1
|
Li Y, Chen K, Wang QF. Immunological face of megakaryocytes. Front Med 2024; 18:988-1001. [PMID: 39542989 DOI: 10.1007/s11684-024-1087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/17/2024] [Indexed: 11/17/2024]
Abstract
Megakaryocytes (MKs), which are traditionally known for their role in platelet production, are now emerging as unique immune cells with diverse capabilities. They express immune receptors, participate in pathogen recognition and response, phagocytose pathogens, contribute to antigen presentation, and interact with various immune cell types. When encountering inflammatory challenges, MKs exhibit intricate immune functions that can either promote or inhibit inflammation. These responses are mediated through mechanisms, such as the secretion of either anti-inflammatory or pro-inflammatory cytokines and release of immunomodulatory platelets according to specific conditions. This intricate array of responses necessitates a detailed exploration to determine whether the immune functions of MKs are carried out by the entire MK population or by a specific subpopulation. Breakthroughs in single-cell RNA sequencing have uncovered a unique "immune MK" subpopulation, revealing its distinct characteristics and immunoregulatory functions. This review provides latest insights into MKs' immune attributes and their roles in physiological and pathological contexts and emphasizes the discovery and functions of "immune MKs".
Collapse
Affiliation(s)
- Yueying Li
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Kunying Chen
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian-Fei Wang
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Zhou L, Ni C, Liao R, Tang X, Yi T, Ran M, Huang M, Liao R, Zhou X, Qin D, Wang L, Huang F, Xie X, Wan Y, Luo J, Wang Y, Wu J. Activating SRC/MAPK signaling via 5-HT1A receptor contributes to the effect of vilazodone on improving thrombocytopenia. eLife 2024; 13:RP94765. [PMID: 38573820 PMCID: PMC10994662 DOI: 10.7554/elife.94765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Thrombocytopenia caused by long-term radiotherapy and chemotherapy exists in cancer treatment. Previous research demonstrates that 5-Hydroxtrayptamine (5-HT) and its receptors induce the formation of megakaryocytes (MKs) and platelets. However, the relationships between 5-HT1A receptor (5-HTR1A) and MKs is unclear so far. We screened and investigated the mechanism of vilazodone as a 5-HTR1A partial agonist in promoting MK differentiation and evaluated its therapeutic effect in thrombocytopenia. We employed a drug screening model based on machine learning (ML) to screen the megakaryocytopoiesis activity of Vilazodone (VLZ). The effects of VLZ on megakaryocytopoiesis were verified in HEL and Meg-01 cells. Tg (itga2b: eGFP) zebrafish was performed to analyze the alterations in thrombopoiesis. Moreover, we established a thrombocytopenia mice model to investigate how VLZ administration accelerates platelet recovery and function. We carried out network pharmacology, Western blot, and immunofluorescence to demonstrate the potential targets and pathway of VLZ. VLZ has been predicted to have a potential biological action. Meanwhile, VLZ administration promotes MK differentiation and thrombopoiesis in cells and zebrafish models. Progressive experiments showed that VLZ has a potential therapeutic effect on radiation-induced thrombocytopenia in vivo. The network pharmacology and associated mechanism study indicated that SRC and MAPK signaling are both involved in the processes of megakaryopoiesis facilitated by VLZ. Furthermore, the expression of 5-HTR1A during megakaryocyte differentiation is closely related to the activation of SRC and MAPK. Our findings demonstrated that the expression of 5-HTR1A on MK, VLZ could bind to the 5-HTR1A receptor and further regulate the SRC/MAPK signaling pathway to facilitate megakaryocyte differentiation and platelet production, which provides new insights into the alternative therapeutic options for thrombocytopenia.
Collapse
Affiliation(s)
- Ling Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Chengyang Ni
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Xiaoqin Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Taian Yi
- School of Pharmacy, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Mei Ran
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Miao Huang
- School of Pharmacy, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Rui Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Long Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Feihong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
| | - Xiang Xie
- School of Basic Medical Sciences, Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical UniversityLuzhouChina
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical UniversityLuZhouChina
- School of Basic Medical Sciences, Southwest Medical UniversityLuzhouChina
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical UniversityLuzhouChina
| |
Collapse
|
3
|
Macleod H, Weiss L, Kelliher S, Kevane B, Ní Áinle F, Maguire PB. The effect of UVA light/8-methoxypsoralen exposure used in Extracorporeal Photopheresis treatment on platelets and extracellular vesicles. PLoS One 2024; 19:e0293687. [PMID: 38416722 PMCID: PMC10901342 DOI: 10.1371/journal.pone.0293687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 03/01/2024] Open
Abstract
Extracorporeal Photopheresis (ECP) is a leukapheresis based treatment for Cutaneous T-Cell Lymphoma, which takes advantage of the cellular lethal effects of UVA light in combination with a photoactivated drug, 8-methoxypsoralen. 25% of patients treated with ECP do not respond to treatment, however the underlying mechanisms for this lack of response remain unknown. Platelets, a rich source of extracellular vesicles (EVs) and key mediators in thromboinflammatory oncological progression, as well as leukocytes, are both processed through ECP and are subsequently transfused back into the patient, delivering potent immunomodulation. The effect of exposing platelets and their EVs directly to Ultra Violet A light (UVA)/8-methoxypsoralen is currently unknown. Platelet-rich plasma (PRP) was isolated from healthy donors and exposed to UVA light and/or 8-methoxysporalen in vitro and platelet activation and aggregation was assessed. EV size and concentration were also characterised by Nanoparticle Tracking Analysis and Flow Cytometry. We found that UVA light and 8-methoxypsoralen treatment in vitro does not induce platelet aggregation or significantly alter levels of the platelet activation markers, soluble P-selectin or platelet factor 4, with circulating levels of small and large EV size and concentration remaining constant. Therefore, utilising the combination of UVA light and 8-methoxypsoralen used in ECP in vitro does not activate platelets or alter important circulating EVs. Further studies will be needed to validate if our observations are consistent in vivo.
Collapse
Affiliation(s)
- Hayley Macleod
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Luisa Weiss
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Sarah Kelliher
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Barry Kevane
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Fionnuala Ní Áinle
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Patricia B. Maguire
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Institute for Discovery, O’Brien Centre for Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Guo K, Machlus KR, Camacho V. The many faces of the megakaryocytes and their biological implications. Curr Opin Hematol 2024; 31:1-5. [PMID: 37910197 PMCID: PMC10842450 DOI: 10.1097/moh.0000000000000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW Single-cell RNA sequencing studies have revealed transcriptional heterogeneity within the megakaryocytic lineage and the identified unique subsets. In this review, we discuss the functional and phenotypic plasticity of these subpopulations as well as the impacts on health and disease. RECENT FINDINGS Megakaryocytes (MKs) can be transcriptionally categorized into platelet generating, niche supporting, immune, and cycling cells, which are distinguished by their unique gene expression patterns and cellular markers. Additionally, a significant population of these cells has been established to reside in the nonhematopoietic tissues and they display enhanced immune-related characteristics. Combined with the location in which the megakaryocytes exist, these cells can play unique roles dictated by their current environment and biological needs, including responding to changes in pathogen exposure. SUMMARY Advances in megakaryocyte research has elucidated the existence of multiple subpopulations of MKs that serve different functions. These subpopulations implicate a greater potential for MKs to be regulators of health and suggest new avenues for treatments and therapies in related diseases.
Collapse
Affiliation(s)
- Karen Guo
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Virginia Camacho
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
The Application of Ethnomedicine in Modulating Megakaryocyte Differentiation and Platelet Counts. Int J Mol Sci 2023; 24:ijms24043168. [PMID: 36834579 PMCID: PMC9961075 DOI: 10.3390/ijms24043168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Megakaryocytes (MKs), a kind of functional hematopoietic stem cell, form platelets to maintain platelet balance through cell differentiation and maturation. In recent years, the incidence of blood diseases such as thrombocytopenia has increased, but these diseases cannot be fundamentally solved. The platelets produced by MKs can treat thrombocytopenia-associated diseases in the body, and myeloid differentiation induced by MKs has the potential to improve myelosuppression and erythroleukemia. Currently, ethnomedicine is extensively used in the clinical treatment of blood diseases, and the recent literature has reported that many phytomedicines can improve the disease status through MK differentiation. This paper reviewed the effects of botanical drugs on megakaryocytic differentiation covering the period 1994-2022, and information was obtained from PubMed, Web of Science and Google Scholar. In conclusions, we summarized the role and molecular mechanism of many typical botanical drugs in promoting megakaryocyte differentiation in vivo, providing evidence as much as possible for botanical drugs treating thrombocytopenia and other related diseases in the future.
Collapse
|
6
|
Livada AC, Pariser DN, Morrell CN. Megakaryocytes in the lung: History and future perspectives. Res Pract Thromb Haemost 2023; 7:100053. [PMID: 37063766 PMCID: PMC10099324 DOI: 10.1016/j.rpth.2023.100053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
A state of the art lecture titled "Megakaryocytes in the Lung" was presented at the London International Society on Thrombosis and Haemostasis congress in 2022. This lecture highlighted that although most medical teaching presents platelets as bone marrow megakaryocyte-derived cellular mediators of thrombosis, platelets are also a critical part of the immune system with direct roles in responses to sterile tissue injury and pathogens. Bone marrow megakaryocytes differentiate from hematopoietic stem cells and package platelets with immune molecules. Activated platelets, therefore, initiate or accelerate the progression of vascular inflammatory pathologies, as well as being regulators of immune responses to infectious agents. Platelets are now known to have mechanistic roles in immune responses to disease processes, such as heart transplant rejection, myocardial infarction, aortic aneurysm, peripheral vascular disease, and infections. From these studies comes the concept that megakaryocytes are immune cell progenitors and recent emerging information highlights that megakaryocytes may themselves be immune cells. Despite megakaryocytes being described in the lung for >100 years, lung megakaryocytes have only recently been shown to be platelet producing and lung megakaryocytes are immune-differentiated in both phenotype and function. What is still not known is the origin of lung megakaryocytes and roles of lung megakaryocytes in health and disease. This review will discuss the long history of lung megakaryocytes in the literature and potential models for megakaryocyte origins and immune functions. Finally, we summarize relevant new data related to this topic that was presented during the 2022 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Alison C. Livada
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Daphne N. Pariser
- Division of Comparative Medicine, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
7
|
Zhan H, Kaushansky K. Megakaryocytes as the Regulator of the Hematopoietic Vascular Niche. Front Oncol 2022; 12:912060. [PMID: 35814384 PMCID: PMC9258777 DOI: 10.3389/fonc.2022.912060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Megakaryocytes (MKs) are important components of the hematopoietic niche. Compared to the non-hematopoietic niche cells, MKs serving as part of the hematopoietic niche provides a mechanism for feedback regulation of hematopoietic stem cells (HSCs), in which HSC progeny (MKs) can modulate HSC adaptation to hematopoietic demands during both steady-state and stress hematopoiesis. MKs are often located adjacent to marrow sinusoids. Considering that most HSCs reside close to a marrow vascular sinusoid, as do MKs, the interactions between MKs and vascular endothelial cells are positioned to play important roles in modulating HSC function, and by extrapolation, might be dysregulated in various disease states. In this review, we discuss the interactions between MKs and the vascular niche in both normal and neoplastic hematopoiesis.
Collapse
Affiliation(s)
- Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, United States
- Medical Service, Northport Veterans Affairs (VA) Medical Center, Northport, NY, United States
- *Correspondence: Huichun Zhan,
| | - Kenneth Kaushansky
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
8
|
Tilburg J, Becker IC, Italiano JE. Don't you forget about me(gakaryocytes). Blood 2022; 139:3245-3254. [PMID: 34582554 PMCID: PMC9164737 DOI: 10.1182/blood.2020009302] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Platelets (small, anucleate cell fragments) derive from large precursor cells, megakaryocytes (MKs), that reside in the bone marrow. MKs emerge from hematopoietic stem cells in a complex differentiation process that involves cytoplasmic maturation, including the formation of the demarcation membrane system, and polyploidization. The main function of MKs is the generation of platelets, which predominantly occurs through the release of long, microtubule-rich proplatelets into vessel sinusoids. However, the idea of a 1-dimensional role of MKs as platelet precursors is currently being questioned because of advances in high-resolution microscopy and single-cell omics. On the one hand, recent findings suggest that proplatelet formation from bone marrow-derived MKs is not the only mechanism of platelet production, but that it may also occur through budding of the plasma membrane and in distant organs such as lung or liver. On the other hand, novel evidence suggests that MKs not only maintain physiological platelet levels but further contribute to bone marrow homeostasis through the release of extracellular vesicles or cytokines, such as transforming growth factor β1 or platelet factor 4. The notion of multitasking MKs was reinforced in recent studies by using single-cell RNA sequencing approaches on MKs derived from adult and fetal bone marrow and lungs, leading to the identification of different MK subsets that appeared to exhibit immunomodulatory or secretory roles. In the following article, novel insights into the mechanisms leading to proplatelet formation in vitro and in vivo will be reviewed and the hypothesis of MKs as immunoregulatory cells will be critically discussed.
Collapse
Affiliation(s)
- Julia Tilburg
- Vascular Biology Program, Boston Children's Hospital, Boston, MA
| | | | | |
Collapse
|
9
|
Wunderlich F, Delic D, Gerovska D, Araúzo-Bravo MJ. Vaccination Accelerates Liver-Intrinsic Expression of Megakaryocyte-Related Genes in Response to Blood-Stage Malaria. Vaccines (Basel) 2022; 10:vaccines10020287. [PMID: 35214745 PMCID: PMC8880532 DOI: 10.3390/vaccines10020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Erythropoiesis and megakaryo-/thrombopoiesis occur in the bone marrow proceeding from common, even bipotent, progenitor cells. Recently, we have shown that protective vaccination accelerates extramedullary hepatic erythroblastosis in response to blood-stage malaria of Plasmodium chabaudi. Here, we investigated whether protective vaccination also accelerates extramedullary hepatic megakaryo-/thrombopoiesis. Female Balb/c mice were twice vaccinated with a non-infectious vaccine before infecting with 106 P. chabaudi-parasitized erythrocytes. Using gene expression microarrays and quantitative real-time PCR, transcripts of genes known to be expressed in the bone marrow by cells of the megakaryo-/thrombocytic lineage were compared in livers of vaccination-protected and unprotected mice on days 0, 1, 4, 8, and 11 p.i. Livers of vaccination-protected mice responded with expression of megakaryo-/thrombocytic genes faster to P. chabaudi than those of unvaccinated mice, evidenced at early patency on day 4 p.i., when livers exhibited significantly higher levels of malaria-induced transcripts of the genes Selp and Pdgfb (p-values < 0.0001), Gp5 (p-value < 0.001), and Fli1, Runx1, Myb, Mpl, Gp1ba, Gp1bb, Gp6, Gp9, Pf4, and Clec1b (p-values < 0.01). Together with additionally analyzed genes known to be related to megakaryopoiesis, our data suggest that protective vaccination accelerates liver-intrinsic megakaryo-/thrombopoiesis in response to blood-stage malaria that presumably contributes to vaccination-induced survival of otherwise lethal blood-stage malaria.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, 68167 Heidelberg, Germany
- Correspondence: (D.D.); (M.J.A.-B.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- TransBioNet Thematic Network of Excellence for Transitional Bioinformatics, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Correspondence: (D.D.); (M.J.A.-B.)
| |
Collapse
|
10
|
Poli V, Di Gioia M, Sola-Visner M, Granucci F, Frelinger AL, Michelson AD, Zanoni I. Inhibition of transcription factor NFAT activity in activated platelets enhances their aggregation and exacerbates gram-negative bacterial septicemia. Immunity 2022; 55:224-236.e5. [PMID: 34995475 PMCID: PMC11318314 DOI: 10.1016/j.immuni.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/09/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022]
Abstract
During gram-negative septicemia, interactions between platelets and neutrophils initiate a detrimental feedback loop that sustains neutrophil extracellular trap (NET) induction, disseminated intravascular coagulation, and inflammation. Understanding intracellular pathways that control platelet-neutrophil interactions is essential for identifying new therapeutic targets. Here, we found that thrombin signaling induced activation of the transcription factor NFAT in platelets. Using genetic and pharmacologic approaches, as well as iNFATuation, a newly developed mouse model in which NFAT activation can be abrogated in a cell-specific manner, we demonstrated that NFAT inhibition in activated murine and human platelets enhanced their activation and aggregation, as well as their interactions with neutrophils and NET induction. During gram-negative septicemia, NFAT inhibition in platelets promoted disease severity by increasing disseminated coagulation and NETosis. NFAT inhibition also partially restored coagulation ex vivo in patients with hypoactive platelets. Our results define non-transcriptional roles for NFAT that could be harnessed to address pressing clinical needs.
Collapse
Affiliation(s)
- Valentina Poli
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, MA, USA
| | - Marco Di Gioia
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, MA, USA
| | - Martha Sola-Visner
- Harvard Medical School, Boston Children's Hospital, Division of Newborn Medicine, Boston, MA, USA
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Alan D Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, MA, USA; Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, MA, USA.
| |
Collapse
|
11
|
Khatib-Massalha E, Méndez-Ferrer S. Megakaryocyte Diversity in Ontogeny, Functions and Cell-Cell Interactions. Front Oncol 2022; 12:840044. [PMID: 35186768 PMCID: PMC8854253 DOI: 10.3389/fonc.2022.840044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) rely on local interactions in the bone marrow (BM) microenvironment with stromal cells and other hematopoietic cells that facilitate their survival and proliferation, and also regulate their functions. HSCs and multipotent progenitor cells differentiate into lineage-specific progenitors that generate all blood and immune cells. Megakaryocytes (Mks) are hematopoietic cells responsible for producing blood platelets, which are essential for normal hemostasis and blood coagulation. Although the most prominent function of Mks is platelet production (thrombopoiesis), other increasingly recognized functions include HSC maintenance and host immune response. However, whether and how these diverse programs are executed by different Mk subpopulations remains poorly understood. This Perspective summarizes our current understanding of diversity in ontogeny, functions and cell-cell interactions. Cumulative evidence suggests that BM microenvironment dysfunction, partly caused by mutated Mks, can induce or alter the progression of a variety of hematologic malignancies, including myeloproliferative neoplasms (MPNs) and other disorders associated with tissue scarring (fibrosis). Therefore, as an example of the heterogeneous functions of Mks in malignant hematopoiesis, we will discuss the role of Mks in the onset and progression of BM fibrosis. In this regard, abnormal interactions between of Mks and other immune cells might directly contribute to fibrotic diseases. Overall, further understanding of megakaryopoiesis and how Mks interact with HSCs and immune cells has potential clinical implications for stem cell transplantation and other therapies for hematologic malignancies, as well as for treatments to stimulate platelet production and prevent thrombocytopenia.
Collapse
Affiliation(s)
- Eman Khatib-Massalha
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Simón Méndez-Ferrer
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Instituto de Biomedicina de Sevilla-IBiS, Hospitales Universitarios Virgen del Rocío y Macarena/Spanish National Research Council (CSIC)/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
12
|
Abstract
Classically, platelets have been described as the cellular blood component that mediates hemostasis and thrombosis. This important platelet function has received significant research attention for >150 years. The immune cell functions of platelets are much less appreciated. Platelets interact with and activate cells of all branches of immunity in response to pathogen exposures and infection, as well as in response to sterile tissue injury. In this review, we focus on innate immune mechanisms of platelet activation, platelet interactions with innate immune cells, as well as the intersection of platelets and adaptive immunity. The immune potential of platelets is dependent in part on their megakaryocyte precursor providing them with the molecular composition to be first responders and immune sentinels in initiating and orchestrating coordinated pathogen immune responses. There is emerging evidence that extramedullary megakaryocytes may be immune differentiated compared with bone marrow megakaryocytes, but the physiological relevance of immunophenotypic differences are just beginning to be explored. These concepts are also discussed in this review. The immune functions of the megakaryocyte/platelet lineage have likely evolved to coordinate the need to repair a vascular breach with the simultaneous need to induce an immune response that may limit pathogen invasion once the blood is exposed to an external environment.
Collapse
Affiliation(s)
- Milka Koupenova
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605
| | - Alison Livada
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY 14642
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
13
|
Sun S, Jin C, Si J, Lei Y, Chen K, Cui Y, Liu Z, Liu J, Zhao M, Zhang X, Tang F, Rondina MT, Li Y, Wang QF. Single-cell analysis of ploidy and the transcriptome reveals functional and spatial divergency in murine megakaryopoiesis. Blood 2021; 138:1211-1224. [PMID: 34115843 PMCID: PMC8499048 DOI: 10.1182/blood.2021010697] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Megakaryocytes (MKs), the platelet progenitor cells, play important roles in hematopoietic stem cell (HSC) maintenance and immunity. However, it is not known whether these diverse programs are executed by a single population or by distinct subsets of cells. Here, we manually isolated primary CD41+ MKs from the bone marrow (BM) of mice and human donors based on ploidy (2N-32N) and performed single-cell RNA sequencing analysis. We found that cellular heterogeneity existed within 3 distinct subpopulations that possess gene signatures related to platelet generation, HSC niche interaction, and inflammatory responses. In situ immunostaining of mouse BM demonstrated that platelet generation and the HSC niche-related MKs were in close physical proximity to blood vessels and HSCs, respectively. Proplatelets, which could give rise to platelets under blood shear forces, were predominantly formed on a platelet generation subset. Remarkably, the inflammatory responses subpopulation, consisting generally of low-ploidy LSP1+ and CD53+ MKs (≤8N), represented ∼5% of total MKs in the BM. These MKs could specifically respond to pathogenic infections in mice. Rapid expansion of this population was accompanied by strong upregulation of a preexisting PU.1- and IRF-8-associated monocytic-like transcriptional program involved in pathogen recognition and clearance as well as antigen presentation. Consistently, isolated primary CD53+ cells were capable of engulfing and digesting bacteria and stimulating T cells in vitro. Together, our findings uncover new molecular, spatial, and functional heterogeneity within MKs in vivo and demonstrate the existence of a specialized MK subpopulation that may act as a new type of immune cell.
Collapse
Affiliation(s)
- Shu Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Jin
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Si
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lei
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunying Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueli Cui
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing, China
- Biomedical Institute for Pioneering Investigation via Convergence, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhenbo Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Jiang Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing, China
- Biomedical Institute for Pioneering Investigation via Convergence, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Matthew T Rondina
- Department of Internal Medicine and Pathology, and the Molecular Medicine Program, University of Utah, Salt Lake City, UT; and
- Geriatric Research Education and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT
| | - Yueying Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian-Fei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Morsilli O, Guerriero R, Lulli V, Maffei L, Pasquini L, Pulcinelli FM, Sorrentino F, Gabbianelli M. Platelet and megakaryocyte CD40L expression in β-Thalassemic patients. Thromb Res 2020; 189:108-111. [PMID: 32199173 DOI: 10.1016/j.thromres.2020.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 02/29/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Ornella Morsilli
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, Rome, Italy
| | - Raffaella Guerriero
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Maffei
- UO Talassemici Sant'Eugenio Hospital, Rome, Italy
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Marco Gabbianelli
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
15
|
Couldwell G, Machlus KR. Modulation of megakaryopoiesis and platelet production during inflammation. Thromb Res 2019; 179:114-120. [PMID: 31128560 DOI: 10.1016/j.thromres.2019.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022]
Abstract
Megakaryocytes (MKs) are widely known as the progenitor cells of platelets. These large, polyploid cells are a derivative of the hematopoietic stem cell (HSC), and reside in the bone marrow, lining blood vessel walls where they release their platelet progeny into circulation. Although little is known about how MKs differ under various environmental stressors, both chronic and acute inflammation alter the differentiation and molecular content of MKs. Furthermore, evidence suggests that the release of inflammatory cytokines may induce MK rupture and rapid release of platelets as a mechanism to quickly replenish diminished platelet counts in response to inflammation. Similarities between MKs and their close relatives, white blood cells, have introduced the notion that MKs may play a role in combating infection by engulfing and presenting antigens, and passing this information to circulating platelets. In addition, MKs exposed to varying bone marrow environments produce different platelets which enter circulation primed to respond to and combat inflammation, infection, or injury. This review focuses on how inflammation alters MK production, maturation, and platelet production. In addition, it introduces the idea that inflammation reprograms MKs to create different, more pathogenic platelets and leads them to take on different roles as responders to deleterious conditions. In the future, studies determining how platelets are altered in disease states may lead to novel MK- and platelet-based therapeutic targets to mitigate inflammation-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Noetzli LJ, French SL, Machlus KR. New Insights Into the Differentiation of Megakaryocytes From Hematopoietic Progenitors. Arterioscler Thromb Vasc Biol 2019; 39:1288-1300. [PMID: 31043076 PMCID: PMC6594866 DOI: 10.1161/atvbaha.119.312129] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
Megakaryocytes are hematopoietic cells, which are responsible for the production of blood platelets. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells, through a hierarchical series of progenitor cells, ultimately to a mature megakaryocyte. Once mature, the megakaryocyte then undergoes a terminal maturation process involving multiple rounds of endomitosis and cytoplasmic restructuring to allow platelet formation. However, recent studies have begun to redefine this hierarchy and shed new light on alternative routes by which hematopoietic stem cells are differentiated into megakaryocytes. In particular, the origin of megakaryocytes, including the existence and hierarchy of megakaryocyte progenitors, has been redefined, as new studies are suggesting that hematopoietic stem cells originate as megakaryocyte-primed and can bypass traditional lineage checkpoints. Overall, it is becoming evident that megakaryopoiesis does not only occur as a stepwise process, but is dynamic and adaptive to biological needs. In this review, we will reexamine the canonical dogmas of megakaryopoiesis and provide an updated framework for interpreting the roles of traditional pathways in the context of new megakaryocyte biology. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Leila J Noetzli
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Shauna L French
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
17
|
Cunin P, Nigrovic PA. Megakaryocytes as immune cells. J Leukoc Biol 2019; 105:1111-1121. [PMID: 30645026 DOI: 10.1002/jlb.mr0718-261rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets play well-recognized roles in inflammation, but their cell of origin-the megakaryocyte-is not typically considered an immune lineage. Megakaryocytes are large polyploid cells most commonly identified in bone marrow. Egress via sinusoids enables migration to the pulmonary capillary bed, where elaboration of platelets can continue. Beyond receptors involved in hemostasis and thrombosis, megakaryocytes express receptors that confer immune sensing capacity, including TLRs and Fc-γ receptors. They control the proliferation of hematopoietic cells, facilitate neutrophil egress from marrow, possess the capacity to cross-present antigen, and can promote systemic inflammation through microparticles rich in IL-1. Megakaryocytes internalize other hematopoietic lineages, especially neutrophils, in an intriguing cell-in-cell interaction termed emperipolesis. Together, these observations implicate megakaryocytes as direct participants in inflammation and immunity.
Collapse
Affiliation(s)
- Pierre Cunin
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A Nigrovic
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Yadav M, Song F, Huang J, Chakravarti A, Jacob NK. Ocimum flavone Orientin as a countermeasure for thrombocytopenia. Sci Rep 2018; 8:5075. [PMID: 29567949 PMCID: PMC5864743 DOI: 10.1038/s41598-018-23419-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Thrombocytopenia or chronic depletion of platelets in blood, could create life-threatening conditions in patients who receive aggressive systemic radiation and chemotherapy. Currently there are no approved agents for the rapid treatment of thrombocytopenia. In the present study, we demonstrate that administration of Orientin, a glycosidic flavonoid or dietary administration of Orientin containing Tulsi (Holy Basil) leaves, results in a significant increase in circulating platelets in a clinically relevant mouse model. No noticeable effects were observed on red blood cells, white blood cells or other hematologic parameters in treated animals indicating that Orientin specificity enhances platelet formation. The gene expression and immunophenotyping of bone marrow revealed that Orientin stimulates megakaryopoiesis specific transcriptional program. A significant increase in colony formation in bone marrow cells from Orientin pretreated mice further complemented the effect of Orientin on progenitor cells. The ex-vivo differentiation of irradiated human peripheral blood CD34+ stem cells demonstrated stimulatory effects of Orientin on megakaryocyte erythrocyte progenitors (MEP). The results show that Orientin, a non-toxic readily available natural product can counter platelet imbalances. Thrombocytopenia also develop as a consequence of multiple hematologic malignancies and side effects of treatments. Dietary supplementation of Orientin containing phytochemicals could be effective as countermeasures and viable therapeutics.
Collapse
Affiliation(s)
- Marshleen Yadav
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Feifei Song
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Jason Huang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Naduparambil K Jacob
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
19
|
Cui Y, Liu S, Cui W, Gao D, Zhou W, Luo P. Identification of potential biomarkers and therapeutic targets for human IgA nephropathy and hypertensive nephropathy by bioinformatics analysis. Mol Med Rep 2017; 16:3087-3094. [PMID: 28713898 PMCID: PMC5547965 DOI: 10.3892/mmr.2017.6996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 04/04/2017] [Indexed: 12/15/2022] Open
Abstract
In order to further elucidate the potential correlations and treatments of IgA nephropathy (IgAN) and hypertensive nephropathy (HT), bioinformatics analysis of IgAN and HT was performed. The mRNA expression profiles of human renal biopsy samples from patients with IgAN, patients with HT and pre‑transplant healthy living controls (LD) were downloaded from the Gene Expression Omnibus database. Then, the differentially expressed genes (DEGs) were identified and functions of DEGs were analyzed. Finally, the regulatory networks containing DEGs and related‑transcription factors (TFs) were constructed using Cytoscape software. When compared with the LD group, 134 and 188 DEGs were obtained in the IgAN and HT groups, respectively. A total of 39 genes were altered in the HT group when compared with the IgAN group. In addition, 66 genes were shared in the IgAN and HT groups when compared with the LD group, 6 of which [early growth response 1, activating transcription factor 3, nuclear receptor subfamily 4 group A member 2 (NR4A2), NR4A1, v‑maf avian musculoaponeurotic fibrosarcoma oncogene homolog F and Kruppel like factor 6] were identified as TFs. In addition, DEGs including interleukin (IL) 1 receptor antagonist, collagen type 4 α2 chain, IL8, FBJ murine osteosarcoma viral oncogene homolog and somatostatin were enriched in a number of inflammation‑associated biological processes, and DEGs including structural maintenance of chromosomes protein 3, v‑crk avian sarcoma virus CT10 oncogene homolog and myosin 6 were enriched in non‑inflammation‑associated biological processes. Therefore, the differentially expressed TF genes and the genes associated with inflammation may be effective as potential therapeutic targets for IgAN and HT.
Collapse
Affiliation(s)
- Yingchun Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shengmao Liu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dan Gao
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Wenhua Zhou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
20
|
Yan Q, Yang C, Fu Q, Chen Z, Liu S, Fu D, Rahman RN, Nakazato R, Yoshioka K, Kung SKP, Ding G, Wang H. Scaffold protein JLP mediates TCR-initiated CD4 +T cell activation and CD154 expression. Mol Immunol 2017; 87:258-266. [PMID: 28521278 DOI: 10.1016/j.molimm.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 11/16/2022]
Abstract
CD4+ T-cell activation and its subsequent induction of CD154 (CD40 ligand, CD40L) expression are pivotal in shaping both the humoral and cellular immune responses. Scaffold protein JLP regulates signal transduction pathways and molecular trafficking inside cells, thus represents a critical component in maintaining cellular functions. Its role in regulating CD4+ T-cell activation and CD154 expression, however, is unclear. Here, we demonstrated expression of JLP in mouse tissues of lymph nodes, thymus, spleen, and also CD4+ T cells. Using CD4+ T cells from jlp-deficient and jlp-wild-type mice, we demonstrated that JLP-deficiency impaired T-cell proliferation, IL-2 production, and CD154 induction upon TCR stimulations, but had no impacts on the expression of other surface molecules such as CD25, CD69, and TCR. These observed impaired T-cell functions in the jlp-/- CD4+ T cells were associated with defective NF-AT activation and Ca2+ influx, but not the MAPK, NF-κB, as well as AP-1 signaling pathways. Our findings indicated that, for the first time, JLP plays a critical role in regulating CD4+ T cells response to TCR stimulation partly by mediating the activation of TCR-initiated Ca2+/NF-AT.
Collapse
Affiliation(s)
- Qi Yan
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Cheng Yang
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Qiang Fu
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Shan Liu
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Dou Fu
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Rahmat N Rahman
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Canada
| | - Ryota Nakazato
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuji Yoshioka
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Sam K P Kung
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Canada
| | - Guohua Ding
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China.
| | - Huiming Wang
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Pozhitkov AE, Neme R, Domazet-Lošo T, Leroux BG, Soni S, Tautz D, Noble PA. Tracing the dynamics of gene transcripts after organismal death. Open Biol 2017; 7:160267. [PMID: 28123054 PMCID: PMC5303275 DOI: 10.1098/rsob.160267] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
In life, genetic and epigenetic networks precisely coordinate the expression of genes-but in death, it is not known if gene expression diminishes gradually or abruptly stops or if specific genes and pathways are involved. We studied this by identifying mRNA transcripts that apparently increase in relative abundance after death, assessing their functions, and comparing their abundance profiles through postmortem time in two species, mouse and zebrafish. We found mRNA transcript profiles of 1063 genes became significantly more abundant after death of healthy adult animals in a time series spanning up to 96 h postmortem. Ordination plots revealed non-random patterns in the profiles by time. While most of these transcript levels increased within 0.5 h postmortem, some increased only at 24 and 48 h postmortem. Functional characterization of the most abundant transcripts revealed the following categories: stress, immunity, inflammation, apoptosis, transport, development, epigenetic regulation and cancer. The data suggest a step-wise shutdown occurs in organismal death that is manifested by the apparent increase of certain transcripts with various abundance maxima and durations.
Collapse
Affiliation(s)
- Alex E Pozhitkov
- Department of Oral Health Sciences, University of Washington, PO Box 357444, Seattle, WA 98195, USA
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Rafik Neme
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10002 Zagreb, Croatia
- Catholic University of Croatia, Ilica 242, Zagreb, Croatia
| | - Brian G Leroux
- Department of Oral Health Sciences, University of Washington, PO Box 357444, Seattle, WA 98195, USA
| | - Shivani Soni
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101-0271, USA
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Peter A Noble
- Department of Periodontics, University of Washington, PO Box 357444, Seattle, WA 98195, USA
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101-0271, USA
- PhD Program in Microbiology, Alabama State University, Montgomery, AL 36101-0271, USA
| |
Collapse
|
22
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
23
|
Ryu WI, Lee H, Kim JH, Bae HC, Ryu HJ, Son SW. IL-33 induces Egr-1-dependent TSLP expression via the MAPK pathways in human keratinocytes. Exp Dermatol 2015; 24:857-63. [DOI: 10.1111/exd.12788] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Woo-In Ryu
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Hana Lee
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Jin Hee Kim
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Hyun Cheol Bae
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Hwa Jung Ryu
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Sang Wook Son
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| |
Collapse
|
24
|
Dewitte A, Tanga A, Villeneuve J, Lepreux S, Ouattara A, Desmoulière A, Combe C, Ripoche J. New frontiers for platelet CD154. Exp Hematol Oncol 2015; 4:6. [PMID: 25763299 PMCID: PMC4355125 DOI: 10.1186/s40164-015-0001-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023] Open
Abstract
The role of platelets extends beyond hemostasis. The pivotal role of platelets in inflammation has shed new light on the natural history of conditions associated with acute or chronic inflammation. Beyond the preservation of vascular integrity, platelets are essential to tissue homeostasis and platelet-derived products are already used in the clinics. Unanticipated was the role of platelets in the adaptative immune response, allowing a renewed conceptual approach of auto-immune diseases. Platelets are also important players in cancer growth and dissemination. Platelets fulfill most of their functions through the expression of still incompletely characterized membrane-bound or soluble mediators. Among them, CD154 holds a peculiar position, as platelets represent a major source of CD154 and as CD154 contributes to most of these new platelet attributes. Here, we provide an overview of some of the new frontiers that the study of platelet CD154 is opening, in inflammation, tissue homeostasis, immune response, hematopoiesis and cancer.
Collapse
Affiliation(s)
- Antoine Dewitte
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France ; Service d'Anesthésie-Réanimation II, CHU de Bordeaux, F-33600 Pessac, France
| | - Annabelle Tanga
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France
| | - Julien Villeneuve
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain ; Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3200 USA
| | | | - Alexandre Ouattara
- Service d'Anesthésie-Réanimation II, CHU de Bordeaux, F-33600 Pessac, France
| | | | - Christian Combe
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France ; Service de Néphrologie Transplantation Dialyse, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Jean Ripoche
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|