1
|
Manian KV, Ludwig CH, Zhao Y, Abell N, Yang X, Root DE, Albert ML, Comander J. A comprehensive map of missense trafficking variants in rhodopsin and their response to pharmacologic correction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640335. [PMID: 40093169 PMCID: PMC11908143 DOI: 10.1101/2025.02.27.640335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Rhodopsin (RHO) missense variants are a leading cause of autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration with no currently approved therapies. Interpreting the pathogenicity of the growing number of identified RHO variants is a major clinical challenge, and understanding their disease mechanisms is essential for developing effective therapies. Here, we present a high-resolution map of RHO missense variant trafficking using two complementary deep mutational scanning (DMS) approaches based on a surface abundance immunoassay and a membrane proximity assay. We generated a comprehensive dataset encompassing all 6,612 possible single-residue missense variants, revealing a strong correlation between the two methods. Over 700 variants were identified with pathogenic trafficking scores, significantly expanding the number of RHO variants with functional evidence supporting pathogenicity. We demonstrate a high concordance between the trafficking scores and ClinVar pathogenicity classifications, highlighting this approach's utility in resolving variants of uncertain significance (VUS). The data also identified structurally clustered trafficking-deficient variants, predominantly within the N-terminal region and second extracellular loop, in and above the extracellular/intradiscal beta-plug region. Furthermore, we evaluated the efficacy of the non-retinoid pharmacological chaperone YC-001, observing significant rescue of trafficking defects in a majority of mistrafficking variants. This comprehensive functional map of RHO missense variants provides a valuable resource for pathogenicity assessment, genotype-phenotype correlations, and the development of targeted therapeutic strategies for RHO-adRP, paving the way for improved diagnosis and treatment for patients.
Collapse
Affiliation(s)
- Kannan V. Manian
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Yan Zhao
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Xiaoping Yang
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David E. Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jason Comander
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Tam BM, Burns P, Chiu CN, Moritz OL. Synchronized Photoactivation of T4K Rhodopsin Causes a Chromophore-Dependent Retinal Degeneration That Is Moderated by Interaction with Phototransduction Cascade Components. J Neurosci 2024; 44:e0453242024. [PMID: 39089885 PMCID: PMC11376340 DOI: 10.1523/jneurosci.0453-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Multiple mutations in the Rhodopsin gene cause sector retinitis pigmentosa in humans and a corresponding light-exacerbated retinal degeneration (RD) in animal models. Previously we have shown that T4K rhodopsin requires photoactivation to exert its toxic effect. Here we further investigated the mechanisms involved in rod cell death caused by T4K rhodopsin in mixed male and female Xenopus laevis In this model, RD was prevented by rearing animals in constant darkness but surprisingly also in constant light. RD was maximized by light cycles containing at least 1 h of darkness and 20 min of light exposure, light intensities >750 lux, and by a sudden light onset. Under conditions of frequent light cycling, RD occurred rapidly and synchronously, with massive shedding of ROS fragments into the RPE initiated within hours and subsequent death and phagocytosis of rod cell bodies. RD was minimized by reduced light levels, pretreatment with constant light, and gradual light onset. RD was prevented by genetic ablation of the retinal isomerohydrolase RPE65 and exacerbated by ablation of phototransduction components GNAT1, SAG, and GRK1. Our results indicate that photoactivated T4K rhodopsin is toxic, that cell death requires synchronized photoactivation of T4K rhodopsin, and that toxicity is mitigated by interaction with other rod outer segment proteins regardless of whether they participate in activation or shutoff of phototransduction. In contrast, RD caused by P23H rhodopsin does not require photoactivation of the mutant protein, as it was exacerbated by RPE65 ablation, suggesting that these phenotypically similar disorders may require different treatment strategies.
Collapse
Affiliation(s)
- Beatrice M Tam
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Paloma Burns
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Colette N Chiu
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Orson L Moritz
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| |
Collapse
|
3
|
Wang B, Arbuckle RK, Davoli KA, Clinger OD, Brown R, Sahel JA, Chen Y, Pi S. Compensation of inner retina to early-stage photoreceptor degeneration in a Rho P23H/+ mouse model of retinitis pigmentosa. Exp Eye Res 2024; 240:109826. [PMID: 38340947 PMCID: PMC10940204 DOI: 10.1016/j.exer.2024.109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Retinitis pigmentosa (RP) is an inherited retinal disorder characterized by the degeneration of photoreceptors. RhoP23H/+ mice, which carry a Pro23His mutation in the RHODOPSIN (Rho) gene, are one of the most studied animal models for RP. However, except for the photoreceptors, other retinal neural cells have not been fully investigated in this model. Here, we record the temporal changes of the retina by optical coherence tomography (OCT) imaging of the RhoP23H/+ mice, from early to mid-phase of retinal degeneration. Based on thickness analysis, we identified a natural retinal thickness adaption in wild-type mice during early adulthood and observed morphological compensation of the inner retina layer to photoreceptor degeneration in the RhoP23H/+ mice, primarily on the inner nuclear layer (INL). RhoP23H/+ mice findings were further validated via: histology showing the negative correlation of INL and ONL thicknesses; as well as electroretinogram (ERG) showing an increased b-wave to a-wave ratio. These results unravel the sequential morphologic events in this model and suggest a better understanding of retinal degeneration of RP for future studies.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Riley K Arbuckle
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15213, USA
| | - Katherine A Davoli
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Owen D Clinger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Richard Brown
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
4
|
Scott BM, Chen SK, Van Nynatten A, Liu J, Schott RK, Heon E, Peisajovich SG, Chang BSW. Scaling up Functional Analyses of the G Protein-Coupled Receptor Rhodopsin. J Mol Evol 2024; 92:61-71. [PMID: 38324225 DOI: 10.1007/s00239-024-10154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024]
Abstract
Eukaryotic cells use G protein-coupled receptors (GPCRs) to convert external stimuli into internal signals to elicit cellular responses. However, how mutations in GPCR-coding genes affect GPCR activation and downstream signaling pathways remain poorly understood. Approaches such as deep mutational scanning show promise in investigations of GPCRs, but a high-throughput method to measure rhodopsin activation has yet to be achieved. Here, we scale up a fluorescent reporter assay in budding yeast that we engineered to study rhodopsin's light-activated signal transduction. Using this approach, we measured the mutational effects of over 1200 individual human rhodopsin mutants, generated by low-frequency random mutagenesis of the GPCR rhodopsin (RHO) gene. Analysis of the data in the context of rhodopsin's three-dimensional structure reveals that transmembrane helices are generally less tolerant to mutations compared to flanking helices that face the lipid bilayer, which suggest that mutational tolerance is contingent on both the local environment surrounding specific residues and the specific position of these residues in the protein structure. Comparison of functional scores from our screen to clinically identified rhodopsin disease variants found many pathogenic mutants to be loss of function. Lastly, functional scores from our assay were consistent with a complex counterion mechanism involved in ligand-binding and rhodopsin activation. Our results demonstrate that deep mutational scanning is possible for rhodopsin activation and can be an effective method for revealing properties of mutational tolerance that may be generalizable to other transmembrane proteins.
Collapse
Affiliation(s)
- Benjamin M Scott
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Steven K Chen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Jing Liu
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Biology and Centre for Vision Research, York University, Toronto, ON, Canada
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Elise Heon
- Department of Ophthalmology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio G Peisajovich
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun 2023; 14:5209. [PMID: 37626045 PMCID: PMC10457330 DOI: 10.1038/s41467-023-40911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) critical for vertebrate vision. Research on GPCR signaling states has been facilitated using llama-derived nanobodies (Nbs), some of which bind to the intracellular surface to allosterically modulate the receptor. Extracellularly binding allosteric nanobodies have also been investigated, but the structural basis for their activity has not been resolved to date. Here, we report a library of Nbs that bind to the extracellular surface of rhodopsin and allosterically modulate the thermodynamics of its activation process. Crystal structures of Nb2 in complex with native rhodopsin reveal a mechanism of allosteric modulation involving extracellular loop 2 and native glycans. Nb2 binding suppresses Schiff base deprotonation and hydrolysis and prevents intracellular outward movement of helices five and six - a universal activation event for GPCRs. Nb2 also mitigates protein misfolding in a disease-associated mutant rhodopsin. Our data show the power of nanobodies to modulate the photoactivation of rhodopsin and potentially serve as therapeutic agents for disease-associated rhodopsin misfolding.
Collapse
Affiliation(s)
- Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Kohei Watanabe
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA, USA.
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA.
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Parmann R, Tsang SH, Sparrow JR. Primary versus Secondary Elevations in Fundus Autofluorescence. Int J Mol Sci 2023; 24:12327. [PMID: 37569703 PMCID: PMC10419315 DOI: 10.3390/ijms241512327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The method of quantitative fundus autofluorescence (qAF) can be used to assess the levels of bisretinoids in retinal pigment epithelium (RPE) cells so as to aid the interpretation and management of a variety of retinal conditions. In this review, we focused on seven retinal diseases to highlight the possible pathways to increased fundus autofluorescence. ABCA4- and RDH12-associated diseases benefit from known mechanisms whereby gene malfunctioning leads to elevated bisretinoid levels in RPE cells. On the other hand, peripherin2/RDS-associated disease (PRPH2/RDS), retinitis pigmentosa (RP), central serous chorioretinopathy (CSC), acute zonal occult outer retinopathy (AZOOR), and ceramide kinase like (CERKL)-associated retinal degeneration all express abnormally high fundus autofluorescence levels without a demonstrated pathophysiological pathway for bisretinoid elevation. We suggest that, while a known link from gene mutation to increased production of bisretinoids (as in ABCA4- and RDH12-associated diseases) causes primary elevation in fundus autofluorescence, a secondary autofluorescence elevation also exists, where an impairment and degeneration of photoreceptor cells by various causes leads to an increase in bisretinoid levels in RPE cells.
Collapse
Affiliation(s)
- Rait Parmann
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Stephen H. Tsang
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Janet R. Sparrow
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| |
Collapse
|
7
|
Sp S, Mitra RN, Zheng M, Chrispell JD, Wang K, Kwon YS, Weiss ER, Han Z. Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H +/- knock-in murine model. Gene Ther 2023; 30:628-640. [PMID: 36935427 DOI: 10.1038/s41434-023-00394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023]
Abstract
Gene therapy for autosomal dominant retinitis pigmentosa (adRP) is challenged by the dominant inheritance of the mutant genes, which would seemingly require a combination of mutant suppression and wild-type replacement of the appropriate gene. We explore the possibility that delivery of a nanoparticle (NP)-mediated full-length mouse genomic rhodopsin (gRho) or human genomic rhodopsin (gRHO) locus can overcome the dominant negative effects of the mutant rhodopsin in the clinically relevant P23H+/--knock-in heterozygous mouse model. Our results demonstrate that mice in both gRho and gRHO NP-treated groups exhibit significant structural and functional recovery of the rod photoreceptors, which lasted for 3 months post-injection, indicating a promising reduction in photoreceptor degeneration. We performed miRNA transcriptome analysis using next generation sequencing and detected differentially expressed miRNAs as a first step towards identifying miRNAs that could potentially be used as rhodopsin gene expression enhancers or suppressors for sustained photoreceptor rescue. Our results indicate that delivering an intact genomic locus as a transgene has a greater chance of success compared to the use of the cDNA for treatment of this model of adRP, emphasizing the importance of gene augmentation using a gDNA that includes regulatory elements.
Collapse
Affiliation(s)
- Simna Sp
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rajendra N Mitra
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Min Zheng
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jared D Chrispell
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kai Wang
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yong-Su Kwon
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for NanoMedicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Barwick SR, Xiao H, Wolff D, Wang J, Perry E, Marshall B, Smith SB. Sigma 1 receptor activation improves retinal structure and function in the Rho P23H/+ mouse model of autosomal dominant retinitis pigmentosa. Exp Eye Res 2023; 230:109462. [PMID: 37003581 PMCID: PMC10155485 DOI: 10.1016/j.exer.2023.109462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Retinitis pigmentosa (RP) is a group of devastating inherited retinal diseases that leads to visual impairment and oftentimes complete blindness. Currently no cure exists for RP thus research into prolonging vision is imperative. Sigma 1 receptor (Sig1R) is a promising small molecule target that has neuroprotective benefits in retinas of rapidly-degenerating mouse models. It is not clear whether Sig1R activation can provide similar neuroprotective benefits in more slowly-progressing RP models. Here, we examined Sig1R-mediated effects in the slowly-progressing RhoP23H/+ mouse, a model of autosomal dominant RP. We characterized the retinal degeneration of the RhoP23H/+ mouse over a 10 month period using three in vivo methods: Optomotor Response (OMR), Electroretinogram (ERG), and Spectral Domain-Optical Coherence Tomography (SD-OCT). A slow retinal degeneration was observed in both male and female RhoP23H/+ mice when compared to wild type. The OMR, which reflects visual acuity, showed a gradual decline through 10 months. Interestingly, female mice had more reduction in visual acuity than males. ERG assessment showed a gradual decline in scotopic and photopic responses in RhoP23H/+ mice. To investigate the neuroprotective benefits of Sig1R activation in the RhoP23H/+ mouse model, mutant mice were treated with a high-specificity Sig1R ligand (+)-pentazocine ((+)-PTZ) 3x/week at 0.5 mg/kg and examined using OMR, ERG, SD-OCT. A significant retention of visual function was observed in males and females at 10 months of age, with treated females retaining ∼50% greater visual acuity than non-treated mutant females. ERG revealed significant retention of scotopic and photopic b-wave amplitudes at 6 months in male and female RhoP23H/+ mice treated with (+)-PTZ. Further, in vivo analysis by SD-OCT revealed a significant retention of outer nuclear layer (ONL) thickness in male and female treated RhoP23H/+ mice. Histological studies showed significant retention of IS/OS length (∼50%), ONL thickness, and number of rows of photoreceptor cell nuclei at 6 months in (+)-PTZ-treated mutant mice. Interestingly, electron microscopy revealed preservation of OS discs in (+)-PTZ treated mutant mice compared to non-treated. Taken collectively, the in vivo and in vitro data provide the first evidence that targeting Sig1R can rescue visual function and structure in the RhoP23H/+ mouse. These results are promising and provide a framework for future studies to investigate Sig1R as a potential therapeutic target in retinal degenerative disease.
Collapse
Affiliation(s)
- Shannon R Barwick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - David Wolff
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Elizabeth Perry
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
9
|
Justin GA, Girach A, Maldonado RS. Antisense oligonucleotide therapy for proline-23-histidine autosomal dominant retinitis pigmentosa. Curr Opin Ophthalmol 2023; 34:226-231. [PMID: 36924362 DOI: 10.1097/icu.0000000000000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
PURPOSE OF REVIEW To discuss antisense oligonucleotide (ASON) therapy for autosomal dominant retinitis pigmentosa (adRP) caused by the proline-23-histidine (P23H) mutation in the rhodopsin gene. RECENT FINDINGS Viral and nonviral therapies to treat adRP are currently under investigation. A promising therapeutic option is a nonviral approach using ASONs. This form of genetic therapy has demonstrated a dose-dependent and highly selective reduction of P23H mutant rhodopsin mRNA in animal models, and it is currently being investigated as a human phase 1/2 clinical trial. SUMMARY There are promising new therapies to treat adRP. ASON has shown encouraging results in animal models and has undergone a phase 1 clinical trial. ASON does not use a viral vector, is delivered with standard intravitreal injection, and its effects are reversible.
Collapse
Affiliation(s)
- Grant A Justin
- Department of Ophthalmology, Duke University, Durham, North Carolina, USA
| | | | - Ramiro S Maldonado
- Department of Ophthalmology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
10
|
Picarazzi F, Zuanon M, Pasqualetto G, Cammarone S, Romeo I, Young MT, Brancale A, Bassetto M, Mori M. Identification of Small Molecular Chaperones Binding P23H Mutant Opsin through an In Silico Structure-Based Approach. J Chem Inf Model 2022; 62:5794-5805. [PMID: 36367985 DOI: 10.1021/acs.jcim.2c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
N-terminal P23H opsin mutation accounts for most of retinitis pigmentosa (RP) cases. P23H functions and folding can be rescued by small chaperone ligands, which contributes to validate mutant opsin as a suitable target for pharmacological treatment of RP. However, the lack of structural details on P23H mutant opsin strongly impairs drug design, and new chemotypes of effective chaperones of P23H opsin are in high demand. Here, a computational-boosted workflow combining homology modeling with molecular dynamics (MD) simulations and virtual screening was used to select putative P23H opsin chaperones among different libraries through a structure-based approach. In vitro studies corroborated the reliability of the structural model generated in this work and identified a number of novel chemotypes of safe and effective chaperones able to promote P23H opsin trafficking to the outer cell membrane.
Collapse
Affiliation(s)
- Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marika Zuanon
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Gaia Pasqualetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Silvia Cammarone
- Dipartimento di Chimica e Tecnologie del Farmaco, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Isabella Romeo
- Dipartimento di Chimica e Tecnologie del Farmaco, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Mark T Young
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK.,Vysoká Škola Chemicko-Technologiká v Praze, Prague 166 28, Czech Republic
| | - Marcella Bassetto
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
11
|
Ortega JT, McKee AG, Roushar FJ, Penn WD, Schlebach JP, Jastrzebska B. Chromenone derivatives as novel pharmacological chaperones for retinitis pigmentosa-linked rod opsin mutants. Hum Mol Genet 2022; 31:3439-3457. [PMID: 35642742 PMCID: PMC9558842 DOI: 10.1093/hmg/ddac125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
The correct expression of folded, functional rhodopsin (Rho) is critical for visual perception. However, this seven-transmembrane helical G protein-coupled receptor is prone to mutations with pathological consequences of retinal degeneration in retinitis pigmentosa (RP) due to Rho misfolding. Pharmacological chaperones that stabilize the inherited Rho variants by assisting their folding and membrane targeting could slow the progression of RP. In this study, we employed virtual screening of synthetic compounds with a natural product scaffold in conjunction with in vitro and in vivo evaluations to discover a novel chromenone-containing small molecule with favorable pharmacological properties that stabilize rod opsin. This compound reversibly binds to unliganded bovine rod opsin with an EC50 value comparable to the 9-cis-retinal chromophore analog and partially rescued membrane trafficking of multiple RP-related rod opsin variants in vitro. Importantly, this novel ligand of rod opsin was effective in vivo in murine models, protecting photoreceptors from deterioration caused by either bright light or genetic insult. Together, our current study suggests potential broad therapeutic implications of the new chromenone-containing non-retinoid small molecule against retinal diseases associated with photoreceptor degeneration.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Andrew G McKee
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Francis J Roushar
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Wesley D Penn
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Jonathan P Schlebach
- To whom correspondence should be addressed at: Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 441064965, USA. Tel: +1 2163685683; Fax: +1 2163681300; (Beata Jastrzebska); Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA. Tel: +1 812-855-6779; Fax: +1 812-855-8300; (Jonathan P. Schlebach)
| | - Beata Jastrzebska
- To whom correspondence should be addressed at: Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 441064965, USA. Tel: +1 2163685683; Fax: +1 2163681300; (Beata Jastrzebska); Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA. Tel: +1 812-855-6779; Fax: +1 812-855-8300; (Jonathan P. Schlebach)
| |
Collapse
|
12
|
Kennedy A, Ren HY, Madden VJ, Cyr DM. Lysosome docking to WIPI1 rings and ER-connected phagophores occurs during DNAJB12- and GABARAP-dependent selective autophagy of misfolded P23H-rhodopsin. Mol Biol Cell 2022; 33:ar84. [PMID: 35704470 PMCID: PMC9582645 DOI: 10.1091/mbc.e21-10-0505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We report on how the endoplasmic reticulum (ER)-associated-autophagy pathway (ERAA) delivers P23H-rhodopsin (P23H-R) to the lysosome. P23H-R accumulates in an ERAD-resistant conformation that is stabilized in a detergent-soluble state by DNAJB12 and Hsp70. P23H-R, DNAJB12, and FIP200 colocalize in discrete foci that punctuate the rim of omegasome rings coated by WIPI1. Loss of DNAJB12 function prevents the association of P23H-R containing ER tubules with omegasomes. P23H-R tubules thread through the wall of WIPI1 rings into their central cavity. Transfer of P23H-R from ER-connected phagophores to lysosomes requires GABARAP and is associated with the transient docking of lysosomes to WIPI1 rings. After departure from WIPI1 rings, new patches of P23H-R are seen in the membranes of lysosomes. The absence of GABARAP prevents transfer of P23H-R from phagophores to lysosomes without interfering with docking. These data identify lysosome docking to omegasomes as an important step in the DNAJB12- and GABARAP-dependent autophagic disposal of dominantly toxic P23H-R.
Collapse
Affiliation(s)
- Andrew Kennedy
- Department of Cell Biology and Physiology, School of Medicine, and
| | - Hong Yu Ren
- Department of Cell Biology and Physiology, School of Medicine, and
| | - Victoria J. Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Douglas M. Cyr
- Department of Cell Biology and Physiology, School of Medicine, and,*Address correspondence to: Douglas M. Cyr ()
| |
Collapse
|
13
|
Vats A, Xi Y, Feng B, Clinger OD, St Leger AJ, Liu X, Ghosh A, Dermond CD, Lathrop KL, Tochtrop GP, Picaud S, Chen Y. Non-retinoid chaperones improve rhodopsin homeostasis in a mouse model of retinitis pigmentosa. JCI Insight 2022; 7:153717. [PMID: 35472194 PMCID: PMC9220944 DOI: 10.1172/jci.insight.153717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Rhodopsin-associated (RHO-associated) retinitis pigmentosa (RP) is a progressive retinal disease that currently has no cure. RHO protein misfolding leads to disturbed proteostasis and the death of rod photoreceptors, resulting in decreased vision. We previously identified nonretinoid chaperones of RHO, including YC-001 and F5257-0462, by small-molecule high-throughput screening. Here, we profile the chaperone activities of these molecules toward the cell-surface level of 27 RP-causing human RHO mutants in NIH3T3 cells. Furthermore, using retinal explant culture, we show that YC-001 improves retinal proteostasis by supporting RHO homeostasis in RhoP23H/+ mouse retinae, which results in thicker outer nuclear layers (ONL), indicating delayed photoreceptor degeneration. Interestingly, YC-001 ameliorated retinal immune responses and reduced the number of microglia/macrophages in the RhoP23H/+ retinal explants. Similarly, F5257-0462 also protects photoreceptors in RhoP23H/+ retinal explants. In vivo, intravitreal injection of YC-001 or F5257-0462 microparticles in PBS shows that F5257-0462 has a higher efficacy in preserving photoreceptor function and delaying photoreceptor death in RhoP23H/+ mice. Collectively, we provide proof of principle that nonretinoid chaperones are promising drug candidates in treating RHO-associated RP.
Collapse
Affiliation(s)
- Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Yibo Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Bing Feng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Owen D Clinger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Archisha Ghosh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Chase D Dermond
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, United States of America
| | - Serge Picaud
- Institut de la Vision, Sorbonne Université, Paris, France
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
14
|
Ortega JT, Parmar T, Carmena-Bargueño M, Pérez-Sánchez H, Jastrzebska B. Flavonoids improve the stability and function of P23H rhodopsin slowing down the progression of retinitis pigmentosa in mice. J Neurosci Res 2022; 100:1063-1083. [PMID: 35165923 PMCID: PMC9615108 DOI: 10.1002/jnr.25021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022]
Abstract
The balanced homeostasis of the G protein-coupled receptor (GPCR), rhodopsin (Rho), is required for vision. Misfolding mutations in Rho cause photoreceptor death, leading to retinitis pigmentosa (RP) and consequently blindness. With no cure currently available, the development of efficient therapy for RP is an urgent need. Pharmacological supplementation with molecular chaperones, including flavonoids, improves stability, folding, and membrane targeting of the RP Rho mutants in vitro. Thus, we hypothesized that flavonoids by binding to P23H Rho and enhancing its conformational stability could mitigate detrimental effects of this mutation on retinal health. In this work, we evaluated the pharmacological potential of two model flavonoids, quercetin and myricetin, by using in silico, in vitro, and in vivo models of P23H Rho. Our computational analysis showed that quercetin could interact within the orthosteric binding pocket of P23H Rho and shift the conformation of its N-terminal loop toward the wild type (WT)-like state. Quercetin added to the NIH-3T3 cells stably expressing P23H Rho increased the stability of this receptor and improved its function. Systemic administration of quercetin to P23H Rho knock-in mice substantially improved retinal morphology and function, which was associated with an increase in levels of Rho and cone opsins. In addition, treatment with quercetin resulted in downregulation of the UPR signaling and oxidative stress-related markers. This study unravels the pharmacological potential of quercetin to slow down the progression of photoreceptor death in Rho-related RP and highlights its prospective as a lead compound to develop a novel therapeutic remedy to counter RP pathology.
Collapse
Affiliation(s)
- Joseph Thomas Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Tanu Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Ortega JT, Jastrzebska B. Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:61-77. [PMID: 34962636 DOI: 10.1007/5584_2021_682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of hereditary degenerative diseases affecting 1 of 4000 people worldwide and being the most prevalent cause of visual handicap among working populations in developed countries. These disorders are mainly related to the abnormalities in the rod G protein-coupled receptor (GPCR), rhodopsin reflected in the dysregulated membrane trafficking, stability and phototransduction processes that lead to progressive loss of retina function and eventually blindness. Currently, there is no cure for RP, and the therapeutic options are limited. Targeting rhodopsin with small molecule chaperones to improve the folding and stability of the mutant receptor is one of the most promising pharmacological approaches to alleviate the pathology of RP. This review provides an update on the current knowledge regarding small molecule compounds that have been evaluated as rhodopsin modulators to be considered as leads for the development of novel therapies for RP.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
16
|
Modulation of SOD3 Levels Is Detrimental to Retinal Homeostasis. Antioxidants (Basel) 2021; 10:antiox10101595. [PMID: 34679728 PMCID: PMC8533566 DOI: 10.3390/antiox10101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Retinal oxidative stress is a common secondary feature of many retinal diseases. Though it may not be the initial insult, it is a major contributor to the pathogenesis of highly prevalent retinal dystrophic diseases like macular degeneration, diabetic retinopathy, and retinitis pigmentosa. We explored the role of superoxide dismutase 3 (SOD3) in retinal homeostasis since SOD3 protects the extracellular matrix (ECM) from oxidative injury. We show that SOD3 is mainly extracellularly localized and is upregulated as a result of environmental and pathogenic stress. Ablation of SOD3 resulted in reduced functional electroretinographic responses and number of photoreceptors, which is exacerbated with age. By contrast, overexpression showed increased electroretinographic responses and increased number of photoreceptors at young ages, but appears deleterious as the animal ages, as determined from the associated functional decline. Our exploration shows that SOD3 is vital to retinal homeostasis but its levels are tightly regulated. This suggests that SOD3 augmentation to combat oxidative stress during retinal degenerative changes may only be effective in the short-term.
Collapse
|
17
|
Fanelli F, Felline A, Marigo V. Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Arch 2021; 473:1339-1359. [PMID: 33728518 DOI: 10.1007/s00424-021-02546-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy. .,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Valeria Marigo
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125, Modena, Italy
| |
Collapse
|
18
|
Santhanam A, Shihabeddin E, Atkinson JA, Nguyen D, Lin YP, O’Brien J. A Zebrafish Model of Retinitis Pigmentosa Shows Continuous Degeneration and Regeneration of Rod Photoreceptors. Cells 2020; 9:E2242. [PMID: 33036185 PMCID: PMC7599532 DOI: 10.3390/cells9102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
More than 1.5 million people suffer from Retinitis Pigmentosa, with many experiencing partial to complete vision loss. Regenerative therapies offer some hope, but their development is challenged by the limited regenerative capacity of mammalian model systems. As a step toward investigating regenerative therapies, we developed a zebrafish model of Retinitis Pigmentosa that displays ongoing regeneration. We used Tol2 transgenesis to express mouse rhodopsin carrying the P23H mutation and an epitope tag in zebrafish rod photoreceptors. Adult and juvenile fish were examined by immunofluorescence, TUNEL and BrdU incorporation assays. P23H transgenic fish expressed the transgene in rods from 3 days post fertilization onward. Rods expressing the mutant rhodopsin formed very small or no outer segments and the mutant protein was delocalized over the entire cell. Adult fish displayed thinning of the outer nuclear layer (ONL) and loss of rod outer segments, but retained a single, sparse row of rods. Adult fish displayed ongoing apoptotic cell death in the ONL and an abundance of proliferating cells, predominantly in the ONL. There was a modest remodeling of bipolar and Müller glial cells. This transgenic fish will provide a useful model system to study rod photoreceptor regeneration and integration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Eyad Shihabeddin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Joshua A. Atkinson
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Duc Nguyen
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Ya-Ping Lin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - John O’Brien
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
19
|
Aguilà M, Bellingham J, Athanasiou D, Bevilacqua D, Duran Y, Maswood R, Parfitt DA, Iwawaki T, Spyrou G, Smith AJ, Ali RR, Cheetham ME. AAV-mediated ERdj5 overexpression protects against P23H rhodopsin toxicity. Hum Mol Genet 2020; 29:1310-1318. [PMID: 32196553 PMCID: PMC7254845 DOI: 10.1093/hmg/ddaa049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Rhodopsin misfolding caused by the P23H mutation is a major cause of autosomal dominant retinitis pigmentosa (adRP). To date, there are no effective treatments for adRP. The BiP co-chaperone and reductase ERdj5 (DNAJC10) is part of the endoplasmic reticulum (ER) quality control machinery, and previous studies have shown that overexpression of ERdj5 in vitro enhanced the degradation of P23H rhodopsin, whereas knockdown of ERdj5 increased P23H rhodopsin ER retention and aggregation. Here, we investigated the role of ERdj5 in photoreceptor homeostasis in vivo by using an Erdj5 knockout mouse crossed with the P23H knock-in mouse and by adeno-associated viral (AAV) vector-mediated gene augmentation of ERdj5 in P23H-3 rats. Electroretinogram (ERG) and optical coherence tomography of Erdj5-/- and P23H+/-:Erdj5-/- mice showed no effect of ERdj5 ablation on retinal function or photoreceptor survival. Rhodopsin levels and localization were similar to those of control animals at a range of time points. By contrast, when AAV2/8-ERdj5-HA was subretinally injected into P23H-3 rats, analysis of the full-field ERG suggested that overexpression of ERdj5 reduced visual function loss 10 weeks post-injection (PI). This correlated with a significant preservation of photoreceptor cells at 4 and 10 weeks PI. Assessment of the outer nuclear layer (ONL) morphology showed preserved ONL thickness and reduced rhodopsin retention in the ONL in the injected superior retina. Overall, these data suggest that manipulation of the ER quality control and ER-associated degradation factors to promote mutant protein degradation could be beneficial for the treatment of adRP caused by mutant rhodopsin.
Collapse
Affiliation(s)
| | | | | | | | - Yanai Duran
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ryea Maswood
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, 920-0293, Japan
| | - Giannis Spyrou
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | |
Collapse
|
20
|
Woods KN, Pfeffer J. Conformational perturbation, allosteric modulation of cellular signaling pathways, and disease in P23H rhodopsin. Sci Rep 2020; 10:2657. [PMID: 32060349 PMCID: PMC7021821 DOI: 10.1038/s41598-020-59583-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
In this investigation we use THz spectroscopy and MD simulation to study the functional dynamics and conformational stability of P23H rhodopsin. The P23H mutation of rod opsin is the most common cause of human binding autosomal dominant retinitis pigmentosa (ADRP), but the precise mechanism by which this mutation leads to photoreceptor cell degeneration has not yet been elucidated. Our measurements confirm conformational instability in the global modes of the receptor and an active-state that uncouples the torsional dynamics of the retinal with protein functional modes, indicating inefficient signaling in P23H and a drastically altered mechanism of activation when contrasted with the wild-type receptor. Further, our MD simulations indicate that P23H rhodopsin is not functional as a monomer but rather, due to the instability of the mutant receptor, preferentially adopts a specific homodimerization motif. The preferred homodimer configuration induces structural changes in the receptor tertiary structure that reduces the affinity of the receptor for the retinal and significantly modifies the interactions of the Meta-II signaling state. We conjecture that the formation of the specific dimerization motif of P23H rhodopsin represents a cellular-wide signaling perturbation that is directly tied with the mechanism of P23H disease pathogenesis. Our results also support a direct role for rhodopsin P23H dimerization in photoreceptor rod death.
Collapse
Affiliation(s)
- Kristina N Woods
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität, 80538, München, Germany.
| | - Jürgen Pfeffer
- Technical University of Munich, Bavarian School of Public Policy, 80333, München, Germany
| |
Collapse
|
21
|
Coussa RG, Basali D, Maeda A, DeBenedictis M, Traboulsi EI. Sector retinitis pigmentosa: Report of ten cases and a review of the literature. Mol Vis 2019; 25:869-889. [PMID: 31908405 PMCID: PMC6937219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/28/2019] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To describe the genotypes and phenotypes of ten patients with sector retinitis pigmentosa (RP). We also review previously reported mutations associated with sector RP and provide a discussion of possible underlying pathophysiological mechanisms. METHODS Patients underwent detailed ophthalmologic examinations, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography (SD-OCT), as well as visual field and electroretinographic testing. All patients underwent genetic testing to identify the molecular etiology of their disease. RESULTS A total of ten patients were studied. Among these patients, nine had mutations in RHO (c.677T>C; p.Leu226Pro (novel), c.68C>A; p.Pro23His, c.808A>C; p.Ser270Arg, c.44A>G; p.Asn15Ser, and c.325G>A; p.Gly109Arg), and one patient had a mutation in RPGR (c.3092_3093delAG; p.Glu1031Glyfs*47). All patients with missense mutations in RHO had visual acuities (VAs) better than 20/30 and showed a retained foveal ellipsoid zone and overlying retinal structures. The patient with the c.3092_3093delAG deletion in RPGR had VA of 20/60 oculus dexter (OD) and 20/400 oculus sinister (OS), as well as significant foveal thinning and contour atrophy. All patients showed pigmentary changes, or marked atrophy along the inferior arcades, or both. This pattern of degeneration corresponded to hypo- and hyperFAF and superior visual defects. CONCLUSIONS Sector RP is an uncommon form of RP in which only one or two retinal quadrants display clinical pathological signs. The great majority of cases result from mutations in RHO. The present data confirmed previously reported phenotypic manifestations of sector RP. Inferior retinal quadrants are possibly more severely affected due to greater light exposure.
Collapse
Affiliation(s)
- Razek Georges Coussa
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Diana Basali
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Akiko Maeda
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Meghan DeBenedictis
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Elias I. Traboulsi
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
22
|
Scott BM, Wybenga-Groot LE, McGlade CJ, Heon E, Peisajovich SG, Chang BSW. Screening of Chemical Libraries Using a Yeast Model of Retinal Disease. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:969-977. [PMID: 31556794 PMCID: PMC11670874 DOI: 10.1177/2472555219875934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retinitis pigmentosa (RP) is a degenerative retinal disease, often caused by mutations in the G-protein-coupled receptor rhodopsin. The majority of pathogenic rhodopsin mutations cause rhodopsin to misfold, including P23H, disrupting its crucial ability to respond to light. Previous screens to discover pharmacological chaperones of rhodopsin have primarily been based on rescuing rhodopsin trafficking and localization to the plasma membrane. Here, we present methods utilizing a yeast-based assay to screen for compounds that rescue the ability of rhodopsin to activate an associated downstream G-protein signaling cascade. We engineered a yeast strain in which human rhodopsin variants were genomically integrated, and were able to demonstrate functional coupling to the yeast mating pathway, leading to fluorescent protein expression. We confirmed that a known pharmacological chaperone, 9-cis retinal, could partially rescue light-dependent activation of a disease-associated rhodopsin mutation (P23H) expressed in yeast. These novel yeast strains were used to perform a phenotypic screen of 4280 compounds from the LOPAC1280 library and a peptidomimetic library, to discover novel pharmacological chaperones of rhodopsin. The fluorescence-based assay was robust in a 96-well format, with a Z' factor of 0.65 and a signal-to-background ratio of above 14. One compound was selected for additional analysis, but it did not appear to rescue rhodopsin function in yeast. The methods presented here are amenable to future screens of small-molecule libraries, as they are robust and cost-effective. We also discuss how these methods could be further modified or adapted to perform screens of more compounds in the future.
Collapse
Affiliation(s)
- Benjamin M Scott
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Heon
- Department of Ophthalmology and Vision Science, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio G Peisajovich
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, ON, Canada
| |
Collapse
|
23
|
Comitato A, Schiroli D, Montanari M, Marigo V. Calpain Activation Is the Major Cause of Cell Death in Photoreceptors Expressing a Rhodopsin Misfolding Mutation. Mol Neurobiol 2019; 57:589-599. [PMID: 31401765 DOI: 10.1007/s12035-019-01723-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
The majority of mutations in rhodopsin (RHO) cause misfolding of the protein and has been linked to degeneration of photoreceptor cells in the retina. A lot of attention has been set on targeting ER stress for the development of new therapies for inherited retinal degeneration caused by mutations in the RHO gene. Nevertheless, the cell death pathway activated by RHO misfolded protein is still debated. In this study, we analyzed the retina of the knock-in mouse expressing the P23H misfolded mutant RHO. We found persistent unfolded protein response (UPR) during degeneration. Interestingly, long-term stimulation of the PERK branch of ER stress had a protective effect by phosphorylating nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, associated with antioxidant responses. Otherwise, we provide evidence that increased intracellular calcium and activation of calpains strongly correlated with rod photoreceptor cell death. By blocking calpain activity, we significantly decreased the activation of caspase-7 and apoptosis-inducing factor (AIF), two cell death effectors, and cell demise, and effectively protected the retina from degeneration caused by the P23H dominant mutation in RHO.
Collapse
Affiliation(s)
- Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy
| | - Davide Schiroli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy
| | - Monica Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy.
| |
Collapse
|
24
|
Park PSH. Rhodopsin Oligomerization and Aggregation. J Membr Biol 2019; 252:413-423. [PMID: 31286171 DOI: 10.1007/s00232-019-00078-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022]
Abstract
Rhodopsin is the light receptor in photoreceptor cells of the retina and a prototypical G protein-coupled receptor. Two types of quaternary structures can be adopted by rhodopsin. If rhodopsin folds and attains a proper tertiary structure, it can then form oligomers and nanodomains within the photoreceptor cell membrane. In contrast, if rhodopsin misfolds, it cannot progress through the biosynthetic pathway and instead will form aggregates that can cause retinal degenerative disease. In this review, emerging views are highlighted on the supramolecular organization of rhodopsin within the membrane of photoreceptor cells and the aggregation of rhodopsin that can lead to retinal degeneration.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
25
|
Mitchell J, Balem F, Tirupula K, Man D, Dhiman HK, Yanamala N, Ollesch J, Planas-Iglesias J, Jennings BJ, Gerwert K, Iannaccone A, Klein-Seetharaman J. Comparison of the molecular properties of retinitis pigmentosa P23H and N15S amino acid replacements in rhodopsin. PLoS One 2019; 14:e0214639. [PMID: 31100078 PMCID: PMC6524802 DOI: 10.1371/journal.pone.0214639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Mutations in the RHO gene encoding for the visual pigment protein, rhodopsin, are among the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Previous studies of ADRP mutations in different domains of rhodopsin have indicated that changes that lead to more instability in rhodopsin structure are responsible for more severe disease in patients. Here, we further test this hypothesis by comparing side-by-side and therefore quantitatively two RHO mutations, N15S and P23H, both located in the N-terminal intradiscal domain. The in vitro biochemical properties of these two rhodopsin proteins, expressed in stably transfected tetracycline-inducible HEK293S cells, their UV-visible absorption, their Fourier transform infrared, circular dichroism and Metarhodopsin II fluorescence spectroscopy properties were characterized. As compared to the severely impaired P23H molecular function, N15S is only slightly defective in structure and stability. We propose that the molecular basis for these structural differences lies in the greater distance of the N15 residue as compared to P23 with respect to the predicted rhodopsin folding core. As described previously for WT rhodopsin, addition of the cytoplasmic allosteric modulator chlorin e6 stabilizes especially the P23H protein, suggesting that chlorin e6 may be generally beneficial in the rescue of those ADRP rhodopsin proteins whose stability is affected by amino acid replacement.
Collapse
Affiliation(s)
- James Mitchell
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
| | - Fernanda Balem
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kalyan Tirupula
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David Man
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Harpreet Kaur Dhiman
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Julian Ollesch
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Joan Planas-Iglesias
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
| | - Barbara J Jennings
- Retinal Degeneration & Ophthalmic Genetics Service & Lions Visual Function Diagnostic Lab, Hamilton Eye Institute, Dept. Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Alessandro Iannaccone
- Retinal Degeneration & Ophthalmic Genetics Service & Lions Visual Function Diagnostic Lab, Hamilton Eye Institute, Dept. Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Judith Klein-Seetharaman
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
26
|
Srinivasan S, Guixà-González R, Cordomí A, Garriga P. Ligand Binding Mechanisms in Human Cone Visual Pigments. Trends Biochem Sci 2019; 44:629-639. [PMID: 30853245 DOI: 10.1016/j.tibs.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Vertebrate vision starts with light absorption by visual pigments in rod and cone photoreceptor cells of the retina. Rhodopsin, in rod cells, responds to dim light, whereas three types of cone opsins (red, green, and blue) function under bright light and mediate color vision. Cone opsins regenerate with retinal much faster than rhodopsin, but the molecular mechanism of regeneration is still unclear. Recent advances in the area pinpoint transient intermediate opsin conformations, and a possible secondary retinal-binding site, as determinant factors for regeneration. In this Review, we compile previous and recent findings to discuss possible mechanisms of ligand entry in cone opsins, involving a secondary binding site, which may have relevant functional and evolutionary implications.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain
| | - Ramon Guixà-González
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain.
| |
Collapse
|
27
|
Bocchero U, Tam BM, Chiu CN, Torre V, Moritz OL. Electrophysiological Changes During Early Steps of Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 60:933-943. [PMID: 30840038 DOI: 10.1167/iovs.18-25347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The rhodopsin mutation P23H is responsible for a significant portion of autosomal-dominant retinitis pigmentosa, a disorder characterized by rod photoreceptor death. The mechanisms of toxicity remain unclear; previous studies implicate destabilization of P23H rhodopsin during light exposure, causing decreased endoplasmic reticulum (ER) exit and ER stress responses. Here, we probed phototransduction in Xenopus laevis rods expressing bovine P23H rhodopsin, in which retinal degeneration is inducible by light exposure, in order to examine early physiological changes that occur during retinal degeneration. Methods We recorded single-cell and whole-retina responses to light stimuli using electrophysiology. Moreover, we monitored morphologic changes in rods after different periods of light exposure. Results Initially, P23H rods had almost normal photoresponses, but following a brief light exposure varying from 4 to 32 photoisomerizations per disc, photoresponses became irreversibly prolonged. In intact retinas, rods began to shed OS fragments after a rod-saturating exposure of 12 minutes, corresponding to approximately 10 to 100 times more photoisomerizations. Conclusions Our results indicate that in P23H rods light-induced degeneration occurs in at least two stages, the first involving impairment of phototransduction and the second involving initiation of morphologic changes.
Collapse
Affiliation(s)
- Ulisse Bocchero
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Beatrice M Tam
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colette N Chiu
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vincent Torre
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Roushar FJ, Gruenhagen TC, Penn WD, Li B, Meiler J, Jastrzebska B, Schlebach JP. Contribution of Cotranslational Folding Defects to Membrane Protein Homeostasis. J Am Chem Soc 2018; 141:204-215. [PMID: 30537820 DOI: 10.1021/jacs.8b08243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane proteins are prone to misfolding and degradation within the cell, yet the nature of the conformational defects involved in this process remain poorly understood. The earliest stages of membrane protein folding are mediated by the Sec61 translocon, a molecular machine that facilitates the lateral partitioning of the polypeptide into the membrane. Proper membrane integration is an essential prerequisite for folding of the nascent chain. However, the marginal energetic drivers of this reaction suggest the translocon may operate with modest fidelity. In this work, we employed biophysical modeling in conjunction with quantitative biochemical measurements in order to evaluate the extent to which cotranslational folding defects influence membrane protein homeostasis. Protein engineering was employed to selectively perturb the topological energetics of human rhodopsin, and the expression and cellular trafficking of engineered variants were quantitatively compared. Our results reveal clear relationships between topological energetics and the efficiency of rhodopsin biogenesis, which appears to be limited by the propensity of a polar transmembrane domain to achieve its correct topological orientation. Though the polarity of this segment is functionally constrained, we find that its topology can be stabilized in a manner that enhances biogenesis without compromising the functional properties of rhodopsin. Furthermore, sequence alignments reveal this topological instability has been conserved throughout the course of evolution. These results suggest that topological defects significantly contribute to the inefficiency of membrane protein folding in the cell. Additionally, our findings suggest that the marginal stability of rhodopsin may represent an evolved trait.
Collapse
Affiliation(s)
- Francis J Roushar
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Timothy C Gruenhagen
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Wesley D Penn
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Bian Li
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Jens Meiler
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Beata Jastrzebska
- Department of Pharmacology , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Jonathan P Schlebach
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
29
|
Coupling of Human Rhodopsin to a Yeast Signaling Pathway Enables Characterization of Mutations Associated with Retinal Disease. Genetics 2018; 211:597-615. [PMID: 30514708 DOI: 10.1534/genetics.118.301733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are crucial sensors of extracellular signals in eukaryotes, with multiple GPCR mutations linked to human diseases. With the growing number of sequenced human genomes, determining the pathogenicity of a mutation is challenging, but can be aided by a direct measurement of GPCR-mediated signaling. This is particularly difficult for the visual pigment rhodopsin-a GPCR activated by light-for which hundreds of mutations have been linked to inherited degenerative retinal diseases such as retinitis pigmentosa. In this study, we successfully engineered, for the first time, activation by human rhodopsin of the yeast mating pathway, resulting in signaling via a fluorescent reporter. We combine this novel assay for rhodopsin light-dependent activation with studies of subcellular localization, and the upregulation of the unfolded protein response in response to misfolded rhodopsin protein. We use these assays to characterize a panel of rhodopsin mutations with known molecular phenotypes, finding that rhodopsin maintains a similar molecular phenotype in yeast, with some interesting differences. Furthermore, we compare our assays in yeast with clinical phenotypes from patients with novel disease-linked mutations. We demonstrate that our engineered yeast strain can be useful in rhodopsin mutant classification, and in helping to determine the molecular mechanisms underlying their pathogenicity. This approach may also be applied to better understand the clinical relevance of other human GPCR mutations, furthering the use of yeast as a tool for investigating molecular mechanisms relevant to human disease.
Collapse
|
30
|
Sakami S, Imanishi Y, Palczewski K. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease. FASEB J 2018; 33:3680-3692. [PMID: 30462532 DOI: 10.1096/fj.201801662r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Retinitis pigmentosa is a devastating, blinding disorder that affects 1 in 4000 people worldwide. During the progression of the disorder, phagocytic clearance of dead photoreceptor cell bodies has a protective role by preventing additional retinal damage from accumulation of cellular debris. However, the cells responsible for the clearance remain unidentified. Taking advantage of a mouse model of retinitis pigmentosa ( RhoP23H/P23H), we clarified the roles of Müller glia in the phagocytosis of rod photoreceptor cells. During the early stage of retinal degeneration, Müller glial cells participated in the phagocytosis of dying or dead rod photoreceptors throughout the outer nuclear layer. Nearly 50% of Müller glia engaged in phagocytosis. Among the Müller phagosomes, >90% matured into phagolysosomes. Those observations indicated that Müller glial cells are the primary contributor to phagocytosis. In contrast, macrophages migrate to the inner part of the outer nuclear layer during photoreceptor degeneration, participating in the phagocytosis of a limited population of dying or dead photoreceptor cells. In healthy retinas of wild-type mice, Müller glial cells phagocytosed cell bodies of dead rod photoreceptors albeit at a lower frequency. Taken together, the phagocytic function of Müller glia is responsible for retinal homeostasis and reorganization under normal and pathologic conditions.-Sakami, S., Imanishi, Y., Palczewski, K. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease.
Collapse
Affiliation(s)
- Sanae Sakami
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yoshikazu Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
31
|
Gragg M, Park PSH. Misfolded rhodopsin mutants display variable aggregation properties. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2938-2948. [PMID: 29890221 PMCID: PMC6066411 DOI: 10.1016/j.bbadis.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 11/20/2022]
Abstract
The largest class of rhodopsin mutations causing autosomal dominant retinitis pigmentosa (adRP) is mutations that lead to misfolding and aggregation of the receptor. The misfolding mutants have been characterized biochemically, and categorized as either partial or complete misfolding mutants. This classification is incomplete and does not provide sufficient information to fully understand the disease pathogenesis and evaluate therapeutic strategies. A Förster resonance energy transfer (FRET) method was utilized to directly assess the aggregation properties of misfolding rhodopsin mutants within the cell. Partial (P23H and P267L) and complete (G188R, H211P, and P267R) misfolding mutants were characterized to reveal variability in aggregation properties. The complete misfolding mutants all behaved similarly, forming aggregates when expressed alone, minimally interacting with the wild-type receptor when coexpressed, and were unresponsive to treatment with the pharmacological chaperone 9-cis retinal. In contrast, variability was observed between the partial misfolding mutants. In the opsin form, the P23H mutant behaved similarly as the complete misfolding mutants. In contrast, the opsin form of the P267L mutant existed as both aggregates and oligomers when expressed alone and formed mostly oligomers with the wild-type receptor when coexpressed. The partial misfolding mutants both reacted similarly to the pharmacological chaperone 9-cis retinal, displaying improved folding and oligomerization when expressed alone but aggregating with wild-type receptor when coexpressed. The observed differences in aggregation properties and effect of 9-cis retinal predict different outcomes in disease pathophysiology and suggest that retinoid-based chaperones will be ineffective or even detrimental.
Collapse
Affiliation(s)
- Megan Gragg
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
32
|
Mallory DP, Gutierrez E, Pinkevitch M, Klinginsmith C, Comar WD, Roushar FJ, Schlebach JP, Smith AW, Jastrzebska B. The Retinitis Pigmentosa-Linked Mutations in Transmembrane Helix 5 of Rhodopsin Disrupt Cellular Trafficking Regardless of Oligomerization State. Biochemistry 2018; 57:5188-5201. [PMID: 30085663 DOI: 10.1021/acs.biochem.8b00403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors can exist as dimers and higher-order oligomers in biological membranes. The specific oligomeric assembly of these receptors is believed to play a major role in their function, and the disruption of native oligomers has been implicated in specific human pathologies. Computational predictions and biochemical analyses suggest that two molecules of rhodopsin (Rho) associate through the interactions involving its fifth transmembrane helix (TM5). Interestingly, there are several pathogenic loss-of-function mutations within TM5 that face the lipid bilayer in a manner that could potentially influence the dimerization of Rho. Though several of these mutations are known to induce misfolding, the pathogenic defects associated with V209M and F220C Rho remain unclear. In this work, we utilized a variety of biochemical and biophysical approaches to elucidate the effects of these mutations on the dimerization, folding, trafficking, and function of Rho in relation to other pathogenic TM5 variants. Chemical cross-linking, bioluminescence energy transfer, and pulsed-interleaved excitation fluorescence cross-correlation spectroscopy experiments revealed that each of these mutants exhibits a wild type-like propensity to self-associate within the plasma membrane. However, V209M and F220C each exhibit subtle defects in cellular trafficking. Together, our results suggest that the RP pathology associated with the expression of the V209M and F220C mutants could arise from defects in folding and cellular trafficking rather than the disruption of dimerization, as has been previously proposed.
Collapse
Affiliation(s)
- D Paul Mallory
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Elizabeth Gutierrez
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Margaret Pinkevitch
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Christie Klinginsmith
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - William D Comar
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Francis J Roushar
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Jonathan P Schlebach
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Adam W Smith
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
33
|
Chen Y, Chen Y, Jastrzebska B, Golczak M, Gulati S, Tang H, Seibel W, Li X, Jin H, Han Y, Gao S, Zhang J, Liu X, Heidari-Torkabadi H, Stewart PL, Harte WE, Tochtrop GP, Palczewski K. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration. Nat Commun 2018; 9:1976. [PMID: 29773803 PMCID: PMC5958115 DOI: 10.1038/s41467-018-04261-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Rhodopsin homeostasis is tightly coupled to rod photoreceptor cell survival and vision. Mutations resulting in the misfolding of rhodopsin can lead to autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration that currently is untreatable. Using a cell-based high-throughput screen (HTS) to identify small molecules that can stabilize the P23H-opsin mutant, which causes most cases of adRP, we identified a novel pharmacological chaperone of rod photoreceptor opsin, YC-001. As a non-retinoid molecule, YC-001 demonstrates micromolar potency and efficacy greater than 9-cis-retinal with lower cytotoxicity. YC-001 binds to bovine rod opsin with an EC50 similar to 9-cis-retinal. The chaperone activity of YC-001 is evidenced by its ability to rescue the transport of multiple rod opsin mutants in mammalian cells. YC-001 is also an inverse agonist that non-competitively antagonizes rod opsin signaling. Significantly, a single dose of YC-001 protects Abca4 -/- Rdh8 -/- mice from bright light-induced retinal degeneration, suggesting its broad therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Suite 300, Pittsburgh, PA, 15219, USA.
- Department of Ophthalmology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA.
| | - Yu Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Sahil Gulati
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH, 45237, USA
| | - William Seibel
- Drug Discovery Center, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH, 45237, USA
| | - Xiaoyu Li
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Hui Jin
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Yong Han
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Songqi Gao
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Hossein Heidari-Torkabadi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Phoebe L Stewart
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - William E Harte
- Office of Translation and Innovation, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA.
| |
Collapse
|
34
|
Behnen P, Felline A, Comitato A, Di Salvo MT, Raimondi F, Gulati S, Kahremany S, Palczewski K, Marigo V, Fanelli F. A Small Chaperone Improves Folding and Routing of Rhodopsin Mutants Linked to Inherited Blindness. iScience 2018; 4:1-19. [PMID: 30240733 PMCID: PMC6147235 DOI: 10.1016/j.isci.2018.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 11/24/2022] Open
Abstract
The autosomal dominant form of retinitis pigmentosa (adRP) is a blindness-causing conformational disease largely linked to mutations of rhodopsin. Molecular simulations coupled to the graph-based protein structure network (PSN) analysis and in vitro experiments were conducted to determine the effects of 33 adRP rhodopsin mutations on the structure and routing of the opsin protein. The integration of atomic and subcellular levels of analysis was accomplished by the linear correlation between indices of mutational impairment in structure network and in routing. The graph-based index of structural perturbation served also to divide the mutants in four clusters, consistent with their differences in subcellular localization and responses to 9-cis retinal. The stability core of opsin inferred from PSN analysis was targeted by virtual screening of over 300,000 anionic compounds leading to the discovery of a reversible orthosteric inhibitor of retinal binding more effective than retinal in improving routing of three adRP mutants. In silico and in vitro analyses of adRP rhodopsin mutants bridged folding and routing Structure network analysis grouped mutants amenable to treatment with small chaperones Virtual compound screening against the stability core of opsin found a small chaperone The pharmacoperone is a reversible orthosteric inhibitor of retinal binding
Collapse
Affiliation(s)
- Petra Behnen
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Maria Teresa Di Salvo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Francesco Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Sahil Gulati
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 East 101st Street, Cleveland, OH 44106, USA
| | - Shirin Kahremany
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 East 101st Street, Cleveland, OH 44106, USA
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, via Campi 287, 41125 Modena, Italy.
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, via Campi 287, 41125 Modena, Italy.
| |
Collapse
|
35
|
Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, Cheetham ME. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res 2018; 62:1-23. [PMID: 29042326 PMCID: PMC5779616 DOI: 10.1016/j.preteyeres.2017.10.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Inherited mutations in the rod visual pigment, rhodopsin, cause the degenerative blinding condition, retinitis pigmentosa (RP). Over 150 different mutations in rhodopsin have been identified and, collectively, they are the most common cause of autosomal dominant RP (adRP). Mutations in rhodopsin are also associated with dominant congenital stationary night blindness (adCSNB) and, less frequently, recessive RP (arRP). Recessive RP is usually associated with loss of rhodopsin function, whereas the dominant conditions are a consequence of gain of function and/or dominant negative activity. The in-depth characterisation of many rhodopsin mutations has revealed that there are distinct consequences on the protein structure and function associated with different mutations. Here we categorise rhodopsin mutations into seven discrete classes; with defects ranging from misfolding and disruption of proteostasis, through mislocalisation and disrupted intracellular traffic to instability and altered function. Rhodopsin adRP offers a unique paradigm to understand how disturbances in photoreceptor homeostasis can lead to neuronal cell death. Furthermore, a wide range of therapies have been tested in rhodopsin RP, from gene therapy and gene editing to pharmacological interventions. The understanding of the disease mechanisms associated with rhodopsin RP and the development of targeted therapies offer the potential of treatment for this currently untreatable neurodegeneration.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Caroline McCulley
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK.
| | | |
Collapse
|
36
|
Peachey NS, Hasan N, FitzMaurice B, Burrill S, Pangeni G, Karst SY, Reinholdt L, Berry ML, Strobel M, Gregg RG, McCall MA, Chang B. A missense mutation in Grm6 reduces but does not eliminate mGluR6 expression or rod depolarizing bipolar cell function. J Neurophysiol 2017; 118:845-854. [PMID: 28490646 DOI: 10.1152/jn.00888.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 01/01/2023] Open
Abstract
GRM6 encodes the metabotropic glutamate receptor 6 (mGluR6) used by retinal depolarizing bipolar cells (DBCs). Mutations in GRM6 lead to DBC dysfunction and underlie the human condition autosomal recessive complete congenital stationary night blindness. Mouse mutants for Grm6 are important models for this condition. Here we report a new Grm6 mutant, identified in an electroretinogram (ERG) screen of mice maintained at The Jackson Laboratory. The Grm6nob8 mouse has a reduced-amplitude b-wave component of the ERG, which reflects light-evoked DBC activity. Sequencing identified a missense mutation that converts a highly conserved methionine within the ligand binding domain to leucine (p.Met66Leu). Consistent with prior studies of Grm6 mutant mice, the laminar size and structure in the Grm6nob8 retina were comparable to control. The Grm6nob8 phenotype is distinguished from other Grm6 mutants that carry a null allele by a reduced but not absent ERG b-wave, decreased but present expression of mGluR6 at DBC dendritic tips, and mislocalization of mGluR6 to DBC somas. Consistent with a reduced but not absent b-wave, there were a subset of retinal ganglion cells whose responses to light onset have times to peak within the range of those in control retinas. These data indicate that the p.Met66Leu mutant mGluR6 is trafficked less than control. However, the mGluR6 that is localized to the DBC dendritic tips is able to initiate DBC signal transduction. The Grm6nob8 mouse extends the Grm6 allelic series and will be useful for elucidating the role of mGluR6 in DBC signal transduction and in human disease.NEW & NOTEWORTHY This article describes a mouse model of the human disease complete congenital stationary night blindness in which the mutation reduces but does not eliminate GRM6 expression and bipolar cell function, a distinct phenotype from that seen in other Grm6 mouse models.
Collapse
Affiliation(s)
- Neal S Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio.,Department of Ophthalmology, Cleveland Clinic College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Nazarul Hasan
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | | | | | - Gobinda Pangeni
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky; and
| | | | | | | | | | - Ronald G Gregg
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky.,Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky; and
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky; and.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine;
| |
Collapse
|
37
|
Athanasiou D, Aguila M, Opefi CA, South K, Bellingham J, Bevilacqua D, Munro PM, Kanuga N, Mackenzie FE, Dubis AM, Georgiadis A, Graca AB, Pearson RA, Ali RR, Sakami S, Palczewski K, Sherman MY, Reeves PJ, Cheetham ME. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Hum Mol Genet 2017; 26:305-319. [PMID: 28065882 PMCID: PMC5351934 DOI: 10.1093/hmg/ddw387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/29/2023] Open
Abstract
Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic 'gain of function', such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Chikwado A. Opefi
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | - Kieron South
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | | | | - Peter M. Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Naheed Kanuga
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Adam M. Dubis
- Moorfields Eye Hospital NHS Trust, 162 City Road, London, UK
| | | | - Anna B. Graca
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Robin R. Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Sanae Sakami
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Michael Y. Sherman
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts, MA, USA
| | - Philip J. Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | |
Collapse
|
38
|
Chen Y, Brooks MJ, Gieser L, Swaroop A, Palczewski K. Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa. Pharmacol Res 2016; 115:1-13. [PMID: 27838510 DOI: 10.1016/j.phrs.2016.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
Abstract
Mammalian cells are commonly employed in screening assays to identify active compounds that could potentially affect the progression of different human diseases including retinitis pigmentosa (RP), a class of inherited diseases causing retinal degeneration with compromised vision. Using transcriptome analysis, we compared NIH3T3 cells expressing wildtype (WT) rod opsin with a retinal disease-causing single P23H mutation. Surprisingly, heterologous expression of WT opsin in NIH3T3 cells caused more than a 2-fold change in 783 out of 16,888 protein coding transcripts. The perturbed genes encoded extracellular matrix proteins, growth factors, cytoskeleton proteins, glycoproteins and metalloproteases involved in cell adhesion, morphology and migration. A different set of 347 transcripts was either up- or down-regulated when the P23H mutant opsin was expressed suggesting an altered molecular perturbation compared to WT opsin. Transcriptome perturbations elicited by drug candidates aimed at mitigating the effects of the mutant protein revealed that different drugs targeted distinct molecular pathways that resulted in a similar phenotype selected by a cell-based high-throughput screen. Thus, transcriptome profiling can provide essential information about the therapeutic potential of a candidate drug to restore normal gene expression in pathological conditions.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
39
|
Wensel TG, Zhang Z, Anastassov IA, Gilliam JC, He F, Schmid MF, Robichaux MA. Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 2016; 55:32-51. [PMID: 27352937 PMCID: PMC5112133 DOI: 10.1016/j.preteyeres.2016.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022]
Abstract
The rod cell has an extraordinarily specialized structure that allows it to carry out its unique function of detecting individual photons of light. Both the structural features of the rod and the metabolic processes required for highly amplified light detection seem to have rendered the rod especially sensitive to structural and metabolic defects, so that a large number of gene defects are primarily associated with rod cell death and give rise to blinding retinal dystrophies. The structures of the rod, especially those of the sensory cilium known as the outer segment, have been the subject of structural, biochemical, and genetic analysis for many years, but the molecular bases for rod morphogenesis and for cell death in rod dystrophies are still poorly understood. Recent developments in imaging technology, such as cryo-electron tomography and super-resolution fluorescence microscopy, in gene sequencing technology, and in gene editing technology are rapidly leading to new breakthroughs in our understanding of these questions. A summary is presented of our current understanding of selected aspects of these questions, highlighting areas of uncertainty and contention as well as recent discoveries that provide new insights. Examples of structural data from emerging imaging technologies are presented.
Collapse
Affiliation(s)
- Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Zhixian Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ivan A Anastassov
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jared C Gilliam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Schmid
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
40
|
Parfitt DA, Cheetham ME. Targeting the Proteostasis Network in Rhodopsin Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:479-84. [PMID: 26427449 DOI: 10.1007/978-3-319-17121-0_64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mutations in rhodopsin are one of the most common causes of retinitis pigmentosa (RP). Misfolding of rhodopsin can result in disruptions in cellular protein homeostasis, or proteostasis. There is currently no available treatment for RP. In this review, we discuss the different approaches currently being investigated for treatment of rhodopsin RP, focusing on the potential of manipulation of the proteostasis network as a therapeutic approach to combat retinal degeneration.
Collapse
Affiliation(s)
- David A Parfitt
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL, London, UK.
| | - Michael E Cheetham
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL, London, UK.
| |
Collapse
|
41
|
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 2015; 8:109-29. [PMID: 25650393 PMCID: PMC4314777 DOI: 10.1242/dmm.017913] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, 400271, Romania
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eyal Banin
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Jastrzebska B, Chen Y, Orban T, Jin H, Hofmann L, Palczewski K. Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface. J Biol Chem 2015; 290:25728-44. [PMID: 26330551 DOI: 10.1074/jbc.m115.662684] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
Although homo- and heterodimerizations of G protein-coupled receptors (GPCRs) are well documented, GPCR monomers are able to assemble in different ways, thus causing variations in the interactive interface between receptor monomers among different GPCRs. Moreover, the functional consequences of this phenomenon, which remain to be clarified, could be specific for different GPCRs. Synthetic peptides derived from transmembrane (TM) domains can interact with a full-length GPCR, blocking dimer formation and affecting its function. Here we used peptides corresponding to TM helices of bovine rhodopsin (Rho) to investigate the Rho dimer interface and functional consequences of its disruption. Incubation of Rho with TM1, TM2, TM4, and TM5 peptides in rod outer segment (ROS) membranes shifted the resulting detergent-solubilized protein migration through a gel filtration column toward smaller molecular masses with a reduced propensity for dimer formation in a cross-linking reaction. Binding of these TM peptides to Rho was characterized by both mass spectrometry and a label-free assay from which dissociation constants were calculated. A BRET (bioluminescence resonance energy transfer) assay revealed that the physical interaction between Rho molecules expressed in membranes of living cells was blocked by the same four TM peptides identified in our in vitro experiments. Although disruption of the Rho dimer/oligomer had no effect on the rates of G protein activation, binding of Gt to the activated receptor stabilized the dimer. However, TM peptide-induced disruption of dimer/oligomer decreased receptor stability, suggesting that Rho supramolecular organization could be essential for ROS stabilization and receptor trafficking.
Collapse
Affiliation(s)
- Beata Jastrzebska
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Yuanyuan Chen
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Tivadar Orban
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Hui Jin
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Lukas Hofmann
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Krzysztof Palczewski
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| |
Collapse
|
43
|
Chen Y, Tang H, Seibel W, Papoian R, Li X, Lambert NA, Palczewski K. A High-Throughput Drug Screening Strategy for Detecting Rhodopsin P23H Mutant Rescue and Degradation. Invest Ophthalmol Vis Sci 2015; 56:2553-67. [PMID: 25783607 DOI: 10.1167/iovs.14-16298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Inherent instability of the P23H mutant opsin accounts for approximately 10% of autosomal dominant retinitis pigmentosa cases. Our purpose was to develop an overall set of reliable screening strategies to assess if either stabilization or enhanced degradation of mutant rhodopsin could rescue rod photoreceptors expressing this mutant protein. These strategies promise to reveal active compounds and clarify molecular mechanisms of biologically important processes, such as inhibition of target degradation or enhanced target folding. METHODS Cell-based bioluminescence reporter assays were developed and validated for high-throughput screening (HTS) of compounds that promote either stabilization or degradation of P23H mutant opsin. Such assays were further complemented by immunoblotting and image-based analyses. RESULTS Two stabilization assays of P23H mutant opsin were developed and validated, one based on β-galactosidase complementarity and a second assay involving bioluminescence resonance energy transfer (BRET) technology. Moreover, two additional assays evaluating mutant protein degradation also were employed, one based on the disappearance of luminescence and another employing the ALPHA immunoassay. Imaging of cells revealed the cellular localization of mutant rhodopsin, whereas immunoblots identified changes in the aggregation and glycosylation of P23H mutant opsin. CONCLUSIONS Our findings indicate that these initial HTS and following assays can identify active therapeutic compounds, even for difficult targets such as mutant rhodopsin. The assays are readily scalable and their function has been proven with model compounds. High-throughput screening, supported by automated imaging and classic immunoassays, can further characterize multiple steps and pathways in the biosynthesis and degradation of this essential visual system protein.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| | - Hong Tang
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - William Seibel
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Ruben Papoian
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Xiaoyu Li
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States
| | - Krzysztof Palczewski
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
44
|
Marsili S, Genini S, Sudharsan R, Gingrich J, Aguirre GD, Beltran WA. Exclusion of the unfolded protein response in light-induced retinal degeneration in the canine T4R RHO model of autosomal dominant retinitis pigmentosa. PLoS One 2015; 10:e0115723. [PMID: 25695253 PMCID: PMC4335018 DOI: 10.1371/journal.pone.0115723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/01/2014] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To examine the occurrence of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) following acute light damage in the naturally-occurring canine model of RHO-adRP (T4R RHO dog). METHODS The left eyes of T4R RHO dogs were briefly light-exposed and retinas collected 3, 6 and 24 hours later. The contra-lateral eyes were shielded and used as controls. To evaluate the time course of cell death, histology and TUNEL assays were performed. Electron microscopy was used to examine ultrastructural alterations in photoreceptors at 15 min, 1 hour, and 6 hours after light exposure. Gene expression of markers of ER stress and UPR were assessed by RT-PCR, qRT-PCR and western blot at the 6 hour time-point. Calpain and caspase-3 activation were assessed at 1, 3 and 6 hours after exposure. RESULTS A brief exposure to clinically-relevant levels of white light causes within minutes acute disruption of the rod outer segment disc membranes, followed by prominent ultrastructural alterations in the inner segments and the initiation of cell death by 6 hours. Activation of the PERK and IRE1 pathways, and downstream targets (BIP, CHOP) of the UPR was not observed. However increased transcription of caspase-12 and hsp70 occurred, as well as calpain activation, but not that of caspase-3. CONCLUSION The UPR is not activated in the early phase of light-induced photoreceptor cell death in the T4R RHO model. Instead, disruption in rods of disc and plasma membranes within minutes after light exposure followed by increase in calpain activity and caspase-12 expression suggests a different mechanism of degeneration.
Collapse
Affiliation(s)
- Stefania Marsili
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Sem Genini
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Raghavi Sudharsan
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Jeremy Gingrich
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Gustavo D. Aguirre
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - William A. Beltran
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| |
Collapse
|
45
|
Chen Y, Tang H. High-throughput screening assays to identify small molecules preventing photoreceptor degeneration caused by the rhodopsin P23H mutation. Methods Mol Biol 2015; 1271:369-90. [PMID: 25697536 DOI: 10.1007/978-1-4939-2330-4_24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-throughput screening (HTS) is one of the major techniques for discovering promising molecules for drug development. Rhodopsin mutations cause the most common autosomal dominant form of retinitis pigmentosa, an inherited retinal degenerative disease that currently has no effective treatment. To find an optimal pharmacological treatment for rhodopsin-associated retinitis pigmentosa, we performed two cell-based HTSs with mammalian cells expressing the P23H rod opsin mutant and identified two sets of novel compounds for further validation and characterization. The first HTS screen identified pharmacological chaperones of P23H opsin that increased its translocation from the endoplasmic reticulum to the plasma membrane. The second HTS screen selected small molecules that enhanced the clearance of the mutant opsin while vision could be sustained by the healthy gene allele expressing wild-type rhodopsin. Here we describe the methodology of these two HTS assays in detail.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4965, USA,
| | | |
Collapse
|