1
|
Luo H, Cai Y, Shi H, Ma L, Zhang S, Yung KKL, Zhou P. Repurposing oxiconazole to inhibit STING trafficking via OSBP and alleviate autoimmune pathology in Trex1 -/- mice. Int Immunopharmacol 2025; 157:114742. [PMID: 40319749 DOI: 10.1016/j.intimp.2025.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
The cGAS-STING pathway is a critical component of the innate immune response to cytosolic DNA, driving the production of type I interferons (IFNs) and pro-inflammatory cytokines. However, excessive activation of this pathway is associated with various autoimmune and inflammatory diseases. In this study, we evaluated the regulation of FDA-approved azole antifungal drugs on the cGAS-STING pathway. Among these drugs, oxiconazole, miconazole, and itraconazole demonstrate significant inhibitory effects, with oxiconazole showing the strongest activity. Our data demonstrates that oxiconazole significantly suppressed type I IFN production and downstream inflammatory responses in macrophages and fibroblasts stimulated with synthetic DNA or infected with HSV-1. Mechanistically, oxiconazole hindered STING trafficking via oxysterol-binding protein OSBP. Using the Listeria monocytogenes infection model and the Trex1-/- mouse disease model, both representing in vivo models of inflammation driven by excessive cGAS-STING activation, we demonstrate that oxiconazole enhanced bacterial clearance and reduced tissue damage in the Listeria monocytogenes infection model. Moreover, oxiconazole treatment significantly alleviated multi-organ inflammation and normalized aberrant IFN responses in the Trex1-/- autoimmune disease mouse model. These findings highlight the potential of oxiconazole as a promising therapeutic agent for STING-driven autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yijing Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanhui Shi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liang Ma
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ken Kin Lam Yung
- Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, SAR 999077, China
| | - Pingzheng Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China.
| |
Collapse
|
2
|
Du H, Cui D, Hu S, Zhou X, Lin X, Fu X, Feng S, Xu S, Jian W, Guo Y, Zhang S, Chen Q. The induction of type I interferonopathy in Trex1-P212fs mice is mediated by activation of the cGAS-STING pathway. Int J Biol Macromol 2025; 310:143414. [PMID: 40268028 DOI: 10.1016/j.ijbiomac.2025.143414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/03/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
The cGAS-STING pathway is crucial for immune tolerance, pathogen resistance, and tumor immunity. Knocking out the cGAS gene can reverse the type I interferonopathy seen in Trex1-/- and Trex1D18N/D18N mice. TREX1, a key DNA-specific exonuclease in mammalian cells, degrades cytoplasmic DNA to prevent excessive immune activation. Mutations in TREX1 are linked to various autoimmune diseases. In prior research, we generated a Trex1-P212fs mouse model associated with systemic lupus erythematosus (SLE) using CRISPR-Cas9 gene editing. This model displays systemic inflammation that mirrors numerous characteristics of both Aicardi-Goutières syndrome (AGS) and SLE in humans. In this study, we found that the TREX1-P212fs mutation resulted in reduced dsDNA enzyme activity. DNA accumulation was present in the cytoplasm of Trex1P212fs/P212fs MEFs. Nonetheless, the role of the cGAS-STING pathway in mediating the disease phenotype in Trex1-P212fs mice associated with SLE has yet to be elucidated. We observed that cGas knockout mitigated systemic inflammation, lymphocyte proliferation, vasculitis, renal disease, and spontaneous T cell activation in Trex1-P212fs mice. Similarly, inhibition of STING with C-176 treatment ameliorated the disease phenotype in Trex1-P212fs mice. These findings elucidate the pathogenesis of TREX1-P212fs-associated type I interferonopathy and offer potential therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Hekang Du
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Dongya Cui
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Shun Hu
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Xueyuan Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Xiaofang Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Xiaodan Fu
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Sisi Feng
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Shan Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Wentin Jian
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Yuanli Guo
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China..
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China..
| |
Collapse
|
3
|
Tever OK, Mentrup T, Chinn IK, Ishikuma H, Fluhrer R, Schmitz M, Wehner R, Behrendt R, Chinen J, Schröder B. The DNase TREX1 is a substrate of the intramembrane protease SPP with implications for disease pathogenesis. Cell Mol Life Sci 2025; 82:107. [PMID: 40072623 PMCID: PMC11904002 DOI: 10.1007/s00018-025-05645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/03/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Signal peptide peptidase (SPP) is an ER-resident aspartyl intramembrane protease cleaving proteins within type II-oriented transmembrane segments. Here, we identified the tail-anchored protein Three prime repair exonuclease 1 (TREX1) as a novel substrate of SPP. Based on its DNase activity, TREX1 removes cytosolic DNA acting as a negative regulator of the DNA-sensing cGAS/STING pathway. TREX1 loss-of-function variants cause Aicardi-Goutières syndrome (AGS), a type I interferonopathy. Cleavage of ER-bound TREX1 by SPP releases a cleavage product into the cytosol. Proteolysis depends on sequence determinants within the transmembrane segment and is modulated by different disease-associated TREX1 variants. The AGS-causing T303P variant greatly enhanced susceptibility of TREX1 to intramembrane cleavage accounting for increased degradation and reduced protein stability in AGS patients homozygous for this variant. Other variants within the TREX1 transmembrane segment, P290L, Y305C and G306A, associated with systemic lupus erythematosus variably modulated TREX1 proteolytic processing. Altogether, intramembrane proteolysis can act as a regulator of TREX1 both by controlling its cytosolic localization and mediating its turnover with implications for disease pathogenesis.
Collapse
Affiliation(s)
- Onur Kerem Tever
- Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Torben Mentrup
- Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Ivan Kingyue Chinn
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine and Texas Children's Hospital, Houston and The Woodlands, USA
| | - Hitoshi Ishikuma
- Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Augsburg, Germany
- Center for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Javier Chinen
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine and Texas Children's Hospital, Houston and The Woodlands, USA
| | - Bernd Schröder
- Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Tuti N, Shaji UP, Das S, Anindya R. Effect of methyl DNA adducts on 3'-5' exonuclease activity of human TREX1. Biochem J 2025; 482:263-273. [PMID: 39998308 DOI: 10.1042/bcj20240600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Three-prime repair exonuclease 1 (TREX1) is a 3'-5' exonuclease that plays an important role in clearing cytoplasmic DNA. Additionally, TREX1 is translocated to the nucleus after DNA damage and assists in DNA repair. In this work, we evaluated the activity of TREX1 in the context of the removal of methyl DNA adducts. We observed that TREX1 was less efficient at degrading methyl methanesulfonate (MMS)-treated methylated DNA compared with normal DNA. Two methyl DNA adducts, N1-methyladenine and N3-methylcytosine, were found to block TREX1 exonuclease activity. To understand the mechanism of limited TREX1-mediated degradation of MMS-damaged DNA, stem-loop substrates containing solitary methyl adducts were prepared. We found that when the solitary methyl adducts were present at the 3'-terminal single-stranded overhang, it prevented degradation by TREX1. However, TREX1 could efficiently process internally located duplex DNA methyl adducts when the 3'-terminal of the scissile strand was damage-free. Broadly, these observations suggest that TREX1 may be capable of resecting methyl adducts containing DNA, but it might be less proficient of removing 3'-terminal DNA methyl adducts.
Collapse
Affiliation(s)
- Nikhil Tuti
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Telangana, Kandi, Sanga Reddy 502284, India
| | - Unnikrishnan P Shaji
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Telangana, Kandi, Sanga Reddy 502284, India
| | - Susmita Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Telangana, Kandi, Sanga Reddy 502284, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Telangana, Kandi, Sanga Reddy 502284, India
| |
Collapse
|
5
|
Hussain M, Khadka P, Pekhale K, Kulikowicz T, Gray S, May A, Croteau DL, Bohr VA. RECQL4 requires PARP1 for recruitment to DNA damage, and PARG dePARylation facilitates its associated role in end joining. Exp Mol Med 2025; 57:264-280. [PMID: 39870799 PMCID: PMC11799438 DOI: 10.1038/s12276-024-01383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 01/29/2025] Open
Abstract
RecQ helicases, highly conserved proteins with pivotal roles in DNA replication, DNA repair and homologous recombination, are crucial for maintaining genomic integrity. Mutations in RECQL4 have been associated with various human diseases, including Rothmund-Thomson syndrome. RECQL4 is involved in regulating major DNA repair pathways, such as homologous recombination and nonhomologous end joining (NHEJ). RECQL4 has more prominent single-strand DNA annealing activity than helicase activity. Its ability to promote DNA damage repair and the precise role of its DNA annealing activity in DNA repair are unclear. Here we demonstrate that PARP1 interacts with RECQL4, increasing its single-stranded DNA strand annealing activity. PARP1 specifically promoted RECQL4 PARylation at both its N- and C-terminal regions, promoting RECQL4 recruitment to DNA double-strand breaks (DSBs). Inhibition or depletion of PARP1 significantly diminished RECQL4 recruitment and occupancy at specific DSB sites on chromosomes. After DNA damage, PARG dePARylated RECQL4 and stimulated its end-joining activity. RECQL4 actively displaced replication protein A from single-stranded DNA, promoting microhomology annealing in vitro. Furthermore, depletion of PARP1 or RECQL4 substantially impacted classical-NHEJ- and alternative-NHEJ-mediated DSB repair. Consequently, the combined activities of PARP1, PARG and RECQL4 modulate DNA repair.
Collapse
Affiliation(s)
- Mansoor Hussain
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Prabhat Khadka
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Komal Pekhale
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tomasz Kulikowicz
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Samuel Gray
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alfred May
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Deborah L Croteau
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Dept of ICMM, University of Copenhagen, Copenhagn, Denmark.
| |
Collapse
|
6
|
Técher H. T-Rex escaped from the cytosolic park: Re-thinking the impact of TREX1 exonuclease deficiencies on genomic stability. Bioessays 2024; 46:e2400066. [PMID: 38837436 DOI: 10.1002/bies.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The Three Prime Repair Exonuclease 1 (TREX1) has been implicated in several pathologies characterized by chronic and inborn inflammation. Aberrant innate immunity caused by DNA sensing through the cGAS-STING pathway has been proposed to play a major role in the etiology of these interferonopathies. However, the molecular source of this DNA sensing and the possible involvement of TREX1 in genome (in)stability remains poorly understood. Recent findings reignite the debate about the cellular functions performed by TREX1 nuclease, notably in chromosome biology and stability. Here I put into perspective recent findings that suggest that TREX1 is at the crossroads of DNA damage response and inflammation in different pathological contexts.
Collapse
Affiliation(s)
- Hervé Técher
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging of Nice - IRCAN, Nice, France
| |
Collapse
|
7
|
Chauvin SD, Ando S, Holley JA, Sugie A, Zhao FR, Poddar S, Kato R, Miner CA, Nitta Y, Krishnamurthy SR, Saito R, Ning Y, Hatano Y, Kitahara S, Koide S, Stinson WA, Fu J, Surve N, Kumble L, Qian W, Polishchuk O, Andhey PS, Chiang C, Liu G, Colombeau L, Rodriguez R, Manel N, Kakita A, Artyomov MN, Schultz DC, Coates PT, Roberson EDO, Belkaid Y, Greenberg RA, Cherry S, Gack MU, Hardy T, Onodera O, Kato T, Miner JJ. Inherited C-terminal TREX1 variants disrupt homology-directed repair to cause senescence and DNA damage phenotypes in Drosophila, mice, and humans. Nat Commun 2024; 15:4696. [PMID: 38824133 PMCID: PMC11144269 DOI: 10.1038/s41467-024-49066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Age-related microangiopathy, also known as small vessel disease (SVD), causes damage to the brain, retina, liver, and kidney. Based on the DNA damage theory of aging, we reasoned that genomic instability may underlie an SVD caused by dominant C-terminal variants in TREX1, the most abundant 3'-5' DNA exonuclease in mammals. C-terminal TREX1 variants cause an adult-onset SVD known as retinal vasculopathy with cerebral leukoencephalopathy (RVCL or RVCL-S). In RVCL, an aberrant, C-terminally truncated TREX1 mislocalizes to the nucleus due to deletion of its ER-anchoring domain. Since RVCL pathology mimics that of radiation injury, we reasoned that nuclear TREX1 would cause DNA damage. Here, we show that RVCL-associated TREX1 variants trigger DNA damage in humans, mice, and Drosophila, and that cells expressing RVCL mutant TREX1 are more vulnerable to DNA damage induced by chemotherapy and cytokines that up-regulate TREX1, leading to depletion of TREX1-high cells in RVCL mice. RVCL-associated TREX1 mutants inhibit homology-directed repair (HDR), causing DNA deletions and vulnerablility to PARP inhibitors. In women with RVCL, we observe early-onset breast cancer, similar to patients with BRCA1/2 variants. Our results provide a mechanistic basis linking aberrant TREX1 activity to the DNA damage theory of aging, premature senescence, and microvascular disease.
Collapse
Affiliation(s)
- Samuel D Chauvin
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shoichiro Ando
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Joe A Holley
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Atsushi Sugie
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Fang R Zhao
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Subhajit Poddar
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rei Kato
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Cathrine A Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yohei Nitta
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rie Saito
- Department of Pathology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yue Ning
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuya Hatano
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Sho Kitahara
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shin Koide
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - W Alexander Stinson
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Jiayuan Fu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nehalee Surve
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lindsay Kumble
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wei Qian
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Oleksiy Polishchuk
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Prabhakar S Andhey
- Department of Pathology and Immunology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Guanqun Liu
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Ludovic Colombeau
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Raphaël Rodriguez
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Nicolas Manel
- INSERM U932, Institut Curie, PSL Research University, Paris, France
| | - Akiyoshi Kakita
- Department of Pathology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - David C Schultz
- High-throughput Screening Core, University of Pennsylvania, Philadelphia, PA, USA
| | - P Toby Coates
- Central and Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Elisha D O Roberson
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institut Pasteur, Paris, France
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Tristan Hardy
- Genetics, Repromed, Monash IVF, Dulwich, South Australia, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Molecular Neuroscience, Brain Science Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Taisuke Kato
- Department of Molecular Neuroscience, Brain Science Branch, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Jonathan J Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA.
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Penn Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Baralić K, Božović P, Đukić-Ćosić D. Deciphering the molecular landscape of ionising radiation-induced eye damage with the help of genomic data mining. Arh Hig Rada Toksikol 2024; 75:91-101. [PMID: 38963141 PMCID: PMC11223508 DOI: 10.2478/aiht-2024-75-3817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/01/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024] Open
Abstract
Even at low levels, exposure to ionising radiation can lead to eye damage. However, the underlying molecular mechanisms are not yet fully understood. We aimed to address this gap with a comprehensive in silico approach to the issue. For this purpose we relied on the Comparative Toxicogenomics Database (CTD), ToppGene Suite, Cytoscape, GeneMANIA, and Metascape to identify six key regulator genes associated with radiation-induced eye damage (ATM, CRYAB, SIRT1, TGFB1, TREX1, and YAP1), all of which have physical interactions. Some of the identified molecular functions revolve around DNA repair mechanisms, while others are involved in protein binding, enzymatic activities, metabolic processes, and post-translational protein modifications. The biological processes are mostly centred on response to DNA damage, the p53 signalling pathway in particular. We identified a significant role of several miRNAs, such as hsa-miR-183 and hsamiR-589, in the mechanisms behind ionising radiation-induced eye injuries. Our study offers a valuable method for gaining deeper insights into the adverse effects of radiation exposure.
Collapse
Affiliation(s)
- Katarina Baralić
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology “Akademik Danilo Soldatović“, Belgrade, Serbia
| | - Predrag Božović
- University of Belgrade Vinča Institute of Nuclear Sciences, Department of Radiation and Environmental Protection, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology “Akademik Danilo Soldatović“, Belgrade, Serbia
| |
Collapse
|
9
|
Huang KW, Wu CY, Toh SI, Liu TC, Tu CI, Lin YH, Cheng AJ, Kao YT, Chu JW, Hsiao YY. Molecular insight into the specific enzymatic properties of TREX1 revealing the diverse functions in processing RNA and DNA/RNA hybrids. Nucleic Acids Res 2023; 51:11927-11940. [PMID: 37870446 PMCID: PMC10681709 DOI: 10.1093/nar/gkad910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
In various autoimmune diseases, dysfunctional TREX1 (Three prime Repair Exonuclease 1) leads to accumulation of endogenous single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and DNA/RNA hybrids in the cytoplasm and triggers immune activation through the cGAS-STING pathway. Although inhibition of TREX1 could be a useful strategy for cancer immunotherapy, profiling cellular functions in terms of its potential substrates is a key step. Particularly important is the functionality of processing DNA/RNA hybrids and RNA substrates. The exonuclease activity measurements conducted here establish that TREX1 can digest both ssRNA and DNA/RNA hybrids but not dsRNA. The newly solved structures of TREX1-RNA product and TREX1-nucleotide complexes show that 2'-OH does not impose steric hindrance or specific interactions for the recognition of RNA. Through all-atom molecular dynamics simulations, we illustrate that the 2'-OH-mediated intra-chain hydrogen bonding in RNA would affect the binding with TREX1 and thereby reduce the exonuclease activity. This notion of higher conformational rigidity in RNA leading TREX1 to exhibit weaker catalytic cleavage is further validated by the binding affinity measurements with various synthetic DNA-RNA junctions. The results of this work thus provide new insights into the mechanism by which TREX1 processes RNA and DNA/RNA hybrids and contribute to the molecular-level understanding of the complex cellular functions of TREX1 as an exonuclease.
Collapse
Affiliation(s)
- Kuan-Wei Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Chia-Yun Wu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Shu-Ing Toh
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Tung-Chang Liu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Chun-I Tu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Yin-Hsin Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - An-Ju Cheng
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Ya-Ting Kao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jhih-Wei Chu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Yu-Yuan Hsiao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Drug Development and Value Creation Research Center, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
10
|
Mathavarajah S, Vergunst KL, Habib EB, Williams SK, He R, Maliougina M, Park M, Salsman J, Roy S, Braasch I, Roger A, Langelaan D, Dellaire G. PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates. Nucleic Acids Res 2023; 51:3185-3204. [PMID: 36912092 PMCID: PMC10123124 DOI: 10.1093/nar/gkad152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.
Collapse
Affiliation(s)
| | - Kathleen L Vergunst
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Elias B Habib
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Shelby K Williams
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Raymond He
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Maria Maliougina
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mika Park
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jayme Salsman
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Stéphane Roy
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, QB, Canada
| | - Ingo Braasch
- Michigan State University, Department of Integrative Biology and Ecology, Evolution, and Behavior Program, East Lansing, MI, USA
| | - Andrew J Roger
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
11
|
Fang L, Ying S, Xu X, Wu D. TREX1 cytosolic DNA degradation correlates with autoimmune disease and cancer immunity. Clin Exp Immunol 2023; 211:193-207. [PMID: 36745566 PMCID: PMC10038326 DOI: 10.1093/cei/uxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
The N-terminal domain of Three Prime Repair Exonuclease 1 (TREX1) is catalytically active and can degrade dsDNA or ssDNA in the cytosol, whereas the C-terminal domain is primarily involved in protein localization. TREX1 deficiency induces cytosolic DNA accumulation as well as activation of the cGAS-STING-IFN signaling pathway, which results in tissue inflammation and autoimmune diseases. Furthermore, TREX1 expression in cancer immunity can be adaptively regulated to promote tumor proliferation, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Liwei Fang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xi Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Wu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Anindya R. Cytoplasmic DNA in cancer cells: Several pathways that potentially limit DNase2 and TREX1 activities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119278. [PMID: 35489653 DOI: 10.1016/j.bbamcr.2022.119278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The presence of DNA in the cytoplasm of tumor cells induces the dendritic cell to produce type-I IFNs. Classically, the presence of foreign DNA in host cells' cytoplasm during viral infection elicits cGAS-STING mediated type-I IFN signaling and cytokine production. It is likely that cytosolic DNA leads to senescence and immune surveillance in transformed cells during the early stages of carcinogenesis. However, multiple factors, such as loss of cell-cycle checkpoint, mitochondrial damage and chromosomal instability, can lead to persistent accumulation of DNA in the cytoplasm of metastatic tumor cells. That is why aberrant activation of the type I IFN pathway is frequently associated with highly aggressive tumors. Intriguingly, two powerful intracellular deoxyribonucleases, DNase2 and TREX1, can target the cytoplasmic DNA for degradation. Yet the tumor cells consistently accumulate cytoplasmic DNA. This review highlights recent work connecting the lack of DNase2 and TREX1 function to innate immune signaling. It also summarizes the possible mechanisms that limit the activity of DNase2 and TREX1 in tumor cells and contributes to chronic inflammation.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India.
| |
Collapse
|
13
|
Manils J, Marruecos L, Soler C. Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells 2022; 11:2157. [PMID: 35883600 PMCID: PMC9316158 DOI: 10.3390/cells11142157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Although DNA degradation might seem an unwanted event, it is essential in many cellular processes that are key to maintaining genomic stability and cell and organism homeostasis. The capacity to cut out nucleotides one at a time from the end of a DNA chain is present in enzymes called exonucleases. Exonuclease activity might come from enzymes with multiple other functions or specialized enzymes only dedicated to this function. Exonucleases are involved in central pathways of cell biology such as DNA replication, repair, and death, as well as tuning the immune response. Of note, malfunctioning of these enzymes is associated with immune disorders and cancer. In this review, we will dissect the impact of DNA degradation on the DNA damage response and its links with inflammation and cancer.
Collapse
Affiliation(s)
- Joan Manils
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Laura Marruecos
- Breast Cancer Laboratory, Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
14
|
Yang K, Wei X, Le J, Rodriguez N. Human TREX1 Repairs 3'-End DNA Lesions in Vitro. Chem Res Toxicol 2022; 35:935-939. [PMID: 35537036 DOI: 10.1021/acs.chemrestox.2c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human three-prime repair exonuclease 1 (TREX1) is the major 3' to 5' exonuclease that functions to deplete the cytosolic DNA to prevent the autoimmune response. TREX1 is upregulated and translocates from cytoplasm to the nucleus in response to genotoxic stress, but the function of nuclear TREX1 is not well understood. Herein, we wish to report our in vitro finding that TREX1 efficiently excises 3'-phospho-α,β-unsaturated aldehyde and 3'-deoxyribose phosphate that are commonly produced as base excision repair intermediates and also from the nonenzymatic strand incision at abasic sites.
Collapse
Affiliation(s)
- Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiaoying Wei
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer Le
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nestor Rodriguez
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Giordano AMS, Luciani M, Gatto F, Abou Alezz M, Beghè C, Della Volpe L, Migliara A, Valsoni S, Genua M, Dzieciatkowska M, Frati G, Tahraoui-Bories J, Giliani SC, Orcesi S, Fazzi E, Ostuni R, D'Alessandro A, Di Micco R, Merelli I, Lombardo A, Reijns MAM, Gromak N, Gritti A, Kajaste-Rudnitski A. DNA damage contributes to neurotoxic inflammation in Aicardi-Goutières syndrome astrocytes. J Exp Med 2022; 219:213058. [PMID: 35262626 PMCID: PMC8916121 DOI: 10.1084/jem.20211121] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 01/09/2023] Open
Abstract
Aberrant induction of type I IFN is a hallmark of the inherited encephalopathy Aicardi-Goutières syndrome (AGS), but the mechanisms triggering disease in the human central nervous system (CNS) remain elusive. Here, we generated human models of AGS using genetically modified and patient-derived pluripotent stem cells harboring TREX1 or RNASEH2B loss-of-function alleles. Genome-wide transcriptomic analysis reveals that spontaneous proinflammatory activation in AGS astrocytes initiates signaling cascades impacting multiple CNS cell subsets analyzed at the single-cell level. We identify accumulating DNA damage, with elevated R-loop and micronuclei formation, as a driver of STING- and NLRP3-related inflammatory responses leading to the secretion of neurotoxic mediators. Importantly, pharmacological inhibition of proapoptotic or inflammatory cascades in AGS astrocytes prevents neurotoxicity without apparent impact on their increased type I IFN responses. Together, our work identifies DNA damage as a major driver of neurotoxic inflammation in AGS astrocytes, suggests a role for AGS gene products in R-loop homeostasis, and identifies common denominators of disease that can be targeted to prevent astrocyte-mediated neurotoxicity in AGS.
Collapse
Affiliation(s)
- Anna Maria Sole Giordano
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Francesca Gatto
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucrezia Della Volpe
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Alessandro Migliara
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Sara Valsoni
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Giacomo Frati
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Julie Tahraoui-Bories
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Clara Giliani
- Department of Molecular and Translational Medicine, "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Child Neurology and Psychiatry Unit, Istituto di Ricovero e Cura a Carattere Scientifico Mondino Foundation, Pavia, Italy
| | - Elisa Fazzi
- Unit of Child Neurology and Psychiatry, Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Martin A M Reijns
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Wei X, Wang Z, Hinson C, Yang K. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3638-3657. [PMID: 35349719 PMCID: PMC9023300 DOI: 10.1093/nar/gkac185] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Caroline Hinson
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kun Yang
- To whom correspondence should be addressed. Tel: +1 512 471 4843;
| |
Collapse
|
17
|
Visser H, Thomas AD. MicroRNAs and the DNA damage response: How is cell fate determined? DNA Repair (Amst) 2021; 108:103245. [PMID: 34773895 DOI: 10.1016/j.dnarep.2021.103245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
It is becoming clear that the DNA damage response orchestrates an appropriate response to a given level of DNA damage, whether that is cell cycle arrest and repair, senescence or apoptosis. It is plausible that the alternative regulation of the DNA damage response (DDR) plays a role in deciding cell fate following damage. MicroRNAs (miRNAs) are associated with the transcriptional regulation of many cellular processes. They have diverse functions, affecting, presumably, all aspects of cell biology. Many have been shown to be DNA damage inducible and it is conceivable that miRNA species play a role in deciding cell fate following DNA damage by regulating the expression and activation of key DDR proteins. From a clinical perspective, miRNAs are attractive targets to improve cancer patient outcomes to DNA-damaging chemotherapy. However, cancer tissue is known to be, or to become, well adapted to DNA damage as a means of inducing chemoresistance. This frequently results from an altered DDR, possibly owing to miRNA dysregulation. Though many studies provide an overview of miRNAs that are dysregulated within cancerous tissues, a tangible, functional association is often lacking. While miRNAs are well-documented in 'ectopic biology', the physiological significance of endogenous miRNAs in the context of the DDR requires clarification. This review discusses miRNAs of biological relevance and their role in DNA damage response by potentially 'fine-tuning' the DDR towards a particular cell fate in response to DNA damage. MiRNAs are thus potential therapeutic targets/strategies to limit chemoresistance, or improve chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Hartwig Visser
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom
| | - Adam D Thomas
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
18
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
19
|
Baris AM, Fraile-Bethencourt E, Anand S. Nucleic Acid Sensing in the Tumor Vasculature. Cancers (Basel) 2021; 13:4452. [PMID: 34503262 PMCID: PMC8431390 DOI: 10.3390/cancers13174452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Endothelial cells form a powerful interface between tissues and immune cells. In fact, one of the underappreciated roles of endothelial cells is to orchestrate immune attention to specific sites. Tumor endothelial cells have a unique ability to dampen immune responses and thereby maintain an immunosuppressive microenvironment. Recent approaches to trigger immune responses in cancers have focused on activating nucleic acid sensors, such as cGAS-STING, in combination with immunotherapies. In this review, we present a case for targeting nucleic acid-sensing pathways within the tumor vasculature to invigorate tumor-immune responses. We introduce two specific nucleic acid sensors-the DNA sensor TREX1 and the RNA sensor RIG-I-and discuss their functional roles in the vasculature. Finally, we present perspectives on how these nucleic acid sensors in the tumor endothelium can be targeted in an antiangiogenic and immune activation context. We believe understanding the role of nucleic acid-sensing in the tumor vasculature can enhance our ability to design more effective therapies targeting the tumor microenvironment by co-opting both vascular and immune cell types.
Collapse
Affiliation(s)
- Adrian M. Baris
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Eugenia Fraile-Bethencourt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
20
|
Liu TC, Guo KW, Chu JW, Hsiao YY. Understanding APE1 cellular functions by the structural preference of exonuclease activities. Comput Struct Biotechnol J 2021; 19:3682-3691. [PMID: 34285771 PMCID: PMC8258793 DOI: 10.1016/j.csbj.2021.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) has versatile enzymatic functions, including redox, endonuclease, and exonuclease activities. APE1 is thus broadly associated with pathways in DNA repair, cancer cell growth, and drug resistance. Unlike its AP site-specific endonuclease activity in Base excision repair (BER), the 3′-5′ exonucleolytic cleavage of APE1 using the same active site exhibits complex substrate selection patterns, which are key to the biological functions. This work aims to integrate molecular structural information and biocatalytic properties to deduce the substrate recognition mechanism of APE1 as an exonuclease and make connection to its diverse functionalities in the cell. In particular, an induced space-filling model emerges in which a bridge-like structure is formed by Arg177 and Met270 (RM bridge) upon substrate binding, causing the active site to adopt a long and narrow product pocket for hosting the leaving group of an AP site or the 3′-end nucleotide. Rather than distinguishing bases as other exonucleases, the hydrophobicity and steric hindrance due to the APE1 product pocket provides selectivity for substrate structures, such as matched or mismatched blunt-ended dsDNA, recessed dsDNA, gapped dsDNA, and nicked dsDNA with 3′-end overhang shorter than 2 nucleotides. These dsDNAs are similar to the native substrates in BER proofreading, BER for trinucleotide repeats (TNR), Nucleotide incision repair (NIR), DNA single-strand breaks (SSB), SSB with damaged bases, and apoptosis. Integration of in vivo studies, in vitro biochemical assays, and structural analysis is thus essential for linking the APE1 exonuclease activity to the specific roles in cellular functions.
Collapse
Affiliation(s)
- Tung-Chang Liu
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan
| | - Kai-Wei Guo
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan
| | - Jhih-Wei Chu
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Yuan Hsiao
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Drug Development and Value Creation Research Center, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Kivanc D, Dasdemir S. The relationship between defects in DNA repair genes and autoinflammatory diseases. Rheumatol Int 2021; 42:1-13. [PMID: 34091703 DOI: 10.1007/s00296-021-04906-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/29/2021] [Indexed: 01/11/2023]
Abstract
Tissue inflammation and damage with the abnormal and overactivation of innate immune system results with the development of a hereditary disease group of autoinflammatory diseases. Multiple numbers of DNA damage develop with the continuous exposure to endogenous and exogenous genotoxic effects, and these damages are repaired through the DNA damage response governed by the genes involved in the DNA repair mechanisms, and proteins of these genes. Studies showed that DNA damage might trigger the innate immune response through nuclear DNA accumulation in the cytoplasm, and through chronic DNA damage response which signals itself and/or by micronucleus. The aim of the present review is to identify the effect of mutation that occurred in DNA repair genes on development of DNA damage response and autoinflammatory diseases.
Collapse
Affiliation(s)
- Demet Kivanc
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Selcuk Dasdemir
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
22
|
Eleazer R, Fondufe‐Mittendorf YN. The multifaceted role of PARP1 in RNA biogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1617. [PMID: 32656996 PMCID: PMC7856298 DOI: 10.1002/wrna.1617] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are abundant nuclear proteins that synthesize ADP ribose polymers (pADPr) and catalyze the addition of (p)ADPr to target biomolecules. PARP1, the most abundant and well-studied PARP, is a multifunctional enzyme that participates in numerous critical cellular processes. A considerable amount of PARP research has focused on PARP1's role in DNA damage. However, an increasing body of evidence outlines more routine roles for PARP and PARylation in nearly every step of RNA biogenesis and metabolism. PARP1's involvement in these RNA processes is pleiotropic and has been ascribed to PARP1's unique flexible domain structures. PARP1 domains are modular self-arranged enabling it to recognize structurally diverse substrates and to act simultaneously through multiple discrete mechanisms. These mechanisms include direct PARP1-protein binding, PARP1-nucleic acid binding, covalent PARylation of target molecules, covalent autoPARylation, and induction of noncovalent interactions with PAR molecules. A combination of these mechanisms has been implicated in PARP1's context-specific regulation of RNA biogenesis and metabolism. We examine the mechanisms of PARP1 regulation in transcription initiation, elongation and termination, co-transcriptional splicing, RNA export, and post-transcriptional RNA processing. Finally, we consider promising new investigative avenues for PARP1 involvement in these processes with an emphasis on PARP1 regulation of subcellular condensates. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Rebekah Eleazer
- Department of Molecular and Cellular Biochemistry and Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Yvonne N. Fondufe‐Mittendorf
- Department of Molecular and Cellular Biochemistry and Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
23
|
Hoong BYD, Gan YH, Liu H, Chen ES. cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget 2020; 11:2930-2955. [PMID: 32774773 PMCID: PMC7392626 DOI: 10.18632/oncotarget.27673] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
The host innate immunity offers the first line of defense against infection. However, recent evidence shows that the host innate immunity is also critical in sensing the presence of cytoplasmic DNA derived from genomic instability events, such as DNA damage and defective cell cycle progression. This is achieved through the cyclic GMP-AMP synthase (cGAS)/Stimulator of interferon (IFN) genes (STING) pathway. Here we discuss recent insights into the regulation of this pathway in cancer immunosurveillance, and the downstream signaling cascades that coordinate immune cell recruitment to the tumor microenvironment to destroy transformed cells through cellular senescence or cell death programs. Its central role in immunosurveillance positions the cGAS-STING pathway as an attractive anti-cancer immunotherapeutic drug target for chemical agonists or vaccine adjuvants and suggests a key node to be targeted in a synthetic lethal approach. We also discuss adaptive mechanisms used by cancer cells to circumvent cGAS-STING signaling and present evidence linking chronic cGAS-STING activation to inflammation-induced carcinogenesis, cautioning against the use of activating the cGAS-STING pathway as an anti-tumor immunotherapy. A deeper mechanistic understanding of the cGAS-STING pathway will aid in the identification of potentially efficacious anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Brandon Yi Da Hoong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System (NUHS), Singapore
- Wong Hock Boon Society, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yunn Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System (NUHS), Singapore
- NUS Graduate School of Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore
| | - Haiyan Liu
- National University Health System (NUHS), Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System (NUHS), Singapore
- NUS Graduate School of Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore
| |
Collapse
|
24
|
Krushkal J, Silvers T, Reinhold WC, Sonkin D, Vural S, Connelly J, Varma S, Meltzer PS, Kunkel M, Rapisarda A, Evans D, Pommier Y, Teicher BA. Epigenome-wide DNA methylation analysis of small cell lung cancer cell lines suggests potential chemotherapy targets. Clin Epigenetics 2020; 12:93. [PMID: 32586373 PMCID: PMC7318526 DOI: 10.1186/s13148-020-00876-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive neuroendocrine lung cancer. SCLC progression and treatment resistance involve epigenetic processes. However, links between SCLC DNA methylation and drug response remain unclear. We performed an epigenome-wide study of 66 human SCLC cell lines using the Illumina Infinium MethylationEPIC BeadChip array. Correlations of SCLC DNA methylation and gene expression with in vitro response to 526 antitumor agents were examined. RESULTS We found multiple significant correlations between DNA methylation and chemosensitivity. A potentially important association was observed for TREX1, which encodes the 3' exonuclease I that serves as a STING antagonist in the regulation of a cytosolic DNA-sensing pathway. Increased methylation and low expression of TREX1 were associated with the sensitivity to Aurora kinase inhibitors AZD-1152, SCH-1473759, SNS-314, and TAK-901; the CDK inhibitor R-547; the Vertex ATR inhibitor Cpd 45; and the mitotic spindle disruptor vinorelbine. Compared with cell lines of other cancer types, TREX1 had low mRNA expression and increased upstream region methylation in SCLC, suggesting a possible relationship with SCLC sensitivity to Aurora kinase inhibitors. We also identified multiple additional correlations indicative of potential mechanisms of chemosensitivity. Methylation of the 3'UTR of CEP350 and MLPH, involved in centrosome machinery and microtubule tracking, respectively, was associated with response to Aurora kinase inhibitors and other agents. EPAS1 methylation was associated with response to Aurora kinase inhibitors, a PLK-1 inhibitor and a Bcl-2 inhibitor. KDM1A methylation was associated with PLK-1 inhibitors and a KSP inhibitor. Increased promoter methylation of SLFN11 was correlated with resistance to DNA damaging agents, as a result of low or no SLFN11 expression. The 5' UTR of the epigenetic modifier EZH2 was associated with response to Aurora kinase inhibitors and a FGFR inhibitor. Methylation and expression of YAP1 were correlated with response to an mTOR inhibitor. Among non-neuroendocrine markers, EPHA2 was associated with response to Aurora kinase inhibitors and a PLK-1 inhibitor and CD151 with Bcl-2 inhibitors. CONCLUSIONS Multiple associations indicate potential epigenetic mechanisms affecting SCLC response to chemotherapy and suggest targets for combination therapies. While many correlations were not specific to SCLC lineages, several lineage markers were associated with specific agents.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Dr., Rockville, MD, 20850, USA.
| | - Thomas Silvers
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Dmitriy Sonkin
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Suleyman Vural
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - John Connelly
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mark Kunkel
- Drug Synthesis and Chemistry Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Annamaria Rapisarda
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - David Evans
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Beverly A Teicher
- Molecular Pharmacology Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Tao SS, Wu GC, Zhang Q, Zhang TP, Leng RX, Pan HF, Ye DQ. TREX1 As a Potential Therapeutic Target for Autoimmune and Inflammatory Diseases. Curr Pharm Des 2020; 25:3239-3247. [PMID: 31475890 DOI: 10.2174/1381612825666190902113218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES The 3' repair exonuclease 1 (TREX1) gene is the major DNA-specific 3'-5 'exonuclease of mammalian cells which reduces single- and double-stranded DNA (ssDNA and dsDNA) to prevent undue immune activation mediated by the nucleic acid. TREX1 is also a crucial suppressor of selfrecognition that protects the host from inappropriate autoimmune activations. It has been revealed that TREX1 function is necessary to prevent host DNA accumulating after cell death which could actuate an autoimmune response. In the manuscript, we will discuss in detail the latest advancement to study the role of TREX1 in autoimmune disease. METHODS As a pivotal cytoprotective, antioxidant, anti-apoptotic, immunosuppressive, as well as an antiinflammatory molecule, the functional mechanisms of TREX1 were multifactorial. In this review, we will briefly summarize the latest advancement in studying the role of TREX1 in autoimmune disease, and discuss its potential as a therapeutic target for these diseases. RESULTS Deficiency of TREX1 in human patients and murine models is characterized by systemic inflammation and the disorder of TREX1 functions drives inflammatory responses leading to autoimmune disease. Moreover, much more studies revealed that mutations in TREX1 have been associated with a range of autoimmune disorders. But it is also unclear whether the mutations of TREX1 play a causal role in the disease progression, and whether manipulation of TREX1 has a beneficial effect in the treatment of autoimmune diseases. CONCLUSION Integration of functional TREX1 biology into autoimmune diseases may further deepen our understanding of the development and pathogenesis of autoimmune diseases and provide new clues and evidence for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Ping Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| |
Collapse
|
26
|
Simpson SR, Hemphill WO, Hudson T, Perrino FW. TREX1 - Apex predator of cytosolic DNA metabolism. DNA Repair (Amst) 2020; 94:102894. [PMID: 32615442 DOI: 10.1016/j.dnarep.2020.102894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The cytosolic Three prime Repair EXonuclease 1 (TREX1) is a powerful DNA-degrading enzyme required for clearing cytosolic DNA to prevent aberrant inflammation and autoimmunity. In the absence of TREX1 activity, cytosolic DNA pattern recognition receptors of the innate immune system are constitutively activated by undegraded TREX1 substrates. This triggers a chronic inflammatory response in humans expressing mutant TREX1 alleles, eliciting a spectrum of rare autoimmune diseases dependent on the nature of the mutation. The precise origins of cytosolic DNA targeted by TREX1 continue to emerge, but DNA emerging from the nucleus or taken up by the cell could represent potential sources. In this Review, we explore the biochemical and immunological data supporting the role of TREX1 in suppressing cytosolic DNA sensing, and discuss the possibility that TREX1 may contribute to maintenance of genome integrity.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Teesha Hudson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
27
|
Abstract
Poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) acts as a DNA damage sensor. It recognizes DNA damage and facilitates DNA repair by recruiting DNA repair machinery to damage sites. Recent studies reported that PARP-1 also plays an important role in DNA replication by recognizing the unligated Okazaki fragments and controlling the speed of fork elongation. On the other hand, emerging evidence reveals that excessive activation of PARP-1 causes chromatin DNA fragmentation and triggers an intrinsic PARP-1-dependent cell death program designated parthanatos, which can be blocked by genetic deletion or pharmacological inhibition of PARP-1. Therefore, PARP-1 plays an essential role in maintaining genomic stability by either facilitating DNA repair/replication or triggering DNA fragmentation to kill cells. A group of structure-specific nucleases is crucial for executing DNA incision and fragmentation following PARP-1 activation. In this review, we will discuss how PARP-1 coordinates with its associated nucleases to maintain genomic integrity and control the decision of cell life and death.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
28
|
Xue R, Peng Y, Han B, Li X, Chen Y, Pei H. Metastasis suppressor NME1 promotes non-homologous end joining of DNA double-strand breaks. DNA Repair (Amst) 2019; 77:27-35. [DOI: 10.1016/j.dnarep.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/03/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
|
29
|
Ribero S, Sciascia S, Borradori L, Lipsker D. The Cutaneous Spectrum of Lupus Erythematosus. Clin Rev Allergy Immunol 2018; 53:291-305. [PMID: 28752372 DOI: 10.1007/s12016-017-8627-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus is a complex autoimmune disease with a wide spectrum of clinical and immunopathological features. Cutaneous and articular manifestations are the most common signs in patients with systemic lupus erythematosus. We here review the pathogenesis and the new classification of cutaneous lupus erythemathosus with a discussion of the significance of the various cutaneous signs. The lesions are classified according to the level of the cellular infiltrate and tissue damage in the epidermis, dermis, and/or subcutis. Furthermore, cutaneous lesions pointing to the presence of a thrombotic vasculopathy and those due to a distinct inflammatory, neutrophilic-mediated reaction pattern are highlighted. Particular attention will be given in describing the histology of skin manifestation. Treatment options for cutaneous lupus erythemathosus have increased with the introduction of new biological therapies. However, the majority of the patients still benefit from antimalarials, which remain the cornerstone of treatment. The evaluation and management of cutaneous lupus erythemathosus patients depend on the clinical findings and associated symptoms.
Collapse
Affiliation(s)
- Simone Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy.
| | - Savino Sciascia
- Center of Research of Immunopathology and Rare Diseases- Department of Clinical and Biological Sciences, University of Turin, San Giovanni Hospital, Turin, Italy
| | - Luca Borradori
- Department of Dermatology, University of Bern, Inselspital, Berne, Switzerland
| | - Dan Lipsker
- Dermatologic Clinic, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
Abstract
Stress conditions such as UV irradiation, exposure to genotoxic agents, stalled DNA replication, and even tumors trigger the release of cytosolic genomic DNA (cgDNA). Classically, cgDNA induces interferon response via its binding to proteins such as STING. In this study, we found previously reported cgDNA (cg721) exists in the cytosol of the mouse cell lines, cultured under no stress conditions. The overexpression of cg721 suppressed the complementary RNA expression using strand selection and knockdown of DNA/RNA hybrid R-loop removing enzyme RNase H and three prime repair exonuclease 1 TREX1 increased the expression levels of cg721 and thus, inhibited the target Naa40 transcript, as well as protein expression, with a phenotypic effect. In addition, cgDNA was incorporated into extracellular vesicles (EVs), and the EV-derived cg721 inhibited gene expression of the acceptor cells. Thus, our findings suggest that cg721 functions as a natural antisense DNA and play a role in cell-to-cell gene regulation once it secreted outside the cell as EVs.
Collapse
|
31
|
Structural basis for overhang excision and terminal unwinding of DNA duplexes by TREX1. PLoS Biol 2018; 16:e2005653. [PMID: 29734329 PMCID: PMC5957452 DOI: 10.1371/journal.pbio.2005653] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/17/2018] [Accepted: 04/03/2018] [Indexed: 01/12/2023] Open
Abstract
Three prime repair exonuclease 1 (TREX1) is an essential exonuclease in mammalian cells, and numerous in vivo and in vitro data evidenced its participation in immunity regulation and in genotoxicity remediation. In these very complicated cellular functions, the molecular mechanisms by which duplex DNA substrates are processed are mostly elusive because of the lack of structure information. Here, we report multiple crystal structures of TREX1 complexed with various substrates to provide the structure basis for overhang excision and terminal unwinding of DNA duplexes. The substrates were designed to mimic the intermediate structural DNAs involved in various repair pathways. The results showed that the Leu24-Pro25-Ser26 cluster of TREX1 served to cap the nonscissile 5′-end of the DNA for precise removal of the short 3′-overhang in L- and Y-structural DNA or to wedge into the double-stranded region for further digestion along the duplex. Biochemical assays were also conducted to demonstrate that TREX1 can indeed degrade double-stranded DNA (dsDNA) to a full extent. Overall, this study provided unprecedented knowledge at the molecular level on the enzymatic substrate processing involved in prevention of immune activation and in responses to genotoxic stresses. For example, Arg128, whose mutation in TREX1 was linked to a disease state, were shown to exhibit consistent interaction patterns with the nonscissile strand in all of the structures we solved. Such structure basis is expected to play an indispensable role in elucidating the functional activities of TREX1 at the cellular level and in vivo. Three prime repair exonuclease 1 (TREX1) was shown to participate in various cellular events such as DNA repair, immunity regulation, and viral infection. In addition to relating to autoimmune diseases, this exonuclease also acts as a potential protein target for anticancer or antiviral therapies. A key for such broad attendance of TREX1 is the activities of precise trimming of the 3′-overhang in a double-stranded (dsDNA) and breaking of the terminal base pairing of the duplex. Here, we designed a series of structural DNA substrates and activity assays to delineate the underlying mechanisms. The structures newly resolved in this work indicated that the Leu24-Pro25-Ser26 cluster of TREX1 is essential for the enzyme to carry out the aforementioned activities. Together, our results established an integrated structure view into the versatile exonuclease functions of TREX1 and illuminated the molecular origin for the unique catalytic properties of TREX1 in processing various DNA intermediates in DNA repair and in cytosolic immunity regulation.
Collapse
|
32
|
Komaki R, Ueda T, Tsuji Y, Miyawaki T, Kusuhara S, Hara S, Toda T. [Retinal vasculopathy with cerebral leukoencephalopathy carrying TREX1 mutation diagnosed by the intracranial calcification: a case report]. Rinsho Shinkeigaku 2018; 58:111-117. [PMID: 29386495 DOI: 10.5692/clinicalneurol.cn-001096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 40-year-old woman with renal dysfunction for 2 years was admitted to our hospital suffering from a headache. Family history revealed that her mother had a headache, renal dysfunction, and brain infarction in younger age. She had a retinal hemorrhage, a retinal atrophy, pitting edema in her lower extremities. Her neurological findings were unremarkable. Brain imaging showed multiple white matter lesions accompanied with calcifications and slightly enhancement. Kidney biopsy showed the thrombotic microangiopathy, Gene analysis demonstrated a causative mutation in three-prime repair exonuclease-1 (TREX1) gene, c.703_704insG (p.Val235GlyfsX6), thereby we diagnosed her as retinal vasculopathy with cerebral leukoencephalopathy (RVCL). RVCL is an autosomal dominant condition caused by C-terminal frame-shift mutation in TREX1. TREX1 protein is a major 3' to 5' DNA exonuclease, which are important in DNA repair. While TREX1 mutations identified in Aicardi-Goutieres syndrome patients lead to a reduction of enzyme activity, it is suggested that mutations in RVCL alter an intracellular location of TREX1 protein. There are no treatments based evidences in RVCL. We administered cilostazol to protect endothelial function, and her brain lesions and renal function have not become worse for 10 months after. It is necessary to consider RVCL associated with TREX1 mutation if a patient has retinal lesions, white matter lesions accompanied with calcifications, and multiple organ dysfunction.
Collapse
Affiliation(s)
- Ryouhei Komaki
- Division of Neurology, Kobe University Graduate School of Medicine.,Department of Neurology, Kita-Harima Medical Center
| | - Takehiro Ueda
- Division of Neurology, Kobe University Graduate School of Medicine
| | - Yukio Tsuji
- Division of Neurology, Kobe University Graduate School of Medicine
| | - Toko Miyawaki
- Division of Neurology, Kobe University Graduate School of Medicine
| | - Sentaro Kusuhara
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine
| | - Shigeo Hara
- Department of Diagnostic Pathology, Kobe University Hospital
| | - Tatsushi Toda
- Division of Neurology, Kobe University Graduate School of Medicine.,Department of Neurology, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
33
|
Sidorova J. A game of substrates: replication fork remodeling and its roles in genome stability and chemo-resistance. Cell Stress 2017; 1:115-133. [PMID: 29355244 PMCID: PMC5771654 DOI: 10.15698/cst2017.12.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/06/2023] Open
Abstract
During the hours that human cells spend in the DNA synthesis (S) phase of the cell cycle, they may encounter adversities such as DNA damage or shortage of nucleotides. Under these stresses, replication forks in DNA may experience slowing, stalling, and breakage. Fork remodeling mechanisms, which stabilize slow or stalled replication forks and ensure their ability to continue or resume replication, protect cells from genomic instability and carcinogenesis. Fork remodeling includes DNA strand exchanges that result in annealing of newly synthesized strands (fork reversal), controlled DNA resection, and cleavage of DNA strands. Defects in major tumor suppressor genes BRCA1 and BRCA2, and a subset of the Fanconi Anemia genes have been shown to result in deregulation in fork remodeling, and most prominently, loss of kilobases of nascent DNA from stalled replication forks. This phenomenon has recently gained spotlight as a potential marker and mediator of chemo-sensitivity in cancer cells and, conversely, its suppression - as a hallmark of acquired chemo-resistance. Moreover, nascent strand degradation at forks is now known to also trigger innate immune response to self-DNA. An increasingly sophisticated molecular description of these events now points at a combination of unbalanced fork reversal and end-resection as a root cause, yet also reveals the multi-layered complexity and heterogeneity of the underlying processes in normal and cancer cells.
Collapse
Affiliation(s)
- Julia Sidorova
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
34
|
New insights into mechanisms of small vessel disease stroke from genetics. Clin Sci (Lond) 2017; 131:515-531. [DOI: 10.1042/cs20160825] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 02/02/2023]
Abstract
Cerebral small vessel disease (SVD) is a common cause of lacunar strokes, vascular cognitive impairment (VCI) and vascular dementia. SVD is thought to result in reduced cerebral blood flow, impaired cerebral autoregulation and increased blood–brain barrier (BBB) permeability. However, the molecular mechanisms underlying SVD are incompletely understood. Recent studies in monogenic forms of SVD, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and ‘sporadic’ SVD have shed light on possible disease mechanisms in SVD. Proteomic and biochemical studies in post-mortem monogenic SVD patients, as well as in animal models of monogenic disease have suggested that disease pathways are shared between different types of monogenic disease, often involving the impairment of extracellular matrix (ECM) function. In addition, genetic studies in ‘sporadic’ SVD have also shown that the disease is highly heritable, particularly among young-onset stroke patients, and that common variants in monogenic disease genes may contribute to disease processes in some SVD subtypes. Genetic studies in sporadic lacunar stroke patients have also suggested distinct genetic mechanisms between subtypes of SVD. Genome-wide association studies (GWAS) have also shed light on other potential disease mechanisms that may be shared with other diseases involving the white matter, or with pathways implicated in monogenic disease. This review brings together recent data from studies in monogenic SVD and genetic studies in ‘sporadic’ SVD. It aims to show how these provide new insights into the pathogenesis of SVD, and highlights the possible convergence of disease mechanisms in monogenic and sporadic SVD.
Collapse
|
35
|
MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment. Nat Commun 2016; 7:13597. [PMID: 27886180 PMCID: PMC5133658 DOI: 10.1038/ncomms13597] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
Rather than targeting tumour cells directly, elements of the tumour microenvironment can be modulated to sensitize tumours to the effects of therapy. Here we report a unique mechanism by which ectopic microRNA-103 can manipulate tumour-associated endothelial cells to enhance tumour cell death. Using gain-and-loss of function approaches, we show that miR-103 exacerbates DNA damage and inhibits angiogenesis in vitro and in vivo. Local, systemic or vascular-targeted delivery of miR-103 in tumour-bearing mice decreased angiogenesis and tumour growth. Mechanistically, miR-103 regulation of its target gene TREX1 in endothelial cells governs the secretion of pro-inflammatory cytokines into the tumour microenvironment. Our data suggest that this inflammatory milieu may potentiate tumour cell death by supporting immune activation and inducing tumour expression of Fas and TRAIL receptors. Our findings reveal miR-mediated crosstalk between vasculature and tumour cells that can be exploited to improve the efficacy of chemotherapy and radiation. The tumour microenvironment can be modulated to sensitize tumours to the effects of therapy. Here the authors show that radiation induced miR-103 downregulates TREX1 in endothelial cells, decreases angiogenesis and leads to the secretion of proinflammatory mediators that reduce tumour growth.
Collapse
|
36
|
Feng J, Lan R, Cai G, Lin J, Wang X, Lin J, Han D. Verification of TREX1 as a promising indicator of judging the prognosis of osteosarcoma. J Orthop Surg Res 2016; 11:150. [PMID: 27881153 PMCID: PMC5122164 DOI: 10.1186/s13018-016-0487-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023] Open
Abstract
Background The study aimed to explore the correlation between the expression of TREX1 and the metastasis and the survival time of patients with osteosarcoma as well as biological characteristics of osteosarcoma cells for the prognosis judgment of osteosarcoma. Method The correlation between the expression of TREX1 protein and the occurrence of pulmonary metastasis in 45 cases of osteosarcoma was analyzed. The CD133+ and CD133− cell subsets of osteosarcoma stem cells were sorted by the flow cytometry. The tumorsphere culture, clone formation, growth curve, osteogenic and adipogenic differentiation, tumor-formation ability in nude mice, sensitivity of chemotherapeutic drugs, and other cytobiology behaviors were compared between the cell subsets in two groups; the expressions of stem cell-related genes Nanog and Oct4 were compared; The expressions of TREX1 protein and mRNA were compared between the cell subsets in two groups. The data was statistically analyzed. The measurement data between the two groups were compared using t test. The count data between the two groups were compared using χ2 test and Kaplan–Meier survival analysis. A P value <0.05 indicated that the difference was statistically significant. Results The expression of TREX1 protein in patients with osteosarcoma in the metastasis group was significantly lower than that in the non-metastasis group. The difference was statistically significant (P < 0.05). Up to the last follow-up visit, the former average survival time was significantly lower than that of the latter, and the difference was statistically significant (P < 0.05). The expression of TREX1 in human osteosarcoma CD133+ cell subsets was significantly lower than that in CD133- cell subsets. Stemness-related genes Nanog and Oct4 were highly expressed in human osteosarcoma CD133+ cell subsets with lower expression of TREX1; the biological characteristics identification experiment showed that human CD133+ cell subsets with low TREX1 expression could form tumorspheres, the number of colony forming was more, the cell proliferation ability was strong, the osteogenic and adipogenic differentiation potential was big, the tumor-forming ability in nude mice was strong, and the sensibility of chemotherapeutics drugs on cisplatin was low. Conclusions The expression of TREX1 may be related to metastasis in patients with osteosarcoma. The expression of TREX1 was closely related to the cytobiology characteristics of osteosarcoma stem cell. TREX1 can play an important role in the occurrence and development processes. And, TREX1 is expected to become an effective new index for the evaluation of the prognosis.
Collapse
Affiliation(s)
- Jinyi Feng
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ruilong Lan
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Radiation Biology, Fujian Medical University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Guanxiong Cai
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jinluan Lin
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xinwen Wang
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jianhua Lin
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China. .,Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Deping Han
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
37
|
Stratigi K, Chatzidoukaki O, Garinis GA. DNA damage-induced inflammation and nuclear architecture. Mech Ageing Dev 2016; 165:17-26. [PMID: 27702596 DOI: 10.1016/j.mad.2016.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/20/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022]
Abstract
Nuclear architecture and the chromatin state affect most-if not all- DNA-dependent transactions, including the ability of cells to sense DNA lesions and restore damaged DNA back to its native form. Recent evidence points to functional links between DNA damage sensors, DNA repair mechanisms and the innate immune responses. The latter raises the question of how such seemingly disparate processes operate within the intrinsically complex nuclear landscape and the chromatin environment. Here, we discuss how DNA damage-induced immune responses operate within chromatin and the distinct sub-nuclear compartments highlighting their relevance to chronic inflammation.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - Ourania Chatzidoukaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, GR71409, Heraklion, Crete, Greece.
| |
Collapse
|
38
|
Phairoh P, Suthibatpong T, Rattanarojpong T, Jongruja N, Senapin S, Choowongkomon K, Khunrae P. ICP35 Is a TREX-Like Protein Identified in White Spot Syndrome Virus. PLoS One 2016; 11:e0158301. [PMID: 27348862 PMCID: PMC4922627 DOI: 10.1371/journal.pone.0158301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/13/2016] [Indexed: 11/30/2022] Open
Abstract
ICP35 is a non-structural protein from White spot syndrome virus believed to be important in viral replication. Since ICP35 was found to localize in the host nucleus, it has been speculated that the function of ICP35 might be involved in the interaction of DNA. In this study, we overexpressed, purified and characterized ICP35. The thioredoxin-fused ICP35 (thio-ICP35) was strongly expressed in E. coli and be able to form itself into dimers. Investigation of the interaction between ICP35 and DNA revealed that ICP35 can perform DNase activity. Structural model of ICP35 was successfully built on TREX1, suggesting that ICP35 might adopt the folding similar to that of TREX1 protein. Several residues important for dimerization in TREX1 are also conserved in ICP35. Residue Asn126 and Asp132, which are seen to be in close proximity to metal ions in the ICP35 model, were shown through site-directed mutagenesis to be critical for DNase activity.
Collapse
Affiliation(s)
- Panapat Phairoh
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, 10140, Thailand
| | - Thana Suthibatpong
- Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, 10140, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, 10140, Thailand
| | - Nujarin Jongruja
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, 10140, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, 272 Rama VI Road, Bangkok, 10400, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry Faculty of Science Kasetsart University, Bangkok, 10900, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, 10140, Thailand
- * E-mail:
| |
Collapse
|
39
|
Vohhodina J, Harkin DP, Savage KI. Dual roles of DNA repair enzymes in RNA biology/post-transcriptional control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:604-19. [PMID: 27126972 DOI: 10.1002/wrna.1353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022]
Abstract
Despite consistent research into the molecular principles of the DNA damage repair pathway for almost two decades, it has only recently been found that RNA metabolism is very tightly related to this pathway, and the two ancient biochemical mechanisms act in alliance to maintain cellular genomic integrity. The close links between these pathways are well exemplified by examining the base excision repair pathway, which is now well known for dual roles of many of its members in DNA repair and RNA surveillance, including APE1, SMUG1, and PARP1. With additional links between these pathways steadily emerging, this review aims to provide a summary of the emerging roles for DNA repair proteins in the post-transcriptional regulation of RNAs. WIREs RNA 2016, 7:604-619. doi: 10.1002/wrna.1353 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jekaterina Vohhodina
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - D Paul Harkin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Kienan I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
40
|
Functions of DNA damage machinery in the innate immune response to DNA virus infection. Curr Opin Virol 2015; 15:56-62. [PMID: 26318640 DOI: 10.1016/j.coviro.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
DNA is potently immunostimulatory, and self-DNA is packaged in the nucleus or mitochondria allowing it to remain silent to cell-intrinsic sensors. However, damaged or mislocalised self-DNA is sensed by our innate immune systems, resulting in the production of type I interferons (IFNI), chemokines and inflammatory cytokines. During DNA virus infection the detection of viral DNA genomes by pattern recognition receptors (PRRs) is essential for the initiation of IFNI responses and host defence against these pathogens. It is intriguing that a number of molecular mechanisms have been found to be common to both of these DNA-induced stress responses and this has potentially important consequences for both sides of the host/pathogen arms race.
Collapse
|