1
|
Barman D, Drolia R. Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host-Pathogen Interaction. Cells 2024; 14:2. [PMID: 39791703 PMCID: PMC11719516 DOI: 10.3390/cells14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Within mammalian cells, diverse endocytic mechanisms, including phagocytosis, pinocytosis, and receptor-mediated endocytosis, serve as gateways exploited by many bacterial pathogens and toxins. Among these, caveolae-mediated endocytosis is characterized by lipid-rich caveolae and dimeric caveolin proteins. Caveolae are specialized microdomains on cell surfaces that impact cell signaling. Caveolin proteins facilitate the creation of caveolae and have three members in vertebrates: caveolin-1, caveolin-2, and caveolin-3. Many bacterial pathogens hijack caveolin machinery to invade host cells. For example, the Gram-positive facultative model intracellular bacterial pathogen Listeria monocytogenes exploits caveolin-mediated endocytosis for efficient cellular entry, translocation across the intestinal barrier, and cell-cell spread. Caveolin facilitates the internalization of group A streptococci by promoting the formation of invaginations in the plasma membrane and avoiding fusion with lysosomes, thereby aiding intracellular survival. Caveolin plays a crucial role in internalizing and modulation of host immune responses by Gram-negative bacterial pathogens, such as Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium. Here, we summarize how bacterial pathogens manipulate the host's caveolin system to facilitate bacterial entry and movement within and between host cells, to support intracellular survival, to evade immune responses, and to trigger inflammation. This knowledge enhances the intervention of new therapeutic targets against caveolin in microbial invasion and immune evasion processes.
Collapse
Affiliation(s)
| | - Rishi Drolia
- Molecular and Cellular Microbiology Laboratory, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA;
| |
Collapse
|
2
|
Puvvula PK, Martinez-Medina L, Cinar M, Feng L, Pisarev A, Johnson A, Bernal-Mizrachi L. A retrotransposon-derived DNA zip code internalizes myeloma cells through Clathrin-Rab5a-mediated endocytosis. Front Oncol 2024; 14:1288724. [PMID: 38463228 PMCID: PMC10920344 DOI: 10.3389/fonc.2024.1288724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction We have demonstrated that transposons derived from ctDNA can be transferred between cancer cells. The present research aimed to investigate the cellular uptake and intracellular trafficking of Multiple Myeloma-zip code (MM-ZC), a cell-specific zip code, in myeloma cell lines. We demonstrated that MM-ZC uptake by myeloma cells was concentration-, time- and cell-type-dependent. Methods Flow cytometry and confocal microscopy methods were used to identify the level of internalization of the zip codes in MM cells. To screen for the mechanism of internalization, we used multiple inhibitors of endocytosis. These experiments were followed by biotin pulldown and confocal microscopy for validation. Single interference RNA (siRNA) targeting some of the proteins involved in endocytosis was used to validate the role of this pathway in ZC cell internalization. Results Endocytosis inhibitors identified that Monensin and Chlorpromazine hydrochloride significantly reduced MM-ZC internalization. These findings suggested that Clathrin-mediated endocytosis and endosomal maturation play a crucial role in the cellular uptake of MM-ZC. Biotin pulldown and confocal microscopic studies revealed the involvement of proteins such as Clathrin, Rab5a, Syntaxin-6, and RCAS1 in facilitating the internalization of MM-ZC. Knockdown of Rab5a and Clathrin proteins reduced cellular uptake of MM-ZC and conclusively demonstrated the involvement of Clathrin-Rab5a pathways in MM-ZC endocytosis. Furthermore, both Rab5a and Clathrin reciprocally affected their association with MM-ZC when we depleted their proteins by siRNAs. Additionally, the loss of Rab5a decreased the Syntaxin-6 association with MMZC but not vice versa. Conversely, MM-ZC treatment enhanced the association between Clathrin and Rab5a. Conclusion Overall, the current study provides valuable insights into the cellular uptake and intracellular trafficking of MM-ZC in myeloma cells. Identifying these mechanisms and molecular players involved in MM-ZC uptake contributes to a better understanding of the delivery and potential applications of cell-specific Zip-Codes in gene delivery and drug targeting in cancer research.
Collapse
Affiliation(s)
| | | | - Munevver Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Lei Feng
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | - Andrey Pisarev
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | | | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Yuan Y, Wang X, Jin J, Tang Z, Xian W, Zhang X, Fu J, He K, Liu X. The Salmonella Typhimurium Effector SpvB Subverts Host Membrane Trafficking by Targeting Clathrin and AP-1. Mol Cell Proteomics 2023; 22:100674. [PMID: 37924977 PMCID: PMC10696399 DOI: 10.1016/j.mcpro.2023.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
Salmonella enterica, the etiological agent of gastrointestinal and systemic diseases, translocates a plethora of virulence factors through its type III secretion systems to host cells during infection. Among them, SpvB has been reported to harbor an ADP-ribosyltransferase domain in its C terminus, which destabilizes host cytoskeleton by modifying actin. However, whether this effector targets other host factors as well as the function of its N terminus still remains to be determined. Here, we found that SpvB targets clathrin and its adaptor AP-1 (adaptor protein 1) via interactions with its N-terminal domain. Notably, our data suggest that SpvB-clathrin/AP-1 associations disrupt clathrin-mediated endocytosis and protein secretion pathway as well. In addition, knocking down of AP-1 promotes Salmonella intracellular survival and proliferation in host cells.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xinghao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Jin
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xinyi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China.
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| |
Collapse
|
4
|
Arricau-Bouvery N, Dubrana MP, Canuto F, Duret S, Brocard L, Claverol S, Malembic-Maher S, Foissac X. Flavescence dorée phytoplasma enters insect cells by a clathrin-mediated endocytosis allowing infection of its insect vector. Sci Rep 2023; 13:2211. [PMID: 36750707 PMCID: PMC9905606 DOI: 10.1038/s41598-023-29341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
To perform its propagative and circulative cycle into its insect vector, the flavescence dorée phytoplasma invades different cell types. Clathrin-mediated endocytosis is used by a wide range of bacteria to infect eukaryote cells. Among the insect proteins interacting with the phytoplasma adhesin VmpA, we identified the adaptor protein complex AP-1 and AP-2 suggesting that phytoplasmas could enter the insect cells via clathrin-mediated endocytosis. By infection assays of insect cells in culture, we showed that phytoplasmas entry into Drosophila S2 cells was more efficient than infection of the Euva cell line developed from the insect vector Euscelidius variegatus. Chlorpromazine, cytochalasin D and knockdown of clathrin heavy chain (chc) gene expression using RNA interference inhibited entry of phytoplasmas into S2 cells. During invasion of S2 cells, phytoplasmas were observed very closed to recombinant GFP-labelled clathrin light chain. To verify the role of clathrin in the insect colonization by phytoplasmas, RNAi was performed via artificial feeding of chc dsRNA by the vector E. variegatus. This decreased the expression of chc gene in the midgut and heads of E. variegatus. The chc lower expression correlated to a decreased of midgut and salivary gland cells colonization after the insects had ingested phytoplasmas from infected plants. In conclusion, results indicate that clathrin is important for the FD phytoplasma to enter insect cells and colonize its insect vector.
Collapse
Affiliation(s)
- Nathalie Arricau-Bouvery
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France.
| | - Marie-Pierre Dubrana
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Francesca Canuto
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Sybille Duret
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Lysiane Brocard
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33140, Villenave d'Ornon, France
| | | | - Sylvie Malembic-Maher
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Xavier Foissac
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| |
Collapse
|
5
|
Zhang X, Chen C, Ling C, Luo S, Xiong Z, Liu X, Liao C, Xie P, Liu Y, Zhang L, Chen Z, Liu Z, Tang J. EGFR tyrosine kinase activity and Rab GTPases coordinate EGFR trafficking to regulate macrophage activation in sepsis. Cell Death Dis 2022; 13:934. [PMID: 36344490 PMCID: PMC9640671 DOI: 10.1038/s41419-022-05370-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
EGFR phosphorylation is required for TLR4-mediated macrophage activation during sepsis. However, whether and how intracellular EGFR is transported during endotoxemia have largely been unknown. Here, we show that LPS promotes high levels cell surface expression of EGFR in macrophages through two different transport mechanisms. On one hand, Rab10 is required for EEA1-mediated the membrane translocation of EGFR from the Golgi. On the other hand, EGFR phosphorylation prevents its endocytosis in a kinase activity-dependent manner. Erlotinib, an EGFR tyrosine kinase inhibitor, significantly reduced membrane EGFR expression in LPS-activated macrophage. Mechanistically, upon LPS induced TLR4/EGFR phosphorylation, MAPK14 phosphorylated Rab7a at S72 impaired membrane receptor late endocytosis, which maintains EGFR membrane localization though blocking its lysosomal degradation. Meanwhile, Rab5a is also involved in the early endocytosis of EGFR. Subsequently, inhibition of EGFR phosphorylation switches M1 phenotype to M2 phenotype and alleviates sepsis-induced acute lung injury. Mechanistic study demonstrated that Erlotinib suppressed glycolysis-dependent M1 polarization via PKM2/HIF-1ɑ pathway and promoted M2 polarization through up-regulating PPARγ induced glutamine metabolism. Collectively, our data elucidated a more in-depth mechanism of macrophages activation, and provided stronger evidence supporting EGFR as a potential therapeutic target for the treatment of sepsis.
Collapse
Affiliation(s)
- Xuedi Zhang
- grid.410560.60000 0004 1760 3078The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 Guangdong China ,grid.410560.60000 0004 1760 3078Guangdong Medical University, Zhanjiang, 524000 Guangdong China
| | - Cuiping Chen
- grid.410560.60000 0004 1760 3078The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 Guangdong China
| | - Chunxiu Ling
- grid.410560.60000 0004 1760 3078The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 Guangdong China ,grid.410560.60000 0004 1760 3078Guangdong Medical University, Zhanjiang, 524000 Guangdong China
| | - Shuhua Luo
- grid.410560.60000 0004 1760 3078The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 Guangdong China ,grid.410560.60000 0004 1760 3078Guangdong Medical University, Zhanjiang, 524000 Guangdong China
| | - Ziying Xiong
- grid.410560.60000 0004 1760 3078The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 Guangdong China ,grid.410560.60000 0004 1760 3078Guangdong Medical University, Zhanjiang, 524000 Guangdong China
| | - Xiaolei Liu
- grid.410560.60000 0004 1760 3078The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 Guangdong China ,grid.410560.60000 0004 1760 3078Guangdong Medical University, Zhanjiang, 524000 Guangdong China
| | - Chaoxiong Liao
- grid.410560.60000 0004 1760 3078The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 Guangdong China ,grid.410560.60000 0004 1760 3078Guangdong Medical University, Zhanjiang, 524000 Guangdong China
| | - Pengyun Xie
- grid.410560.60000 0004 1760 3078The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 Guangdong China
| | - Youtan Liu
- grid.284723.80000 0000 8877 7471The Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000 Guangdong China
| | - Liangqing Zhang
- grid.410560.60000 0004 1760 3078The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 Guangdong China
| | - Zhanghui Chen
- Department of Hematology, Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, 524000 Zhanjiang, China
| | - Zhifeng Liu
- The Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010 Guangdong China
| | - Jing Tang
- grid.410560.60000 0004 1760 3078The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 Guangdong China
| |
Collapse
|
6
|
Simvastatin Inhibits Brucella abortus Invasion into RAW 264.7 Cells through Suppression of the Mevalonate Pathway and Promotes Host Immunity during Infection in a Mouse Model. Int J Mol Sci 2022; 23:ijms23158337. [PMID: 35955474 PMCID: PMC9368445 DOI: 10.3390/ijms23158337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase and has been found to have protective effects against several bacterial infections. In this study, we investigate the effects of simvastatin treatment on RAW 264.7 macrophage cells and ICR mice against Brucella (B.) abortus infections. The invasion assay revealed that simvastatin inhibited the Brucella invasion into macrophage cells by blocking the mevalonic pathway. The treatment of simvastatin enhanced the trafficking of Toll-like receptor 4 in membrane lipid raft microdomains, accompanied by the increased phosphorylation of its downstream signaling pathways, including JAK2 and MAPKs, upon =Brucella infection. Notably, the suppressive effect of simvastatin treatment on Brucella invasion was not dependent on the reduction of cholesterol synthesis but probably on the decline of farnesyl pyrophosphate and geranylgeranyl pyrophosphate synthesis. In addition to a direct brucellacidal ability, simvastatin administration showed increased cytokine TNF-α and differentiation of CD8+ T cells, accompanied by reduced bacterial survival in spleens of ICR mice. These data suggested the involvement of the mevalonate pathway in the phagocytosis of B. abortus into RAW 264.7 macrophage cells and the regulation of simvastatin on the host immune system against Brucella infections. Therefore, simvastatin is a potential candidate for studying alternative therapy against animal brucellosis.
Collapse
|
7
|
Xue K, Wang L, Liu J. Bacterial outer membrane vesicles and their functionalization as vehicles for bioimaging, diagnosis and therapy. MATERIALS ADVANCES 2022; 3:7185-7197. [DOI: 10.1039/d2ma00420h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
In this review, we summarize the bioactivities of bacterial outer membrane vesicles, including biogenesis, immunogenicity, and interactions, followed by a discussion on their functionalization as nanocarriers for bioimaging, diagnosis, and therapy.
Collapse
Affiliation(s)
- Kaikai Xue
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
8
|
Cortés HD, Gómez FA, Marshall SH. The Phagosome-Lysosome Fusion Is the Target of a Purified Quillaja saponin Extract (PQSE) in Reducing Infection of Fish Macrophages by the Bacterial Pathogen Piscirickettsia salmonis. Antibiotics (Basel) 2021; 10:antibiotics10070847. [PMID: 34356768 PMCID: PMC8300623 DOI: 10.3390/antibiotics10070847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Piscirickettsia salmonis, the etiological agent of Piscirickettsiosis, is a Gram-negative and facultative intracellular pathogen that has affected the Chilean salmon industry since 1989. The bacterium is highly aggressive and can survive and replicate within fish macrophages using the Dot/Icm secretion system to evade the host’s immune response and spread systemically. To date, no efficient control measures have been developed for this disease; therefore, the producers use large amounts of antibiotics to control this pathogen. In this frame, this work has focused on evaluating the use of saponins from Quillaja saponaria as a new alternative to control the Piscirickettsiosis. It has been previously reported that purified extract of Q. saponaria (PQSE) displays both antimicrobial activity against pathogenic bacteria and viruses and adjuvant properties. Our results show that PQSE does not present antimicrobial activity against P. salmonis, although it reduces P. salmonis infection in an in vitro model, promoting the phagosome–lysosome fusion. Additionally, we demonstrate that PQSE modulates the expression of IL-12 and IL-10 in infected cells, promoting the immune response against the pathogen and reducing the expression of pathogen virulence genes. These results together strongly argue for specific anti-invasion and anti-intracellular replication effects induced by the PQSE in macrophages.
Collapse
|
9
|
Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Infect Immun 2020; 88:IAI.00920-19. [PMID: 32253250 DOI: 10.1128/iai.00920-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that consists of inner leaflet phospholipids and outer leaflet lipopolysaccharides (LPS). The asymmetric character and unique biochemistry of LPS molecules contribute to the OM's ability to function as a molecular permeability barrier that protects the bacterium against hazards in the environment. Assembly and regulation of the OM have been extensively studied for understanding mechanisms of antibiotic resistance and bacterial defense against host immunity; however, there is little knowledge on how Gram-negative bacteria release their OMs into their environment to manipulate their hosts. Discoveries in bacterial lipid trafficking, OM lipid homeostasis, and host recognition of microbial patterns have shed new light on how microbes secrete OM vesicles (OMVs) to influence inflammation, cell death, and disease pathogenesis. Pathogens release OMVs that contain phospholipids, like cardiolipins, and components of LPS molecules, like lipid A endotoxins. These multiacylated lipid amphiphiles are molecular patterns that are differentially detected by host receptors like the Toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD-2), mouse caspase-11, and human caspases 4 and 5. We discuss how lipid ligands on OMVs engage these pattern recognition receptors on the membranes and in the cytosol of mammalian cells. We then detail how bacteria regulate OM lipid asymmetry, negative membrane curvature, and the phospholipid-to-LPS ratio to control OMV formation. The goal is to highlight intersections between OM lipid regulation and host immunity and to provide working models for how bacterial lipids influence vesicle formation.
Collapse
|
10
|
Tang J, Zhou B, Scott MJ, Chen L, Lai D, Fan EK, Li Y, Wu Q, Billiar TR, Wilson MA, Wang P, Fan J. EGFR signaling augments TLR4 cell surface expression and function in macrophages via regulation of Rab5a activation. Protein Cell 2020; 11:144-149. [PMID: 31705388 PMCID: PMC6954894 DOI: 10.1007/s13238-019-00668-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Jing Tang
- The Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang, 524000, China.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Organ Injury/Protection and Translational Medicine of Zhanjiang, Zhanjiang, 524000, China.
| | - Bowei Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Linsong Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Dengming Lai
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Cardiovascular Surgery, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Erica K Fan
- University of Pittsburgh The Graduate School of Public Health, Pittsburgh, PA, 15213, USA
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Qiang Wu
- Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Mark A Wilson
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Ping Wang
- The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
11
|
Caven L, Carabeo RA. Pathogenic Puppetry: Manipulation of the Host Actin Cytoskeleton by Chlamydia trachomatis. Int J Mol Sci 2019; 21:ijms21010090. [PMID: 31877733 PMCID: PMC6981773 DOI: 10.3390/ijms21010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022] Open
Abstract
The actin cytoskeleton is crucially important to maintenance of the cellular structure, cell motility, and endocytosis. Accordingly, bacterial pathogens often co-opt the actin-restructuring machinery of host cells to access or create a favorable environment for their own replication. The obligate intracellular organism Chlamydia trachomatis and related species exemplify this dynamic: by inducing actin polymerization at the site of pathogen-host attachment, Chlamydiae induce their own uptake by the typically non-phagocytic epithelium they infect. The interaction of chlamydial adhesins with host surface receptors has been implicated in this effect, as has the activity of the chlamydial effector TarP (translocated actin recruitment protein). Following invasion, C. trachomatis dynamically assembles and maintains an actin-rich cage around the pathogen’s membrane-bound replicative niche, known as the chlamydial inclusion. Through further induction of actin polymerization and modulation of the actin-crosslinking protein myosin II, C. trachomatis promotes egress from the host via extrusion of the inclusion. In this review, we present the experimental findings that can inform our understanding of actin-dependent chlamydial pathogenesis, discuss lingering questions, and identify potential avenues of future study.
Collapse
Affiliation(s)
- Liam Caven
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Correspondence: ; Tel.: +1-402-836-9778
| |
Collapse
|
12
|
Interleukin 6 Promotes Brucella abortus Clearance by Controlling Bactericidal Activity of Macrophages and CD8 + T Cell Differentiation. Infect Immun 2019; 87:IAI.00431-19. [PMID: 31451617 DOI: 10.1128/iai.00431-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
To date, the implications of interleukin 6 (IL-6) for immune responses in the context of Brucella infection are still unknown. In the present study, we found that Brucella abortus infection induced marked production of IL-6 in mice that was important for sufficient differentiation of CD8+ T cells, a key factor in Brucella clearance. Blocking IL-6 signaling also significantly induced serum IL-4 and IL-10, together with a decreased gamma interferon (IFN-γ) level, suggesting that IL-6 is essential for priming the T-helper (Th) 1 cell immune response during Brucella infection. The IL-6 pathway also activated the bactericidal activity of primary and cultured macrophages. Bacterial killing was markedly abrogated when IL-6 signaling was suppressed, and this phenomenon was mainly associated with decreased activity of lysosome-mediated killing. Interestingly, suppressor of cytokine signaling 3 (SOCS3) was important for regulating the IL-6-dependent anti-Brucella activity through the JAK/STAT pathway. During early infection, in the absence of SOCS3, IL-6 exhibited anti-inflammatory effects and lysosome-mediated killing inhibition; however, the increase in SOCS3 successfully shifted functional IL-6 toward proinflammatory brucellacidal activity in the late stage. Our data clearly indicate that IL-6 contributes to host resistance against B. abortus infection by controlling brucellacidal activity in macrophages and priming cellular immune responses.
Collapse
|
13
|
A Role for the VPS Retromer in Brucella Intracellular Replication Revealed by Genomewide siRNA Screening. mSphere 2019; 4:4/3/e00380-19. [PMID: 31243080 PMCID: PMC6595151 DOI: 10.1128/msphere.00380-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brucella, the agent causing brucellosis, is a major zoonotic pathogen with worldwide distribution. Brucella resides and replicates inside infected host cells in membrane-bound compartments called Brucella-containing vacuoles (BCVs). Following uptake, Brucella resides in endosomal BCVs (eBCVs) that gradually mature from early to late endosomal features. Through a poorly understood process that is key to the intracellular lifestyle of Brucella, the eBCV escapes fusion with lysosomes by transitioning to the replicative BCV (rBCV), a replicative niche directly connected to the endoplasmic reticulum (ER). Despite the notion that this complex intracellular lifestyle must depend on a multitude of host factors, a holistic view on which of these components control Brucella cell entry, trafficking, and replication is still missing. Here we used a systematic cell-based small interfering RNA (siRNA) knockdown screen in HeLa cells infected with Brucella abortus and identified 425 components of the human infectome for Brucella infection. These include multiple components of pathways involved in central processes such as the cell cycle, actin cytoskeleton dynamics, or vesicular trafficking. Using assays for pathogen entry, knockdown complementation, and colocalization at single-cell resolution, we identified the requirement of the VPS retromer for Brucella to escape the lysosomal degradative pathway and to establish its intracellular replicative niche. We thus validated the VPS retromer as a novel host factor critical for Brucella intracellular trafficking. Further, our genomewide data shed light on the interplay between central host processes and the biogenesis of the Brucella replicative niche.IMPORTANCE With >300,000 new cases of human brucellosis annually, Brucella is regarded as one of the most important zoonotic bacterial pathogens worldwide. The agent causing brucellosis resides inside host cells within vacuoles termed Brucella-containing vacuoles (BCVs). Although a few host components required to escape the degradative lysosomal pathway and to establish the ER-derived replicative BCV (rBCV) have already been identified, the global understanding of this highly coordinated process is still partial, and many factors remain unknown. To gain deeper insight into these fundamental questions, we performed a genomewide RNA interference (RNAi) screen aiming at discovering novel host factors involved in the Brucella intracellular cycle. We identified 425 host proteins that contribute to Brucella cellular entry, intracellular trafficking, and replication. Together, this study sheds light on previously unknown host pathways required for the Brucella infection cycle and highlights the VPS retromer components as critical factors for the establishment of the Brucella intracellular replicative niche.
Collapse
|
14
|
Abstract
The entry of pathogens into nonphagocytic host cells has received much attention in the past three decades, revealing a vast array of strategies employed by bacteria and viruses. A method of internalization that has been extensively studied in the context of viral infections is the use of the clathrin-mediated pathway. More recently, a role for clathrin in the entry of some intracellular bacterial pathogens was discovered. Classically, clathrin-mediated endocytosis was thought to accommodate internalization only of particles smaller than 150 nm; however, this was challenged upon the discovery that Listeria monocytogenes requires clathrin to enter eukaryotic cells. Now, with discoveries that clathrin is required during other stages of some bacterial infections, another paradigm shift is occurring. There is a more diverse impact of clathrin during infection than previously thought. Much of the recent data describing clathrin utilization in processes such as bacterial attachment, cell-to-cell spread and intracellular growth may be due to newly discovered divergent roles of clathrin in the cell. Not only does clathrin act to facilitate endocytosis from the plasma membrane, but it also participates in budding from endosomes and the Golgi apparatus and in mitosis. Here, the manipulation of clathrin processes by bacterial pathogens, including its traditional role during invasion and alternative ways in which clathrin supports bacterial infection, is discussed. Researching clathrin in the context of bacterial infections will reveal new insights that inform our understanding of host-pathogen interactions and allow researchers to fully appreciate the diverse roles of clathrin in the eukaryotic cell.
Collapse
Affiliation(s)
- Eleanor A Latomanski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Rossi UA, Hasenauer FC, Caffaro ME, Raschia MA, Maurizio E, Cortez HS, Neumann RD, Poli MA, Rossetti CA. Association of an IRF3 putative functional uORF variant with resistance to Brucella infection: A candidate gene based analysis of InDel polymorphisms in goats. Cytokine 2018; 115:109-115. [PMID: 30477986 DOI: 10.1016/j.cyto.2018.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
Brucellosis is an important zoonotic disease caused by infection with Brucella spp. It generates major economic losses in livestock production worldwide. Goats are the principal hosts of B. melitensis, the main infection agent of caprine and human brucellosis. The selection of resistance-related genes is considered one of the best long-term means to improve control to bacterial infection in domestic ruminants. We performed a candidate gene association study to test if six short insertion/deletion polymorphisms (InDels) at bacterial-infection related genes influence the resistance to Brucella infection in female creole goats. InDels (IRF3-540: rs660531540, FKBP5-294: rs448529294, TIRAP-561: rs657494561, PTPRT-588: rs667380588, KALRN-989: rs667660989 and RAB5a-016: rs661537016) were resolved by PCR-capillary electrophoresis in samples from 64 cases and 64 controls for brucellosis. Allelic frequencies were significantly different between cases and controls at IRF3-540 and KALRN-989 (p = 0.001 and 0.005). Indeed, the minor alleles (a and k) at InDels IRF3-540 and KALRN-989 were more frequent among controls than cases, providing evidence that these alleles confer protection against Brucella infection. Moreover, IRF3-540 a-containing genotypes (Aa and aa) were associated with absence of Brucella-specific antibodies in goats (p = 0.003; OR = 3.52; 95% CI = 1.55-7.96), and more specifically, a-allele was associated with resistance to Brucella infection in a dose-dependent manner. Also, we observed that the IRF3-540 deletion (a-allele) extends a conserved upstream ORF by 75 nucleotides to the main ORF, and thus it may decrease gene expression by reducing translation efficiency from the main ORF. These results suggest a potential functional role of IRF3-540 deletion in genetic resistance to Brucella infection in goats.
Collapse
Affiliation(s)
- Ursula A Rossi
- Instituto Nacional de Tecnología Agropecuaria, CICVyA, Instituto de Patobiología, Nicolás Repetto y de Los Reseros s/n, Hurlingham, Buenos Aires B1686, Argentina
| | - Flavia C Hasenauer
- Instituto Nacional de Tecnología Agropecuaria, CICVyA, Instituto de Patobiología, Nicolás Repetto y de Los Reseros s/n, Hurlingham, Buenos Aires B1686, Argentina; CONICET, Buenos Aires, Argentina
| | - María E Caffaro
- Inst. de Genética ''Ewald A. Favret'', Nicolás Repetto y de Los Reseros s/n, Hurlingham, Buenos Aires B1686, Argentina
| | - Maria A Raschia
- Inst. de Genética ''Ewald A. Favret'', Nicolás Repetto y de Los Reseros s/n, Hurlingham, Buenos Aires B1686, Argentina
| | - Estefania Maurizio
- Instituto Nacional de Tecnología Agropecuaria, CICVyA, Instituto de Patobiología, Nicolás Repetto y de Los Reseros s/n, Hurlingham, Buenos Aires B1686, Argentina
| | - Hector S Cortez
- Instituto Nacional de Tecnología Agropecuaria, IIACS, Area de Salud Animal, RN 68 (km 172) Cerrillos, Salta, Argentina
| | - Roberto D Neumann
- Instituto Nacional de Tecnología Agropecuaria, IIACS, Area de Salud Animal, RN 68 (km 172) Cerrillos, Salta, Argentina
| | - Mario A Poli
- Inst. de Genética ''Ewald A. Favret'', Nicolás Repetto y de Los Reseros s/n, Hurlingham, Buenos Aires B1686, Argentina
| | - Carlos A Rossetti
- Instituto Nacional de Tecnología Agropecuaria, CICVyA, Instituto de Patobiología, Nicolás Repetto y de Los Reseros s/n, Hurlingham, Buenos Aires B1686, Argentina.
| |
Collapse
|
16
|
Hop HT, Arayan LT, Huy TXN, Reyes AWB, Vu SH, Min W, Lee HJ, Rhee MH, Chang HH, Kim S. The Key Role of c-Fos for Immune Regulation and Bacterial Dissemination in Brucella Infected Macrophage. Front Cell Infect Microbiol 2018; 8:287. [PMID: 30186773 PMCID: PMC6110913 DOI: 10.3389/fcimb.2018.00287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
The cellular oncogene c-Fos (c-Fos) is a component of activator protein 1 (AP1), a master transcriptional regulator of cells. The suppression of c-Fos signaling by siRNA treatment resulted in significant induction of TLR4, which subsequently activates p38 and ERK1/2 mitogen-activated protein kinases (MAPKs) and enhances F-actin polymerization, leading to an increase in B. abortus phagocytosis. During B. abortus infection, c-Fos signaling is induced, which activates the downstream innate-immunity signaling cascade for bacterial clearance. The inhibition of c-Fos signaling led to increased production of interleukin 10 (IL-10), which partially suppressed lysosome-mediated killing, resulting in increased survival of B. abortus inside macrophages. We present evidence of the regulatory role played by the c-Fos pathway in proliferation during B. abortus infection; however, this was independent of the anti-Brucella effect of this pathway. Another finding is the essential contribution of c-Fos/TRAIL to infected-cell necrosis, which is a key event in bacterial dissemination. These data provide the mechanism via which c-Fos participates in host defense mechanisms against Brucella infection and in bacterial dissemination by macrophages.
Collapse
Affiliation(s)
- Huynh T Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Lauren T Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Tran X N Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Alisha W B Reyes
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Son H Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Hu J Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Man H Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Hong H Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
17
|
Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 2018; 107:455-471. [PMID: 29235173 PMCID: PMC5796862 DOI: 10.1111/mmi.13896] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 02/06/2023]
Abstract
Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire cell envelope in Gram-negative and Gram-positive bacteria. They play important roles through the contact-dependent secretion of effector molecules into eukaryotic hosts and conjugative transfer of mobile DNA elements as well as contact-independent exchange of DNA with the extracellular milieu. In the last few years, many details on the molecular mechanisms of T4SSs have been elucidated. Exciting structures of T4SS complexes from Escherichia coli plasmids R388 and pKM101, Helicobacter pylori and Legionella pneumophila have been solved. The structure of the F-pilus was also reported and surprisingly revealed a filament composed of pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs have been identified and characterized, underscoring the structural and functional diversity of this secretion superfamily. Complex regulatory circuits also have been shown to control T4SS machine production in response to host cell physiological status or a quorum of bacterial recipient cells in the vicinity. Here, we summarize recent advances in our knowledge of 'paradigmatic' and emerging systems, and further explore how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial resistances.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Beuth University of Applied Sciences Berlin, Life Sciences and Technology, D-13347 Berlin, Germany
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, USA
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom
| | - Steffen Backert
- Friedrich Alexander University Erlangen-Nuremberg, Department of Biology, Division of Microbiology, Staudtstrasse 5, D-91058 Erlangen, Germany
| |
Collapse
|
18
|
Hop HT, Reyes AWB, Huy TXN, Arayan LT, Min W, Lee HJ, Rhee MH, Chang HH, Kim S. Interleukin 10 suppresses lysosome-mediated killing of Brucella abortus in cultured macrophages. J Biol Chem 2018; 293:3134-3144. [PMID: 29301939 DOI: 10.1074/jbc.m117.805556] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/06/2017] [Indexed: 11/06/2022] Open
Abstract
Brucella abortus is a Gram-negative zoonotic pathogen for which there is no 100% effective vaccine. Phagosomes in B. abortus-infected cells fail to mature, allowing the pathogen to survive and proliferate. Interleukin 10 (IL10) promotes B. abortus persistence in macrophages by mechanisms that are not fully understood. In this study, we investigated the regulatory role of IL10 in the immune response to B. abortus infection. B. abortus-infected macrophages were treated with either IL10 siRNA or recombinant IL10 (rIL10), and the expression of phagolysosome- or inflammation-related genes was evaluated by qRT-PCR and Western blotting. Phagolysosome fusion was monitored by fluorescence microscopy. We found that the synthesis of several membrane-trafficking regulators and lysosomal enzymes was suppressed by IL10 during infection, resulting in a significant increase in the recruitment of hydrolytic enzymes by Brucella-containing phagosomes (BCPs) when IL10 signaling was blocked. Moreover, blocking IL10 signaling also enhanced proinflammatory cytokine production. Finally, concomitant treatment with STAT3 siRNA significantly reduced the suppression of proinflammatory brucellacidal activity but not phagolysosome fusion by rIL10. Thus, our data provide the first evidence that clearly indicates the suppressive role of IL10 on phagolysosome fusion and inflammation in response to B. abortus infection through two distinct mechanisms, STAT3-independent and -dependent pathways, respectively, in murine macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- From the Institute of Animal Medicine, College of Veterinary Medicine, and
| | | | - Tran Xuan Ngoc Huy
- From the Institute of Animal Medicine, College of Veterinary Medicine, and
| | | | - WonGi Min
- From the Institute of Animal Medicine, College of Veterinary Medicine, and
| | - Hu Jang Lee
- From the Institute of Animal Medicine, College of Veterinary Medicine, and
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea and
| | - Suk Kim
- From the Institute of Animal Medicine, College of Veterinary Medicine, and .,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea and
| |
Collapse
|
19
|
Hop HT, Arayan LT, Huy TXN, Reyes AWB, Baek EJ, Min W, Lee HJ, Rhee MH, Watanabe K, Chang HH, Kim S. Lipocalin 2 (Lcn2) interferes with iron uptake by Brucella abortus and dampens immunoregulation during infection of RAW 264.7 macrophages. Cell Microbiol 2017; 20. [PMID: 29168343 DOI: 10.1111/cmi.12813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/19/2023]
Abstract
Lipocalin 2 (Lcn2) is an important innate immunity component against bacterial pathogens. In this study, we report that Lcn2 is induced by Brucella (B.) abortus infection and significantly contributes to the restriction of intracellular survival of Brucella in macrophages. We found that Lcn2 prevented iron uptake by B. abortus through two distinct mechanisms. First, Lcn2 is secreted to capture bacterial siderophore(s) and abrogate iron import by Brucella. Second, Lcn2 decreases the intracellular iron levels during Brucella infection, which probably deprives the invading Brucella of the iron source needed for growth. Suppression of Lcn2 signalling resulted in a marked induction of anti-inflammatory cytokine, interleukin 10, which was shown to play a major role in Lcn2-induced antibrucella immunity. Similarly, interleukin 6 was also found to be increased when Lcn2 signalling is abrogated; however, this induction was thought to be an alternative pathway that rescues the cell from infection when the effective Lnc2 pathway is repressed. Furthermore, Lcn2 deficiency also caused a marked decrease in brucellacidal effectors, such as reactive oxygen species and nitric oxide but not the phagolysosome fusion. Taken together, our results indicate that Lcn2 is required for the efficient restriction of intracellular B. abortus growth that is through limiting iron acquisition and shifting cells to pro-inflammatory brucellacidal activity in murine macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | - Eun Jin Baek
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
20
|
Hop HT, Reyes AWB, Huy TXN, Arayan LT, Min W, Lee HJ, Rhee MH, Chang HH, Kim S. Activation of NF- kB-Mediated TNF-Induced Antimicrobial Immunity Is Required for the Efficient Brucella abortus Clearance in RAW 264.7 Cells. Front Cell Infect Microbiol 2017; 7:437. [PMID: 29062811 PMCID: PMC5640714 DOI: 10.3389/fcimb.2017.00437] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/25/2017] [Indexed: 11/19/2022] Open
Abstract
In this study, we explore the regulatory roles of pro-inflammatory cytokine tumor necrosis factor alpha (TNF) in the innate immunity of macrophages against B. abortus infection. We show that infection of macrophage with B. abortus induces marked expression and secretion of TNF which subsequently binds to TNF receptor 1 (TNFR-1) and activates a downstream signaling cascade of the innate immunity. Blocking of TNF signaling resulted in a notable increase of B. abortus survival which was associated with an increase of anti-inflammatory cytokine interleukin 10 (IL-10), a beneficial effector of Brucella survival, as well as remarkable decrease of reactive oxygen species (ROS) and nitric oxide (NO), antibrucella molecules. However, surprisingly, the interference of TNF did not show any influence on phagolysosome and cell death events. Furthermore, the transcriptional factor NF-kB was found to be a main mediator of TNF signaling when blocking of NF-kB pathway drastically suppressed the TNF-induced brucellacidal effect. Taken together, these findings clearly indicate that the immune cascade activated by TNF/TNFR-1 is required for the sufficient resistance to B. abortus survival in macrophages.
Collapse
Affiliation(s)
- Huynh T Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Alisha W B Reyes
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Tran X N Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Lauren T Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Hu J Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Man H Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Hong H Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
21
|
Lee JJ, Simborio HL, Reyes AWB, Hop HT, Arayan LT, Lee HJ, Min W, Her M, Rhee MH, Watarai M, Chang HH, Kim S. Influence of platelet-activating factor receptor (PAFR) on Brucella abortus infection: implications for manipulating the phagocytic strategy of B. abortus. BMC Microbiol 2016; 16:70. [PMID: 27098179 PMCID: PMC4839150 DOI: 10.1186/s12866-016-0685-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 04/07/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Brucella abortus is an intracellular pathogen which can infect and persist in host cells through multiple interactions. Above all, its interaction to host cell receptor is important to understand the pathogenic mechanisms of B. abortus. Accordingly, we demonstrated that platelet-activating factor receptor (PAFR) affects host cell response against B. abortus infection. RESULTS First of all, B. abortus infection to macrophage induces secretion of platelet-activating factor (PAF), which is a PAFR agonist. The stimulation of PAFR by PAF remarkably increases B. abortus uptake into macrophages. It induces Janus kinase 2 (JAK2) and p38α phosphorylation, indicating that PAFR-mediated activation of JAK2 signaling leads to enhanced uptake of B. abortus. Moreover, the dynamics of F-actin polymerization revealed that PAFR-mediated B. abortus uptake is related with the reorganization of F-actin and JAK2. Upon B. abortus phagocytosis, reduced PAFR in the membrane and subsequently increased levels of PAFR colocalization with endosomes were observed which indicate that B. abortus uptake into macrophages allowed PAFR trafficking to endosomes. CONCLUSIONS This study demonstrated that PAFR has a compelling involvement in B. abortus uptake as a promoter of phagocytosis, which is associated with JAK2 activation. Thus, our findings establish a novel insight into a receptor-related phagocytic mechanism of B. abortus.
Collapse
Affiliation(s)
- Jin Ju Lee
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-757, Republic of Korea
| | - Hannah Leah Simborio
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | | | - Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Moon Her
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-757, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Masahisa Watarai
- Department of Veterinary Public Health, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea. .,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
22
|
Ke Y, Wang Y, Li W, Chen Z. Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol 2015; 5:72. [PMID: 26528442 PMCID: PMC4602199 DOI: 10.3389/fcimb.2015.00072] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.
Collapse
Affiliation(s)
- Yuehua Ke
- Institute of Disease Control and Prevention, AMMS Beijing, China
| | - Yufei Wang
- Department of Laboratory Medicine, General Hospital of Chinese People's Armed Police Forces Beijing, China
| | - Wengfeng Li
- Department of Orthopedics, The First Affiliated Hospital of General Hospital of People's Liberation Army Beijing, China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, AMMS Beijing, China
| |
Collapse
|
23
|
Ramírez R, Gómez FA, Marshall SH. The infection process of Piscirickettsia salmonis in fish macrophages is dependent upon interaction with host-cell clathrin and actin. FEMS Microbiol Lett 2014; 362:1-8. [PMID: 25790493 DOI: 10.1093/femsle/fnu012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Piscirickettsia salmonis is an aggressive fish pathogen that causes Piscirickettsiosis, a systemic disease that threatens the sustainability of salmon production in Chile. To date, the infection strategies of this bacterium are poorly characterized, a Dot/Icm Type IV Secretion System homolog for intracellular multiplication and survival in macrophages is suggested. Since an invading pathogen and its host develop a complex interaction in which the pathogen strives to survive and replicate, while the host tries to eliminate infected cells and the invading pathogen, we decided to evaluate how the bacterium enters macrophages, its preferred target in vivo, and to follow its fate while struggling with its host using actin cytoskeleton as a molecular marker. We were able to demonstrate that clathrin is required for internalization and that actin cytoskeleton plays a demonstrative role throughout the infective process. Indeed, unlike other fish pathogens, P. salmonis fully exploits the actin monomers both from the disorganized cytoskeleton and an apparently pathogen-induced de novo synthesis of actin, generating tridimensional vacuoles that are increasingly detected at later stages of infection. We expect our results to contribute to a better understanding of the pathogenesis of this important fish pathogen.
Collapse
Affiliation(s)
- Ramón Ramírez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile Fraunhofer Chile Research Foundation, Center For Systems Biotechnology, Avenida M. Sánchez Fontecilla 310, Piso 14. Las Condes Santiago, Chile
| | - Fernando A Gómez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile
| | - Sergio H Marshall
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile NBC, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile Fraunhofer Chile Research Foundation, Center For Systems Biotechnology, Avenida M. Sánchez Fontecilla 310, Piso 14. Las Condes Santiago, Chile
| |
Collapse
|
24
|
Hagiwara M, Kokubu E, Sugiura S, Komatsu T, Tada H, Isoda R, Tanigawa N, Kato Y, Ishida N, Kobayashi K, Nakashima M, Ishihara K, Matsushita K. Vinculin and Rab5 complex is required [correction of requited]for uptake of Staphylococcus aureus and interleukin-6 expression. PLoS One 2014; 9:e87373. [PMID: 24466349 PMCID: PMC3900708 DOI: 10.1371/journal.pone.0087373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/24/2013] [Indexed: 01/27/2023] Open
Abstract
Vinculin, a 116-kDa membrane cytoskeletal protein, is an important molecule for cell adhesion; however, little is known about its other cellular functions. Here, we demonstrated that vinculin binds to Rab5 and is required for Staphylococcus aureus (S. aureus) uptake in cells. Viunculin directly bound to Rab5 and enhanced the activation of S. aureus uptake. Over-expression of active vinculin mutants enhanced S. aureus uptake, whereas over-expression of an inactive vinculin mutant decreased S. aureus uptake. Vinculin bound to Rab5 at the N-terminal region (1-258) of vinculin. Vinculin and Rab5 were involved in the S. aureus-induced phosphorylation of MAP kinases (p38, Erk, and JNK) and IL-6 expression. Finally, vinculin and Rab5 knockdown reduced infection of S. aureus, phosphorylation of MAPKs and IL-6 expression in murine lungs. Our results suggest that vinculin binds to Rab5 and that these two molecules cooperatively enhance bacterial infection and the inflammatory response.
Collapse
Affiliation(s)
- Makoto Hagiwara
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiba, Japan
| | - Shinsuke Sugiura
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Toshinori Komatsu
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroyuki Tada
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Ryutaro Isoda
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Naomi Tanigawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yoshiko Kato
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Naoyuki Ishida
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kaoru Kobayashi
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Misako Nakashima
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail:
| |
Collapse
|