1
|
Alt TB, Moran GR. The binding modes of quinones in flavoprotein oxidoreductases. Arch Biochem Biophys 2025; 770:110443. [PMID: 40320059 DOI: 10.1016/j.abb.2025.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/11/2025]
Abstract
Flavoprotein quinone reductases regenerate quinols which serve metabolic and antioxidant roles. These enzymes catalyze the two-electron oxidation of substrates and the subsequent two electron reduction of quinones. Despite the net two electron transfer between substrates, the binding mode of quinones is typically end-on to the flavin, rather than stacked, dictating that the oxidative half reaction cannot proceed via hydride transfer and must instead occur by two successive single electron transfers. Here we present a review of six of the most well-studied flavoprotein quinone reductases to establish a framework for discussing this positional orientation for the quinone oxidant. There are two non-mutually exclusive rationalizations for this binding mode where the flavin isoalloxazine acts as a redox partition. The first is that energetics of the single electron transfer pathway create a kinetic barrier to the reverse reaction, trapping electrons in the quinone pool and countering the high ratio of quinol to quinone present in the membrane. The second is that the end-on binding allows the enzymes to utilize different binding sites for cytosolic and membrane associated substrates, avoiding the need to desorb substrates. These effects may be additive and serve to funnel electrons into the quinone pool as efficiently as possible.
Collapse
Affiliation(s)
- Tyler B Alt
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL 60660, USA
| | - Graham R Moran
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL 60660, USA.
| |
Collapse
|
2
|
Rendón JL, Pardo JP. Time-Dependent Kinetic Complexities in Enzyme Assays: A Review. Biomolecules 2025; 15:641. [PMID: 40427534 DOI: 10.3390/biom15050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
In the present review, the importance of analyzing full progress curves in enzyme assays is discussed. The atypical kinetic behavior that can be potentially displayed by enzymes in the performance of an activity assay, as well as the models explaining such behavior, are analyzed. These complex time-dependent kinetic patterns include hysteresis, damped oscillatory hysteresis, unstable product, and kinetic competence. The atypical time-dependent patterns are discussed with both real examples and In Silico simulations. When possible, the physiological implications of such kinetic behaviors are included. The importance of analyzing the derivative of the reaction rate of such atypical transitions as a method to distinguish them from the conventional non-atypical time progress curve is stressed.
Collapse
Affiliation(s)
- Juan Luis Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Apartado Postal 70-159, Ciudad de México 04510, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Apartado Postal 70-159, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Deng D, Gao Q, Zeng R, Jiang J, Shen Q, Ma Y, Fang W, Zhu X. The Proline Dehydrogenase Gene CsProDH1 Regulates Homeostasis of the Pro-P5C Cycle Under Drought Stress in Tea Plants. Int J Mol Sci 2025; 26:3121. [PMID: 40243904 PMCID: PMC11988676 DOI: 10.3390/ijms26073121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The homeostasis of the proline-Δ1-pyrroline-5-carboxylate (Pro-P5C) cycle, mediated by proline dehydrogenase (ProDH), plays a critical role in plants in response to abiotic stresses. The biological function of gene CsProDH1 under drought stress and its effects on amino acid metabolism and photosynthesis through proline metabolism were investigated. Enzymatic characterization of the CsProDH1 protein was conducted in vitro. Overexpression of CsProDH1 aggravated plant stress, as evident by reduced photosynthetic efficiency and increased reactive oxygen species, which activated the Pro-P5C cycle. In contrast, silencing CsProDH1 enhanced plant drought resistance, increased proline accumulation, and protected photosynthesis. Studies indicate that exogenous amino acid application mitigates drought-induced physiological impairments in plants by maintaining cellular homeostasis, with particular efficacy observed in enhancing tea plant drought resilience through improved osmotic adjustment and antioxidant capacity. This study uncovers the significant role of CsProDH1 in plant drought resistance and its regulatory mechanism, offering potential gene targets and application strategies for enhancing crop drought resistance.
Collapse
Affiliation(s)
- Deng Deng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.D.); (Q.G.); (R.Z.); (J.J.); (Y.M.); (W.F.)
| | - Qinqin Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.D.); (Q.G.); (R.Z.); (J.J.); (Y.M.); (W.F.)
| | - Rou Zeng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.D.); (Q.G.); (R.Z.); (J.J.); (Y.M.); (W.F.)
| | - Jie Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.D.); (Q.G.); (R.Z.); (J.J.); (Y.M.); (W.F.)
| | - Qiang Shen
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China;
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.D.); (Q.G.); (R.Z.); (J.J.); (Y.M.); (W.F.)
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.D.); (Q.G.); (R.Z.); (J.J.); (Y.M.); (W.F.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.D.); (Q.G.); (R.Z.); (J.J.); (Y.M.); (W.F.)
| |
Collapse
|
4
|
Vinces TC, de Souza AS, Carvalho CF, Visnardi AB, Teixeira RD, Llontop EE, Bismara BAP, Vicente EJ, Pereira JO, de Souza RF, Yonamine M, Marana SR, Farah CS, Guzzo CR. Monomeric Esterase: Insights into Cooperative Behavior, Hysteresis/Allokairy. Biochemistry 2024; 63:1178-1193. [PMID: 38669355 DOI: 10.1021/acs.biochem.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Herein, we present a novel esterase enzyme, Ade1, isolated from a metagenomic library of Amazonian dark earths soils, demonstrating its broad substrate promiscuity by hydrolyzing ester bonds linked to aliphatic groups. The three-dimensional structure of the enzyme was solved in the presence and absence of substrate (tributyrin), revealing its classification within the α/β-hydrolase superfamily. Despite being a monomeric enzyme, enzymatic assays reveal a cooperative behavior with a sigmoidal profile (initial velocities vs substrate concentrations). Our investigation brings to light the allokairy/hysteresis behavior of Ade1, as evidenced by a transient burst profile during the hydrolysis of substrates such as p-nitrophenyl butyrate and p-nitrophenyl octanoate. Crystal structures of Ade1, coupled with molecular dynamics simulations, unveil the existence of multiple conformational structures within a single molecular state (E̅1). Notably, substrate binding induces a loop closure that traps the substrate in the catalytic site. Upon product release, the cap domain opens simultaneously with structural changes, transitioning the enzyme to a new molecular state (E̅2). This study advances our understanding of hysteresis/allokairy mechanisms, a temporal regulation that appears more pervasive than previously acknowledged and extends its presence to metabolic enzymes. These findings also hold potential implications for addressing human diseases associated with metabolic dysregulation.
Collapse
Affiliation(s)
- Tania Churasacari Vinces
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Cecília F Carvalho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Aline Biazola Visnardi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Raphael D Teixeira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Edgar E Llontop
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Beatriz Aparecida Passos Bismara
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Elisabete J Vicente
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - José O Pereira
- Biotechnology Group, Federal University of Amazonas, Amazonas CEP 69077-000, Brazil
| | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Sandro Roberto Marana
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Chuck Shaker Farah
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Cristiane R Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
5
|
Kumar S, Sega S, Lynn-Barbe JK, Harris DL, Koehn JT, Crans DC, Crick DC. Proline Dehydrogenase and Pyrroline 5 Carboxylate Dehydrogenase from Mycobacterium tuberculosis: Evidence for Substrate Channeling. Pathogens 2023; 12:1171. [PMID: 37764979 PMCID: PMC10537722 DOI: 10.3390/pathogens12091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In Mycobacterium tuberculosis, proline dehydrogenase (PruB) and ∆1-pyrroline-5-carboxylate (P5C) dehydrogenase (PruA) are monofunctional enzymes that catalyze proline oxidation to glutamate via the intermediates P5C and L-glutamate-γ-semialdehyde. Both enzymes are essential for the replication of pathogenic M. tuberculosis. Highly active enzymes were expressed and purified using a Mycobacterium smegmatis expression system. The purified enzymes were characterized using natural substrates and chemically synthesized analogs. The structural requirements of the quinone electron acceptor were examined. PruB displayed activity with all tested lipoquinone analogs (naphthoquinone or benzoquinone). In PruB assays utilizing analogs of the native naphthoquinone [MK-9 (II-H2)] specificity constants Kcat/Km were an order of magnitude greater for the menaquinone analogs than the benzoquinone analogs. In addition, mycobacterial PruA was enzymatically characterized for the first time using exogenous chemically synthesized P5C. A Km value of 120 ± 0.015 µM was determined for P5C, while the Km value for NAD+ was shown to be 33 ± 4.3 µM. Furthermore, proline competitively inhibited PruA activity and coupled enzyme assays, suggesting that the recombinant purified monofunctional PruB and PruA enzymes of M. tuberculosis channel substrate likely increase metabolic flux and protect the bacterium from methylglyoxal toxicity.
Collapse
Affiliation(s)
- Santosh Kumar
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA; (S.K.)
| | - Steven Sega
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA; (S.K.)
| | - Jamie K. Lynn-Barbe
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA; (S.K.)
| | - Dannika L. Harris
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA; (S.K.)
| | - Jordan T. Koehn
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA;
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Fort Collins, CO 80523-1682, USA;
| | - Dean C. Crick
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA; (S.K.)
| |
Collapse
|
6
|
Zhang Z, Su W, Bao Y, Huang Q, Ye K, Liu P, Chu X. Modular reconstruction and optimization of the trans-4-hydroxy-L-proline synthesis pathway in Escherichia coli. Microb Cell Fact 2022; 21:159. [PMID: 35953819 PMCID: PMC9367115 DOI: 10.1186/s12934-022-01884-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background In recent years, there has been a growing demand for microbial production of trans-4-hydroxy-L-proline (t4Hyp), which is a value-added amino acid and has been widely used in the fields of medicine, food, and cosmetics. In this study, a multivariate modular metabolic engineering approach was used to remove the bottleneck in the synthesis pathway of t4Hyp. Results Escherichia coli t4Hyp synthesis was performed using two modules: a α-ketoglutarate (α-KG) synthesis module (K module) and L-proline synthesis with hydroxylation module (H module). First, α-KG attrition was reduced, and then, L-proline consumption was inhibited. Subsequently, to improve the contribution to proline synthesis with hydroxylation, optimization of gene overexpression, promotor, copy number, and the fusion system was performed. Finally, optimization of the H and K modules was performed in combination to balance metabolic flow. Using the final module H1K4 in a shaking flask culture, 8.80 g/L t4Hyp was produced, which was threefold higher than that produced by the W0 strain. Conclusions These strategies demonstrate that a microbial cell factory can be systematically optimized by modular engineering for efficient production of t4Hyp. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01884-4.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.,School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yunyun Bao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Qianqian Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Kai Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Schulz-Mirbach H, Müller A, Wu T, Pfister P, Aslan S, Schada von Borzyskowski L, Erb TJ, Bar-Even A, Lindner SN. On the flexibility of the cellular amination network in E coli. eLife 2022; 11:e77492. [PMID: 35876664 PMCID: PMC9436414 DOI: 10.7554/elife.77492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Ammonium (NH4+) is essential to generate the nitrogenous building blocks of life. It gets assimilated via the canonical biosynthetic routes to glutamate and is further distributed throughout metabolism via a network of transaminases. To study the flexibility of this network, we constructed an Escherichia coli glutamate auxotrophic strain. This strain allowed us to systematically study which amino acids serve as amine sources. We found that several amino acids complemented the auxotrophy either by producing glutamate via transamination reactions or by their conversion to glutamate. In this network, we identified aspartate transaminase AspC as a major connector between many amino acids and glutamate. Additionally, we extended the transaminase network by the amino acids β-alanine, alanine, glycine, and serine as new amine sources and identified d-amino acid dehydrogenase (DadA) as an intracellular amino acid sink removing substrates from transaminase reactions. Finally, ammonium assimilation routes producing aspartate or leucine were introduced. Our study reveals the high flexibility of the cellular amination network, both in terms of transaminase promiscuity and adaptability to new connections and ammonium entry points.
Collapse
Affiliation(s)
| | - Alexandra Müller
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Tong Wu
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Pascal Pfister
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Selçuk Aslan
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Lennart Schada von Borzyskowski
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Institute of Biology Leiden, Leiden UniversityLeidenNetherlands
| | - Tobias J Erb
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Department of Biochemistry, Charité – Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
8
|
Korasick DA, Christgen SL, Qureshi IA, Becker DF, Tanner JJ. Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA). Arch Biochem Biophys 2021; 712:109025. [PMID: 34506758 DOI: 10.1016/j.abb.2021.109025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/18/2022]
Abstract
In many bacteria, the reactions of proline catabolism are catalyzed by the bifunctional enzyme known as proline utilization A (PutA). PutA catalyzes the two-step oxidation of l-proline to l-glutamate using distinct proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) active sites, which are separated by over 40 Å and connected by a complex tunnel system. The tunnel system consists of a main tunnel that connects the two active sites and functions in substrate channeling, plus six ancillary tunnels whose functions are unknown. Here we used tunnel-blocking mutagenesis to probe the role of a dynamic ancillary tunnel (tunnel 2a) whose shape is modulated by ligand binding to the PRODH active site. The 1.90 Å resolution crystal structure of Geobacter sulfurreducens PutA variant A206W verified that the side chain of Trp206 cleanly blocks tunnel 2a without perturbing the surrounding structure. Steady-state kinetic measurements indicate the mutation impaired PRODH activity without affecting the GSALDH activity. Single-turnover experiments corroborated a severe impairment of PRODH activity with flavin reduction decreased by nearly 600-fold in A206W relative to wild-type. Substrate channeling is also significantly impacted as A206W exhibited a 3000-fold lower catalytic efficiency in coupled PRODH-GSALDH activity assays, which measure NADH formation as a function of proline. The structure suggests that Trp206 inhibits binding of the substrate l-proline by preventing the formation of a conserved glutamate-arginine ion pair and closure of the PRODH active site. Our data are consistent with tunnel 2a serving as an open space through which the glutamate of the ion pair travels during the opening and closing of the active site in response to binding l-proline. These results confirm the essentiality of the conserved ion pair in binding l-proline and support the hypothesis that the ion pair functions as a gate that controls access to the PRODH active site.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Shelbi L Christgen
- Department Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, United States
| | - Insaf A Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Donald F Becker
- Department Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, United States.
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
9
|
Campbell AC, Bogner AN, Mao Y, Becker DF, Tanner JJ. Structural analysis of prolines and hydroxyprolines binding to the l-glutamate-γ-semialdehyde dehydrogenase active site of bifunctional proline utilization A. Arch Biochem Biophys 2020; 698:108727. [PMID: 33333077 DOI: 10.1016/j.abb.2020.108727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/31/2023]
Abstract
Proline utilization A (PutA) proteins are bifunctional proline catabolic enzymes that catalyze the 4-electron oxidation of l-proline to l-glutamate using spatially-separated proline dehydrogenase and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH, a.k.a. ALDH4A1) active sites. The observation that l-proline inhibits both the GSALDH activity of PutA and monofunctional GSALDHs motivated us to study the inhibition of PutA by proline stereoisomers and analogs. Here we report five high-resolution crystal structures of PutA with the following ligands bound in the GSALDH active site: d-proline, trans-4-hydroxy-d-proline, cis-4-hydroxy-d-proline, l-proline, and trans-4-hydroxy-l-proline. Three of the structures are of ternary complexes of the enzyme with an inhibitor and either NAD+ or NADH. To our knowledge, the NADH complex is the first for any GSALDH. The structures reveal a conserved mode of recognition of the inhibitor carboxylate, which results in the pyrrolidine rings of the d- and l-isomers having different orientations and different hydrogen bonding environments. Activity assays show that the compounds are weak inhibitors with millimolar inhibition constants. Curiously, although the inhibitors occupy the aldehyde binding site, kinetic measurements show the inhibition is uncompetitive. Uncompetitive inhibition may involve proline binding to a remote site or to the enzyme-NADH complex. Together, the structural and kinetic data expand our understanding of how proline-like molecules interact with GSALDH, reveal insight into the relationship between stereochemistry and inhibitor affinity, and demonstrate the pitfalls of inferring the mechanism of inhibition from crystal structures alone.
Collapse
Affiliation(s)
- Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Alexandra N Bogner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Yizi Mao
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, United States
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, United States
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
10
|
Obata T. Toward an evaluation of metabolite channeling in vivo. Curr Opin Biotechnol 2020; 64:55-61. [DOI: 10.1016/j.copbio.2019.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
|
11
|
Campbell AC, Becker DF, Gates KS, Tanner JJ. Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate. ACS Chem Biol 2020; 15:936-944. [PMID: 32159324 DOI: 10.1021/acschembio.9b00935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the FAD-dependent 2-electron oxidation of l-proline to Δ1-pyrroline-5-carboxylate. PRODH has emerged as a possible cancer therapy target, and thus the inhibition of PRODH is of interest. Here we show that the proline analogue thiazolidine-2-carboxylate (T2C) is a mechanism-based inactivator of PRODH. Structures of the bifunctional proline catabolic enzyme proline utilization A (PutA) determined from crystals grown in the presence of T2C feature strong electron density for a 5-membered ring species resembling l-T2C covalently bound to the N5 of the FAD in the PRODH domain. The modified FAD exhibits a large butterfly bend angle, indicating that the FAD is locked into the 2-electron reduced state. Reduction of the FAD is consistent with the crystals lacking the distinctive yellow color of the oxidized enzyme and stopped-flow kinetic data showing that T2C is a substrate for the PRODH domain of PutA. A mechanism is proposed in which PRODH catalyzes the oxidation of T2C at the C atom adjacent to the S atom of the thiazolidine ring (C5). Then, the N5 atom of the reduced FAD attacks the C5 of the oxidized T2C species, resulting in the covalent adduct observed in the crystal structure. To our knowledge, this is the first report of T2C inactivating (or inhibiting) PRODH or any other flavoenzyme. These results may inform the design of new mechanism-based inactivators of PRODH for use as chemical probes to study the roles of proline metabolism in cancer.
Collapse
Affiliation(s)
- Ashley C. Campbell
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Kent S. Gates
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
12
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
13
|
Abstract
SIGNIFICANCE Proline catabolism refers to the 4-electron oxidation of proline to glutamate catalyzed by the enzymes proline dehydrogenase (PRODH) and l-glutamate γ-semialdehyde dehydrogenase (GSALDH, or ALDH4A1). These enzymes and the intermediate metabolites of the pathway have been implicated in tumor growth and suppression, metastasis, hyperprolinemia metabolic disorders, schizophrenia susceptibility, life span extension, and pathogen virulence and survival. In some bacteria, PRODH and GSALDH are combined into a bifunctional enzyme known as proline utilization A (PutA). PutAs are not only virulence factors in some pathogenic bacteria but also fascinating systems for studying the coordination of metabolic enzymes via substrate channeling. Recent Advances: The past decade has seen an explosion of structural data for proline catabolic enzymes. This review surveys these structures, emphasizing protein folds, substrate recognition, oligomerization, kinetic mechanisms, and substrate channeling in PutA. CRITICAL ISSUES Major unsolved structural targets include eukaryotic PRODH, the complex between monofunctional PRODH and monofunctional GSALDH, and the largest of all PutAs, trifunctional PutA. The structural basis of PutA-membrane association is poorly understood. Fundamental aspects of substrate channeling in PutA remain unknown, such as the identity of the channeled intermediate, how the tunnel system is activated, and the roles of ancillary tunnels. FUTURE DIRECTIONS New approaches are needed to study the molecular and in vivo mechanisms of substrate channeling. With the discovery of the proline cycle driving tumor growth and metastasis, the development of inhibitors of proline metabolic enzymes has emerged as an exciting new direction. Structural biology will be important in these endeavors.
Collapse
Affiliation(s)
- John J Tanner
- 1 Department of Biochemistry and University of Missouri-Columbia , Columbia, Missouri.,2 Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri
| |
Collapse
|
14
|
Huijbers MME, van Alen I, Wu JW, Barendregt A, Heck AJR, van Berkel WJH. Functional Impact of the N-terminal Arm of Proline Dehydrogenase from Thermus thermophilus. Molecules 2018; 23:molecules23010184. [PMID: 29337919 PMCID: PMC6017737 DOI: 10.3390/molecules23010184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Proline dehydrogenase (ProDH) is a ubiquitous flavoenzyme that catalyzes the oxidation of proline to Δ1-pyrroline-5-carboxylate. Thermus thermophilus ProDH (TtProDH) contains in addition to its flavin-binding domain an N-terminal arm, consisting of helices αA, αB, and αC. Here, we report the biochemical properties of the helical arm truncated TtProDH variants ΔA, ΔAB, and ΔABC, produced with maltose-binding protein as solubility tag. All three truncated variants show similar spectral properties as TtProDH, indicative of a conserved flavin-binding pocket. ΔA and ΔAB are highly active tetramers that rapidly react with the suicide inhibitor N-propargylglycine. Removal of the entire N-terminal arm (ΔABC) results in barely active dimers that are incapable of forming a flavin adduct with N-propargylglycine. Characterization of V32D, Y35F, and V36D variants of ΔAB established that a hydrophobic patch between helix αC and helix α8 is critical for TtProDH catalysis and tetramer stabilization.
Collapse
Affiliation(s)
- Mieke M. E. Huijbers
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (M.M.E.H.); (I.v.A.); (J.W.W.)
| | - Ilona van Alen
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (M.M.E.H.); (I.v.A.); (J.W.W.)
| | - Jenny W. Wu
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (M.M.E.H.); (I.v.A.); (J.W.W.)
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, The Netherlands; (A.B.); (A.J.R.H.)
- Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, The Netherlands; (A.B.); (A.J.R.H.)
- Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, The Netherlands
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (M.M.E.H.); (I.v.A.); (J.W.W.)
- Correspondence: ; Tel.: +31-6-120-77313
| |
Collapse
|
15
|
Korasick DA, Pemberton TA, Arentson BW, Becker DF, Tanner JJ. Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline. Molecules 2017; 23:molecules23010032. [PMID: 29295473 PMCID: PMC5786444 DOI: 10.3390/molecules23010032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022] Open
Abstract
Proline utilization A (PutA) is a bifunctional flavoenzyme that catalyzes the two-step oxidation of l-proline to l-glutamate using spatially separated proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) active sites. Substrate inhibition of the coupled PRODH-GSALDH reaction by proline is a common kinetic feature of PutAs, yet the structural basis for this phenomenon remains unknown. To understand the mechanism of substrate inhibition, we determined the 2.15 Å resolution crystal structure of Bradyrhizobium japonicum PutA complexed with proline. Proline was discovered in five locations remote from the PRODH active site. Most notably, strong electron density indicated that proline bound tightly to the GSAL binding site of the GSALDH active site. The pose and interactions of proline bound in this site are remarkably similar to those of the natural aldehyde substrate, GSAL, implying that proline inhibits the GSALDH reaction of PutA. Kinetic measurements show that proline is a competitive inhibitor of the PutA GSALDH reaction. Together, the structural and kinetic data show that substrate inhibition of the PutA coupled reaction is due to proline binding in the GSAL site.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Travis A Pemberton
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Benjamin W Arentson
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA.
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA.
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
16
|
Christgen SL, Zhu W, Sanyal N, Bibi B, Tanner JJ, Becker DF. Discovery of the Membrane Binding Domain in Trifunctional Proline Utilization A. Biochemistry 2017; 56:6292-6303. [PMID: 29090935 PMCID: PMC6044449 DOI: 10.1021/acs.biochem.7b01008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli proline utilization A (EcPutA) is the archetype of trifunctional PutA flavoproteins, which function both as regulators of the proline utilization operon and bifunctional enzymes that catalyze the four-electron oxidation of proline to glutamate. EcPutA shifts from a self-regulating transcriptional repressor to a bifunctional enzyme in a process known as functional switching. The flavin redox state dictates the function of EcPutA. Upon proline oxidation, the flavin becomes reduced, triggering a conformational change that causes EcPutA to dissociate from the put regulon and bind to the cellular membrane. Major structure/function domains of EcPutA have been characterized, including the DNA-binding domain, proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase catalytic domains, and an aldehyde dehydrogenase superfamily fold domain. Still lacking is an understanding of the membrane-binding domain, which is essential for EcPutA catalytic turnover and functional switching. Here, we provide evidence for a conserved C-terminal motif (CCM) in EcPutA having a critical role in membrane binding. Deletion of the CCM or replacement of hydrophobic residues with negatively charged residues within the CCM impairs EcPutA functional and physical membrane association. Furthermore, cell-based transcription assays and limited proteolysis indicate that the CCM is essential for functional switching. Using fluorescence resonance energy transfer involving dansyl-labeled liposomes, residues in the α-domain are also implicated in membrane binding. Taken together, these experiments suggest that the CCM and α-domain converge to form a membrane-binding interface near the PRODH domain. The discovery of the membrane-binding region will assist efforts to define flavin redox signaling pathways responsible for EcPutA functional switching.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Weidong Zhu
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Nikhilesh Sanyal
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Bushra Bibi
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - John J. Tanner
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
17
|
Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. FEBS J 2017; 284:3029-3049. [PMID: 28710792 PMCID: PMC5603418 DOI: 10.1111/febs.14165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/06/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023]
Abstract
Many enzymes form homooligomers, yet the functional significance of self-association is seldom obvious. Herein, we examine the connection between oligomerization and catalytic function for proline utilization A (PutA) enzymes. PutAs are bifunctional enzymes that catalyze both reactions of proline catabolism. Type A PutAs are the smallest members of the family, possessing a minimal domain architecture consisting of N-terminal proline dehydrogenase and C-terminal l-glutamate-γ-semialdehyde dehydrogenase modules. Type A PutAs form domain-swapped dimers, and in one case (Bradyrhizobium japonicum PutA), two of the dimers assemble into a ring-shaped tetramer. Whereas the dimer has a clear role in substrate channeling, the functional significance of the tetramer is unknown. To address this question, we performed structural studies of four-type A PutAs from two clades of the PutA tree. The crystal structure of Bdellovibrio bacteriovorus PutA covalently inactivated by N-propargylglycine revealed a fold and substrate-channeling tunnel similar to other PutAs. Small-angle X-ray scattering (SAXS) and analytical ultracentrifugation indicated that Bdellovibrio PutA is dimeric in solution, in contrast to the prediction from crystal packing of a stable tetrameric assembly. SAXS studies of two other type A PutAs from separate clades also suggested that the dimer predominates in solution. To assess whether the tetramer of B. japonicum PutA is necessary for catalytic function, a hot spot disruption mutant that cleanly produces dimeric protein was generated. The dimeric variant exhibited kinetic parameters similar to the wild-type enzyme. These results implicate the domain-swapped dimer as the core structural and functional unit of type A PutAs. ENZYMES Proline dehydrogenase (EC 1.5.5.2); l-glutamate-γ-semialdehyde dehydrogenase (EC 1.2.1.88). DATABASES The atomic coordinates and structure factor amplitudes have been deposited in the Protein Data Bank under accession number 5UR2. The SAXS data have been deposited in the SASBDB under the following accession codes: SASDCP3 (BbPutA), SASDCQ3 (DvPutA 1.5 mg·mL-1 ), SASDCX3 (DvPutA 3.0 mg·mL-1 ), SASDCY3 (DvPutA 4.5 mg·mL-1 ), SASDCR3 (LpPutA 3.0 mg·mL-1 ), SASDCV3 (LpPutA 5.0 mg·mL-1 ), SASDCW3 (LpPutA 8.0 mg·mL-1 ), SASDCS3 (BjPutA 2.3 mg·mL-1 ), SASDCT3 (BjPutA 4.7 mg·mL-1 ), SASDCU3 (BjPutA 7.0 mg·mL-1 ), SASDCZ3 (R51E 2.3 mg·mL-1 ), SASDC24 (R51E 4.7 mg·mL-1 ), SASDC34 (R51E 7.0 mg·mL-1 ).
Collapse
Affiliation(s)
- David A. Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Harkewal Singh
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | - Travis A. Pemberton
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | - Min Luo
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | - Richa Dhatwalia
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
18
|
Liu LK, Becker DF, Tanner JJ. Structure, function, and mechanism of proline utilization A (PutA). Arch Biochem Biophys 2017; 632:142-157. [PMID: 28712849 DOI: 10.1016/j.abb.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023]
Abstract
Proline has important roles in multiple biological processes such as cellular bioenergetics, cell growth, oxidative and osmotic stress response, protein folding and stability, and redox signaling. The proline catabolic pathway, which forms glutamate, enables organisms to utilize proline as a carbon, nitrogen, and energy source. FAD-dependent proline dehydrogenase (PRODH) and NAD+-dependent glutamate semialdehyde dehydrogenase (GSALDH) convert proline to glutamate in two sequential oxidative steps. Depletion of PRODH and GSALDH in humans leads to hyperprolinemia, which is associated with mental disorders such as schizophrenia. Also, some pathogens require proline catabolism for virulence. A unique aspect of proline catabolism is the multifunctional proline utilization A (PutA) enzyme found in Gram-negative bacteria. PutA is a large (>1000 residues) bifunctional enzyme that combines PRODH and GSALDH activities into one polypeptide chain. In addition, some PutAs function as a DNA-binding transcriptional repressor of proline utilization genes. This review describes several attributes of PutA that make it a remarkable flavoenzyme: (1) diversity of oligomeric state and quaternary structure; (2) substrate channeling and enzyme hysteresis; (3) DNA-binding activity and transcriptional repressor function; and (4) flavin redox dependent changes in subcellular location and function in response to proline (functional switching).
Collapse
Affiliation(s)
- Li-Kai Liu
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, United States.
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
19
|
Verma R, Mitchell-Koch K. In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Catalysts 2017; 7:212. [PMID: 30464857 PMCID: PMC6241538 DOI: 10.3390/catal7070212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Small molecules, such as solvent, substrate, and cofactor molecules, are key players in enzyme catalysis. Computational methods are powerful tools for exploring the dynamics and thermodynamics of these small molecules as they participate in or contribute to enzymatic processes. In-depth knowledge of how small molecule interactions and dynamics influence protein conformational dynamics and function is critical for progress in the field of enzyme catalysis. Although numerous computational studies have focused on enzyme-substrate complexes to gain insight into catalytic mechanisms, transition states and reaction rates, the dynamics of solvents, substrates, and cofactors are generally less well studied. Also, solvent dynamics within the biomolecular solvation layer play an important part in enzyme catalysis, but a full understanding of its role is hampered by its complexity. Moreover, passive substrate transport has been identified in certain enzymes, and the underlying principles of molecular recognition are an area of active investigation. Enzymes are highly dynamic entities that undergo different conformational changes, which range from side chain rearrangement of a residue to larger-scale conformational dynamics involving domains. These events may happen nearby or far away from the catalytic site, and may occur on different time scales, yet many are related to biological and catalytic function. Computational studies, primarily molecular dynamics (MD) simulations, provide atomistic-level insight and site-specific information on small molecule interactions, and their role in conformational pre-reorganization and dynamics in enzyme catalysis. The review is focused on MD simulation studies of small molecule interactions and dynamics to characterize and comprehend protein dynamics and function in catalyzed reactions. Experimental and theoretical methods available to complement and expand insight from MD simulations are discussed briefly.
Collapse
Affiliation(s)
- Rajni Verma
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| | - Katie Mitchell-Koch
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| |
Collapse
|
20
|
Hagel JM, Facchini PJ. Tying the knot: occurrence and possible significance of gene fusions in plant metabolism and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4029-4043. [PMID: 28521055 DOI: 10.1093/jxb/erx152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gene fusions have recently attracted attention especially in the field of plant specialized metabolism. The occurrence of a gene fusion, in which originally separate gene products are combined into a single polypeptide, often corresponds to the functional association of individual components within a single metabolic pathway. Examples include gene fusions implicated in benzylisoquinoline alkaloid (BIA), terpenoid, and amino acid biosynthetic pathways, in which distinct domains within a fusion catalyze consecutive, yet independent reactions. Both genomic and transcriptional mechanisms result in the fusion of gene products, which can include partial or complete domain repeats and extensive domain shuffling as evident in the BIA biosynthetic enzyme norcoclaurine synthase. Artificial gene fusions are commonly deployed in attempts to engineer new or improved pathways in plants or microorganisms, based on the premise that fusions are advantageous. However, a survey of functionally characterized fusions in microbial systems shows that the functional impact of fused gene products is not straightforward. For example, whereas enzyme fusions might facilitate the metabolic channeling of unstable intermediates, this channeling can also occur between tightly associated independent enzymes. The frequent occurrence of both fused and unfused enzymes in plant and microbial metabolism adds additional complexity, in terms of both pathway functionality and evolution.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, 2500 University Dr N.W., Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, 2500 University Dr N.W., Alberta T2N 1N4, Canada
| |
Collapse
|
21
|
Korasick DA, Gamage TT, Christgen S, Stiers KM, Beamer LJ, Henzl MT, Becker DF, Tanner JJ. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis. J Biol Chem 2017; 292:9652-9665. [PMID: 28420730 PMCID: PMC5465489 DOI: 10.1074/jbc.m117.786855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
The bifunctional flavoenzyme proline utilization A (PutA) catalyzes the two-step oxidation of proline to glutamate using separate proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase active sites. Because PutAs catalyze sequential reactions, they are good systems for studying how metabolic enzymes communicate via substrate channeling. Although mechanistically similar, PutAs vary widely in domain architecture, oligomeric state, and quaternary structure, and these variations represent different structural solutions to the problem of sequestering a reactive metabolite. Here, we studied PutA from Corynebacterium freiburgense (CfPutA), which belongs to the uncharacterized 3B class of PutAs. A 2.7 Å resolution crystal structure showed the canonical arrangement of PRODH, l-glutamate-γ-semialdehyde dehydrogenase, and C-terminal domains, including an extended interdomain tunnel associated with substrate channeling. The structure unexpectedly revealed a novel open conformation of the PRODH active site, which is interpreted to represent the non-activated conformation, an elusive form of PutA that exhibits suboptimal channeling. Nevertheless, CfPutA exhibited normal substrate-channeling activity, indicating that it isomerizes into the active state under assay conditions. Sedimentation-velocity experiments provided insight into the isomerization process, showing that CfPutA dimerizes in the presence of a proline analog and NAD+ These results are consistent with the morpheein model of enzyme hysteresis, in which substrate binding induces conformational changes that promote assembly of a high-activity oligomer. Finally, we used domain deletion analysis to investigate the function of the C-terminal domain. Although this domain contains neither catalytic residues nor substrate sites, its removal impaired both catalytic activities, suggesting that it may be essential for active-site integrity.
Collapse
Affiliation(s)
| | | | - Shelbi Christgen
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | | | | | | | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - John J Tanner
- From the Departments of Biochemistry and
- Chemistry, University of Missouri, Columbia, Missouri 65211, and
| |
Collapse
|
22
|
Moxley MA, Zhang L, Christgen S, Tanner JJ, Becker DF. Identification of a Conserved Histidine As Being Critical for the Catalytic Mechanism and Functional Switching of the Multifunctional Proline Utilization A Protein. Biochemistry 2017; 56:3078-3088. [PMID: 28558236 DOI: 10.1021/acs.biochem.7b00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proline utilization A from Escherichia coli (EcPutA) is a multifunctional flavoenzyme that oxidizes proline to glutamate through proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) activities, while also switching roles as a DNA-bound transcriptional repressor and a membrane-bound catabolic enzyme. This phenomenon, termed functional switching, occurs through a redox-mediated mechanism in which flavin reduction triggers a conformational change that increases EcPutA membrane binding affinity. Structural studies have shown that reduction of the FAD cofactor causes the ribityl moiety to undergo a crankshaft motion, indicating that the orientation of the ribityl chain is a key element of PutA functional switching. Here, we test the role of a conserved histidine that bridges from the FAD pyrophosphate to the backbone amide of a conserved leucine residue in the PRODH active site. An EcPutA mutant (H487A) was characterized by steady-state and rapid-reaction kinetics, and cell-based reporter gene experiments. The catalytic activity of H487A is severely diminished (>50-fold) with membrane vesicles as the electron acceptor, and H487A exhibits impaired lipid binding and in vivo transcriptional repressor activity. Rapid-reaction kinetic experiments demonstrate that H487A is 3-fold slower than wild-type EcPutA in a conformational change step following reduction of the FAD cofactor. Furthermore, the reduction potential (Em) of H487A is ∼40 mV more positive than that of wild-type EcPutA, and H487A has an attenuated ability to catalyze the reverse PRODH chemical step of reoxidation by P5C. In this process, significant red semiquinone forms in contrast to the same reaction with wild-type EcPutA, in which facile two-electron reoxidation occurs without the formation of a measurable amount of semiquinone. These results indicate that His487 is critically important for the proline/P5C chemical step, conformational change kinetics, and functional switching in EcPutA.
Collapse
Affiliation(s)
- Michael A Moxley
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Lu Zhang
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Shelbi Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - John J Tanner
- Department of Biochemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| |
Collapse
|
23
|
Christensen EM, Patel SM, Korasick DA, Campbell AC, Krause KL, Becker DF, Tanner JJ. Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1. J Biol Chem 2017; 292:7233-7243. [PMID: 28258219 PMCID: PMC5409489 DOI: 10.1074/jbc.m117.780288] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/27/2017] [Indexed: 01/22/2023] Open
Abstract
Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the PYCR1 knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination.
Collapse
Affiliation(s)
| | - Sagar M Patel
- the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | | | | | - Kurt L Krause
- the Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand, and
| | - Donald F Becker
- the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - John J Tanner
- From the Departments of Chemistry and
- Biochemistry University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
24
|
Arentson BW, Hayes EL, Zhu W, Singh H, Tanner JJ, Becker DF. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA. Biosci Rep 2016; 36:e00413. [PMID: 27742866 PMCID: PMC5293562 DOI: 10.1042/bsr20160435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/05/2016] [Accepted: 10/14/2016] [Indexed: 01/18/2023] Open
Abstract
Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon-helix-helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH-RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH-RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs.
Collapse
Affiliation(s)
- Benjamin W Arentson
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Erin L Hayes
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Weidong Zhu
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Harkewal Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
- Protein Technologies and Assays, Research and Development, MilliporeSigma, 2909 Laclede Avenue, St. Louis, MO 63103, U.S.A
| | - John J Tanner
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A.
| |
Collapse
|
25
|
Luo M, Gamage TT, Arentson BW, Schlasner KN, Becker DF, Tanner JJ. Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. J Biol Chem 2016; 291:24065-24075. [PMID: 27679491 DOI: 10.1074/jbc.m116.756965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/26/2016] [Indexed: 01/02/2023] Open
Abstract
Aldehyde dehydrogenases (ALDHs) catalyze the NAD(P)+-dependent oxidation of aldehydes to carboxylic acids and are important for metabolism and detoxification. Although the ALDH superfamily fold is well established, some ALDHs contain an uncharacterized domain of unknown function (DUF) near the C terminus of the polypeptide chain. Herein, we report the first structure of a protein containing the ALDH superfamily DUF. Proline utilization A from Sinorhizobium meliloti (SmPutA) is a 1233-residue bifunctional enzyme that contains the DUF in addition to proline dehydrogenase and l-glutamate-γ-semialdehyde dehydrogenase catalytic modules. Structures of SmPutA with a proline analog bound to the proline dehydrogenase site and NAD+ bound to the ALDH site were determined in two space groups at 1.7-1.9 Å resolution. The DUF consists of a Rossmann dinucleotide-binding fold fused to a three-stranded β-flap. The Rossmann domain resembles the classic ALDH superfamily NAD+-binding domain, whereas the flap is strikingly similar to the ALDH superfamily dimerization domain. Paradoxically, neither structural element performs its implied function. Electron density maps show that NAD+ does not bind to the DUF Rossmann fold, and small-angle X-ray scattering reveals a novel dimer that has never been seen in the ALDH superfamily. The structure suggests that the DUF is an adapter domain that stabilizes the aldehyde substrate binding loop and seals the substrate-channeling tunnel via tertiary structural interactions that mimic the quaternary structural interactions found in non-DUF PutAs. Kinetic data for SmPutA indicate a substrate-channeling mechanism, in agreement with previous studies of other PutAs.
Collapse
Affiliation(s)
- Min Luo
- From the Departments of Chemistry and
| | | | - Benjamin W Arentson
- the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Katherine N Schlasner
- the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Donald F Becker
- the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - John J Tanner
- From the Departments of Chemistry and .,Biochemistry, University of Missouri, Columbia, Missouri 65211, and
| |
Collapse
|
26
|
Lin Y, Boese CJ, St Maurice M. The urea carboxylase and allophanate hydrolase activities of urea amidolyase are functionally independent. Protein Sci 2016; 25:1812-24. [PMID: 27452902 DOI: 10.1002/pro.2990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Urea amidolyase (UAL) is a multifunctional biotin-dependent enzyme that contributes to both bacterial and fungal pathogenicity by catalyzing the ATP-dependent cleavage of urea into ammonia and CO2 . UAL is comprised of two enzymatic components: urea carboxylase (UC) and allophanate hydrolase (AH). These enzyme activities are encoded on separate but proximally related genes in prokaryotes while, in most fungi, they are encoded by a single gene that produces a fusion enzyme on a single polypeptide chain. It is unclear whether the UC and AH activities are connected through substrate channeling or other forms of direct communication. Here, we use multiple biochemical approaches to demonstrate that there is no substrate channeling or interdomain/intersubunit communication between UC and AH. Neither stable nor transient interactions can be detected between prokaryotic UC and AH and the catalytic efficiencies of UC and AH are independent of one another. Furthermore, an artificial fusion of UC and AH does not significantly alter the AH enzyme activity or catalytic efficiency. These results support the surprising functional independence of AH from UC in both the prokaryotic and fungal UAL enzymes and serve as an important reminder that the evolution of multifunctional enzymes through gene fusion events does not always correlate with enhanced catalytic function.
Collapse
Affiliation(s)
- Yi Lin
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Cody J Boese
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201.
| |
Collapse
|
27
|
Smith N, Wei W, Zhao M, Qin X, Seravalli J, Kim H, Lee J. Cadmium and Secondary Structure-dependent Function of a Degron in the Pca1p Cadmium Exporter. J Biol Chem 2016; 291:12420-31. [PMID: 27059957 DOI: 10.1074/jbc.m116.724930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
Protein turnover is a critical cellular process regulating biochemical pathways and destroying terminally misfolded or damaged proteins. Pca1p, a cadmium exporter in the yeast Saccharomyces cerevisiae, is rapidly degraded by the endoplasmic reticulum-associated degradation (ERAD) system via a cis-acting degron that exists at the 250-350 amino acid region of Pca1p and is transferable to other proteins to serve as a degradation signal. Cadmium stabilizes Pca1p in a manner dependent on the degron. This suggested that cadmium-mediated masking of the degron impedes its interaction with the molecular factors involved in the ERAD. The characteristics and mechanisms of action of the degron in Pca1p and most of those in other proteins however remain to be determined. The results presented here indicate that specific cysteine residues in a degron of Pca1p sense cadmium. An unbiased approach selecting non-functional degrons indicated a critical role of hydrophobic amino acids in the degron for its function. A secondary structure modeling predicted the formation of an amphipathic helix. Site-directed mutagenesis confirmed the functional significance of the hydrophobic patch. Last, hydrophobic amino acids in the degron- and cadmium-binding region affected the interaction of Pca1p with the Ssa1p molecular chaperone, which is involved in ERAD. These results reveal the mechanism of action of the degron, which might be useful for the identification and characterization of other degrons.
Collapse
Affiliation(s)
- Nathan Smith
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Wenzhong Wei
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Miaoyun Zhao
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Xiaojuan Qin
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and the College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Javier Seravalli
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Heejeong Kim
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Jaekwon Lee
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| |
Collapse
|
28
|
Sanyal N, Arentson BW, Luo M, Tanner JJ, Becker DF. First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions. J Biol Chem 2014; 290:2225-34. [PMID: 25492892 DOI: 10.1074/jbc.m114.625483] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyze the four-electron oxidation of proline to glutamate via the intermediates P5C and l-glutamate-γ-semialdehyde (GSA). In Gram-negative bacteria, PRODH and P5CDH are fused together in the bifunctional enzyme proline utilization A (PutA) whereas in other organisms PRODH and P5CDH are expressed as separate monofunctional enzymes. Substrate channeling has previously been shown for bifunctional PutAs, but whether the monofunctional enzymes utilize an analogous channeling mechanism has not been examined. Here, we report the first evidence of substrate channeling in a PRODH-P5CDH two-enzyme pair. Kinetic data for the coupled reaction of PRODH and P5CDH from Thermus thermophilus are consistent with a substrate channeling mechanism, as the approach to steady-state formation of NADH does not fit a non-channeling two-enzyme model. Furthermore, inactive P5CDH and PRODH mutants inhibit NADH production and increase trapping of the P5C intermediate in coupled assays of wild-type PRODH-P5CDH enzyme pairs, indicating that the mutants disrupt PRODH-P5CDH channeling interactions. A dissociation constant of 3 μm was estimated for a putative PRODH-P5CDH complex by surface plasmon resonance (SPR). Interestingly, P5CDH binding to PRODH was only observed when PRODH was immobilized with the top face of its (βα)8 barrel exposed. Using the known x-ray crystal structures of PRODH and P5CDH from T. thermophilus, a model was built for a proposed PRODH-P5CDH enzyme channeling complex. The structural model predicts that the core channeling pathway of bifunctional PutA enzymes is conserved in monofunctional PRODH-P5CDH enzyme pairs.
Collapse
Affiliation(s)
- Nikhilesh Sanyal
- From the Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| | - Benjamin W Arentson
- From the Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| | - Min Luo
- Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211
| | - John J Tanner
- Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211 the Departments of Biochemistry and
| | - Donald F Becker
- From the Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| |
Collapse
|
29
|
Luo M, Christgen S, Sanyal N, Arentson BW, Becker DF, Tanner JJ. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling. Biochemistry 2014; 53:5661-73. [PMID: 25137435 PMCID: PMC4159212 DOI: 10.1021/bi500693a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Proline utilization A (PutA) is a
bifunctional enzyme that catalyzes
the oxidation of proline to glutamate. Structures of type A PutAs
have revealed the catalytic core consisting of proline dehydrogenase
(PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase
(P5CDH) modules connected by a substrate-channeling tunnel. Type B
PutAs also have a C-terminal domain of unknown function (CTDUF) that
is absent in type A PutAs. Small-angle X-ray scattering (SAXS), mutagenesis,
and kinetics are used to determine the contributions of this domain
to PutA structure and function. The 1127-residue Rhodobacter
capsulatus PutA (RcPutA) is used as a representative CTDUF-containing
type B PutA. The reaction progress curve for the coupled PRODH–P5CDH
activity of RcPutA does not exhibit a time lag, implying a substrate
channeling mechanism. RcPutA is monomeric in solution, which is unprecedented
for PutAs. SAXS rigid body modeling with target–decoy validation
is used to build a model of RcPutA. On the basis of homology to aldehyde
dehydrogenases (ALDHs), the CTDUF is predicted to consist of a β-hairpin
fused to a noncatalytic Rossmann fold domain. The predicted tertiary
structural interactions of the CTDUF resemble the quaternary structural
interactions in the type A PutA dimer interface. The model is tested
by mutagenesis of the dimerization hairpin of a type A PutA and the
CTDUF hairpin of RcPutA. Similar functional phenotypes are observed
in the two sets of variants, supporting the hypothesis that the CTDUF
mimics the type A PutA dimer interface. These results suggest annotation
of the CTDUF as an ALDH superfamily domain that facilitates P5CDH
activity and substrate channeling by stabilizing the aldehyde-binding
site and sealing the substrate-channeling tunnel from the bulk medium.
Collapse
Affiliation(s)
- Min Luo
- Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| | | | | | | | | | | |
Collapse
|
30
|
Arentson B, Luo M, Pemberton TA, Tanner JJ, Becker DF. Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A. Biochemistry 2014; 53:5150-61. [PMID: 25046425 PMCID: PMC4131897 DOI: 10.1021/bi5007404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/18/2014] [Indexed: 01/09/2023]
Abstract
Proline utilization A from Bradyrhizobium japonicum (BjPutA) is a bifunctional flavoenzyme that catalyzes the oxidation of proline to glutamate using fused proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Recent crystal structures and kinetic data suggest an intramolecular channel connects the two active sites, promoting substrate channeling of the intermediate Δ(1)-pyrroline-5-carboxylate/glutamate-γ-semialdehyde (P5C/GSA). In this work, the structure of the channel was explored by inserting large side chain residues at four positions along the channel in BjPutA. Kinetic analysis of the different mutants revealed replacement of D779 with Tyr (D779Y) or Trp (D779W) significantly decreased the overall rate of the PRODH-P5CDH channeling reaction. X-ray crystal structures of D779Y and D779W revealed that the large side chains caused a constriction in the central section of the tunnel, thus likely impeding the travel of P5C/GSA in the channel. The D779Y and D779W mutants have PRODH activity similar to that of wild-type BjPutA but exhibit significantly lower P5CDH activity, suggesting that exogenous P5C/GSA enters the channel upstream of Asp779. Replacement of nearby Asp778 with Tyr (D778Y) did not impact BjPutA channeling activity. Consistent with the kinetic results, the X-ray crystal structure of D778Y shows that the main channel pathway is not impacted; however, an off-cavity pathway is closed off from the channel. These findings provide evidence that the off-cavity pathway is not essential for substrate channeling in BjPutA.
Collapse
Affiliation(s)
- Benjamin
W. Arentson
- Department
of Biochemistry, Redox Biology Center, University
of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Min Luo
- Departments of Biochemistry and Chemistry, University
of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Travis A. Pemberton
- Departments of Biochemistry and Chemistry, University
of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - John J. Tanner
- Departments of Biochemistry and Chemistry, University
of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Donald F. Becker
- Department
of Biochemistry, Redox Biology Center, University
of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|