1
|
Imani S, Lv S, Qian H, Cui Y, Li X, Babaeizad A, Wang Q. Current innovations in mRNA vaccines for targeting multidrug-resistant ESKAPE pathogens. Biotechnol Adv 2025; 79:108492. [PMID: 39637949 DOI: 10.1016/j.biotechadv.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The prevalence of multidrug-resistant (MDR) ESKAPE pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, represents a critical global public health challenge. In response, mRNA vaccines offer an adaptable and scalable platform for immunotherapy against ESKAPE pathogens by encoding specific antigens that stimulate B-cell-driven antibody production and CD8+ T-cell-mediated cytotoxicity, effectively neutralizing these pathogens and combating resistance. This review examines recent advancements and ongoing challenges in the development of mRNA vaccines targeting MDR ESKAPE pathogens. We explore antigen selection, the nuances of mRNA vaccine technology, and the complex interactions between bacterial infections and antibiotic resistance. By assessing the potential efficacy of mRNA vaccines and addressing key barriers to their paraclinical implementation, this review highlights the promising function of mRNA-based immunization in combating MDR ESKAPE pathogens.
Collapse
Affiliation(s)
- Saber Imani
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shuojie Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Hongbo Qian
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Yulan Cui
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - XiaoYan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
2
|
Hymøller KM, Christiansen SH, Schlosser AG, Skov Sørensen UB, Lee JC, Thiel S. Recognition of Staphylococcus aureus by the pattern recognition molecules langerin, mannan-binding lectin, and surfactant protein D: the influence of capsular polysaccharides and wall teichoic acid. Front Immunol 2025; 15:1504886. [PMID: 39850879 PMCID: PMC11756514 DOI: 10.3389/fimmu.2024.1504886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms. We have investigated their interaction with the Gram-positive opportunistic pathogen Staphylococcus aureus, a bacterium whose cell wall contains two key glycopolymers: capsular polysaccharide (CP) and wall teichoic acid (WTA). Using a langerin-expressing cell line and recombinant langerin, MBL, and SP-D, we demonstrated that langerin, MBL, and SP-D all recognize nonencapsulated S. aureus. However, the bacterium may produce CP that effectively shields S. aureus from recognition by all three CTLs. Experiments utilizing mutant S. aureus strains confirmed that WTA is a ligand for MBL, but that langerin likely interacts with an additional unknown ligand. A competition assay revealed that MBL and SP-D inhibit langerin's interaction with S. aureus, highlighting the intricate redundancy and cooperation within the innate immune system. This study highlights the dynamic interplay of langerin, MBL, and SP-D in recognizing specific surface structures on S. aureus and provides insight into how this pathogen evades innate immune recognition.
Collapse
Affiliation(s)
- Kirstine Mejlstrup Hymøller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Stig Hill Christiansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Anders Grønnegaard Schlosser
- Department of Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Gu F, He W, Zhu D, Zeng Q, Li X, Xiao S, Ni Y, Han L. Genome-wide comparative analysis of CC1 Staphylococcus aureus between colonization and infection. Eur J Med Res 2024; 29:474. [PMID: 39343893 PMCID: PMC11441255 DOI: 10.1186/s40001-024-02076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the most important bacteria in human colonization and infection. Clonal complex1 (CC1) is one of the largest and most important S. aureus CCs, and it is a predominant clone in S. aureus colonization and can cause a series of S. aureus infections including bloodstream infections. No studies on the relationship of CC1 S. aureus between colonization and infection have been published. METHODS To figure out if there are some significant factors in CC1 S. aureus help its colonization or infection, 15 CC1 S. aureus isolates including ten from colonization and five from bloodstream infections were enrolled in this study. Whole-genome sequencing and bioinformatics analysis were performed. RESULTS Virulence factor regulators XdrA, YSIRK signal peptide, CPBP family and OmpR family specifically found in infection isolates can promote virulence factors and enhance the pathogenicity of S. aureus. In addition, some significant differences in metabolism and human diseases were discovered between colonization and infection. Fst family of type I toxin-antitoxin system that mainly maintains stable inheritance was specifically found in CC1 S. aureus colonization isolates and might help S. aureus survive for colonization. No significant differences in genomic evolutionary relationship were found among CC1 S. aureus isolates between colonization and infection. CONCLUSIONS Virulence factor regulators and metabolic state can promote CC1 S. aureus pathogenic process compared with colonization, and it seems that the strains of colonization origin cannot have pathogenic potential. Experimental confirmation and a bigger number of CC1 S. aureus strains are necessary for further study about the details and mechanism between colonization and infection.
Collapse
Affiliation(s)
- Feifei Gu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping He
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Dedong Zhu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zeng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Li
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzhen Xiao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxing Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Caldera JR, Tsai CM, Trieu D, Gonzalez C, Hajam IA, Du X, Lin B, Liu GY. The characteristics of pre-existing humoral imprint determine efficacy of S. aureus vaccines and support alternative vaccine approaches. Cell Rep Med 2024; 5:101360. [PMID: 38232694 PMCID: PMC10829788 DOI: 10.1016/j.xcrm.2023.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/15/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024]
Abstract
The failure of the Staphylococcus aureus (SA) IsdB vaccine trial can be explained by the recall of non-protective immune imprints from prior SA exposure. Here, we investigate natural human SA humoral imprints to understand their broader impact on SA immunizations. We show that antibody responses against SA cell-wall-associated antigens (CWAs) are non-opsonic, while antibodies against SA toxins are neutralizing. Importantly, the protective characteristics of the antibody imprints accurately predict the failure of corresponding vaccines against CWAs and support vaccination against toxins. In passive immunization platforms, natural anti-SA human antibodies reduce the efficacy of the human monoclonal antibodies suvratoxumab and tefibazumab, consistent with the results of their respective clinical trials. Strikingly, in the absence of specific humoral memory responses, active immunizations are efficacious in both naive and SA-experienced mice. Overall, our study points to a practical and predictive approach to evaluate and develop SA vaccines based on pre-existing humoral imprint characteristics.
Collapse
Affiliation(s)
- J R Caldera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Desmond Trieu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cesia Gonzalez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irshad A Hajam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Du
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian Lin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Y Liu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
5
|
Bhattacharya M, Horswill AR. The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections. FEMS Microbiol Rev 2024; 48:fuae002. [PMID: 38337187 PMCID: PMC10873506 DOI: 10.1093/femsre/fuae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Twenty to forty one percent of the world's population is either transiently or permanently colonized by the Gram-positive bacterium, Staphylococcus aureus. In 2017, the CDC designated methicillin-resistant S. aureus (MRSA) as a serious threat, reporting ∼300 000 cases of MRSA-associated hospitalizations annually, resulting in over 19 000 deaths, surpassing that of HIV in the USA. S. aureus is a proficient biofilm-forming organism that rapidly acquires resistance to antibiotics, most commonly methicillin (MRSA). This review focuses on a large group of (>30) S. aureus adhesins, either surface-associated or secreted that are designed to specifically bind to 15 or more of the proteins that form key components of the human extracellular matrix (hECM). Importantly, this includes hECM proteins that are pivotal to the homeostasis of almost every tissue environment [collagen (skin), proteoglycans (lung), hemoglobin (blood), elastin, laminin, fibrinogen, fibronectin, and fibrin (multiple organs)]. These adhesins offer S. aureus the potential to establish an infection in every sterile tissue niche. These infections often endure repeated immune onslaught, developing into chronic, biofilm-associated conditions that are tolerant to ∼1000 times the clinically prescribed dose of antibiotics. Depending on the infection and the immune response, this allows S. aureus to seamlessly transition from colonizer to pathogen by subtly manipulating the host against itself while providing the time and stealth that it requires to establish and persist as a biofilm. This is a comprehensive discussion of the interaction between S. aureus biofilms and the hECM. We provide particular focus on the role of these interactions in pathogenesis and, consequently, the clinical implications for the prevention and treatment of S. aureus biofilm infections.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, United States
| |
Collapse
|
6
|
The expression of glycosyltransferases sdgA and sdgB in Staphylococcus epidermidis depends on the conditions of biofilm formation. Arch Microbiol 2022; 204:274. [PMID: 35449342 DOI: 10.1007/s00203-022-02891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
The Staphylococcus aureus SdrG protein is glycosylated by SdgA and SdgB for protection against its degradation by the neutrophil cathepsin G. So far, there is no information about the role of Staphylococcus epidermidis SdgA or SdgB in biofilm-forming; therefore, the focus of this work was to determine the distribution and expression of the sdrG, sdgA and sdgB genes in S. epidermidis under in vitro and in vivo biofilm conditions. The frequencies of the sdrG, sdgA and sdgB genes were evaluated by PCR in a collection of 75 isolates. Isolates were grown in dynamic (non-biofilm-forming) or static (biofilm-forming) conditions. The expression of sdrG, sdgA and sdgB was determined by RT-qPCR in cells grown under dynamic conditions (CGDC), as well as in planktonic and sessile cells from a biofilm and cells adhered to a catheter implanted in Balb/c mice. The sdrG and sdgB genes were detected in 100% of isolates, while the sdgA gene was detected in 71% of the sample (p < 0.001). CGDC did not express sdrG, sdgA and sdgB mRNAs. Planktonic and sessile cells expressed sdrG and sdgB, and the same was observed in cells adhered to the catheter. In particular, one isolate, capable of inducing a biofilm under treatment with cathepsin G, expressed sdrG and sdgB in planktonic and sessile cells and cells adhering to the catheter. This suggests that bacteria require biofilm conditions as an important factor for the transcription of the sdgA, sdgB and sdrG genes.
Collapse
|
7
|
Kim DG, Baek I, Lee Y, Kim H, Kim JY, Bang G, Kim S, Yoon HJ, Han BW, Suh SW, Kim HS. Structural basis for SdgB- and SdgA-mediated glycosylation of staphylococcal adhesive proteins. Acta Crystallogr D Struct Biol 2021; 77:1460-1474. [PMID: 34726173 PMCID: PMC8561734 DOI: 10.1107/s2059798321010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
The initiation of infection of host tissues by Staphylococcus aureus requires a family of staphylococcal adhesive proteins containing serine-aspartate repeat (SDR) domains, such as ClfA. The O-linked glycosylation of the long-chain SDR domain mediated by SdgB and SdgA is a key virulence factor that protects the adhesive SDR proteins against host proteolytic attack in order to promote successful tissue colonization, and has also been implicated in staphylococcal agglutination, which leads to sepsis and an immunodominant epitope for a strong antibody response. Despite the biological significance of these two glycosyltransferases involved in pathogenicity and avoidance of the host innate immune response, their structures and the molecular basis of their activity have not been investigated. This study reports the crystal structures of SdgB and SdgA from S. aureus as well as multiple structures of SdgB in complex with its substrates (for example UDP, N-acetylglucosamine or SDR peptides), products (glycosylated SDR peptides) or phosphate ions. Together with biophysical and biochemical analyses, this structural work uncovered the novel mechanism by which SdgB and SdgA carry out the glycosyl-transfer process to the long SDR region in SDR proteins. SdgB undergoes dynamic changes in its structure such as a transition from an open to a closed conformation upon ligand binding and takes diverse forms, both as a homodimer and as a heterodimer with SdgA. Overall, these findings not only elucidate the putative role of the three domains of SdgB in recognizing donor and acceptor substrates, but also provide new mechanistic insights into glycosylation of the SDR domain, which can serve as a starting point for the development of antibacterial drugs against staphylococcal infections.
Collapse
Affiliation(s)
- Dong-Gyun Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Inwha Baek
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yeon Lee
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Hyerry Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
- R&D Center, Voronoi Inc., Incheon 21984, Republic of Korea
| | - Jin Young Kim
- Korea Basic Science Institute, Ochang, Chungbuk 28119, Republic of Korea
| | - Geul Bang
- Korea Basic Science Institute, Ochang, Chungbuk 28119, Republic of Korea
| | - Sunghwan Kim
- R&D Center, Voronoi Inc., Incheon 21984, Republic of Korea
| | - Hye Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun Sook Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| |
Collapse
|
8
|
Weiss GA, Grabinger T, Glaus Garzon J, Hasler T, Greppi A, Lacroix C, Khanzhin N, Hennet T. Intestinal inflammation alters mucosal carbohydrate foraging and monosaccharide incorporation into microbial glycans. Cell Microbiol 2020; 23:e13269. [PMID: 32975882 PMCID: PMC7757161 DOI: 10.1111/cmi.13269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
Endogenous carbohydrates released from the intestinal mucus represent a constant source of nutrients to the intestinal microbiota. Mucus-derived carbohydrates can also be used as building blocks in the biosynthesis of bacterial cell wall components, thereby influencing host mucosal immunity. To assess the uptake of endogenous carbohydrates by gut microbes in healthy mice and during intestinal inflammation, we applied azido-monosaccharides that can be tracked on bacterial cell walls after conjugation with fluorophores. In interleukin-10 deficient mice, changes in the gut microbiota were accompanied by decreased carbohydrate hydrolase activities and increased lumenal concentrations of host glycan-derived monosaccharides. Tracking of the monosaccharide N-azidoacetylglucosamine (GlcNAz) in caecum bacteria revealed a preferential incorporation of this carbohydrate by Xanthomonadaceae in healthy mice and by Bacteroidaceae in interleukin-10 deficient mice. These GlcNAz-positive Bacteroidaceae fractions mainly belonged to the species B. acidifaciens and B. vulgatus. Growth of Bacteroides species in the presence of specific monosaccharides changed their stimulatory activity toward CD11c+ dendritic cells. Expression of activation markers and cytokine production was highest after stimulation of dendritic cells with B. vulgatus. The variable incorporation of monosaccharides by related Bacteroides species underline the necessity to investigate intestinal bacteria down to the species level when addressing microbiota-host interactions.
Collapse
Affiliation(s)
- Gisela Adrienne Weiss
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Yili Innovation Center Europe, Bronland 12E-1, 6708WH Wageningen, Netherlands
| | - Thomas Grabinger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Tobias Hasler
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Anna Greppi
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH-Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH-Zurich, Zurich, Switzerland
| | | | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Leonard AC, Petrie LE, Cox G. Bacterial Anti-adhesives: Inhibition of Staphylococcus aureus Nasal Colonization. ACS Infect Dis 2019; 5:1668-1681. [PMID: 31374164 DOI: 10.1021/acsinfecdis.9b00193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial adhesion to the skin and mucosa is often a fundamental and early step in host colonization, the establishment of bacterial infections, and pathology. This process is facilitated by adhesins on the surface of the bacterial cell that recognize host cell molecules. Interfering with bacterial host cell adhesion, so-called anti-adhesive therapeutics, offers promise for the development of novel approaches to control bacterial infections. In this review, we focus on the discovery of anti-adhesives targeting the high priority pathogen Staphylococcus aureus. This organism remains a major clinical burden, and S. aureus nasal colonization is associated with poor clinical outcomes. We describe the molecular basis of nasal colonization and highlight potentially efficacious targets for the development of novel nasal decolonization strategies.
Collapse
Affiliation(s)
- Allison C. Leonard
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Laurenne E. Petrie
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2019; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Foster TJ. Surface Proteins of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0046-2018. [PMID: 31267926 PMCID: PMC10957221 DOI: 10.1128/microbiolspec.gpp3-0046-2018] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
The surface of Staphylococcus aureus is decorated with over 20 proteins that are covalently anchored to peptidoglycan by the action of sortase A. These cell wall-anchored (CWA) proteins can be classified into several structural and functional groups. The largest is the MSCRAMM family, which is characterized by tandemly repeated IgG-like folded domains that bind peptide ligands by the dock lock latch mechanism or the collagen triple helix by the collagen hug. Several CWA proteins comprise modules that have different functions, and some individual domains can bind different ligands, sometimes by different mechanisms. For example, the N-terminus of the fibronectin binding proteins comprises an MSCRAMM domain which binds several ligands, while the C-terminus is composed of tandem fibronectin binding repeats. Surface proteins promote adhesion to host cells and tissue, including components of the extracellular matrix, contribute to biofilm formation by stimulating attachment to the host or indwelling medical devices followed by cell-cell accumulation via homophilic interactions between proteins on neighboring cells, help bacteria evade host innate immune responses, participate in iron acquisition from host hemoglobin, and trigger invasion of bacteria into cells that are not normally phagocytic. The study of genetically manipulated strains using animal infection models has shown that many CWA proteins contribute to pathogenesis. Fragments of CWA proteins have the potential to be used in multicomponent vaccines to prevent S. aureus infections.
Collapse
|
12
|
Schneewind O, Missiakas D. Sortases, Surface Proteins, and Their Roles in Staphylococcus aureus Disease and Vaccine Development. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0004-2018. [PMID: 30737913 PMCID: PMC6386163 DOI: 10.1128/microbiolspec.psib-0004-2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 12/27/2022] Open
Abstract
Sortases cleave short peptide motif sequences at the C-terminal end of secreted surface protein precursors and either attach these polypeptides to the peptidoglycan of Gram-positive bacteria or promote their assembly into pilus structures that are also attached to peptidoglycan. Sortase A, the enzyme first identified in the human pathogen Staphylococcus aureus, binds LPXTG motif sorting signals, cleaves between threonine (T) and glycine (G) residues, and forms an acyl enzyme between its active-site cysteine thiol and the carboxyl group of threonine (T). Sortase A acyl enzyme is relieved by the nucleophilic attack of the cross bridge amino group within lipid II, thereby generating surface protein linked to peptidoglycan precursor. Such products are subsequently incorporated into the cell wall envelope by enzymes of the peptidoglycan synthesis pathway. Surface proteins linked to peptidoglycan may be released from the bacterial envelope to diffuse into host tissues and fulfill specific biological functions. S. aureus sortase A is essential for host colonization and for the pathogenesis of invasive diseases. Staphylococcal sortase-anchored surface proteins fulfill key functions during the infectious process, and vaccine-induced antibodies targeting surface proteins may provide protection against S. aureus. Alternatively, small-molecule inhibitors of sortase may be useful agents for the prevention of S. aureus colonization and invasive disease.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
13
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
14
|
Ajayi C, Åberg E, Askarian F, Sollid JUE, Johannessen M, Hanssen AM. Genetic variability in the sdrD gene in Staphylococcus aureus from healthy nasal carriers. BMC Microbiol 2018; 18:34. [PMID: 29661152 PMCID: PMC5902956 DOI: 10.1186/s12866-018-1179-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background Staphylococcus aureus cell wall anchored Serine Aspartate repeat containing protein D (SdrD) is a member of the microbial surface component recognising adhesive matrix molecules (MSCRAMMs). It is involved in the bacterial adhesion and virulence. However the extent of genetic variation in S. aureus sdrD gene within isolates from healthy carriers are not known. The aim of this study was to evaluate allelic variation of the sdrD gene among S. aureus from healthy nasal carriers. Results The sdrD A region from 48 S. aureus isolates from healthy carriers were analysed and classified into seven variants. Variations in the sdrD A region were concentrated in the N2 and N3 subdomains. Sequence analysis of the entire sdrD gene of representative isolates revealed variations in the SD repeat and the EF motifs of the B repeat. In silico structural modelling indicates that there are no differences in the SdrD structure of the 7 variants. Variable amino acid residues mapped onto the 3D structure revealed that the variations are surface located, exist within the groove between the N2-N3 subdomains and distributed mainly on the N3 subdomain. Comparison of adhesion to keratinocytes in an in vitro cell adhesion assay, using NCTC 8325–4∆sdrD strains expressing the various sdrD gene variants, indicated a significant difference between only two complements while others showed no major difference in their adhesion. Conclusions This study provides evidence of sequence variations across the different domains of SdrD from S. aureus isolated from healthy nasal carriers. Proper understanding of these variations is necessary in the study of S. aureus pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12866-018-1179-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clement Ajayi
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway.
| | - Espen Åberg
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Fatemeh Askarian
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Johanna U E Sollid
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Mona Johannessen
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Anne-Merethe Hanssen
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
15
|
Staphylococcal Protein A Contributes to Persistent Colonization of Mice with Staphylococcus aureus. J Bacteriol 2018; 200:JB.00735-17. [PMID: 29440258 DOI: 10.1128/jb.00735-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus persistently colonizes the nasopharynx in humans, which increases the risk for invasive diseases, such as skin infection and bacteremia. Nasal colonization triggers IgG responses against staphylococcal surface antigens; however, these antibodies cannot prevent subsequent colonization or disease. Here, we describe S. aureus WU1, a multilocus sequence type 88 (ST88) isolate that persistently colonizes the nasopharynx in mice. We report that staphylococcal protein A (SpA) is required for persistence of S. aureus WU1 in the nasopharynx. Compared to animals colonized by wild-type S. aureus, mice colonized with the Δspa variant mount increased IgG responses against staphylococcal colonization determinants. Immunization of mice with a nontoxigenic SpA variant, which cannot cross-link B cell receptors and divert antibody responses, elicits protein A-neutralizing antibodies that promote IgG responses against colonizing S. aureus and diminish pathogen persistence.IMPORTANCE Staphylococcus aureus persistently colonizes the nasopharynx in about one-third of the human population, thereby promoting community- and hospital-acquired infections. Antibiotics are currently used for decolonization of individuals at increased risk of infection. However, the efficacy of antibiotics is limited by recolonization and selection for drug-resistant strains. Here, we propose a model of how staphylococcal protein A (SpA), a B cell superantigen, modifies host immune responses during colonization to support continued persistence of S. aureus in the nasopharynx. We show that this mechanism can be thwarted by vaccine-induced anti-SpA antibodies that promote IgG responses against staphylococcal antigens and diminish colonization.
Collapse
|
16
|
Adaptive Upregulation of Clumping Factor A (ClfA) by Staphylococcus aureus in the Obese, Type 2 Diabetic Host Mediates Increased Virulence. Infect Immun 2017; 85:IAI.01005-16. [PMID: 28320836 DOI: 10.1128/iai.01005-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/09/2017] [Indexed: 01/28/2023] Open
Abstract
Obesity and associated type 2 diabetes (T2D) are important risk factors for infection following orthopedic implant surgery. Staphylococcus aureus, the most common pathogen in bone infections, adapts to multiple environments to survive and evade host immune responses. Whether adaptation of S. aureus to the unique environment of the obese/T2D host accounts for its increased virulence and persistence in this population is unknown. Thus, we assessed implant-associated osteomyelitis in normal versus high-fat-diet obese/T2D mice and found that S. aureus infection was more severe, including increases in bone abscesses relative to nondiabetic controls. S. aureus isolated from bone of obese/T2D mice displayed marked upregulation of four adhesion genes (clfA, clfB, bbp, and sdrC), all with binding affinity for fibrin(ogen). Immunostaining of infected bone revealed increased fibrin deposition surrounding bacterial abscesses in obese/T2D mice. In vitro coagulation assays demonstrated a hypercoagulable state in obese/T2D mice that was comparable to that of diabetic patients. S. aureus with an inactivating mutation in clumping factor A (clfA) showed a reduction in bone infection severity that eliminated the effect of obesity/T2D, while infections in control mice were unchanged. In infected mice that overexpress plasminogen activator inhibitor-1 (PAI-1), S. aureusclfA expression and fibrin-encapsulated abscess communities in bone were also increased, further linking fibrin deposition to S. aureus expression of clfA and infection severity. Together, these results demonstrate an adaptation by S. aureus to obesity/T2D with increased expression of clfA that is associated with the hypercoagulable state of the host and increased virulence of S. aureus.
Collapse
|
17
|
Yu W, Kim HK, Rauch S, Schneewind O, Missiakas D. Pathogenic conversion of coagulase-negative staphylococci. Microbes Infect 2017; 19:101-109. [PMID: 28012900 PMCID: PMC5274588 DOI: 10.1016/j.micinf.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022]
Abstract
Humans and animals are colonized by members of the genus Staphylococcus, however only some of these species evolved to cause invasive disease. The genetic basis for conversion of commensal staphylococci into pathogens is not known. We hypothesized that Staphylococcus aureus genes for coagulation and agglutination in vertebrate blood (coa, vwb and clfA) may support pathogenic conversion. Expression of coa and vwb in Staphylococcus epidermidis or Staphylococcus simulans supported a coagulase-positive phenotype but not the ability to cause disease in a mouse model of bloodstream infection. However, the simultaneous expression of coa, vwb and clfA in coagulase-negative staphylococci enabled bacterial agglutination in plasma and enhanced survival of S. simulans in human whole blood. Agglutination of S. simulans in the bloodstream of infected mice upon expression of coa, vwb and clfA provided also a mean for dissemination and replication in distal organs. Thus, the acquisition of genes for bacterial agglutination with fibrin appear sufficient for the conversion of commensal staphylococci into invasive pathogens.
Collapse
Affiliation(s)
- Wenqi Yu
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Sabine Rauch
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
18
|
Bleiziffer I, Eikmeier J, Pohlentz G, McAulay K, Xia G, Hussain M, Peschel A, Foster S, Peters G, Heilmann C. The Plasmin-Sensitive Protein Pls in Methicillin-Resistant Staphylococcus aureus (MRSA) Is a Glycoprotein. PLoS Pathog 2017; 13:e1006110. [PMID: 28081265 PMCID: PMC5230774 DOI: 10.1371/journal.ppat.1006110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/02/2016] [Indexed: 01/16/2023] Open
Abstract
Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff’s staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl residues can stimulate biofilm formation. Thus, sugar modifications may represent promising new targets for novel therapeutic or prophylactic measures against life-threatening S. aureus infections. Staphylococcus aureus is a serious pathogen that causes life-threatening infections due to its ability to attach to surfaces, form biofilms, and persist inside the host. One of previously identified virulence factors in S. aureus pathogenesis is the plasmin-sensitive surface protein Pls. We here identified Pls as a posttranslationally modified glycoprotein and characterized the domain within Pls that becomes glycosylated as well as the modifying sugars. Moreover, we found that the glycosyltransferases GtfC and GtfD carry out the glycosylation reactions. In a search for a role for the modifying sugars, we found that Pls can stimulate biofilm formation apparently via two distinct mechanisms, one being dependent on glycosylation by GtfC and GtfD the other being independent of glycosylation as well as eDNA. Moreover, we found that none of the already known Pls functions is mediated by the sugar moieties. Thus, we conclude that GtfC/GtfD-glycosylated Pls may contribute to MRSA pathogenicity via stimulation of biofilm formation and may serve as future target to combat or prevent infections with this serious pathogen.
Collapse
Affiliation(s)
- Isabelle Bleiziffer
- Institute of Medical Microbiology, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Julian Eikmeier
- Institute of Medical Microbiology, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster, Germany
| | | | - Kathryn McAulay
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Guoqing Xia
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Muzaffar Hussain
- Institute of Medical Microbiology, University of Münster, Münster, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, University of Tübingen, Tübingen, Germany
| | - Simon Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Georg Peters
- Institute of Medical Microbiology, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, University of Münster, Münster, Germany
| | - Christine Heilmann
- Institute of Medical Microbiology, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
19
|
Ganesh VK, Liang X, Geoghegan JA, Cohen ALV, Venugopalan N, Foster TJ, Hook M. Lessons from the Crystal Structure of the S. aureus Surface Protein Clumping Factor A in Complex With Tefibazumab, an Inhibiting Monoclonal Antibody. EBioMedicine 2016; 13:328-338. [PMID: 27789272 PMCID: PMC5264652 DOI: 10.1016/j.ebiom.2016.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/13/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023] Open
Abstract
The Staphylococcus aureus fibrinogen binding MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules), ClfA (clumping factor A) is an important virulence factor in staphylococcal infections and a component of several vaccines currently under clinical evaluation. The mouse monoclonal antibody aurexis (also called 12-9), and the humanized version tefibazumab are therapeutic monoclonal antibodies targeting ClfA that in combination with conventional antibiotics were effective in animal models but showed less impressive efficacy in a limited Phase II clinical trial. We here report the crystal structure and a biochemical characterization of the ClfA/tefibazumab (Fab) complex. The epitope for tefibazumab is located to the "top" of the N3 subdomain of ClfA and partially overlaps with a previously unidentified second binding site for fibrinogen. A high-affinity binding of ClfA to fibrinogen involves both an interaction at the N3 site and the previously identified docking of the C-terminal segment of the fibrinogen γ-chain in the N2N3 trench. Although tefibazumab binds ClfA with high affinity we observe a modest IC50 value for the inhibition of fibrinogen binding to the MSCRAMM. This observation, paired with a common natural occurring variant of ClfA that is not effectively recognized by the mAb, may partly explain the modest effect tefibazumab showed in the initial clinic trail. This information will provide guidance for the design of the next generation of therapeutic anti-staphylococcal mAbs targeting ClfA.
Collapse
Affiliation(s)
- Vannakambadi K. Ganesh
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A & M University Health Science Center, 2121 W Holcombe Blvd., Houston, TX 77030, USA,Corresponding authors.
| | - Xiaowen Liang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A & M University Health Science Center, 2121 W Holcombe Blvd., Houston, TX 77030, USA
| | - Joan A. Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Ana Luisa V. Cohen
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A & M University Health Science Center, 2121 W Holcombe Blvd., Houston, TX 77030, USA
| | - Nagarajan Venugopalan
- GM/CA@APS, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A & M University Health Science Center, 2121 W Holcombe Blvd., Houston, TX 77030, USA,Corresponding authors.
| |
Collapse
|
20
|
Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions. ADVANCES IN APPLIED MICROBIOLOGY 2016; 96:1-41. [PMID: 27565579 DOI: 10.1016/bs.aambs.2016.07.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human commensal bacterium Staphylococcus aureus can cause a wide range of infections ranging from skin and soft tissue infections to invasive diseases like septicemia, endocarditis, and pneumonia. Muticellular organization almost certainly contributes to S. aureus pathogenesis mechanisms. While there has been considerable focus on biofilm formation and its role in colonizing prosthetic joints and indwelling devices, less attention has been paid to nonsurface-attached group behavior like aggregation and clumping. S. aureus is unique in its ability to coagulate blood, and it also produces multiple fibrinogen-binding proteins that facilitate clumping. Formation of clumps, which are large, tightly packed groups of cells held together by fibrin(ogen), has been demonstrated to be important for S. aureus virulence and immune evasion. Clumps of cells are able to avoid detection by the host's immune system due to a fibrin(ogen) coat that acts as a shield, and the size of the clumps facilitates evasion of phagocytosis. In addition, clumping could be an important early step in establishing infections that involve tight clusters of cells embedded in host matrix proteins, such as soft tissue abscesses and endocarditis. In this review, we discuss clumping mechanisms and regulation, as well as what is known about how clumping contributes to immune evasion.
Collapse
Affiliation(s)
- H A Crosby
- University of Iowa, Iowa City, IA, United States
| | - J Kwiecinski
- University of Iowa, Iowa City, IA, United States
| | - A R Horswill
- University of Iowa, Iowa City, IA, United States
| |
Collapse
|
21
|
Vanzieleghem T, Couniot N, Herman-Bausier P, Flandre D, Dufrêne YF, Mahillon J. Role of Ionic Strength in Staphylococcal Cell Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7277-7283. [PMID: 27364477 DOI: 10.1021/acs.langmuir.6b00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell aggregation plays a key role in biofilm formation and pathogenesis of Staphylococcus species. Although the molecular basis of aggregation in Staphylococci has already been extensively investigated, the influence of environmental factors, such as ionic strength, remains poorly understood. In this paper, we report a new type of cellular aggregation of Staphylococci that depends solely on ionic strength. Seven strains out of 14, all belonging to staphylococcal species, formed large cell clusters within minutes in buffers of ionic strength ranging from 1.5 to 50 mM, whereas isolates belonging to other Gram-positive species did not display this phenotype. Atomic force microscopy (AFM) with chemically functionalized tips provided direct evidence that ionic strength modulates cell surface adhesive properties through changes in cell surface charge. The optimal ionic strength for aggregation was found to be strain dependent, but in all cases, bacterial aggregates formed at an ionic strength of 1.5-50 mM were rapidly dispersed in a solution of higher ionic strength, indicating a reversibility of the cell aggregation process. These findings suggest that some staphylococcal isolates can respond to ionic strength as an external stimulus to trigger rapid cell aggregation in a way that has not yet been reported.
Collapse
Affiliation(s)
- Thomas Vanzieleghem
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| | - Numa Couniot
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Herman-Bausier
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| | - Denis Flandre
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
22
|
Thomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus Bloodstream Infections. ANNUAL REVIEW OF PATHOLOGY 2016; 11:343-64. [PMID: 26925499 PMCID: PMC5068359 DOI: 10.1146/annurev-pathol-012615-044351] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus, a Gram-positive bacterium colonizing nares, skin, and the gastrointestinal tract, frequently invades the skin, soft tissues, and bloodstreams of humans. Even with surgical and antibiotic therapy, bloodstream infections are associated with significant mortality. The secretion of coagulases, proteins that associate with and activate the host hemostatic factor prothrombin, and the bacterial surface display of agglutinins, proteins that bind polymerized fibrin, are key virulence strategies for the pathogenesis of S. aureus bloodstream infections, which culminate in the establishment of abscess lesions. Pathogen-controlled processes, involving a wide spectrum of secreted factors, are responsible for the recruitment and destruction of immune cells, transforming abscess lesions into purulent exudate, with which staphylococci disseminate to produce new infectious lesions or to infect new hosts. Research on S. aureus bloodstream infections is a frontier for the characterization of protective vaccine antigens and the development of immune therapeutics aiming to prevent disease or improve outcomes.
Collapse
Affiliation(s)
- Lena Thomer
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | | |
Collapse
|
23
|
Abstract
UNLABELLED Treatment of Staphylococcus aureus infections has become increasingly difficult because of the emergence of multidrug-resistant isolates. Development of a vaccine to prevent staphylococcal infections remains a priority. To determine whether clumping factor A (ClfA) is a good target protein for inclusion in a multivalent vaccine, we evaluated its efficacy in a variety of relevant staphylococcal infection models, challenging with different S. aureus strains. ClfA adsorbed to Alhydrogel and mixed with Sigma Adjuvant System was more immunogenic and stimulated a more robust Th17 response than ClfA administered with alum alone. ClfA immunization induced the production of functional antibodies in rabbits and mice that blocked S. aureus binding to fibrinogen and were opsonic for S. aureus strains that produced little or no capsular polysaccharide. Mice immunized with ClfA showed a modest reduction in the bacterial burden recovered from subcutaneous abscesses provoked by S. aureus USA300 strain LAC. In addition, the ClfA vaccine reduced lethality in a sepsis model following challenge with strain Newman, but not ST80. Vaccination with ClfA did not protect against surgical wound infection, renal abscess formation, or bacteremia. Passive immunization with antibodies to ClfA did not protect against staphylococcal bacteremia in mice or catheter-induced endocarditis in rats. Some enhancement of bacteremia was observed by ClfA immunization or passive administration of ClfA antibodies when mice were challenged by the intraperitoneal route. Although rodent models of staphylococcal infection have their limitations, our data do not support the inclusion of ClfA in an S. aureus multivalent vaccine. IMPORTANCE Antibiotics are often ineffective in eradicating Staphylococcus aureus infections, and thus, a preventative vaccine is sorely needed. Two single-component vaccines and two immunoglobulin preparations failed to meet their designated endpoints in phase III clinical trials. Importantly, recipients of an S. aureus surface protein (iron surface determinant B) vaccine who developed a staphylococcal infection experienced a higher rate of multiorgan failure and mortality than placebo controls, raising safety concerns. Multicomponent S. aureus vaccines have now been generated, and several include surface protein clumping factor A (ClfA). We immunized mice with ClfA and generated a robust T cell response and serum antibodies that were functional in vitro. Nonetheless, ClfA was not protective in a number of relevant animal models of S. aureus infection, and high levels of ClfA antibodies enhanced bacteremia when mice were challenged with community-acquired methicillin-resistant S. aureus strains. Evidence supporting ClfA as a vaccine component is lacking.
Collapse
|
24
|
Zhu F, Wu H. Insights into bacterial protein glycosylation in human microbiota. SCIENCE CHINA. LIFE SCIENCES 2016; 59:11-8. [PMID: 26712033 PMCID: PMC5298937 DOI: 10.1007/s11427-015-4980-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/05/2015] [Indexed: 01/14/2023]
Abstract
The study of human microbiota is an emerging research topic. The past efforts have mainly centered on studying the composition and genomic landscape of bacterial species within the targeted communities. The interaction between bacteria and hosts is the pivotal event in the initiation and progression of infectious diseases. There is a great need to identify and characterize the molecules that mediate the bacteria-host interaction. Bacterial surface exposed proteins play an important role in the bacteria- host interaction. Numerous surface proteins are glycosylated, and the glycosylation is crucial for their function in mediating the bacterial interaction with hosts. Here we present an overview of surface glycoproteins from bacteria that inhabit three major mucosal environments across human body: oral, gut and skin. We describe the important enzymes involved in the process of protein glycosylation, and discuss how the process impacts the bacteria-host interaction. Emerging molecular details underlying glycosylation of bacterial surface proteins may lead to new opportunities for designing anti-infective small molecules, and developing novel vaccines in order to treat or prevent bacterial infection.
Collapse
Affiliation(s)
- Fan Zhu
- Departments of Microbiology and Pediatric Dentistry, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hui Wu
- Departments of Microbiology and Pediatric Dentistry, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
25
|
Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13:529-43. [PMID: 26272408 DOI: 10.1038/nrmicro3521] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B cell and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Vilasack Thammavongsa
- 1] Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA. [2] Regeneron Pharmaceuticals, 755 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| |
Collapse
|