1
|
Martin TJ, Martin CW, Frankowski KJ, Blough BE, Aubé J, Bohn LM, Jones SR. Depression of intracranial self-stimulation in male and female rats by intraperitoneal lactic acid: effects of morphine, ketoprofen, and interactions with G-protein biased kappa opioid agonists. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06800-3. [PMID: 40327089 DOI: 10.1007/s00213-025-06800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION Numerous pharmacological classes of compounds have been explored as novel and efficacious alternatives to standard mu opioid agonist analgesics. We and others have described G-protein biased kappa opioid agonists as having potential utility as analgesics due to a lower propensity to produce sedation and dysphoria, which are thought to be mediated in large part through beta-arrestin signaling. METHODS Here we compare two G-protein biased kappa agonists that differ in their basic chemical scaffold, triazole 1.1 (Tr1.1) and isoquinolinone 2.1 (Iso2.1), for alteration of intracranial self-stimulation (ICSS) in male and female rats. Lactic acid (LA) was given i.p. at a concentration sufficient to produce moderate to severe depression of ICSS. RESULTS Neither Tr1.1 nor Iso2.2 reversed the effects of lactic acid at concentrations that produced significant depression of ICSS in either sex. Neither drug altered ICSS in the absence of lactic acid administration. In both males and females, morphine reversed the effects of i.p. lactic acid on ICSS and co-administration of Tr1.1 did not alter the dose-effect curve for morphine in either sex. Similar effects were observed for ketoprofen. Ketoprofen also reversed the effects of i.p. lactic acid on ICSS in both sexes in a dose-dependent manner, and co-administration of neither Tr1.1 nor Iso2.1 altered the ketoprofen dose-effect curve. CONCLUSIONS These data suggest that these G-protein biased kappa agonists may lack sufficient efficacy or potency to alter the effects of opioids or NSAIDs against moderate to severe antinociceptive stimuli in rats, and development of more potent or efficacious compounds may be required to demonstrate efficacy in rat models of moderate to severe nociception.
Collapse
Affiliation(s)
- Thomas J Martin
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Conner W Martin
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kevin J Frankowski
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| | - Jeffrey Aubé
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sara R Jones
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
2
|
Lopes EF, West AM, Locke JL, Holleran K, Adrian LA, Dawes MH, Curry AM, McKelvey HA, Martin T, Jones SR. Morphine-Induced Antinociception Is Potentiated and Dopamine Elevations Are Inhibited by the Biased Kappa Opioid Receptor Agonist Triazole 1.1. ACS Chem Neurosci 2025; 16:1377-1387. [PMID: 40129263 DOI: 10.1021/acschemneuro.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Traditional analgesic opioid compounds, which act through μ opioid receptors (MORs), engender a high risk for misuse and dependence. κ opioid receptor (KOR) activation, a potential target for pain treatment, produces antinociception without euphoric side effects but results in dysphoria and aversion. Triazole 1.1 is a KOR agonist biased toward G-protein coupled signaling, potentially promoting antinociception without dysphoria. We tested whether triazole 1.1 could provide antinociception and its effects in combination with morphine. We employed a lactic acid abdominal pain model, which induced acute pain behaviors, decreased basal dopamine levels in the nucleus accumbens (NAc), and increased KOR function. We administered several interventions including triazole 1.1 (30 mg/kg) and morphine (12 or 24 mg/kg), individually and in combination. Triazole 1.1 alone reduced the pain behavioral response and changes to KOR function but did not prevent the reduction in basal dopamine levels. Morphine not only dose-dependently prevented behavioral pain responses but also elevated NAc dopamine and did not prevent the pain-induced increase in KOR function. However, combining low-dose morphine with triazole 1.1 prevents behavioral pain responses, changes to NAc dopamine levels, and changes to KOR function. Therefore, we present triazole 1.1 as a dose-sparing pain treatment to be used in combination with a lower dose of morphine, thus reducing the potential for opioid misuse.
Collapse
Affiliation(s)
- Emanuel F Lopes
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Alyssa M West
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Jason L Locke
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Katherine Holleran
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Leighelle A Adrian
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Monica H Dawes
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Alyson M Curry
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Harlie A McKelvey
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Thomas Martin
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sara R Jones
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
3
|
Volf A, Brust TF, Kobylski RR, Czekner KM, Stahl EL, Cameron MD, Trojniak AE, Aubé J, Bohn LM. Triazole 187 is a biased KOR agonist that suppresses itch without sedation and induces anxiolytic-like behaviors in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638680. [PMID: 40027836 PMCID: PMC11870565 DOI: 10.1101/2025.02.17.638680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Kappa opioid receptor agonists are clinically used to treat pruritis and have therapeutic potential for the treatment of pain and neuropsychiatric disorders. We have previously shown that triazole 1.1 is a G protein signaling-biased KOR agonist, that can suppress itch without producing signs of sedation in mice. This profile was recapitulated in rats and non-human primates however, triazole 1.1 had limited potency as an antipruritic. Here we describe a more potent, G protein signaling-biased agonist, triazole 187. Triazole 187 is a potent antipruritic agent and does not decrease spontaneous locomotor activity; interestingly, it produces anxiolytic-like behaviors in mice, an effect not observed for triazole 1.1. In addition to curbing sedation, triazole 187 produces only mild diuresis, resulting in 30% of urine output induced by U50,488H at dose that is 188-fold the antipruritic potency dose. Compounds like triazole 187 may present a means to treat anxiety accompanied by persistent chronic itch while avoiding sedation and diuresis accompanied by typical KOR agonists. Abstract Figure
Collapse
|
4
|
Nesterova YV, Mukhomedzyanov AV, Povetyeva TN, Suslov NI, Kul'pin PV, Afanas'eva OG, Vychuzhanina AV, Rybalkina OY, Zyuz'kov GN, Zhdanov VV, Minakova MY. Involvement of Receptor Apparatus in the Realization of Antinociceptive Activity of Songorine. Bull Exp Biol Med 2025; 178:423-426. [PMID: 40131670 DOI: 10.1007/s10517-025-06349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Indexed: 03/27/2025]
Abstract
The receptor mechanism of the antinociceptive effect of the diterpene alkaloid songorine was investigated in an experiment on mice. Antagonists of peripheral opioid, κ-opioid, and cannabinoid 1 receptors eliminated the analgesic effect of songorine. These findings suggest that these receptors are involved in the antinociceptive action of songorine.
Collapse
Affiliation(s)
- Yu V Nesterova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, Tomsk, Russia
| | - A V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - T N Povetyeva
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, Tomsk, Russia
| | - N I Suslov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, Tomsk, Russia
| | - P V Kul'pin
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, Tomsk, Russia
| | - O G Afanas'eva
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, Tomsk, Russia
| | - A V Vychuzhanina
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, Tomsk, Russia
| | - O Yu Rybalkina
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, Tomsk, Russia
| | - G N Zyuz'kov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, Tomsk, Russia
| | - V V Zhdanov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, Tomsk, Russia
| | - M Yu Minakova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, Tomsk, Russia
| |
Collapse
|
5
|
Tran LT, Freeman KT, Lunzer MM, Portoghese PS, Haskell-Luevano C. Recommended Opioid Receptor Tool Compounds: Comparative In Vitro for Receptor Selectivity Profiles and In Vivo for Pharmacological Antinociceptive Profiles. ACS Pharmacol Transl Sci 2025; 8:225-244. [PMID: 39816790 PMCID: PMC11729433 DOI: 10.1021/acsptsci.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025]
Abstract
Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including 35S-GTPγS functional and cAMP based assays. A number of research laboratories have studied key "tool" reference opioid receptor ligands for decades and used them as control reference compounds. Some, but not all, of these commonly used tool compounds have been characterized and compared side by side in parallel assays for selectivity profiles at the different human opioid receptors isoforms. Herein, we performed the standard FLIPR calcium mobilization assay using HEK293 cells engineered to stably express the GαΔ6qi4myr in parallel, at human MOR, KOR, DOR, and NOP opioid receptors. The following tool compounds: morphine, fentanyl, oxycodone, DAMGO, DPDPE, U69593, deltorphin II, and nociceptin, were examined herein. These included the substance use disorder (SUD) compounds morphine, fentanyl, and oxycodone. Additionally, the antagonist tool compounds naloxone, NTI, norBNI, and β-FNA were assayed in parallel at the human MOR, KOR, DOR, and NOP opioid receptors. Furthermore, the agonist tool compounds were tested in the same in vivo tail-flick antinociception assays via intrathecal injection for ED50 potencies. These data provide both in vitro comparative pharmacology as a reference for cellular activities and in vivo antinociception profiles for these tool compounds.
Collapse
Affiliation(s)
- Linh T. Tran
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mary M. Lunzer
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Philip S. Portoghese
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Hennessy MR, Creed SM, Gutridge AM, Rusali LE, Luo D, Sepehri B, Rhoda ES, Villegas JA, van Rijn RM, Riley AP. Discovery of Potent Kappa Opioid Receptor Agonists Derived from Akuammicine. J Med Chem 2024; 67:20842-20857. [PMID: 39565354 PMCID: PMC11976730 DOI: 10.1021/acs.jmedchem.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Akuammicine (1), an alkaloid isolated from Picralima nitida, is an agonist of the kappa opioid receptor (κOR). To establish structure-activity relationships (SARs) for this structurally unique κOR ligand, a collection of semisynthetic derivatives was synthesized. Evaluating these derivatives for their ability to activate the κOR and mu opioid receptor (μOR) revealed key SAR trends and identified derivatives with enhanced κOR potency. Most notably, substitutions to the C10 position of the aryl ring led to a > 200-fold improvement in κOR potency and nearly complete selectivity for the κOR. A selection of the most potent ligands was shown to possess differing abilities recruitment of β-Arrestin-2 to the κOR, indicating they have distinct signaling properties from each other and existing κOR ligands. The discovery of these κOR agonists underscores the potential of using natural products to identify new classes of potent and selective ligands and provides new tools to probe the κOR.
Collapse
Affiliation(s)
- Madeline R. Hennessy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Simone M. Creed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Anna M. Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907 USA
| | - Lisa E. Rusali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Dan Luo
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Bakhtyar Sepehri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Elizabeth S. Rhoda
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907 USA
| | - José A. Villegas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907 USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907 USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907 USA
- Purdue Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN 47907 USA
| | - Andrew P. Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612 USA
| |
Collapse
|
7
|
El Daibani A, Madasu MK, Al-Hasani R, Che T. Limitations and potential of κOR biased agonists for pain and itch management. Neuropharmacology 2024; 258:110061. [PMID: 38960136 PMCID: PMC11968146 DOI: 10.1016/j.neuropharm.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The concept of ligand bias is based on the premise that different agonists can elicit distinct responses by selectively activating the same receptor. These responses often determine whether an agonist has therapeutic or undesirable effects. Therefore, it would be highly advantageous to have agonists that specifically trigger the therapeutic response. The last two decades have seen a growing trend towards the consideration of ligand bias in the development of ligands to target the κ-opioid receptor (κOR). Most of these ligands selectively favor G-protein signaling over β-arrestin signaling to potentially provide effective pain and itch relief without adverse side effects associated with κOR activation. Importantly, the specific role of β-arrestin 2 in mediating κOR agonist-induced side effects remains unknown, and similarly the therapeutic and side-effect profiles of G-protein-biased κOR agonists have not been established. Furthermore, some drugs previously labeled as G-protein-biased may not exhibit true bias but may instead be either low-intrinsic-efficacy or partial agonists. In this review, we discuss the established methods to test ligand bias, their limitations in measuring bias factors for κOR agonists, as well as recommend the consideration of other systematic factors to correlate the degree of bias signaling and pharmacological effects. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Amal El Daibani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Manish K Madasu
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ream Al-Hasani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
8
|
Trojniak AE, Dang VQ, Czekner KM, Russo RJ, Mather LM, Stahl EL, Cameron MD, Bohn LM, Aubé J. Synthesis and evaluation of 3,4,5-trisubstituted triazoles as G protein-biased kappa opioid receptor agonists. Eur J Med Chem 2024; 276:116627. [PMID: 38971050 PMCID: PMC11316643 DOI: 10.1016/j.ejmech.2024.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Kappa opioid receptor (KOR) agonists represent promising therapeutics for pain relief due to their analgesic properties along with lower abuse potential than opioids that act at the mu opioid receptor. However, typical KOR agonists produce sedation and dysphoria. Previous studies have shown that G protein signaling-biased KOR agonists may present a means to untangle the desired analgesic properties from undesired side effects. In this paper, we report a new series of G protein signaling-biased KOR agonists entailing -S- → -CH2- replacement in a previously reported KOR agonist, triazole 1.1. With an optimized carbon linker in hand, further development of the scaffold was undertaken to investigate the appendages of the triazole core. The structure-activity relationship study of this series is described, including several analogues that display enhanced potency while maintaining G protein-signaling bias compared to triazole 1.1.
Collapse
Affiliation(s)
- Ashley E Trojniak
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Vuong Q Dang
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Kerri M Czekner
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Robin J Russo
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Lilyan M Mather
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Edward L Stahl
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Michael D Cameron
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Laura M Bohn
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA.
| |
Collapse
|
9
|
Havel V, Kruegel AC, Bechand B, McIntosh S, Stallings L, Hodges A, Wulf MG, Nelson M, Hunkele A, Ansonoff M, Pintar JE, Hwu C, Ople RS, Abi-Gerges N, Zaidi SA, Katritch V, Yang M, Javitch JA, Majumdar S, Hemby SE, Sames D. Oxa-Iboga alkaloids lack cardiac risk and disrupt opioid use in animal models. Nat Commun 2024; 15:8118. [PMID: 39304653 PMCID: PMC11415492 DOI: 10.1038/s41467-024-51856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Ibogaine and its main metabolite noribogaine provide important molecular prototypes for markedly different treatment of substance use disorders and co-morbid mental health illnesses. However, these compounds present a cardiac safety risk and a highly complex molecular mechanism. We introduce a class of iboga alkaloids - termed oxa-iboga - defined as benzofuran-containing iboga analogs and created via structural editing of the iboga skeleton. The oxa-iboga compounds lack the proarrhythmic adverse effects of ibogaine and noribogaine in primary human cardiomyocytes and show superior efficacy in animal models of opioid use disorder in male rats. They act as potent kappa opioid receptor agonists in vitro and in vivo, but exhibit atypical behavioral features compared to standard kappa opioid agonists. Oxa-noribogaine induces long-lasting suppression of morphine, heroin, and fentanyl intake after a single dose or a short treatment regimen, reversal of persistent opioid-induced hyperalgesia, and suppression of opioid drug seeking in rodent relapse models. As such, oxa-iboga compounds represent mechanistically distinct iboga analogs with therapeutic potential.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Ibogaine/analogs & derivatives
- Ibogaine/pharmacology
- Ibogaine/therapeutic use
- Rats
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Opioid-Related Disorders/drug therapy
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Rats, Sprague-Dawley
- Disease Models, Animal
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/genetics
- Alkaloids/pharmacology
- Hyperalgesia/chemically induced
- Hyperalgesia/drug therapy
Collapse
Affiliation(s)
- Václav Havel
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Andrew C Kruegel
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Benjamin Bechand
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Scot McIntosh
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Leia Stallings
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Alana Hodges
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Madalee G Wulf
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Mel Nelson
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, 10032, USA
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Amanda Hunkele
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Michael Ansonoff
- Department of Neuroscience and Cell Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - John E Pintar
- Department of Neuroscience and Cell Biology, Rutgers University, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Christopher Hwu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Rohini S Ople
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, 63110, USA
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Najah Abi-Gerges
- AnaBios Corporation, 1155 Island Ave, Suite 200, San Diego, CA, 92101, USA
| | - Saheem A Zaidi
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mu Yang
- Mouse Neurobehavioral Core facility, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jonathan A Javitch
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, 10032, USA
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Susruta Majumdar
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, 63110, USA
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Scott E Hemby
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
- The Zuckerman Mind Brain Behavior Institute at Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Zamarripa CA, Huskinson SL, Townsend EA, Prisinzano TE, Blough BE, Rowlett JK, Freeman KB. Contingent administration of typical and biased kappa opioid agonists reduces cocaine and oxycodone choice in a drug vs. food choice procedure in male rhesus monkeys. Psychopharmacology (Berl) 2024; 241:305-314. [PMID: 37870564 DOI: 10.1007/s00213-023-06486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
RATIONALE Combinations of mu and kappa-opioid receptor (KOR) agonists have been proposed as analgesic formulations with reduced abuse potential. The feasibility of this approach has been increased by the development of KOR agonists with biased signaling profiles that produce KOR-typical antinociception with fewer KOR-typical side effects. OBJECTIVE The present study determined if the biased KOR agonists, nalfurafine and triazole 1.1, could reduce choice for oxycodone in rhesus monkeys as effectively as the typical KOR agonist, salvinorin A. METHODS Adult male rhesus monkeys (N = 5) responded under a concurrent schedule of food delivery and intravenous cocaine injections (0.018 mg/kg/injection). Once trained, cocaine (0.018 mg/kg/injection) or oxycodone (0.0056 mg/kg/injection) was tested alone or in combination with contingent injections of salvinorin A (0.1-3.2 µg/kg/injection), nalfurafine (0.0032-0.1 µg/kg/injection), triazole 1.1 (3.2-100.0 µg/kg/injection), or vehicle. In each condition, the cocaine or oxycodone dose, as well as the food amount, was held constant across choice components, while the dose of the KOR agonist was increased across choice components. RESULTS Cocaine and oxycodone were chosen over food on more than 80% of trials when administered alone or contingently with vehicle. When KOR agonists were administered contingently with either cocaine or oxycodone, drug choice decreased in a dose-dependent manner. Salvinorin A and triazole 1.1 decreased drug-reinforcer choice without altering total trials completed (i.e., choice allocation shifted to food), while nalfurafine dose dependently decreased total trials completed. CONCLUSIONS These results demonstrate that salvinorin A and triazole 1.1, but not nalfurafine, selectively reduce cocaine and oxycodone self-administration independent of nonspecific effects on behavior, suggesting that G-protein bias does not appear to be a moderating factor in this outcome. Triazole 1.1 represents an important prototypical compound for developing novel KOR agonists as deterrents for prescription opioid abuse.
Collapse
Affiliation(s)
- C Austin Zamarripa
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Sally L Huskinson
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - E Andrew Townsend
- Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, North Bethesda, MD, 20852, USA
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | | | - James K Rowlett
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kevin B Freeman
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
11
|
Kopruszinski CM, Watanabe M, Martinez AL, Moreira de Souza LH, Dodick DW, Moutal A, Neugebauer V, Porreca F, Navratilova E. Kappa opioid receptor agonists produce sexually dimorphic and prolactin-dependent hyperalgesic priming. Pain 2023; 164:e263-e273. [PMID: 36625833 PMCID: PMC10285741 DOI: 10.1097/j.pain.0000000000002835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023]
Abstract
ABSTRACT Repeated stress produces hyperalgesic priming in preclinical models, but underlying mechanisms remain uncertain. As stress engages kappa opioid receptors (KORs), we hypothesized that repeated administration of KOR agonists might mimic, in part, stress-induced hyperalgesic priming. The potential contribution of circulating prolactin (PRL) and dysregulation of the expression of PRL receptor (PRLR) isoforms in sensory neurons after KOR agonist administration was also investigated. Mice received 3 daily doses of U-69593 or nalfurafine as a "first-hit" stimulus followed by assessment of periorbital tactile allodynia. Sixteen days after the first KOR agonist administration, animals received a subthreshold dose of inhalational umbellulone, a TRPA1 agonist, as the second-hit stimulus and periorbital allodynia was assessed. Cabergoline, a dopamine D2 receptor agonist, was used to inhibit circulating PRL in additional cohorts. Prolactin receptor isoforms were quantified in the V1 region of the trigeminal ganglion after repeated doses of U-69593. In both sexes, KOR agonists increased circulating PRL and produced allodynia that resolved within 14 days. Hyperalgesic priming, revealed by umbellulone-induced allodynia in animals previously treated with the KOR agonists, also occurred in both sexes. However, repeated U-69593 downregulated the PRLR long isoform in trigeminal neurons only in female mice. Umbellulone-induced allodynia was prevented by cabergoline co-treatment during priming with KOR agonists in female, but not male, mice. Hyperalgesic priming therefore occurs in both sexes after either biased or nonbiased KOR agonists. However, a PRL/PRLR-dependence is observed only in female nociceptors possibly contributing to pain in stress-related pain disorders in females.
Collapse
Affiliation(s)
- Caroline M. Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ashley L. Martinez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Luiz Henrique Moreira de Souza
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David W. Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
12
|
Santino F, Gentilucci L. Design of κ-Opioid Receptor Agonists for the Development of Potential Treatments of Pain with Reduced Side Effects. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010346. [PMID: 36615540 PMCID: PMC9822356 DOI: 10.3390/molecules28010346] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
The κ-opioid receptor (KOR) has recently emerged as an alternative therapeutic target for the development of pain medications, without deleterious side effects associated with the μ-opioid receptor (MOR). However, modulation of KOR is currently under investigation for the treatment of depression, mood disorders, psychiatric comorbidity, and specific drug addictions. However, KOR agonists also trigger adverse effects including sedation, dysphoria, and hallucinations. In this respect, there is currently much debate on alternative paradigms. Recent effort has been devoted in search of biased ligands capable of selectively activating favorable signaling over signaling associated with unwanted side effects. On the other hand, the use of partial agonists is expected to allow the analgesia to be produced at dosages lower than those required to produce the adverse effects. More empirically, the unwanted central effects can be also avoided by using peripherally restricted agonists. In this review, we discuss the more recent trends in the design of KOR-selective, biased or partial, and finally, peripherally acting agonists. Special emphasis is given on the discussion of the most recent approaches for controlling functional selectivity of KOR-specific ligands.
Collapse
|
13
|
Liu-Chen LY, Huang P. Signaling underlying kappa opioid receptor-mediated behaviors in rodents. Front Neurosci 2022; 16:964724. [PMID: 36408401 PMCID: PMC9670127 DOI: 10.3389/fnins.2022.964724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022] Open
Abstract
Kappa opioid receptor (KOR) agonists are potentially useful as analgesic and anti-pruritic agents, for prevention and treatment of substance use disorders, and for treatment of demyelinating diseases. However, side effects of KOR agonists, including psychotomimesis, dysphoria, and sedation, have caused early termination of clinical trials. Understanding the signaling mechanisms underlying the beneficial therapeutic effects and the adverse side effects may help in the development of KOR agonist compounds. In this review, we summarize the current knowledge in this regard in five sections. First, studies conducted on mutant mouse lines (GRK3-/-, p38alpha MAPK-/-, β-arrestin2-/-, phosphorylation-deficient KOR) are summarized. In addition, the abilities of four distinct KOR agonists, which have analgesic and anti-pruritic effects with different side effect profiles, to cause KOR phosphorylation are discussed. Second, investigations on the KOR agonist nalfurafine, both in vitro and in vivo are reviewed. Nalfurafine was the first KOR full agonist approved for clinical use and in the therapeutic dose range it did not produce significant side effects associated with typical KOR agonists. Third, large-scale high-throughput phosphoproteomic studies without a priori hypotheses are described. These studies have revealed that KOR-mediated side effects are associated with many signaling pathways. Fourth, several novel G protein-biased KOR agonists that have been characterized for in vitro biochemical properties and agonist biases and in vivo behavior effects are described. Lastly, possible mechanisms underlying KOR-mediated CPA, hypolocomotion and motor incoordination are discussed. Overall, it is agreed upon that the analgesic and anti-pruritic effects of KOR agonists are mediated via G protein signaling. However, there is no consensus on the mechanisms underlying their side effects. GRK3, p38 MAPK, β-arrestin2, mTOR pathway, CB1 cannabinoid receptor and protein kinase C have been implicated in one side effect or another. For drug discovery, after initial in vitro characterization, in vivo pharmacological characterizations in various behavior tests are still the most crucial steps and dose separation between beneficial therapeutic effects and adverse side effects are the critical determinant for the compounds to be moved forward for clinical development.
Collapse
Affiliation(s)
- Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | | |
Collapse
|
14
|
Evaluation of the Intracellular Signaling Activities of κ-Opioid Receptor Agonists, Nalfurafine Analogs; Focusing on the Selectivity of G-Protein- and β-Arrestin-Mediated Pathways. Molecules 2022; 27:molecules27207065. [PMID: 36296658 PMCID: PMC9611050 DOI: 10.3390/molecules27207065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Opioid receptors (ORs) are classified into three types (μ, δ, and κ), and opioid analgesics are mainly mediated by μOR activation; however, their use is sometimes restricted by unfavorable effects. The selective κOR agonist nalfurafine was initially developed as an analgesic, but its indication was changed because of the narrow safety margin. The activation of ORs mainly induces two intracellular signaling pathways: a G-protein-mediated pathway and a β-arrestin-mediated pathway. Recently, the expectations for κOR analgesics that selectively activate these pathways have increased; however, the structural properties required for the selectivity of nalfurafine are still unknown. Therefore, we evaluated the partial structures of nalfurafine that are necessary for the selectivity of these two pathways. We assayed the properties of nalfurafine and six nalfurafine analogs (SYKs) using cells stably expressing κORs. The SYKs activated κORs in a concentration-dependent manner with higher EC50 values than nalfurafine. Upon bias factor assessment, only SYK-309 (possessing the 3S-hydroxy group) showed higher selectivity of G-protein-mediated signaling activities than nalfurafine, suggesting the direction of the 3S-hydroxy group may affect the β-arrestin-mediated pathway. In conclusion, nalfurafine analogs having a 3S-hydroxy group, such as SYK-309, could be considered G-protein-biased κOR agonists.
Collapse
|
15
|
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243:114785. [PMID: 36179400 DOI: 10.1016/j.ejmech.2022.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and β-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and β-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.
Collapse
Affiliation(s)
- Md Imdadul H Khan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Benjamin J Sawyer
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Nicholas S Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Hoang V Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
16
|
Paul B, Sribhashyam S, Majumdar S. Opioid signaling and design of analgesics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 195:153-176. [PMID: 36707153 PMCID: PMC10325139 DOI: 10.1016/bs.pmbts.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Clinical treatment of acute to severe pain relies on the use of opioids. While their potency is significant, there are considerable side effects that can negatively affect patients. Their rise in usage has correlated with the current opioid epidemic in the United States, which has led to more than 70,000 deaths per year (Volkow and Blanco, 2021). Opioid-related drug development aims to make target compounds that show strong potency but with diminished side effects. Research into pharmaceuticals that could act as potential alternatives to current pains medications has relied on mechanistic insights of opioid receptors, a class of G-protein coupled receptors (GPCRs), and biased agonism, a common phenomenon among pharmaceutical compounds where downstream effects can be altered at the same receptor via different agonists. Opioids function typically by binding to an active site on the extracellular portion of opioid receptors. Once activated, the opioid receptor initiates a G-protein signaling pathway and/or the β-arrestin2 pathway. The proposed concept for the development of safe analgesics around mu and kappa opioid receptor subtypes has focused on not recruiting β-arrestin2 (biased agonism) and/or having low efficacy at the receptor (partial agonism). By altering chemical motifs on a common scaffold, chemists can take advantage of biased agonism as well as create compounds with low intrinsic efficacy for the desired treatments. This review will focus on ligands with bias profile, signaling aspects of the receptor and probe into the structural basis of receptor that leads to bias and/or partial agonism.
Collapse
Affiliation(s)
- Barnali Paul
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States
| | - Sashrik Sribhashyam
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
17
|
Reed B, Miller M, Michino M, Butelman ER, Ben-Ezra A, Pikus P, Morochnik M, Kim Y, Ripka A, Vacca J, Kreek MJ. Characterization of Pyrrolidinyl-hexahydro-pyranopiperazines as a Novel Kappa Opioid Receptor Agonist Scaffold. ACS Chem Neurosci 2022; 13:1849-1856. [PMID: 35738565 DOI: 10.1021/acschemneuro.2c00258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The kappa agonist structure-activity relationship around the novel, pyrrolidinyl substituted pyranopiperazine scaffold was developed. More specifically, the dichloroPhenylAcetamide-Pyrrolidinyl-PyranoPiperazine (PAPPP) core A was the focus of our work. The modulation of kappa receptor potency/G-protein activation and arrestin recruitment with respect to changes of the piperazine R group in A was demonstrated. Reduced β2-arrestin recruitment and differential G-protein bias were observed for select analogues. To better understand the subtlety in receptor signaling, analogues were profiled as the resolved enantiomers. To determine in vivo target engagement, a subset of compounds was tested in mice for stimulation of serum prolactin, a neuroendocrine biomarker of KOR-agonist effects. Additional in vivo characterization included measurement of potential unwanted effects of kappa receptor activation such as sedation. These studies demonstrate a novel kappa receptor agonist scaffold with potential for G-protein signaling bias to probe in vivo pharmacology.
Collapse
Affiliation(s)
- Brian Reed
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York 10065, United States
| | - Michael Miller
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th Street, New York, New York 10021, United States
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th Street, New York, New York 10021, United States
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Ariel Ben-Ezra
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Philip Pikus
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Michelle Morochnik
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Yuli Kim
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Amy Ripka
- Lucy Therapeutics, 501 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joseph Vacca
- J. Vacca Consulting LLC, Telford, Pennsylvania 18969, United States
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
18
|
Dalefield ML, Scouller B, Bibi R, Kivell BM. The Kappa Opioid Receptor: A Promising Therapeutic Target for Multiple Pathologies. Front Pharmacol 2022; 13:837671. [PMID: 35795569 PMCID: PMC9251383 DOI: 10.3389/fphar.2022.837671] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Kappa-opioid receptors (KOR) are widely expressed throughout the central nervous system, where they modulate a range of physiological processes depending on their location, including stress, mood, reward, pain, inflammation, and remyelination. However, clinical use of KOR agonists is limited by adverse effects such as dysphoria, aversion, and sedation. Within the drug-development field KOR agonists have been extensively investigated for the treatment of many centrally mediated nociceptive disorders including pruritis and pain. KOR agonists are potential alternatives to mu-opioid receptor (MOR) agonists for the treatment of pain due to their anti-nociceptive effects, lack of abuse potential, and reduced respiratory depressive effects, however, dysphoric side-effects have limited their widespread clinical use. Other diseases for which KOR agonists hold promising therapeutic potential include pruritis, multiple sclerosis, Alzheimer's disease, inflammatory diseases, gastrointestinal diseases, cancer, and ischemia. This review highlights recent drug-development efforts targeting KOR, including the development of G-protein-biased ligands, mixed opioid agonists, and peripherally restricted ligands to reduce side-effects. We also highlight the current KOR agonists that are in preclinical development or undergoing clinical trials.
Collapse
Affiliation(s)
| | | | | | - Bronwyn M. Kivell
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
19
|
Chen C, Huang P, Bland K, Li M, Zhang Y, Liu-Chen LY. Agonist-Promoted Phosphorylation and Internalization of the Kappa Opioid Receptor in Mouse Brains: Lack of Connection With Conditioned Place Aversion. Front Pharmacol 2022; 13:835809. [PMID: 35652052 PMCID: PMC9149264 DOI: 10.3389/fphar.2022.835809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Selective kappa opioid receptor (KOR) agonists are promising antipruritic agents and analgesics. However, clinical development of KOR agonists has been limited by side effects, including psychotomimetic effects, dysphoria, and sedation, except for nalfurafine, and recently. CR845 (difelikefalin). Activation of KOR elicits G protein- and β-arrestin-mediated signaling. KOR-induced analgesic and antipruritic effects are mediated by G protein signaling. However, different results have been reported as to whether conditioned place aversion (CPA) induced by KOR agonists is mediated by β-arrestin signaling. In this study, we examined in male mice if there was a connection between agonist-promoted CPA and KOR phosphorylation and internalization, proxies for β-arrestin recruitment in vivo using four KOR agonists. Herein, we demonstrated that at doses producing maximal effective analgesic and antiscratch effects, U50,488H, MOM-SalB, and 42B, but not nalfurafine, promoted KOR phosphorylation at T363 and S369 in mouse brains, as detected by immunoblotting with phospho-KOR-specific antibodies. In addition, at doses producing maximal effective analgesic and antiscratch effects, U50,488H, MOM-SalB, and 42B, but not nalfurafine, caused KOR internalization in the ventral tegmental area of a mutant mouse line expressing a fusion protein of KOR conjugated at the C-terminus with tdTomato (KtdT). We have reported previously that the KOR agonists U50,488H and methoxymethyl salvinorin B (MOM-SalB) cause CPA, whereas nalfurafine and 42B do not, at doses effective for analgesic and antiscratch effects. Taken together, these data reveal a lack of connection between agonist-promoted KOR-mediated CPA with agonist-induced KOR phosphorylation and internalization in male mice.
Collapse
Affiliation(s)
- Chongguang Chen
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Peng Huang
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Kathryn Bland
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
20
|
Huskinson SL, Platt DM, Zamarripa CA, Dunaway K, Brasfield M, Prisinzano TE, Blough BE, Freeman KB. The G-protein biased kappa opioid agonists, triazole 1.1 and nalfurafine, produce non-uniform behavioral effects in male rhesus monkeys. Pharmacol Biochem Behav 2022; 217:173394. [DOI: 10.1016/j.pbb.2022.173394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
|
21
|
Ma H, Brust T, Frankowski KJ, Lovell KM, Cameron MD, Bohn LM, Aubé J. Advances in Sulfonamide Kappa Opioid Receptor Antagonists: Structural Refinement and Evaluation of CNS Clearance. ACS Chem Neurosci 2022; 13:1315-1332. [PMID: 35410469 DOI: 10.1021/acschemneuro.2c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Focused modification of a sulfonamide-based kappa opioid receptor (KOR) antagonist series previously reported by this laboratory was investigated. A total of 32 analogues were prepared to explore linker replacement, constraint manipulation, and aryl group or amine substitution. All analogues were assayed for KOR antagonist activity, and the initial lead compound was assessed for in vivo CNS penetration. The most improved analogue possessed a 4-fold increase of potency (IC50 = 18.9 ± 4.4 nM) compared with the lead compound (IC50 = 83.5 ± 20 nM) from an earlier work. The initial lead compound was found to attain suitable brain levels and to possess a shorter clearance time than canonical KOR antagonists such as JDTic.
Collapse
Affiliation(s)
- Huiyong Ma
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, CB 7363, Chapel Hill, North Carolina 27599, United States
- Department of Medicinal Chemistry, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Tarsis Brust
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, 130 Scripps Way, #2A2, Jupiter, Florida 33458, United States
| | - Kevin J Frankowski
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, CB 7363, Chapel Hill, North Carolina 27599, United States
- Department of Medicinal Chemistry, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Kimberly M Lovell
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, 130 Scripps Way, #2A2, Jupiter, Florida 33458, United States
| | - Michael D Cameron
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, #2A1, Jupiter, Florida 33458, United States
| | - Laura M Bohn
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, 130 Scripps Way, #2A2, Jupiter, Florida 33458, United States
| | - Jeffrey Aubé
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, CB 7363, Chapel Hill, North Carolina 27599, United States
- Department of Medicinal Chemistry, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| |
Collapse
|
22
|
Sahebkar A, Sathyapalan T, Guest PC, Barreto GE. Identification of difluorinated curcumin molecular targets linked to traumatic brain injury pathophysiology. Biomed Pharmacother 2022; 148:112770. [PMID: 35278853 DOI: 10.1016/j.biopha.2022.112770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
Traumatic brain injury (TBI) affects approximately 50% of the world population at some point in their lifetime. To date, there are no effective treatments as most of the damage occurs due to secondary effects through a variety of pathophysiological pathways. The phytoceutical curcumin has been traditionally used as a natural remedy for numerous conditions including diabetes, inflammatory diseases, and neurological and neurodegenerative disorders. We have carried out a system pharmacology study to identify potential targets of a difluorinated curcumin analogue (CDF) that overlap with those involved in the pathophysiological mechanisms of TBI. This resulted in identification of 312 targets which are mostly involved in G protein-coupled receptor activity and cellular signalling. These include adrenergic, serotonergic, opioid and cannabinoid receptor families, which have been implicated in regulation of pain, inflammation, mood, learning and cognition pathways. We conclude that further studies should be performed to validate curcumin as a potential novel treatment to ameliorate the effects of TBI.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Paul C Guest
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
23
|
French AR, van Rijn RM. An updated assessment of the translational promise of G-protein-biased kappa opioid receptor agonists to treat pain and other indications without debilitating adverse effects. Pharmacol Res 2022; 177:106091. [PMID: 35101565 PMCID: PMC8923989 DOI: 10.1016/j.phrs.2022.106091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023]
Abstract
Kappa opioid receptor (κOR) agonists lack the abuse liability and respiratory depression effects of clinically used mu opioid receptor (μOR) analgesics and are hypothesized to be safer alternatives. However, κOR agonists have limiting adverse effects of their own, including aversion, sedation, and mood effects, that have hampered their clinical translation. Studies performed over the last 15 years have suggested that these adverse effects could result from activation of distinct intracellular signaling pathways that are dependent on β-arrestin, whereas signaling downstream of G protein activation produces antinociception. This led to the hypothesis that agonists biased away from β-arrestin signaling would have improved therapeutic windows over traditional unbiased agonists and allow for clinical development of analgesic G-protein-biased κOR agonists. Given a recent controversy regarding the benefits of G-protein-biased μOR agonists, it is timely to reassess the therapeutic promise of G-protein-biased κOR agonists. Here we review recent discoveries from preclinical κOR studies and critically evaluate the therapeutic windows of G-protein-biased κOR agonists in each of the adverse effects above. Overall, we find that G-protein-biased κOR agonists generally have improved therapeutic window relative to unbiased agonists, although frequently study design limits strong conclusions in this regard. However, a steady flow of newly developed biased κOR agonists paired with recently engineered behavioral and molecular tools puts the κOR field in a prime position to make major advances in our understanding of κOR function and fulfill the promise of translating a new generation of biased κOR agonists to the clinic.
Collapse
Affiliation(s)
- Alexander R French
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Zamarripa CA, Pareek T, Schrock HM, Prisinzano TE, Blough BE, Sufka KJ, Freeman KB. The kappa-opioid receptor agonist, triazole 1.1, reduces oxycodone self-administration and enhances oxycodone-induced thermal antinociception in male rats. Psychopharmacology (Berl) 2021; 238:3463-3476. [PMID: 34430992 PMCID: PMC8629928 DOI: 10.1007/s00213-021-05965-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022]
Abstract
RATIONALE Triazole 1.1 is a novel kappa-opioid receptor (KOR) agonist reported to produce antinociception without KOR-typical adverse effects. When combined with the mu-opioid receptor (MOR) agonist, oxycodone, triazole 1.1 blocks oxycodone-induced pruritis without producing sedation-like effects in nonhuman primates. However, it is unknown if triazole 1.1 can reduce the abuse-related effects or enhance the antinociceptive effects of oxycodone similarly to other KOR agonists. OBJECTIVES The aim of the present study was to quantitatively compare the behavioral effects of triazole 1.1 to the KOR agonists, U50,488h and nalfurafine, on oxycodone self-administration and oxycodone-induced thermal antinociception when administered as mixtures with oxycodone. METHODS In the self-administration study, male Sprague-Dawley (SD) rats (n = 6) self-administered intravenous (i.v.) oxycodone alone (0.056 mg/kg/inj) or combined with U50,488 h (0.032-0.32 mg/kg/inj), nalfurafine (0.00032-0.0032 mg/kg/inj), or triazole 1.1 (0.32-1.8 mg/kg/inj) under a progressive-ratio schedule of reinforcement. In a hot plate assay, male SD rats (n = 6) received i.v. injections of oxycodone (1.0-5.6 mg/kg), U50,488h (1.0-18.0 mg/kg), nalfurafine (0.01-1.0 mg/kg), or triazole 1.1 (3.2-32.0 mg/kg) alone or in combinations of fixed proportion with oxycodone based on the relative potencies of the single drugs. Each study concluded with administration of the KOR antagonist nor-BNI and some degree of retesting of the previous conditions to verify that the behavioral effects were mediated by KOR activation. RESULTS All KOR agonists reduced oxycodone self-administration in a dose-dependent manner. Moreover, all single drugs and drug combinations produced dose-dependent, fully efficacious thermal antinociception. All KOR agonist:oxycodone combinations produced either additive or super-additive thermal antinociception. Finally, each KOR agonist was blocked in effect by nor-BNI in both behavioral measures. CONCLUSION This study demonstrates that triazole 1.1 reduces oxycodone's reinforcing effects and enhances oxycodone-induced antinociception to degrees that are comparable to typical KOR agonists. Given triazole 1.1's mild adverse-effect profile, developing MOR-KOR agonist combinations from the triazole 1.1 series may render new pain therapeutics with reduced abuse liability.
Collapse
Affiliation(s)
- C Austin Zamarripa
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Tanya Pareek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Hayley M Schrock
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | | | | | - Kenneth J Sufka
- Department of Psychology, University of Mississippi, Oxford, MS, USA
| | - Kevin B Freeman
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
25
|
Sanchez JE, Kc GB, Franco J, Allen WJ, Garcia JD, Sirimulla S. BiasNet: A Model to Predict Ligand Bias Toward GPCR Signaling. J Chem Inf Model 2021; 61:4190-4199. [PMID: 34397210 DOI: 10.1021/acs.jcim.1c00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Signaling bias is a feature of many G protein-coupled receptor (GPCR) targeting drugs with potential clinical implications. Whether it is therapeutically advantageous for a drug to be G protein biased or β-arrestin biased depends on the context of the signaling pathway. Here, we explored GPCR ligands that exhibit biased signaling to gain insights into scaffolds and pharmacophores that lead to bias. More specifically, we considered BiasDB, a database containing information about GPCR biased ligands, and focused our analysis on ligands which show either a G protein or β-arrestin bias. Five different machine learning models were trained on these ligands using 15 different sets of features. Molecular fragments which were important for training the models were analyzed. Two of these fragments (number of secondary amines and number of aromatic amines) were more prevalent in β-arrestin biased ligands. After training a random forest model on HierS scaffolds, we found five scaffolds, which demonstrated G protein or β-arrestin bias. We also conducted t-SNE clustering, observing correspondence between unsupervised and supervised machine learning methods. To increase the applicability of our work, we developed a web implementation of our models, which can predict bias based on user-provided SMILES, drug names, or PubChem CID. Our web implementation is available at: drugdiscovery.utep.edu/biasnet.
Collapse
Affiliation(s)
- Jason E Sanchez
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Govinda B Kc
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Julian Franco
- Mechanical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - William J Allen
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Jesus David Garcia
- Computer Science, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Suman Sirimulla
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States.,Computer Science, The University of Texas at El Paso, El Paso, Texas 79968, United States.,Department of Pharmaceutical Science, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
26
|
De Neve J, Barlow TMA, Tourwé D, Bihel F, Simonin F, Ballet S. Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Med Chem 2021; 12:828-870. [PMID: 34223156 PMCID: PMC8221262 DOI: 10.1039/d1md00041a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
One of the main challenges in contemporary medicinal chemistry is the development of safer analgesics, used in the treatment of pain. Currently, moderate to severe pain is still treated with the "gold standard" opioids whose long-term often leads to severe side effects. With the discovery of biased agonism, the importance of this area of pharmacology has grown exponentially over the past decade. Of these side effects, tolerance, opioid misuse, physical dependence and substance use disorder (SUD) stand out, since these have led to many deaths over the past decades in both USA and Europe. New therapeutic molecules that induce a biased response at the opioid receptors (MOR, DOR, KOR and NOP receptor) are able to circumvent these side effects and, consequently, serve as more advantageous therapies with great promise. The concept of biased signaling extends far beyond the already sizeable field of GPCR pharmacology and covering everything would be vastly outside the scope of this review which consequently covers the biased ligands acting at the opioid family of receptors. The limitation of quantifying bias, however, makes this a controversial subject, where it is dependent on the reference ligand, the equation or the assay used for the quantification. Hence, the major issue in the field of biased ligands remains the translation of the in vitro profiles of biased signaling, with corresponding bias factors to in vivo profiles showing the presence or the lack of specific side effects. This review comprises a comprehensive overview of biased ligands in addition to their bias factors at individual members of the opioid family of receptors, as well as bifunctional ligands.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, CNRS Université de Strasbourg Illkirch France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS, Université de Strasbourg Illkirch France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
27
|
Structure–activity relationship investigation of triazole-based kappa opioid receptor agonists. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Zaidi SA, Katritch V. Structural Characterization of KOR Inactive and Active States for 3D Pharmacology and Drug Discovery. Handb Exp Pharmacol 2021; 271:41-64. [PMID: 33945028 DOI: 10.1007/164_2021_461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The structure of the human kappa opioid receptor (KOR) in complex with the long-acting antagonist JDTic was solved crystallographically in 2012 and, along with structures of other opioid receptors, revolutionized our understanding of opioid system function and pharmacology. More recently, active state KOR structure was also determined, giving important insights into activation mechanisms of the receptor. In this review, we will discuss how the understanding of atomistic structures of KOR established a key platform for deciphering details of subtype and functional selectivity of KOR-targeting ligands and for discovery of new chemical probes with potentially beneficial pharmacological profiles.
Collapse
Affiliation(s)
- Saheem A Zaidi
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA. .,Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Hein M, Ji G, Tidwell D, D'Souza P, Kiritoshi T, Yakhnitsa V, Navratilova E, Porreca F, Neugebauer V. Kappa opioid receptor activation in the amygdala disinhibits CRF neurons to generate pain-like behaviors. Neuropharmacology 2021; 185:108456. [PMID: 33444637 PMCID: PMC7887082 DOI: 10.1016/j.neuropharm.2021.108456] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that kappa opioid receptors (KOR) in limbic brain regions such as the amygdala contribute to pain conditions, but underlying mechanisms remain to be determined. The amygdala is an important player in averse-affective aspects of pain and pain modulation. The central nucleus (CeA) serves output functions through projection neurons that include corticotropin releasing factor (CRF) expressing neurons. The CeA is also rich in KOR. Here we tested the novel hypothesis that KOR activation in the CeA generates pain-like behaviors through a mechanism that involves inhibition of synaptic inhibition (disinhibition) of CRF neurons. Intra-CeA administration of a KOR agonist (U-69,593) increased vocalizations of naïve rats to noxious stimuli, and induced anxiety-like behaviors in the open field test (OFT) and avoidance in the conditioned place preference test, without affecting mechanosensory thresholds. Optogenetic silencing of CeA-CRF neurons blocked the facilitatory effects of systemically applied U-69,593 in naïve rats. Patch-clamp recordings of CRF neurons in rat brain slices found that U-69,593 decreased feedforward inhibitory transmission evoked by optogenetic stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. U-69,593 decreased frequency, but not amplitude, of inhibitory synaptic currents, suggesting a presynaptic action. Multiphoton imaging of CeA-CRF neurons in rat brain slices showed that U-69,593 increased calcium signals evoked by electrical stimulation of presumed parabrachial input. This study shows for the first time that KOR activation increases activity of amygdala CRF neurons through synaptic disinhibition, resulting in averse-affective pain-like behaviors. Blocking KOR receptors may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dalton Tidwell
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Preston D'Souza
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
30
|
Kaski SW, White AN, Gross JD, Siderovski DP. Potential for Kappa-Opioid Receptor Agonists to Engineer Nonaddictive Analgesics: A Narrative Review. Anesth Analg 2021; 132:406-419. [PMID: 33332902 DOI: 10.1213/ane.0000000000005309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A serious adverse effect of prescription opioid analgesics is addiction, both to these analgesics and to illicit drugs like heroin that also activate the µ-opioid receptor (MOR). Opioid use disorder (OUD) and opioid overdose deaths represent a current American health crisis, and the prescription of opioid analgesics has contributed significantly to this crisis. While prescription opioids are highly effective analgesics, there currently exists no facile way to use them for extended periods without the risk of addiction. If addiction caused by MOR-targeting analgesics could be blocked by blending in a new "antiaddiction" ingredient that does not diminish analgesia and does not introduce its own therapeutically limiting side effects, then continued clinical use of prescription opioids for treating pain could be maintained (or even enhanced) instead of curtailed. In this narrative review, we contextualize this hypothesis, first with a brief overview of the current American opioid addiction crisis. The neurobiology of 2 key receptors in OUD development, MOR and the κ-opioid receptor (KOR), is then discussed to highlight the neuroanatomical features and circuitry in which signal transduction from these receptors lie in opposition-creating opportunities for pharmacological intervention in curtailing the addictive potential of MOR agonism. Prior findings with mixed MOR/KOR agonists are considered before exploring new potential avenues such as biased KOR agonists. New preclinical data are highlighted, demonstrating that the G protein-biased KOR agonist nalfurafine reduces the rewarding properties of MOR-targeting analgesics and enhances MOR-targeting analgesic-induced antinociception. Finally, we discuss the recent discovery that a regulator of G protein signaling (namely, RGS12) is a key component of signaling bias at KOR, presenting another drug discovery target toward identifying a single agent or adjuvant to be added to traditional opioid analgesics that could reduce or eliminate the addictive potential of the latter drug.
Collapse
Affiliation(s)
- Shane W Kaski
- From the Departments of Neuroscience and Behavioral Medicine & Psychiatry, West Virginia University, Morgantown, West Virginia
| | - Allison N White
- From the Departments of Neuroscience and Behavioral Medicine & Psychiatry, West Virginia University, Morgantown, West Virginia
| | - Joshua D Gross
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - David P Siderovski
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
31
|
Pharmacokinetics and Pharmacodynamics of Salvinorin A and Salvia divinorum: Clinical and Forensic Aspects. Pharmaceuticals (Basel) 2021; 14:ph14020116. [PMID: 33546518 PMCID: PMC7913753 DOI: 10.3390/ph14020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/13/2023] Open
Abstract
Salvia divinorum Epling and Játiva is a perennial mint from the Lamiaceae family, endemic to Mexico, predominantly from the state of Oaxaca. Due to its psychoactive properties, S. divinorum had been used for centuries by Mazatecans for divinatory, religious, and medicinal purposes. In recent years, its use for recreational purposes, especially among adolescents and young adults, has progressively increased. The main bioactive compound underlying the hallucinogenic effects, salvinorin A, is a non-nitrogenous diterpenoid with high affinity and selectivity for the κ-opioid receptor. The aim of this work is to comprehensively review and discuss the toxicokinetics and toxicodynamics of S. divinorum and salvinorin A, highlighting their psychological, physiological, and toxic effects. Potential therapeutic applications and forensic aspects are also covered in this review. The leaves of S. divinorum can be chewed, drunk as an infusion, smoked, or vaporised. Absorption of salvinorin A occurs through the oral mucosa or the respiratory tract, being rapidly broken down in the gastrointestinal system to its major inactive metabolite, salvinorin B, when swallowed. Salvinorin A is rapidly distributed, with accumulation in the brain, and quickly eliminated. Its pharmacokinetic parameters parallel well with the short-lived psychoactive and physiological effects. No reports on toxicity or serious adverse outcomes were found. A variety of therapeutic applications have been proposed for S. divinorum which includes the treatment of chronic pain, gastrointestinal and mood disorders, neurological diseases, and treatment of drug dependence. Notwithstanding, there is still limited knowledge regarding the pharmacology and toxicology features of S. divinorum and salvinorin A, and this is needed due to its widespread use. Additionally, the clinical acceptance of salvinorin A has been hampered, especially due to the psychotropic side effects and misuse, turning the scientific community to the development of analogues with better pharmacological profiles.
Collapse
|
32
|
Oberhauser L, Stoeber M. Biosensors Monitor Ligand-Selective Effects at Kappa Opioid Receptors. Handb Exp Pharmacol 2021; 271:65-82. [PMID: 33387066 DOI: 10.1007/164_2020_427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The kappa opioid receptor (KOR) has emerged as a promising therapeutic target for pain and itch treatment. There is growing interest in biased agonists that preferentially activate select signaling pathways downstream of KOR activation on the cellular level due to their therapeutic promise in retaining the analgesic and antipruritic effects and eliminating the sedative and dysphoric effects of KOR signaling on the physiological level. The concept of ligand-selective signaling includes that biased ligands promote KOR to selectively recruit one transducer or regulator protein over another, introducing bias into the signaling cascade at the very receptor-proximal level. Measuring agonist effects directly at the receptor has remained challenging and previous studies have focused on inferring agonist-selective KOR engagement with G protein relative to β-arrestin based on downstream signaling readouts. Here we discuss novel strategies to directly assess ligand-selective effects on receptor activation using KOR-interacting biosensors. The conformation-specific cytoplasmic biosensors are disconnected from the endogenous signaling machinery and provide a direct receptor-proxy readout of ligand effects in living cells. Receptor-biosensor interaction is ligand concentration dependent and can be used to determine relative ligand potency and efficacy. In addition, the biosensors reveal the existence of two dimensions of agonist bias in the cellular context: Firstly, agonists can selectively produce discrete protein-engaged KOR states and secondly, agonists can differ in the precise subcellular location at which they activate KOR. We discuss the value and the limitations of using orthogonal receptor-interacting biosensors in the quest to understand functional selectivity amongst KOR agonists in the cellular context.
Collapse
Affiliation(s)
- Lucie Oberhauser
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
33
|
Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM. Strategies for Developing κ Opioid Receptor Agonists for the Treatment of Pain with Fewer Side Effects. J Pharmacol Exp Ther 2020; 375:332-348. [PMID: 32913006 PMCID: PMC7589957 DOI: 10.1124/jpet.120.000134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
There is significant need to find effective, nonaddictive pain medications. κ Opioid receptor (KOPr) agonists have been studied for decades but have recently received increased attention because of their analgesic effects and lack of abuse potential. However, a range of side effects have limited the clinical development of these drugs. There are several strategies currently used to develop safer and more effective KOPr agonists. These strategies include identifying G-protein-biased agonists, developing peripherally restricted KOPr agonists without centrally mediated side effects, and developing mixed opioid agonists, which target multiple receptors at specific ratios to balance side-effect profiles and reduce tolerance. Here, we review the latest developments in research related to KOPr agonists for the treatment of pain. SIGNIFICANCE STATEMENT: This review discusses strategies for developing safer κ opioid receptor (KOPr) agonists with therapeutic potential for the treatment of pain. Although one strategy is to modify selective KOPr agonists to create peripherally restricted or G-protein-biased structures, another approach is to combine KOPr agonists with μ, δ, or nociceptin opioid receptor activation to obtain mixed opioid receptor agonists, therefore negating the adverse effects and retaining the therapeutic effect.
Collapse
Affiliation(s)
- Kelly F Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Diana V Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Sophia Kaska
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Thomas Prisinzano
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| |
Collapse
|
34
|
Martin CE, Clotet-Freixas S, Farragher JF, Hundemer GL. Have We Just Scratched the Surface? A Narrative Review of Uremic Pruritus in 2020. Can J Kidney Health Dis 2020; 7:2054358120954024. [PMID: 33117546 PMCID: PMC7573751 DOI: 10.1177/2054358120954024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose of review: Uremic pruritus is a highly prevalent and debilitating symptom in patients with chronic kidney disease (CKD) and end-stage kidney disease (ESKD). The purpose of this review is to examine current evidence on the mechanisms and treatments of pruritus in CKD and highlight promising areas for future research. Sources of information: Published literature, including randomized controlled trials, cohort studies, case reports, and review articles, was searched for evidence pertaining to the pathophysiology and treatment of uremic pruritus. Methods: A comprehensive narrative review was conducted to explore the molecular mechanisms underlying uremic pruritus, as well as the evidence (or lack thereof) supporting pharmacological and nonpharmacological treatments for uremic pruritus. The potential role of patient sex in the pathophysiology and management of uremic pruritus is also discussed. Key findings: The pathophysiology of uremic pruritus involves a complex interplay of uremic toxins, systemic inflammation, mast cell activation, and imbalance of opioid receptors. Classic treatment strategies for uremic pruritus include optimization of dialysis parameters, amelioration of CKD-related mineral and bone disease, topical emollients and analgesics, antihistamines, the anticonvulsant medications gabapentin and pregabalin, and ultraviolet light B (UV-B) phototherapy. Strong data to support many of these classical treatments for uremic pruritus are limited. Newly evolving treatment approaches for uremic pruritus include opioid receptor modulators, neurokinin-1 inhibitors, and cannabinoids. Further studies regarding their efficacy, pharmacodynamics, and safety in the CKD and ESKD population are needed before these agents are accepted into widespread use. Additional nonpharmacological strategies aimed at treating uremic pruritus include psychotherapy, acupuncture, omega-3 fatty acids, and exercise. Finally, sex differences may exist regarding uremic pruritus, but studies directly addressing sex-specific mechanisms of uremic pruritus remain absent. Limitations: High-quality evidence in the management of uremic pruritus remains lacking. Most recommendations are based on expert opinion or studies involving small numbers of patients. In addition, our understanding of the pathophysiological mechanisms behind uremic pruritus is incomplete and continues to evolve over time. Implications: Uremic pruritus is a common symptom which reduces quality of life in CKD and ESKD. The identification of novel targeted treatment approaches may ease the burden of uremic pruritus in the future.
Collapse
Affiliation(s)
- Claire E Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Janine F Farragher
- Department of Community Health Sciences, University of Calgary, AB, Canada
| | - Gregory L Hundemer
- Division of Nephrology, The Ottawa Hospital and University of Ottawa, ON, Canada
| |
Collapse
|
35
|
Cao D, Huang P, Chiu YT, Chen C, Wang H, Li M, Zheng Y, Ehlert FJ, Zhang Y, Liu-Chen LY. Comparison of Pharmacological Properties between the Kappa Opioid Receptor Agonist Nalfurafine and 42B, Its 3-Dehydroxy Analogue: Disconnect between in Vitro Agonist Bias and in Vivo Pharmacological Effects. ACS Chem Neurosci 2020; 11:3036-3050. [PMID: 32897695 DOI: 10.1021/acschemneuro.0c00407] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nalfurafine, a moderately selective kappa opioid receptor (KOR) agonist, is used in Japan for treatment of itch without causing dysphoria or psychotomimesis. Here we characterized the pharmacology of compound 42B, a 3-dehydroxy analogue of nalfurafine and compared with that of nalfurafine. Nalfurafine and 42B acted as full KOR agonists and partial μ opioid receptor (MOR) agonists, but 42B showed much lower potency for both receptors and lower KOR/MOR selectivity, different from previous reports. Molecular modeling revealed that water-mediated hydrogen-bond formation between 3-OH of nalfurafine and KOR accounted for its higher KOR potency than 42B. The higher potency of both at KOR over MOR may be due to hydrogen-bond formation between nonconserved Y7.35 of KOR and their carbonyl groups. Both showed modest G protein signaling biases. In mice, like nalfurafine, 42B produced antinociceptive and antiscratch effects and did not cause conditioned place aversion (CPA) in the effective dose ranges. Unlike nalfurafine, 42B caused motor incoordination and hypolocomotion. As both agonists showed G protein biases, yet produced different effects on locomotor activity and motor incoordination, the findings and those in the literature suggest caution in correlating in vitro biochemical data with in vivo behavior effects. The factors contributing to the disconnect, including pharmacodynamic and pharmacokinetic issues, are discussed. In addition, our results suggest that among the KOR-induced adverse behaviors, CPA can be separated from motor incoordination and hypolocomotion.
Collapse
Affiliation(s)
- Danni Cao
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Peng Huang
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Yi-Ting Chiu
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Chongguang Chen
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Yi Zheng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Frederick J. Ehlert
- Department of Pharmaceutical Sciences, Center of Health Sciences, University of California, Irvine, California 92697, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
36
|
The Quest for More Effective Analgesics with Reduced Abuse Liability and Fewer Adverse Effects: Promises, Pitfalls, and Future Perspectives of Biased Agonists at Opioid Receptors. Methods Mol Biol 2020. [PMID: 32975799 DOI: 10.1007/978-1-0716-0884-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Chronic pain is a relevant health condition affecting one out of five individuals that is often not adequately treated by currently available analgesics. This, together with the dramatic increase in addicted people within the dramatic "opioid epidemics," significantly spurs the quest for innovative analgesics provided with increased efficacy, reduced abuse liability, and fewer adverse effects.Within this frame, biased agonists at opioid receptors have attracted increasing interest in the last decade as they have emerged as more effective and safer candidate analgesics.In this chapter, promises, pitfalls, and future perspective of biased agonists at mu (MOR) and kappa (KOR) opioid receptors are discussed. Moreover, methodological insights are provided with regard to the most appropriate experimental settings to be employed aiming at developing novel biased KOR agonists.
Collapse
|
37
|
Ji G, Neugebauer V. Kappa opioid receptors in the central amygdala modulate spinal nociceptive processing through an action on amygdala CRF neurons. Mol Brain 2020; 13:128. [PMID: 32948219 PMCID: PMC7501648 DOI: 10.1186/s13041-020-00669-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The amygdala plays an important role in the emotional-affective aspects of behaviors and pain, but can also modulate sensory aspect of pain ("nociception"), likely through coupling to descending modulatory systems. Here we explored the functional coupling of the amygdala to spinal nociception. We found that pharmacological activation of neurons in the central nucleus of the amygdala (CeA) increased the activity of spinal dorsal horn neurons; and this effect was blocked by optogenetic silencing of corticotropin releasing factor (CRF) positive CeA neurons. A kappa opioid receptor (KOR) agonist (U-69,593) was administered into the CeA by microdialysis. KOR was targeted because of their role in averse-affective behaviors through actions in limbic brain regions. Extracellular single-unit recordings were made of CeA neurons or spinal dorsal horn neurons in anesthetized transgenic Crh-Cre rats. Neurons responded more strongly to noxious than innocuous stimuli. U-69,593 increased the responses of CeA and spinal neurons to innocuous and noxious mechanical stimulation of peripheral tissues. The facilitatory effect of the agonist was blocked by optical silencing of CRF-CeA neurons though light activation of halorhodopsin expressed in these neurons by viral-vector. The CRF system in the amygdala has been implicated in aversiveness and pain modulation. The results suggest that the amygdala can modulate spinal nociceptive processing in a positive direction through CRF-CeA neurons and that KOR activation in the amygdala (CeA) has pro-nociceptive effects.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
38
|
Faouzi A, Varga BR, Majumdar S. Biased Opioid Ligands. Molecules 2020; 25:E4257. [PMID: 32948048 PMCID: PMC7570672 DOI: 10.3390/molecules25184257] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Achieving effective pain management is one of the major challenges associated with modern day medicine. Opioids, such as morphine, have been the reference treatment for moderate to severe acute pain not excluding chronic pain modalities. Opioids act through the opioid receptors, the family of G-protein coupled receptors (GPCRs) that mediate pain relief through both the central and peripheral nervous systems. Four types of opioid receptors have been described, including the μ-opioid receptor (MOR), κ-opioid receptor (KOR), δ-opioid receptor (DOR), and the nociceptin opioid peptide receptor (NOP receptor). Despite the proven success of opioids in treating pain, there are still some inherent limitations. All clinically approved MOR analgesics are associated with adverse effects, which include tolerance, dependence, addiction, constipation, and respiratory depression. On the other hand, KOR selective analgesics have found limited clinical utility because they cause sedation, anxiety, dysphoria, and hallucinations. DOR agonists have also been investigated but they have a tendency to cause convulsions. Ligands targeting NOP receptor have been reported in the preclinical literature to be useful as spinal analgesics and as entities against substance abuse disorders while mixed MOR/NOP receptor agonists are useful as analgesics. Ultimately, the goal of opioid-related drug development has always been to design and synthesize derivatives that are equally or more potent than morphine but most importantly are devoid of the dangerous residual side effects and abuse potential. One proposed strategy is to take advantage of biased agonism, in which distinct downstream pathways can be activated by different molecules working through the exact same receptor. It has been proposed that ligands not recruiting β-arrestin 2 or showing a preference for activating a specific G-protein mediated signal transduction pathway will function as safer analgesic across all opioid subtypes. This review will focus on the design and the pharmacological outcomes of biased ligands at the opioid receptors, aiming at achieving functional selectivity.
Collapse
MESH Headings
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Arrestin/metabolism
- Furans/chemistry
- Furans/metabolism
- Humans
- Ligands
- Pain/drug therapy
- Pyrones/chemistry
- Pyrones/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
| | | | - Susruta Majumdar
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63131, USA; (A.F.); (B.R.V.)
| |
Collapse
|
39
|
Thibeault PE, Ramachandran R. Biased signaling in platelet G-protein coupled receptors. Can J Physiol Pharmacol 2020; 99:255-269. [PMID: 32846106 DOI: 10.1139/cjpp-2020-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets are small megakaryocyte-derived, anucleate, disk-like structures that play an outsized role in human health and disease. Both a decrease in the number of platelets and a variety of platelet function disorders result in petechiae or bleeding that can be life threatening. Conversely, the inappropriate activation of platelets, within diseased blood vessels, remains the leading cause of death and morbidity by affecting heart attacks and stroke. The fine balance of the platelet state in healthy individuals is controlled by a number of receptor-mediated signaling pathways that allow the platelet to rapidly respond and maintain haemostasis. G-protein coupled receptors (GPCRs) are particularly important regulators of platelet function. Here we focus on the major platelet-expressed GPCRs and discuss the roles of downstream signaling pathways (e.g., different G-protein subtypes or β-arrestin) in regulating the different phases of the platelet activation. Further, we consider the potential for selectively targeting signaling pathways that may contribute to platelet responses in disease through development of biased agonists. Such selective targeting of GPCR-mediated signaling pathways by drugs, often referred to as biased signaling, holds promise in delivering therapeutic interventions that do not present significant side effects, especially in finely balanced physiological systems such as platelet activation in haemostasis.
Collapse
Affiliation(s)
- Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| |
Collapse
|
40
|
Paton KF, Biggerstaff A, Kaska S, Crowley RS, La Flamme AC, Prisinzano TE, Kivell BM. Evaluation of Biased and Balanced Salvinorin A Analogs in Preclinical Models of Pain. Front Neurosci 2020; 14:765. [PMID: 32792903 PMCID: PMC7385413 DOI: 10.3389/fnins.2020.00765] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023] Open
Abstract
In the search for safer, non-addictive analgesics, kappa opioid receptor (KOPr) agonists are a potential target, as unlike mu-opioid analgesics, they do not have abuse potential. Salvinorin A (SalA) is a potent and selective KOPr agonist, however, clinical utility is limited by the short duration of action and aversive side effects. Biasing KOPr signaling toward G-protein activation has been highlighted as a key cellular mechanism to reduce the side effects of KOPr agonists. The present study investigated KOPr signaling bias and the acute antinociceptive effects and side effects of two novel analogs of SalA, 16-Bromo SalA and 16-Ethynyl SalA. 16-Bromo SalA showed G-protein signaling bias, whereas 16-Ethynyl SalA displayed balanced signaling properties. In the dose-response tail-withdrawal assay, SalA, 16-Ethynyl SalA and 16-Bromo SalA were more potent than the traditional KOPr agonist U50,488, and 16-Ethynyl SalA was more efficacious. 16-Ethynyl SalA and 16-Bromo SalA both had a longer duration of action in the warm water tail-withdrawal assay, and 16-Ethynyl had greater antinociceptive effect in the hot-plate assay, compared to SalA. In the intraplantar 2% formaldehyde test, 16-Ethynyl SalA and 16-Bromo SalA significantly reduced both nociceptive and inflammatory pain-related behaviors. Moreover, 16-Ethynyl SalA and 16-Bromo SalA had no anxiogenic effects in the marble burying task, and 16-Bromo SalA did not alter behavior in the elevated zero maze. Overall, 16-Ethynyl SalA significantly attenuated acute pain-related behaviors in multiple preclinical models, while the biased KOPr agonist, 16-Bromo SalA, displayed modest antinociceptive effects, and lacked anxiogenic effects.
Collapse
Affiliation(s)
- Kelly F Paton
- School of Biological Sciences, Centre for Biodiscovery, Faculty of Science, Victoria University of Wellington, Wellington, New Zealand
| | - Andrew Biggerstaff
- School of Biological Sciences, Centre for Biodiscovery, Faculty of Science, Victoria University of Wellington, Wellington, New Zealand
| | - Sophia Kaska
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Rachel S Crowley
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, United States
| | - Anne C La Flamme
- School of Biological Sciences, Centre for Biodiscovery, Faculty of Science, Victoria University of Wellington, Wellington, New Zealand.,Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States.,Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, United States
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Faculty of Science, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
41
|
Huskinson SL, Platt DM, Brasfield M, Follett ME, Prisinzano TE, Blough BE, Freeman KB. Quantification of observable behaviors induced by typical and atypical kappa-opioid receptor agonists in male rhesus monkeys. Psychopharmacology (Berl) 2020; 237:2075-2087. [PMID: 32372348 PMCID: PMC7308209 DOI: 10.1007/s00213-020-05519-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Kappa-opioid receptor (KOR) agonists are antinociceptive but have side effects that limit their therapeutic utility. New KOR agonists have been developed that are fully efficacious at the KOR but may produce fewer or reduced side effects that are typical of KOR agonists. OBJECTIVES We determined behavioral profiles for typical and atypical KOR agonists purported to differ in intracellular-signaling profiles as well as a mu-opioid receptor (MOR) agonist, oxycodone, using a behavioral scoring system based on Novak et al. (Am J Primatol 28:124-138, 1992, Am J Primatol 46:213-227, 1998) and modified to quantify drug-induced effects (e.g., Duke et al. J Pharmacol Exp Ther 366:145-157, 2018). METHODS Six adult male rhesus monkeys were administered a range of doses of the typical KOR agonists, U50-488H (0.0032-0.1 mg/kg) and salvinorin A (0.00032-0.01 mg/kg); the atypical KOR agonists, nalfurafine (0.0001-0.001 mg/kg) and triazole 1.1 (0.01-0.32 mg/kg); the MOR agonist, oxycodone (0.0032-0.32 mg/kg); and as controls, cocaine (0.032-0.32 mg/kg) and ketamine (0.32-10 mg/kg). For time-course determinations, the largest dose of each KOR agonist or MOR agonist was administered across timepoints (10-320 min). In mixture conditions, oxycodone (0.1 mg/kg) was followed by KOR-agonist administration. RESULTS Typical KOR agonists produced sedative-like and motor-impairing effects. Nalfurafine was similar to typical KOR agonists on most outcomes, and triazole 1.1 produced no effects on its own except for reducing scratch during time-course determinations. In the mixture, all KOR agonists reduced oxycodone-induced scratching, U50-488H and nalfurafine reduced species-typical activity, and U50-488H increased rest/sleep posture. CONCLUSIONS Atypical "biased" KOR agonists produce side-effect profiles that are relatively benign (triazole 1.1) or reduced (nalfurafine) compared to typical KOR agonists.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Diterpenes, Clerodane/pharmacology
- Dose-Response Relationship, Drug
- Macaca mulatta
- Male
- Morphinans/pharmacology
- Motor Activity/drug effects
- Motor Activity/physiology
- Oxycodone/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/physiology
- Spiro Compounds/pharmacology
Collapse
Affiliation(s)
- S L Huskinson
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - D M Platt
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - M Brasfield
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - M E Follett
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - T E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - B E Blough
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - K B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
42
|
Piekielna-Ciesielska J, Wtorek K, Janecka A. Biased Agonism as an Emerging Strategy in the Search for Better Opioid Analgesics. Curr Med Chem 2020; 27:1562-1575. [PMID: 31057099 DOI: 10.2174/0929867326666190506103124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Morphine and related drugs that act through activating opioid receptors are the most effective analgesics for the relief of severe pain. They have been used for decades, despite the range of unwanted side effects that they produce, as no alternative has been found so far. The major goal of opioid research is to understand the mechanism of action of opioid receptor agonists and to improve the therapeutic utility of opioid drugs. In the search for safer and more potent analgesics, analogs with mixed opioid receptor profile gained a lot of interest. However, recently the concept of biased agonism, that highlights the fact that some ligands are able to differentially activate receptor downstream pathways, became a new approach in the design of novel drug candidates for clinical application. In this review, we summarize current knowledge on the development of opioid ligands of peptide and nonpeptide structure, showing how much opioid pharmacology evolved in recent years.
Collapse
Affiliation(s)
| | - Karol Wtorek
- Department of Biomolecular Chemistry, Medical University, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
43
|
Bedini A, Di Cesare Mannelli L, Micheli L, Baiula M, Vaca G, De Marco R, Gentilucci L, Ghelardini C, Spampinato S. Functional Selectivity and Antinociceptive Effects of a Novel KOPr Agonist. Front Pharmacol 2020; 11:188. [PMID: 32210803 PMCID: PMC7066533 DOI: 10.3389/fphar.2020.00188] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Abstract
Kappa opioid receptor (KOPr) agonists represent alternative analgesics for their low abuse potential, although relevant adverse effects have limited their clinical use. Functionally selective KOPr agonists may activate, in a pathway-specific manner, G protein-mediated signaling, that produces antinociception, over β-arrestin 2-dependent induction of p38MAPK, which preferentially contributes to adverse effects. Thus, functionally selective KOPr agonists biased toward G protein-coupled intracellular signaling over β-arrestin-2-mediated pathways may be considered candidate therapeutics possibly devoid of many of the typical adverse effects elicited by classic KOPr agonists. Nonetheless, the potential utility of functionally selective agonists at opioid receptors is still highly debated; therefore, further studies are necessary to fully understand whether it will be possible to develop more effective and safer analgesics by exploiting functional selectivity at KOPr. In the present study we investigated in vitro functional selectivity and in vivo antinociceptive effects of LOR17, a novel KOPr selective peptidic agonist that we synthesized. LOR17-mediated effects on adenylyl cyclase inhibition, ERK1/2, p38MAPK phosphorylation, and astrocyte cell proliferation were studied in HEK-293 cells expressing hKOPr, U87-MG glioblastoma cells, and primary human astrocytes; biased agonism was investigated via cAMP ELISA and β-arrestin 2 recruitment assays. Antinociception and antihypersensitivity were assessed in mice via warm-water tail-withdrawal test, intraperitoneal acid-induced writhing, and a model of oxaliplatin-induced neuropathic cold hypersensitivity. Effects of LOR17 on locomotor activity, exploratory activity, and forced-swim behavior were also assayed. We found that LOR17 is a selective, G protein biased KOPr agonist that inhibits adenylyl cyclase and activates early-phase ERK1/2 phosphorylation. Conversely to classic KOPr agonists as U50,488, LOR17 neither induces p38MAPK phosphorylation nor increases KOPr-dependent, p38MAPK-mediated cell proliferation in astrocytes. Moreover, LOR17 counteracts, in a concentration-dependent manner, U50,488-induced p38MAPK phosphorylation and astrocyte cell proliferation. Both U50,488 and LOR17 display potent antinociception in models of acute nociception, whereas LOR17 counteracts oxaliplatin-induced thermal hypersensitivity better than U50,488, and it is effective after single or repeated s.c. administration. LOR17 administered at a dose that fully alleviated oxaliplatin-induced thermal hypersensitivity did not alter motor coordination, locomotor and exploratory activities nor induced pro-depressant-like behavior. LOR17, therefore, may emerge as a novel KOPr agonist displaying functional selectivity toward G protein signaling and eliciting antinociceptive/antihypersensitivity effects in different animal models, including oxaliplatin-induced neuropathy.
Collapse
Affiliation(s)
- Andrea Bedini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug and Children Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug and Children Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Gabriela Vaca
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rossella De Marco
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy.,Department of Agricultural, Food, Enviromental and Animal Science (Di4A), Udine, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug and Children Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Huang H, Wang W, Xu X, Zhu C, Wang Y, Liu J, Li W, Fu W. Discovery of 3-((dimethylamino)methyl)-4-hydroxy-4-(3-methoxyphenyl)-N-phenylpiperidine-1-carboxamide as novel potent analgesic. Eur J Med Chem 2020; 189:112070. [PMID: 31982651 DOI: 10.1016/j.ejmech.2020.112070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Management of moderate to severe pain by clinically used opioid analgesics is associated with a plethora of side effects. Despite many efforts have been dedicated to reduce undesirable side effects, moderate progress has been made. In this work, starting from Tramadol, a series of 3-((dimethylamino)methyl)-4-hydroxy-4-(3-methoxyphenyl)piperidine-1-carboxamide derivatives were designed and synthesized, and their in vitro and in vivo activities were evaluated. Our campaign afforded selective μ opioid receptor (MOR) ligand 2a (KiMOR: 7.3 ± 0.5 nM; KiDOR: 849.4 ± 96.6 nM; KiKOR: 49.1 ± 6.9 nM) as potent analgesic with ED50 of 3.1 mg/kg in 55 °C hot plate model. Its antinociception effect was blocked by opioid antagonist naloxone. High binding affinity toward MOR of compound 2a was associated with water bridge, salt bridge, hydrogen bond and hydrophobic interaction with MOR. The high selectivity of compound 2a for MOR over δ opioid receptor (DOR) and κ opioid receptor (KOR) was due to steric hindrance of compound 2a with DOR and KOR. 2a, a compound with novel scaffold, could serve as a lead for the development of novel opioid ligands.
Collapse
Affiliation(s)
- Huoming Huang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wenli Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xuejun Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Chen Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yujun Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Jinggen Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
45
|
Abstract
Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels. Despite having advancement in the use of thrombolytic and clot removal medicine, significant numbers of stroke patients are still left out without option for treatment. In this review, we summarize recent research work on the activation of δ-opioid receptor as a strategy for treating ischemic stroke-caused neuronal injury. Moreover, as activation of δ-opioid receptor by a non-peptidic δ-opioid receptor agonist also modulates the expression, maturation and processing of amyloid precursor protein and β-secretase activity, the potential role of these effects on ischemic stroke caused dementia or Alzheimer's disease are also discussed.
Collapse
Affiliation(s)
- Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
46
|
Brust TF. Biased Ligands at the Kappa Opioid Receptor: Fine-Tuning Receptor Pharmacology. Handb Exp Pharmacol 2020; 271:115-135. [PMID: 33140224 DOI: 10.1007/164_2020_395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The kappa opioid receptor (KOR) is a G protein-coupled receptor (GPCR) that can signal through multiple signaling pathways. KOR agonists are known to relieve pain and itch, as well as induce dysphoria, sedation, hallucinations, and diuresis. As is the case with many other GPCRs, specific signaling pathways downstream of the KOR have been linked to certain physiological responses induced by the receptor. Those studies motivated the search and discovery of a number of KOR ligands that preferentially activate one signaling pathway over another. Such compounds are termed functionally selective or biased ligands, and may present a way of inducing desired receptor effects with reduced adverse reactions. In this chapter, I review the molecular intricacies of KOR signaling and discuss the studies that have used biased signaling through the KOR as a way to selectively modulate in vivo physiology.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA.
| |
Collapse
|
47
|
Conibear AE, Kelly E. A Biased View of μ-Opioid Receptors? Mol Pharmacol 2019; 96:542-549. [PMID: 31175184 PMCID: PMC6784500 DOI: 10.1124/mol.119.115956] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 01/29/2023] Open
Abstract
The field of biased agonism has grown substantially in recent years and the μ-opioid receptor has been one of the most intensively studied receptor targets for developing biased agonists. Yet, despite extensive research efforts, the development of analgesics with reduced adverse effects remains a significant challenge. In this review we discuss the evidence to support the prevailing hypothesis that a G protein-biased agonist at the μ-opioid receptor would be an effective analgesic without the accompanying adverse effects associated with conventional μ-opioid agonists. We also assess the current status of established and novel μ-opioid-receptor ligands that are proposed to be biased ligands. SIGNIFICANCE STATEMENT: The idea that biased agonists at the μ-opioid receptor might provide a therapeutic advantage in terms of producing effective analgesia with fewer adverse effects has driven the design of novel G protein-biased agonists. However, is the desirability of G protein-biased agonists at μ-opioid receptor substantiated by what we know of the physiology and pharmacology of the receptor? Also, do any of the novel biased agonists live up to their initial promise? Here we address these issues by critically examining the evidence that G protein bias really is desirable and also by discussing whether the ligands so far developed are clearly biased in vitro and whether this produces responses in vivo that might be commensurate with such bias.
Collapse
Affiliation(s)
- Alexandra E Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
48
|
Kaski SW, White AN, Gross JD, Trexler KR, Wix K, Harland AA, Prisinzano TE, Aubé J, Kinsey SG, Kenakin T, Siderovski DP, Setola V. Preclinical Testing of Nalfurafine as an Opioid-sparing Adjuvant that Potentiates Analgesia by the Mu Opioid Receptor-targeting Agonist Morphine. J Pharmacol Exp Ther 2019; 371:487-499. [PMID: 31492823 PMCID: PMC6863463 DOI: 10.1124/jpet.118.255661] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 01/11/2023] Open
Abstract
Mu opioid receptor (MOR)-targeting analgesics are efficacious pain treatments, but notorious for their abuse potential. In preclinical animal models, coadministration of traditional kappa opioid receptor (KOR)-targeting agonists with MOR-targeting analgesics can decrease reward and potentiate analgesia. However, traditional KOR-targeting agonists are well known for inducing antitherapeutic side effects (psychotomimesis, depression, anxiety, dysphoria). Recent data suggest that some functionally selective, or biased, KOR-targeting agonists might retain the therapeutic effects of KOR activation without inducing undesirable side effects. Nalfurafine, used safely in Japan since 2009 for uremic pruritus, is one such functionally selective KOR-targeting agonist. Here, we quantify the bias of nalfurafine and several other KOR agonists relative to an unbiased reference standard (U50,488) and show that nalfurafine and EOM-salvinorin-B demonstrate marked G protein-signaling bias. While nalfurafine (0.015 mg/kg) and EOM-salvinorin-B (1 mg/kg) produced spinal antinociception equivalent to 5 mg/kg U50,488, only nalfurafine significantly enhanced the supraspinal analgesic effect of 5 mg/kg morphine. In addition, 0.015 mg/kg nalfurafine did not produce significant conditioned place aversion, yet retained the ability to reduce morphine-induced conditioned place preference in C57BL/6J mice. Nalfurafine and EOM-salvinorin-B each produced robust inhibition of both spontaneous and morphine-stimulated locomotor behavior, suggesting a persistence of sedative effects when coadministered with morphine. Taken together, these findings suggest that nalfurafine produces analgesic augmentation, while also reducing opioid-induced reward with less risk of dysphoria. Thus, adjuvant administration of G protein-biased KOR agonists like nalfurafine may be beneficial in enhancing the therapeutic potential of MOR-targeting analgesics, such as morphine.
Collapse
Affiliation(s)
- Shane W Kaski
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Allison N White
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Joshua D Gross
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Kristen R Trexler
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Kim Wix
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Aubrie A Harland
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Thomas E Prisinzano
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Jeffrey Aubé
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Steven G Kinsey
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Terry Kenakin
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - David P Siderovski
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Vincent Setola
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| |
Collapse
|
49
|
Martini ML, Ray C, Yu X, Liu J, Pogorelov VM, Wetsel WC, Huang XP, McCorvy JD, Caron MG, Jin J. Designing Functionally Selective Noncatechol Dopamine D 1 Receptor Agonists with Potent In Vivo Antiparkinsonian Activity. ACS Chem Neurosci 2019; 10:4160-4182. [PMID: 31387346 DOI: 10.1021/acschemneuro.9b00410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine receptors are important G protein-coupled receptors (GPCRs) with therapeutic opportunities for treating Parkinson's Disease (PD) motor and cognitive deficits. Biased D1 dopamine ligands that differentially activate G protein over β-arrestin recruitment pathways are valuable chemical tools for dissecting positive versus negative effects in drugs for PD. Here, we reveal an iterative approach toward modification of a D1-selective noncatechol scaffold critical for G protein-biased agonism. This approach provided enhanced understanding of the structural components critical for activity and signaling bias and led to the discovery of several novel compounds with useful pharmacological properties, including three highly GS-biased partial agonists. Administration of a potent, balanced, and brain-penetrant lead compound from this series results in robust antiparkinsonian effects in a rodent model of PD. This study suggests that the noncatechol ligands developed through this approach are valuable tools for probing D1 receptor signaling biology and biased agonism in models of neurologic disease.
Collapse
Affiliation(s)
- Michael L. Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Caroline Ray
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Vladimir M. Pogorelov
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - William C. Wetsel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Xi-Ping Huang
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
50
|
Turnaturi R, Chiechio S, Salerno L, Rescifina A, Pittalà V, Cantarella G, Tomarchio E, Parenti C, Pasquinucci L. Progress in the development of more effective and safer analgesics for pain management. Eur J Med Chem 2019; 183:111701. [PMID: 31550662 DOI: 10.1016/j.ejmech.2019.111701] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Opioid analgesics have been used for thousands of years in the treatment of pain and related disorders, and have become among the most widely prescribed medications. Among opioid analgesics, mu opioid receptor (MOR) agonists are the most commonly used and are indicated for acute and chronic pain management. However, their use results in a plethora of well-described side-effects. From selective delta opioid receptor (DOR) and kappa opioid receptor (KOR) agonists to multitarget MOR/DOR and MOR/KOR ligands, medicinal chemistry provided different approaches aimed at the development of opioid analgesics with an improved pharmacological and tolerability fingerprint. The emergent medicinal chemistry strategy to develop ameliorated opioid analgesics is based upon the concept that functional selectivity for G-protein signalling is necessary for the therapeutic effect, whether β-arrestin recruitment is mainly responsible for the manifestation of side effects, including the development of tolerance after repeated administrations. This review summarises most relevant biased MOR, DOR, KOR and multitarget MOR/DOR ligands synthesised in the last decade and their pharmacological profile in "in vitro" and "in vivo" studies. Such biased ligands could have a significant impact on modern drug discovery and represent a new strategy for the development of better-tolerated drug candidates.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Santina Chiechio
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Loredana Salerno
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, Chemistry Section, University of Catania, Viale A. Doria, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Pharmacology Section, University of Catania, Catania, Italy
| | | | - Carmela Parenti
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|