 00161, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Pizzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
21
|
Molecular cloning, expression and characterization of secreted ferritin in the silkworm, Bombyx mori. Biometals 2019; 32:757-769. [PMID: 31363876 DOI: 10.1007/s10534-019-00208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/29/2019] [Indexed: 11/25/2022]
Abstract
Ferritin is a ubiquitous iron storage protein which plays key role in regulating iron homeostasis and metabolism. In this paper, the ferritin heavy chain homologs (HCH) and light chain homologs (LCH) from Bombyx mori (BmFerHCH and BmFerLCH) were amplified through PCR and cloned into the expression vector pET-30a(+). The recombinant BmFerHCH and BmFerLCH expressed in Escherichia coli were in the form of insoluble inclusion bodies, indicating that the two proteins were not in their natural structural conformation. In order to obtain refolded ferritin in vitro, the inclusion bodies (BmFerHCH and/or BmFerLCH) were dissolved in denaturing buffer (100 mM Tris, 50 mM Glycine, 8 M urea, 5 mM DTT, pH 8.0) and then refolded in refolding buffer (100 mM Tris, 400 mM L-arginine, 0.2 mM PMSF, 0.5 mM DTT). The result showed that it was only when both BmFerHCH and BmFerLCH were present together in the denaturing buffer that refolding was successful and resulted in the formation of heteropolymers (H-L chain dimers) over homopolymers (H-H chain or L-L chain dimers). Moreover, the molecules (NaCl, Triton and glycerol) were found to enhance protein refolding. The optimum temperature, pH and ratios of BmFerHCH/BmFerLCH required for refolding were found to be 10 °C, pH 7, 1:1 or 1:2, respectively. Finally, the refolded ferritin had the ability to store iron, exhibited ferroxidase activity, and could withstand high temperatures and pH treatment, which is consistent with ferritin in other species.
Collapse
|
22
|
Chakraborti S, Korpi A, Kumar M, Stępień P, Kostiainen MA, Heddle JG. Three-Dimensional Protein Cage Array Capable of Active Enzyme Capture and Artificial Chaperone Activity. NANO LETTERS 2019; 19:3918-3924. [PMID: 31117758 DOI: 10.1021/acs.nanolett.9b01148] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Development of protein cages for encapsulation of active enzyme cargoes and their subsequent arrangement into a controllable three-dimensional array is highly desirable. However, cargo capture is typically challenging because of difficulties in achieving reversible assembly/disassembly of protein cages in mild conditions. Herein we show that by using an unusual ferritin cage protein that undergoes triggerable assembly under mild conditions, we can achieve reversible filling with protein cargoes including an active enzyme. We demonstrate that these filled cages can be arrayed in three-dimensional crystal lattices and have an additional chaperone-like effect, increasing both thermostability and enzymatic activity of the encapsulated enzyme.
Collapse
Affiliation(s)
- Soumyananda Chakraborti
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology , Jagiellonian University , Gronostajowa 7A , 30-387 Krakow , Poland
| | - Antti Korpi
- Biohybrid Materials, Department of Bioproducts and Biosystems , Aalto University , FI-00076 Aalto , Finland
| | - Mantu Kumar
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology , Jagiellonian University , Gronostajowa 7A , 30-387 Krakow , Poland
- Postgraduate School of Molecular Medicine ; Żwirki i Wigury 61 , 02-091 Warsaw , Poland
| | - Piotr Stępień
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology , Jagiellonian University , Gronostajowa 7A , 30-387 Krakow , Poland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems , Aalto University , FI-00076 Aalto , Finland
| | - Jonathan G Heddle
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology , Jagiellonian University , Gronostajowa 7A , 30-387 Krakow , Poland
| |
Collapse
|
23
|
Xue L, Deng D, Sun J. Magnetoferritin: Process, Prospects, and Their Biomedical Applications. Int J Mol Sci 2019; 20:E2426. [PMID: 31100837 PMCID: PMC6567256 DOI: 10.3390/ijms20102426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Ferritin is a spherical iron storage protein composed of 24 subunits and an iron core. Using biomimetic mineralization, magnetic iron oxide can be synthesized in the cavity of ferritin to form magnetoferritin (MFt). MFt, also known as a superparamagnetic protein, is a novel magnetic nanomaterial with good biocompatibility and flexibility for biomedical applications. Recently, it has been demonstrated that MFt had tumor targetability and a peroxidase-like catalytic activity. Thus, MFt, with its many unique properties, provides a powerful platform for tumor diagnosis and therapy. In this review, we discuss the biomimetic synthesis and biomedical applications of MFt.
Collapse
Affiliation(s)
- Le Xue
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
24
|
Sato D, Ikeguchi M. Mechanisms of ferritin assembly studied by time-resolved small-angle X-ray scattering. Biophys Rev 2019; 11:449-455. [PMID: 31069627 DOI: 10.1007/s12551-019-00538-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022] Open
Abstract
The assembly reaction of Escherichia coli ferritin A (EcFtnA) was studied using time-resolved small-angle X-ray scattering (SAXS). EcFtnA forms a cage-like structure that consists of 24 identical subunits and dissociates into dimers at acidic pH. The dimer maintains native-like secondary and tertiary structures and can reassemble into a 24-mer when the pH is increased. The time-dependent changes in the SAXS profiles of ferritin during its assembly were roughly explained by a simple model in which only tetramers, hexamers, and dodecamers were considered intermediates. The rate of assembly increased with increasing ionic strength and decreased with increasing pH (from pH 6 to pH 8). These tendencies might originate from repulsion between assembly units (dimers) with the same net charge sign. To test this hypothesis, ferritin mutants with different net charges (net-charge mutants) were prepared. In buffers with low ionic strength, the rate of assembly increased with decreasing net charge. Thus, repulsion between the assembly unit net charges was an important factor influencing the assembly rate. Although the differences in the assembly rate among net-charge mutants were not significant in buffers with an ionic strength higher than 0.1, the assembly rates increased with increasing ionic strength, suggesting that local electrostatic interactions are also responsible for the ionic-strength dependence of the assembly rate and are, on average, repulsive.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Masamichi Ikeguchi
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
| |
Collapse
|
25
|
Abstract
Within the materials science community, proteins with cage-like architectures are being developed as versatile nanoscale platforms for use in protein nanotechnology. Much effort has been focused on the functionalization of protein cages with biological and non-biological moieties to bring about new properties of not only individual protein cages, but collective bulk-scale assemblies of protein cages. In this review, we report on the current understanding of protein cage assembly, both of the cages themselves from individual subunits, and the assembly of the individual protein cages into higher order structures. We start by discussing the key properties of natural protein cages (for example: size, shape and structure) followed by a review of some of the mechanisms of protein cage assembly and the factors that influence it. We then explore the current approaches for functionalizing protein cages, on the interior or exterior surfaces of the capsids. Lastly, we explore the emerging area of higher order assemblies created from individual protein cages and their potential for new and exciting collective properties.
Collapse
Affiliation(s)
- William M Aumiller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
26
|
Benni I, Trabuco MC, Di Stasio E, Arcovito A, Boffi A, Malatesta F, Bonamore A, De Panfilis S, de Turris V, Baiocco P. Excimer based fluorescent pyrene-ferritin conjugate for protein oligomerization studies and imaging in living cells. RSC Adv 2018; 8:12815-12822. [PMID: 35541244 PMCID: PMC9079363 DOI: 10.1039/c8ra00210j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/23/2018] [Indexed: 11/21/2022] Open
Abstract
Ferritin self-assembly has been widely exploited for the synthesis of a variety of nanoparticles for drug-delivery and diagnostic applications. However, despite the crucial role of ferritin self-assembly mechanism for probes encapsulation, little is known about the principles behind the oligomerization mechanism. In the present work, the novel "humanized" chimeric Archaeal ferritin HumAfFt, displaying the transferrin receptor-1 (TfR1) recognition motif typical of human H homopolymer and the unique salt-triggered oligomerization properties of Archaeoglobus fulgidus ferritin (AfFt), was site-selectively labeled with N-(1-pyrenyl)maleimide on a topologically selected cysteine residue inside the protein cavity, next to the dimer interface. Pyrene characteristic fluorescence features were exploited to investigate the transition from a dimeric to a cage-like 24-meric state and to visualize the protein in vitro by two photon fluorescence microscopy. Indeed, pyrene fluorescence changes upon ferritin self-assembly allowed to establish, for the first time, the kinetic and thermodynamic details of the archaeal ferritins oligomerization mechanism. In particular, the magnesium induced oligomerization proved to be faster than the monovalent cation-triggered process, highly cooperative, complete at low MgCl2 concentrations, and reversed by treatment with EDTA. Moreover, pyrene intense excimer fluorescence was successfully visualized in vitro by two photon fluorescence microscopy as pyrene-labeled HumAfFt was actively uptaken into HeLa cells by human transferrin receptor TfR1 recognition, thus representing a unique nano-device building block for two photon fluorescence cell imaging.
Collapse
Affiliation(s)
- Irene Benni
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Matilde Cardoso Trabuco
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
- Molirom srl via Ravenna 8 00161 Rome Italy
| | - Enrico Di Stasio
- Institute of Biochemistry and Clinical Biochemistry, Catholic University Largo Francesco Vito, 1 00168 Rome Italy
| | - Alessandro Arcovito
- Institute of Biochemistry and Clinical Biochemistry, Catholic University Largo Francesco Vito, 1 00168 Rome Italy
| | - Alberto Boffi
- Institute of Molecular Biology and Pathology, National Research Council P.le A. Moro 7 00185 Rome Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia V.le Regina Elena 291 00161 Rome Italy
| | - Francesco Malatesta
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Simone De Panfilis
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia V.le Regina Elena 291 00161 Rome Italy
| | - Valeria de Turris
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia V.le Regina Elena 291 00161 Rome Italy
| | - Paola Baiocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia V.le Regina Elena 291 00161 Rome Italy
| |
Collapse
|
27
|
Jiang L, Yang S, Lund R, Dong H. Shape-specific nanostructured protein mimics from de novo designed chimeric peptides. Biomater Sci 2018; 6:272-279. [DOI: 10.1039/c7bm00906b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We experimentally and theoretically demonstrated the formation of well-defined trigonal-bipyramidal protein-mimics through self-assembly of “simple” de novo designed chimeric peptides.
Collapse
Affiliation(s)
- Linhai Jiang
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Su Yang
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Reidar Lund
- Department of Chemistry
- University of Oslo
- Oslo 0315
- Norway
| | - He Dong
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
28
|
Affiliation(s)
- Stephan Tetter
- Laboratory of Organic Chemistry; ETH Zürich; 8093 Zurich Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry; ETH Zürich; 8093 Zurich Switzerland
| |
Collapse
|
29
|
Thermostable exoshells fold and stabilize recombinant proteins. Nat Commun 2017; 8:1442. [PMID: 29129910 PMCID: PMC5682286 DOI: 10.1038/s41467-017-01585-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/29/2017] [Indexed: 12/04/2022] Open
Abstract
The expression and stabilization of recombinant proteins is fundamental to basic and applied biology. Here we have engineered a thermostable protein nanoparticle (tES) to improve both expression and stabilization of recombinant proteins using this technology. tES provides steric accommodation and charge complementation to green fluorescent protein (GFPuv), horseradish peroxidase (HRPc), and Renilla luciferase (rLuc), improving the yields of functional in vitro folding by ~100-fold. Encapsulated enzymes retain the ability to metabolize small-molecule substrates, presumably via four 4.5-nm pores present in the tES shell. GFPuv exhibits no spectral shifts in fluorescence compared to a nonencapsulated control. Thermolabile proteins internalized by tES are resistant to thermal, organic, chaotropic, and proteolytic denaturation and can be released from the tES assembly with mild pH titration followed by proteolysis. Improving recombinant protein expression and stabilization remains a significant challenge. Here, the authors engineer Archaeoglobus fulgidus ferritin as a thermostable exoshell to provide steric accommodation and charge complementation for recombinant proteins, which can improve yields by 100 fold.
Collapse
|
30
|
Tetter S, Hilvert D. Enzyme Encapsulation by a Ferritin Cage. Angew Chem Int Ed Engl 2017; 56:14933-14936. [PMID: 28902449 DOI: 10.1002/anie.201708530] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 12/13/2022]
Abstract
Ferritins, conserved across all kingdoms of life, are protein nanocages that evolved to mineralize iron. The last several decades have shown that these cages have considerable technological and medical potential owing to their stability and tolerance to modification, as well as their ability to template nanoparticle synthesis and incorporate small molecules. Here we show that it is possible to encapsulate proteins in a ferritin cage by exploiting electrostatic interactions with its negatively charged interior. Positively supercharged green fluorescent protein is efficiently taken up by Archaeoglobus fulgidus ferritin in a tunable fashion. Moreover, several enzymes were readily incorporated when genetically tethered to this fluorescent protein. These fusion proteins retained high catalytic activity and showed increased tolerance to proteolysis and heat. Equipping ferritins with enzymatic activity paves the way for many new nanotechnological and pharmacological applications.
Collapse
Affiliation(s)
- Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zurich, Switzerland
| |
Collapse
|
31
|
Ping J, Pulsipher KW, Vishnubhotla R, Villegas JA, Hicks TL, Honig S, Saven JG, Dmochowski IJ, Johnson ATC. Structural-functional analysis of engineered protein-nanoparticle assemblies using graphene microelectrodes. Chem Sci 2017; 8:5329-5334. [PMID: 28970912 PMCID: PMC5607901 DOI: 10.1039/c7sc01565h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/12/2017] [Indexed: 02/01/2023] Open
Abstract
The characterization of protein-nanoparticle assemblies in solution remains a challenge. We demonstrate a technique based on a graphene microelectrode for structural-functional analysis of model systems composed of nanoparticles enclosed in open-pore and closed-pore ferritin molecules. The method readily resolves the difference in accessibility of the enclosed nanoparticle for charge transfer and offers the prospect for quantitative analysis of pore-mediated transport, while shedding light on the spatial orientation of the protein subunits on the nanoparticle surface, faster and with higher sensitivity than conventional catalysis methods.
Collapse
Affiliation(s)
- Jinglei Ping
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , PA 19104 , USA .
| | - Katherine W Pulsipher
- Department of Chemistry , University of Pennsylvania , Philadelphia , PA 19104 , USA
| | - Ramya Vishnubhotla
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , PA 19104 , USA .
| | - Jose A Villegas
- Department of Chemistry , University of Pennsylvania , Philadelphia , PA 19104 , USA
| | - Tacey L Hicks
- Department of Chemistry , University of Pennsylvania , Philadelphia , PA 19104 , USA
| | - Stephanie Honig
- Department of Chemistry , University of Pennsylvania , Philadelphia , PA 19104 , USA
| | - Jeffery G Saven
- Department of Chemistry , University of Pennsylvania , Philadelphia , PA 19104 , USA
| | - Ivan J Dmochowski
- Department of Chemistry , University of Pennsylvania , Philadelphia , PA 19104 , USA
| | - A T Charlie Johnson
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , PA 19104 , USA .
| |
Collapse
|
32
|
Pulsipher KW, Villegas JA, Roose BW, Hicks TL, Yoon J, Saven JG, Dmochowski IJ. Thermophilic Ferritin 24mer Assembly and Nanoparticle Encapsulation Modulated by Interdimer Electrostatic Repulsion. Biochemistry 2017; 56:3596-3606. [PMID: 28682599 DOI: 10.1021/acs.biochem.7b00296] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein cage self-assembly enables encapsulation and sequestration of small molecules, macromolecules, and nanomaterials for many applications in bionanotechnology. Notably, wild-type thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) exists as a stable dimer of four-helix bundle proteins at a low ionic strength, and the protein forms a hollow assembly of 24 protomers at a high ionic strength (∼800 mM NaCl). This assembly process can also be initiated by highly charged gold nanoparticles (AuNPs) in solution, leading to encapsulation. These data suggest that salt solutions or charged AuNPs can shield unfavorable electrostatic interactions at AfFtn dimer-dimer interfaces, but specific "hot-spot" residues controlling assembly have not been identified. To investigate this further, we computationally designed three AfFtn mutants (E65R, D138K, and A127R) that introduce a single positive charge at sites along the dimer-dimer interface. These proteins exhibited different assembly kinetics and thermodynamics, which were ranked in order of increasing 24mer propensity: A127R < wild type < D138K ≪ E65R. E65R assembled into the 24mer across a wide range of ionic strengths (0-800 mM NaCl), and the dissociation temperature for the 24mer was 98 °C. X-ray crystal structure analysis of the E65R mutant identified a more compact, closed-pore cage geometry. A127R and D138K mutants exhibited wild-type ability to encapsulate and stabilize 5 nm AuNPs, whereas E65R did not encapsulate AuNPs at the same high yields. This work illustrates designed protein cages with distinct assembly and encapsulation properties.
Collapse
Affiliation(s)
- Katherine W Pulsipher
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jose A Villegas
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin W Roose
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Tacey L Hicks
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jennifer Yoon
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
33
|
Pulsipher KW, Honig S, Deng S, Dmochowski IJ. Controlling gold nanoparticle seeded growth in thermophilic ferritin protein templates. J Inorg Biochem 2017; 174:169-176. [PMID: 28683348 DOI: 10.1016/j.jinorgbio.2017.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/10/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022]
Abstract
Ferritin protein cages provide templates for inorganic nanoparticle synthesis in more environmentally-friendly conditions. Thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) has been shown to encapsulate pre-formed 6-nm gold nanoparticles (AuNPs) and template their further growth within its 8-nm cavity. In this study, we explore whether using a gold complex with electrostatic complementarity to the anionic ferritin cavity can promote efficient seeded nanoparticle growth. We also compare wt AfFtn and a closed pore mutant AfFtn to explore whether the ferritin pores influence final AuNP size.
Collapse
Affiliation(s)
- Katherine W Pulsipher
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, PA 19104, United States
| | - Stephanie Honig
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, PA 19104, United States
| | - Sunbin Deng
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, PA 19104, United States
| | - Ivan J Dmochowski
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, PA 19104, United States.
| |
Collapse
|
34
|
de Turris V, Cardoso Trabuco M, Peruzzi G, Boffi A, Testi C, Vallone B, Celeste Montemiglio L, Georges AD, Calisti L, Benni I, Bonamore A, Baiocco P. Humanized archaeal ferritin as a tool for cell targeted delivery. NANOSCALE 2017; 9:647-655. [PMID: 27942679 DOI: 10.1039/c6nr07129e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Human ferritins have been extensively studied to be used as nanocarriers for diverse applications and could represent a convenient alternative for targeted delivery of anticancer drugs and imaging agents. However, the most relevant limitation to their applications is the need for highly acidic experimental conditions during the initial steps of particle/cargo assembly, a process that could affect both drug stability and the complete reassembly of the ferritin cage. To overcome this issue the unique assembly of Archaeoglobus fulgidus ferritin was genetically engineered by changing a surface exposed loop of 12 amino acids connecting B and C helices to mimic the sequence of the analogous human H-chain ferritin loop. This new chimeric protein was shown to maintain the unique, cation linked, association-dissociation properties of Archaeoglobus fulgidus ferritin occurring at neutral pH values, while exhibiting the typical human H-homopolymer recognition by the transferrin receptor TfR1. The chimeric protein was confirmed to be actively and specifically internalized by HeLa cells, thus representing a unique nanotechnological tool for cell-targeted delivery of possible payloads for diagnostic or therapeutic purposes. Moreover, it was demonstrated that the 12 amino acids' loop is necessary and sufficient for binding to the transferrin receptor. The three-dimensional structure of the humanized Archaeoglobus ferritin has been obtained both as crystals by X-ray diffraction and in solution by cryo-EM.
Collapse
Affiliation(s)
- Valeria de Turris
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena 291, Rome 00161, Italy.
| | | | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena 291, Rome 00161, Italy.
| | - Alberto Boffi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena 291, Rome 00161, Italy. and Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro, 7, 00185, Rome, Italy
| | - Claudia Testi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena 291, Rome 00161, Italy.
| | - Beatrice Vallone
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro, 7, 00185, Rome, Italy
| | - Linda Celeste Montemiglio
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le A. Moro, 5, 00185, Rome, Italy
| | - Amédée Des Georges
- The City University of New York Advanced Science Research Center 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Lorenzo Calisti
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le A. Moro, 5, 00185, Rome, Italy
| | - Irene Benni
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le A. Moro, 5, 00185, Rome, Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le A. Moro, 5, 00185, Rome, Italy
| | - Paola Baiocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena 291, Rome 00161, Italy.
| |
Collapse
|
35
|
Nandwana V, Ryoo SR, Kanthala S, Kumar A, Sharma A, Castro FC, Li Y, Hoffman B, Lim S, Dravid VP. Engineered ferritin nanocages as natural contrast agents in magnetic resonance imaging. RSC Adv 2017. [DOI: 10.1039/c7ra05681h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we report the development of a “natural” MRI contrast agent with tunable Fe loading and a magnetic core for magnetic resonance imaging.
Collapse
|
36
|
Abstract
Iron is very important in many biological processes and the ferritin protein family has evolved to store iron and to maintain cellular iron homeostasis. The deletion of the coding gene for the H subunit of ferritin leads to early embryonic death in mice and mutations in the gene for the L subunits in humans has been observed in neurodegenerative diseases, such as neuroferritinopathy. Thus, understanding how ferritin works is imperative and many studies have been conducted to delineate the molecular mechanism of ferritins and bacterioferritins. In the ferritin protein family, it is clear that a catalytic center for iron oxidation, the routes for iron to reach this center and the ability to nucleate an iron core, are common requirements for all ferritins. However, there are differences in the structural and mechanistic details of iron oxidation and mineralization. Although a common mechanism has been proposed for all ferritins, this mechanism needs to be further explored. There is a mechanistic diversity related to structural variation in the ferritin protein family. It is clear that other factors appear to affect the mechanism of iron oxidation and mineralization. This review focusses on the structural features of the ferritin protein family and its role in the mechanism of iron mineralization.
Collapse
Affiliation(s)
- Alejandro Yévenes
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
37
|
Calisti L, Benni I, Cardoso Trabuco M, Baiocco P, Ruzicka B, Boffi A, Falvo E, Malatesta F, Bonamore A. Probing bulky ligand entry in engineered archaeal ferritins. Biochim Biophys Acta Gen Subj 2016; 1861:450-456. [PMID: 27755975 DOI: 10.1016/j.bbagen.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/01/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND A set of engineered ferritin mutants from Archaeoglobus fulgidus (Af-Ft) and Pyrococcus furiosus (Pf-Ft) bearing cysteine thiols in selected topological positions inside or outside the ferritin shell have been obtained. The two apo-proteins were taken as model systems for ferritin internal cavity accessibility in that Af-Ft is characterized by the presence of a 45Å wide aperture on the protein surface whereas Pf-Ft displays canonical (threefold) channels. METHODS Thiol reactivity has been probed in kinetic experiments in order to assess the protein matrix permeation properties towards the bulky thiol reactive DTNB (5,5'-dithiobis-2-nitrobenzoic acid) molecule. RESULTS Reaction of DTNB with thiols was observed in all ferritin mutants, including those bearing free cysteine thiols inside the ferritin cavity. As expected, a ferritin mutant from Pf-Ft, in which the cysteine thiol is on the outer surface displays the fastest binding kinetics. In turn, also the Pf-Ft mutant in which the cysteine thiol is placed within the internal cavity, is still capable of full stoichiometric DTNB binding albeit with an almost 200-fold slower rate. The behaviour of Af-Ft bearing a cysteine thiol in a topologically equivalent position in the internal cavity was intermediate among the two Pf-Ft mutants. CONCLUSIONS AND GENERAL SIGNIFICANCE The data thus obtained indicate clearly that the protein matrix in archaea ferritins does not provide a significant barrier against bulky, negatively charged ligands such as DTNB, a finding of relevance in view of the multiple biotechnological applications of these ferritins that envisage ligand encapsulation within the internal cavity.
Collapse
Affiliation(s)
- Lorenzo Calisti
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le Aldo Moro 5, I-00185 Rome, Italy
| | - Irene Benni
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le Aldo Moro 5, I-00185 Rome, Italy
| | - Matilde Cardoso Trabuco
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le Aldo Moro 5, I-00185 Rome, Italy
| | - Paola Baiocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena 291, Rome I-00185, Italy
| | - Barbara Ruzicka
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR) Sede Sapienza and Dipartimento di Fisica, Sapienza University of Rome, P.le Aldo Moro 5, I-00185 Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le Aldo Moro 5, I-00185 Rome, Italy; Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (IBPM-CNR) Sede Sapienza University of Rome, P.le Aldo Moro 5, I-00185 Rome, Italy
| | - Elisabetta Falvo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (IBPM-CNR) Sede Sapienza University of Rome, P.le Aldo Moro 5, I-00185 Rome, Italy
| | - Francesco Malatesta
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le Aldo Moro 5, I-00185 Rome, Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le Aldo Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
38
|
Sana B, Johnson E, Lim S. The unique self-assembly/disassembly property of Archaeoglobus fulgidus ferritin and its implications on molecular release from the protein cage. Biochim Biophys Acta Gen Subj 2015; 1850:2544-51. [PMID: 26341788 DOI: 10.1016/j.bbagen.2015.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND In conventional in vitro encapsulation of molecular cargo, the multi-subunit ferritin protein cages are disassembled in extremely acidic pH and re-assembled in the presence of highly concentrated cargo materials, which results in poor yields due to the low-pH treatment. In contrast, Archaeoglobus fulgidus open-pore ferritin (AfFtn) and its closed-pore mutant (AfFtn-AA) are present as dimeric species in neutral buffers that self-assemble into cage-like structure upon addition of metal ions. METHODS To understand the iron-mediated self-assembly and ascorbate-mediated disassembly properties, we studied the iron binding and release profile of the AfFtn and AfFtn-AA, and the corresponding oligomerization of their subunits. RESULTS Fe(2+) binding and conversion to Fe(3+) triggered the self-assembly of cage-like structures from dimeric species of AfFtn and AfFtn-AA subunits, while disassembly was induced by dissolving the iron core with reducing agents. The closed-pore AfFtn-AA has identical iron binding kinetics but lower iron release rates when compared to AfFtn. While the iron binding rate is proportional to Fe(2+) concentration, the iron release rate can be controlled by varying ascorbate concentrations. CONCLUSION The AfFtn and AfFtn-AA cages formed by iron mineralization could be disassembled by dissolving the iron core. The open-pores of AfFtn contribute to enhanced reductive iron release while the small channels located at the 3-fold symmetry axis (3-fold channels) are used for iron uptake. GENERAL SIGNIFICANCE The iron-mediated self-assembly/disassembly property of AfFtn offers a new set of molecular trigger for formation and dissociation of the protein cage, which can potentially regulate uptake and release of molecular cargo from protein cages.
Collapse
Affiliation(s)
- Barindra Sana
- School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, 637457, Singapore
| | - Eric Johnson
- Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sierin Lim
- School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, 637457, Singapore.
| |
Collapse
|
39
|
Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR. Unity in the Biochemistry of the Iron-Storage Proteins Ferritin and Bacterioferritin. Chem Rev 2014; 115:295-326. [DOI: 10.1021/cr5004908] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| |
Collapse
|