1
|
Tomar R, Ghodke PP, Patra A, Smyth E, Pontarelli A, Copp W, Guengerich FP, Chaput JC, Wilds CJ, Stone MP, Egli M. DNA Replication across α-l-(3'-2')-Threofuranosyl Nucleotides Mediated by Human DNA Polymerase η. Biochemistry 2024; 63:2425-2439. [PMID: 39259676 PMCID: PMC11447838 DOI: 10.1021/acs.biochem.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
α-l-(3'-2')-Threofuranosyl nucleic acid (TNA) pairs with itself, cross-pairs with DNA and RNA, and shows promise as a tool in synthetic genetics, diagnostics, and oligonucleotide therapeutics. We studied in vitro primer insertion and extension reactions catalyzed by human trans-lesion synthesis (TLS) DNA polymerase η (hPol η) opposite a TNA-modified template strand without and in combination with O4-alkyl thymine lesions. Across TNA-T (tT), hPol η inserted mostly dAMP and dGMP, dTMP and dCMP with lower efficiencies, followed by extension of the primer to a full-length product. hPol η inserted dAMP opposite O4-methyl and -ethyl analogs of tT, albeit with reduced efficiencies relative to tT. Crystal structures of ternary hPol η complexes with template tT and O4-methyl tT at the insertion and extension stages demonstrated that the shorter backbone and different connectivity of TNA compared to DNA (3' → 2' versus 5' → 3', respectively) result in local differences in sugar orientations, adjacent phosphate spacings, and directions of glycosidic bonds. The 3'-OH of the primer's terminal thymine was positioned at 3.4 Å on average from the α-phosphate of the incoming dNTP, consistent with insertion opposite and extension past the TNA residue by hPol η. Conversely, the crystal structure of a ternary hPol η·DNA·tTTP complex revealed that the primer's terminal 3'-OH was too distant from the tTTP α-phosphate, consistent with the inability of the polymerase to incorporate TNA. Overall, our study provides a better understanding of the tolerance of a TLS DNA polymerase vis-à-vis unnatural nucleotides in the template and as the incoming nucleoside triphosphate.
Collapse
Affiliation(s)
- Rachana Tomar
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Pratibha P. Ghodke
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Amritraj Patra
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Elizabeth Smyth
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - Alexander Pontarelli
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - William Copp
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - F. Peter Guengerich
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - John C. Chaput
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Christopher J. Wilds
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - Michael P. Stone
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Martin Egli
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Bedaiwi S, Usmani A, Carty MP. Canonical and Non-Canonical Roles of Human DNA Polymerase η. Genes (Basel) 2024; 15:1271. [PMID: 39457395 PMCID: PMC11507097 DOI: 10.3390/genes15101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
DNA damage tolerance pathways that allow for the completion of replication following fork arrest are critical in maintaining genome stability during cell division. The main DNA damage tolerance pathways include strand switching, replication fork reversal and translesion synthesis (TLS). The TLS pathway is mediated by specialised DNA polymerases that can accommodate altered DNA structures during DNA synthesis, and are important in allowing replication to proceed after fork arrest, preventing fork collapse that can generate more deleterious double-strand breaks in the genome. TLS may occur directly at the fork, or at gaps remaining behind the fork, in the process of post-replication repair. Inactivating mutations in the human POLH gene encoding the Y-family DNA polymerase Pol η causes the skin cancer-prone genetic disease xeroderma pigmentosum variant (XPV). Pol η also contributes to chemoresistance during cancer treatment by bypassing DNA lesions induced by anti-cancer drugs including cisplatin. We review the current understanding of the canonical role of Pol η in translesion synthesis following replication arrest, as well as a number of emerging non-canonical roles of the protein in other aspects of DNA metabolism.
Collapse
Affiliation(s)
| | | | - Michael P. Carty
- DNA Damage Response Laboratory, Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland; (S.B.); (A.U.)
| |
Collapse
|
3
|
Tomar R, Li S, Egli M, Stone MP. Replication Bypass of the N-(2-Deoxy-d-erythro-pentofuranosyl)-urea DNA Lesion by Human DNA Polymerase η. Biochemistry 2024; 63:754-766. [PMID: 38413007 PMCID: PMC10956437 DOI: 10.1021/acs.biochem.3c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/29/2024]
Abstract
Urea lesions in DNA arise from thymine glycol (Tg) or 8-oxo-dG; their genotoxicity is thought to arise in part due to their potential to accommodate the insertion of all four dNTPs during error-prone replication. Replication bypass with human DNA polymerase η (hPol η) confirmed that all four dNTPs were inserted opposite urea lesions but with purines exhibiting greater incorporation efficiency. X-ray crystal structures of ternary replication bypass complexes in the presence of Mg2+ ions with incoming dNTP analogs dAMPnPP, dCMPnPP, dGMPnPP, and dTMPnPP bound opposite urea lesions (hPol η·DNA·dNMPnPP complexes) revealed all were accommodated by hPol η. In each, the Watson-Crick face of the dNMPnPP was paired with the urea lesion, exploiting the ability of the amine and carbonyl groups of the urea to act as H-bond donors or acceptors, respectively. With incoming dAMPnPP or dGMPnPP, the distance between the imino nitrogen of urea and the N9 atoms of incoming dNMPnPP approximated the canonical distance of 9 Å in B-DNA. With incoming dCMPnPP or dTMPnPP, the corresponding distance of about 7 Å was less ideal. Improved base-stacking interactions were also observed with incoming purines vs pyrimidines. Nevertheless, in each instance, the α-phosphate of incoming dNMPnPPs was close to the 3'-hydroxyl group of the primer terminus, consistent with the catalysis of nucleotidyl transfer and the observation that all four nucleotides could be inserted opposite urea lesions. Preferential insertion of purines by hPol η may explain, in part, why the urea-directed spectrum of mutations arising from Tg vs 8-oxo-dG lesions differs.
Collapse
Affiliation(s)
- Rachana Tomar
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Songlin Li
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Martin Egli
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Michael P. Stone
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
4
|
Kruchinin AA, Kamzeeva PN, Zharkov DO, Aralov AV, Makarova AV. 8-Oxoadenine: A «New» Player of the Oxidative Stress in Mammals? Int J Mol Sci 2024; 25:1342. [PMID: 38279342 PMCID: PMC10816367 DOI: 10.3390/ijms25021342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Numerous studies have shown that oxidative modifications of guanine (7,8-dihydro-8-oxoguanine, 8-oxoG) can affect cellular functions. 7,8-Dihydro-8-oxoadenine (8-oxoA) is another abundant paradigmatic ambiguous nucleobase but findings reported on the mutagenicity of 8-oxoA in bacterial and eukaryotic cells are incomplete and contradictory. Although several genotoxic studies have demonstrated the mutagenic potential of 8-oxoA in eukaryotic cells, very little biochemical and bioinformatics data about the mechanism of 8-oxoA-induced mutagenesis are available. In this review, we discuss dual coding properties of 8-oxoA, summarize historical and recent genotoxicity and biochemical studies, and address the main protective cellular mechanisms of response to 8-oxoA. We also discuss the available structural data for 8-oxoA bypass by different DNA polymerases as well as the mechanisms of 8-oxoA recognition by DNA repair enzymes.
Collapse
Affiliation(s)
- Alexander A. Kruchinin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| | - Polina N. Kamzeeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Alena V. Makarova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| |
Collapse
|
5
|
Menck CFM, Galhardo RS, Quinet A. The accurate bypass of pyrimidine dimers by DNA polymerase eta contributes to ultraviolet-induced mutagenesis. Mutat Res 2024; 828:111840. [PMID: 37984186 DOI: 10.1016/j.mrfmmm.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human xeroderma pigmentosum variant (XP-V) patients are mutated in the POLH gene, responsible for encoding the translesion synthesis (TLS) DNA polymerase eta (Pol eta). These patients suffer from a high frequency of skin tumors. Despite several decades of research, studies on Pol eta still offer an intriguing paradox: How does this error-prone polymerase suppress mutations? This review examines recent evidence suggesting that cyclobutane pyrimidine dimers (CPDs) are instructional for Pol eta. Consequently, it can accurately replicate these lesions, and the mutagenic effects induced by UV radiation stem from the deamination of C-containing CPDs. In this model, the deamination of C (forming a U) within CPDs leads to the correct insertion of an A opposite to the deaminated C (or U)-containing dimers. This intricate process results in C>T transitions, which represent the most prevalent mutations detected in skin cancers. Finally, the delayed replication in XP-V cells amplifies the process of C-deamination in CPDs and increases the burden of C>T mutations prevalent in XP-V tumors through the activity of backup TLS polymerases.
Collapse
Affiliation(s)
- C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - R S Galhardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - A Quinet
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Eichman BF. Repair and tolerance of DNA damage at the replication fork: A structural perspective. Curr Opin Struct Biol 2023; 81:102618. [PMID: 37269798 PMCID: PMC10525001 DOI: 10.1016/j.sbi.2023.102618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
The replication machinery frequently encounters DNA damage and other structural impediments that inhibit progression of the replication fork. Replication-coupled processes that remove or bypass the barrier and restart stalled forks are essential for completion of replication and for maintenance of genome stability. Errors in replication-repair pathways lead to mutations and aberrant genetic rearrangements and are associated with human diseases. This review highlights recent structures of enzymes involved in three replication-repair pathways: translesion synthesis, template switching and fork reversal, and interstrand crosslink repair.
Collapse
Affiliation(s)
- Brandt F Eichman
- Vanderbilt University, Department of Biological Sciences and Department of Biochemistry, 5270A MRBIII, 465 21st Ave S, Nashville, TN 37232 USA.
| |
Collapse
|
7
|
Stanio S, Bacurio JHT, Yang H, Greenberg MM, Basu AK. 8-Oxo-2'-deoxyguanosine Replication in Mutational Hot Spot Sequences of the p53 Gene in Human Cells Is Less Mutagenic than That of the Corresponding Formamidopyrimidine. Chem Res Toxicol 2023; 36:782-789. [PMID: 37093780 PMCID: PMC10192040 DOI: 10.1021/acs.chemrestox.3c00069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-OxodGuo) is a ubiquitous DNA damage formed by oxidation of 2'-deoxyguanosine. In this study, plasmid DNA containing 8-OxodGuo located in three mutational hot spots of human cancers, codons 248, 249, and 273 of the Tp53 tumor suppressor gene, was replicated in HEK 293T cells. 8-OxodGuo was only a weak block of replication, and the bypass was largely error-free. The mutations (1-5%) were primarily G → T transversions, and the mutation frequency was generally lower than that of the chemically related Fapy·dG. A unique 8-OxodGuo mutation spectrum was observed at each site, as reflected by replication in translesion synthesis (TLS) polymerase- or hPol λ-deficient cells. In codon 248 (CG*G) and 249 (AG*G), where G* denotes 8-OxodGuo, hPol η and hPol ζ carried out largely error-free bypass of the lesion, whereas hPol κ and hPol ι were involved mostly in error-prone TLS, resulting in G → T mutations. 8-OxodGuo bypass in codon 273 (CG*T) was unlike the other two sites, as hPol κ participated in the mostly error-free bypass of the lesion. Yet, in all three sites, including codon 273, simultaneous deficiency of hpol κ and hPol ι resulted in reduction of G → T transversions. This indicates a convincing role of these two TLS polymerases in error-prone bypass of 8-OxodGuo. Although the dominant mutation was G → T in each site, in codon 249, and to a lesser extent in codon 248, significant semi-targeted single-base deletions also occurred, which suggests that 8-OxodGuo can initiate slippage of a base near the lesion site. This study underscores the importance of sequence context in 8-OxodGuo mutagenesis in human cells. It also provides a more comprehensive comparison between 8-OxodGuo and the sister lesion, Fapy·dG. The greater mutagenicity of the latter in the same sequence contexts indicates that Fapy·dG is a biologically significant lesion and biomarker on par with 8-OxodGuo.
Collapse
Affiliation(s)
- Stephen Stanio
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | | | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ashis K. Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
8
|
Geronimo I, Vidossich P, De Vivo M. On the Role of Molecular Conformation of the 8-Oxoguanine Lesion in Damaged DNA Processing by Polymerases. J Chem Inf Model 2023; 63:1521-1528. [PMID: 36825471 PMCID: PMC10015460 DOI: 10.1021/acs.jcim.2c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A common and insidious DNA damage is 8-oxoguanine (8OG), bypassed with low catalytic efficiency and high error frequency by polymerases (Pols) during DNA replication. This is a fundamental process with far-reaching implications in cell function and diseases. However, the molecular determinants of how 8OG exactly affects the catalytic efficiency of Pols remain largely unclear. By examining ternary deoxycytidine triphosphate/DNA/Pol complexes containing the 8OG damage, we found that 8OG consistently adopts different conformations when bound to Pols, compared to when in isolated DNA. Equilibrium molecular dynamics and metadynamics free energy calculations quantified that 8OG is in the lowest energy conformation in isolated DNA. In contrast, 8OG adopts high-energy conformations often characterized by intramolecular steric repulsion when bound to Pols. We show that the 8OG conformation can be regulated by mutating Pol residues interacting with the 8OG phosphate group. These findings propose the 8OG conformation as a factor in Pol-mediated processing of damaged DNA.
Collapse
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
9
|
Chakraborty A, Tapryal N, Islam A, Sarker AH, Manohar K, Mitra J, Hegde ML, Hazra T. Human DNA polymerase η promotes RNA-templated error-free repair of DNA double-strand breaks. J Biol Chem 2023; 299:102991. [PMID: 36758800 PMCID: PMC10011834 DOI: 10.1016/j.jbc.2023.102991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
A growing body of evidence indicates that RNA plays a critical role in orchestrating DNA double-strand break repair (DSBR). Recently, we showed that homologous nascent RNA can be used as a template for error-free repair of double-strand breaks (DSBs) in the transcribed genome and to restore the missing sequence at the break site via the transcription-coupled classical nonhomologous end-joining (TC-NHEJ) pathway. TC-NHEJ is a complex multistep process in which a reverse transcriptase (RT) is essential for synthesizing the DNA strand from template RNA. However, the identity of the RT involved in the TC-NHEJ pathway remained unknown. Here, we report that DNA polymerase eta (Pol η), known to possess RT activity, plays a critical role in TC-NHEJ. We found that Pol η forms a multiprotein complex with RNAP II and other TC-NHEJ factors, while also associating with nascent RNA. Moreover, purified Pol η, along with DSBR proteins PNKP, XRCC4, and Ligase IV can fully repair RNA templated 3'-phosphate-containing gapped DNA substrate. In addition, we demonstrate here that Pol η deficiency leads to accumulation of R-loops and persistent strand breaks in the transcribed genes. Finally, we determined that, in Pol η depleted but not in control cells, TC-NHEJ-mediated repair was severely abrogated when a reporter plasmid containing a DSB with several nucleotide deletion within the E. coli lacZ gene was introduced for repair in lacZ-expressing mammalian cells. Thus, our data strongly suggest that RT activity of Pol η is required in error-free DSBR.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nisha Tapryal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Azharul Islam
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Altaf H Sarker
- Life Sciences Division, Department of Cancer and DNA Damage Responses, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kodavati Manohar
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Tapas Hazra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
10
|
Egli M, Zhang S. Ned Seeman and the prediction of amino acid-basepair motifs mediating protein-nucleic acid recognition. Biophys J 2022; 121:4777-4787. [PMID: 35711143 PMCID: PMC9808504 DOI: 10.1016/j.bpj.2022.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023] Open
Abstract
Fifty years ago, the first atomic-resolution structure of a nucleic acid double helix, the mini-duplex (ApU)2, revealed details of basepair geometry, stacking, sugar conformation, and backbone torsion angles, thereby superseding earlier models based on x-ray fiber diffraction, including the original DNA double helix proposed by Watson and Crick. Just 3 years later, in 1976, Ned Seeman, John Rosenberg, and Alex Rich leapt from their structures of mini-duplexes and H-bonding motifs between bases in small-molecule structures and transfer RNA to predicting how proteins could sequence specifically recognize double helix nucleic acids. They proposed interactions between amino acid side chains and nucleobases mediated by two hydrogen bonds in the major or minor grooves. One of these, the arginine-guanine pair, emerged as the most favored amino acid-base interaction in experimental structures of protein-nucleic acid complexes determined since 1986. In this brief review we revisit the pioneering work by Seeman et al. and discuss the importance of the arginine-guanine pairing motif.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee.
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
11
|
Ling JA, Frevert Z, Washington MT. Recent Advances in Understanding the Structures of Translesion Synthesis DNA Polymerases. Genes (Basel) 2022; 13:genes13050915. [PMID: 35627300 PMCID: PMC9141541 DOI: 10.3390/genes13050915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
DNA damage in the template strand causes replication forks to stall because replicative DNA polymerases are unable to efficiently incorporate nucleotides opposite template DNA lesions. To overcome these replication blocks, cells are equipped with multiple translesion synthesis polymerases that have evolved specifically to incorporate nucleotides opposite DNA lesions. Over the past two decades, X-ray crystallography has provided a wealth of information about the structures and mechanisms of translesion synthesis polymerases. This approach, however, has been limited to ground state structures of these polymerases bound to DNA and nucleotide substrates. Three recent methodological developments have extended our understanding of the structures and mechanisms of these polymerases. These include time-lapse X-ray crystallography, which allows one to identify novel reaction intermediates; full-ensemble hybrid methods, which allow one to examine the conformational flexibility of the intrinsically disordered regions of proteins; and cryo-electron microscopy, which allows one to determine the high-resolution structures of larger protein complexes. In this article, we will discuss how these three methodological developments have added to our understanding of the structures and mechanisms of translesion synthesis polymerases.
Collapse
|
12
|
Ryan BJ, Yang H, Bacurio JHT, Smith MR, Basu AK, Greenberg MM, Freudenthal BD. Structural Dynamics of a Common Mutagenic Oxidative DNA Lesion in Duplex DNA and during DNA Replication. J Am Chem Soc 2022; 144:8054-8065. [PMID: 35499923 PMCID: PMC9097547 DOI: 10.1021/jacs.2c00193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
N6-(2-Deoxy-α,β-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido pyrimidine (Fapy•dG) is a prevalent form of genomic DNA damage. Fapy•dG is formed in greater amounts under anoxic conditions than the well-studied, chemically related 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo). Fapy•dG is more mutagenic in mammalian cells than 8-oxodGuo. A distinctive property of Fapy•dG is facile epimerization, but prior works with Fapy•dG analogues have precluded determining its effect on chemistry. We present crystallographic characterization of natural Fapy•dG in duplex DNA and as the template base for DNA polymerase β (Pol β). Fapy•dG adopts the β-anomer when base paired with cytosine but exists as a mixture of α- and β-anomers when promutagenically base paired with adenine. Rotation about the bond between the glycosidic nitrogen atom and the pyrimidine ring is also affected by the opposing nucleotide. Sodium cyanoborohydride soaking experiments trap the ring-opened Fapy•dG, demonstrating that ring opening and epimerization occur in the crystalline state. Ring opening and epimerization are facilitated by propitious water molecules that are observed in the structures. Determination of Fapy•dG mutagenicity in wild type and Pol β knockdown HEK 293T cells indicates that Pol β contributes to G → T transversions but also suppresses G → A transitions. Complementary kinetic studies have determined that Fapy•dG promotes mutagenesis by decreasing the catalytic efficiency of dCMP insertion opposite Fapy•dG, thus reducing polymerase fidelity. Kinetic studies have determined that dCMP incorporation opposite the β-anomer is ∼90 times faster than the α-anomer. This research identifies the importance of anomer dynamics, a feature unique to formamidopyrimidines, when considering the incorporation of nucleotides opposite Fapy•dG and potentially the repair of this structurally unusual lesion.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Henric T Bacurio
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
13
|
Jung H, Rayala NK, Lee S. Effects of N7-Alkylguanine Conformation and Metal Cofactors on the Translesion Synthesis by Human DNA Polymerase η. Chem Res Toxicol 2022; 35:512-521. [PMID: 35239327 DOI: 10.1021/acs.chemrestox.1c00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-enzymatic alkylation on DNA often generates N7-alkyl-2'-deoxyguanosine (N7alkylG) adducts as major lesions. N7alkylG adducts significantly block replicative DNA polymerases and can be bypassed by translesion synthesis (TLS) polymerases such as polymerase η (polη). To gain insights into the bypass of N7alkylG by TLS polymerases, we conducted kinetic and structural studies of polη catalyzing across N7BnG, a genotoxic lesion generated by the carcinogenic N-nitrosobenzylmethylamine. The presence of templating N7BnG in the polη catalytic site decreased the replication fidelity by ∼9-fold, highlighting the promutagenicity of N7BnG. The catalytic efficiency for dCTP incorporation opposite N7BnG decreased ∼22-fold and ∼7-fold compared to the incorporation opposite undamaged guanine in the presence of Mg2+ and Mn2+, respectively. A crystal structure of the complexes grown with polη, templating N7BnG, incoming dCTP, and Mg2+ ions showed the lack of the incoming nucleotide and metal cofactors in the polη catalytic site. Interestingly, the templating N7BnG adopted a syn conformation, which has not been observed in the published N7alkylG structures. The preferential formation of syn-N7BnG conformation at the templating site may deter the binding of an incoming dCTP, causing the inefficient bypass by polη. In contrast, the use of Mn2+ in place of Mg2+ in co-crystallization yielded a ternary complex displaying an anti-N7BnG:dCTP base pair and catalytic metal ions, which would be a close mimic of a catalytically competent state. We conclude that certain bulky N7-alkylG lesions can slow TLS polymerase-mediated bypass by adopting a catalytically unfavorable syn conformation in the replicating base pair site.
Collapse
Affiliation(s)
- Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Naveen Kumar Rayala
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
14
|
Impact of G-Quadruplexes and Chronic Inflammation on Genome Instability: Additive Effects during Carcinogenesis. Genes (Basel) 2021; 12:genes12111779. [PMID: 34828385 PMCID: PMC8619830 DOI: 10.3390/genes12111779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Genome instability is an enabling characteristic of cancer, essential for cancer cell evolution. Hotspots of genome instability, from small-scale point mutations to large-scale structural variants, are associated with sequences that potentially form non-B DNA structures. G-quadruplex (G4) forming motifs are enriched at structural variant endpoints in cancer genomes. Chronic inflammation is a physiological state underlying cancer development, and oxidative DNA damage is commonly invoked to explain how inflammation promotes genome instability. We summarize where G4s and oxidative stress overlap, with a focus on DNA replication. Guanine has low ionization potential, making G4s vulnerable to oxidative damage. Impacts to G4 structure are dependent upon lesion type, location, and G4 conformation. Occasionally, G4s pose a challenge to replicative DNA polymerases, requiring specialized DNA polymerases to maintain genome stability. Therefore, chronic inflammation creates a dual challenge for DNA polymerases to maintain genome stability: faithful G4 synthesis and bypassing unrepaired oxidative lesions. Inflammation is also accompanied by global transcriptome changes that may impact mutagenesis. Several studies suggest a regulatory role for G4s within cancer- and inflammatory-related gene promoters. We discuss the extent to which inflammation could influence gene regulation by G4s, thereby impacting genome instability, and highlight key areas for new investigation.
Collapse
|
15
|
Geronimo I, Vidossich P, De Vivo M. Local Structural Dynamics at the Metal-Centered Catalytic Site of Polymerases is Critical for Fidelity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
16
|
Ghodke PP, Guengerich FP. DNA polymerases η and κ bypass N 2-guanine-O 6-alkylguanine DNA alkyltransferase cross-linked DNA-peptides. J Biol Chem 2021; 297:101124. [PMID: 34461101 PMCID: PMC8463853 DOI: 10.1016/j.jbc.2021.101124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022] Open
Abstract
DNA-protein cross-links are formed when proteins become covalently trapped with DNA in the presence of exogenous or endogenous alkylating agents. If left unrepaired, they inhibit transcription as well as DNA unwinding during replication and may result in genome instability or even cell death. The DNA repair protein O6-alkylguanine DNA-alkyltransferase (AGT) is known to form DNA cross-links in the presence of the carcinogen 1,2-dibromoethane, resulting in G:C to T:A transversions and other mutations in both bacterial and mammalian cells. We hypothesized that AGT-DNA cross-links would be processed by nuclear proteases to yield peptides small enough to be bypassed by translesion (TLS) polymerases. Here, a 15-mer and a 36-mer peptide from the active site of AGT were cross-linked to the N2 position of guanine via conjugate addition of a thiol containing a peptide dehydroalanine moiety. Bypass studies with DNA polymerases (pols) η and κ indicated that both can accurately bypass the cross-linked DNA peptides. The specificity constant (kcat/Km) for steady-state incorporation of the correct nucleotide dCTP increased by 6-fold with human (h) pol κ and 3-fold with hpol η, with hpol η preferentially inserting nucleotides in the order dC > dG > dA > dT. LC-MS/MS analysis of the extension product also revealed error-free bypass of the cross-linked 15-mer peptide by hpol η. We conclude that a bulky 15-mer AGT peptide cross-linked to the N2 position of guanine can retard polymerization, but that overall fidelity is not compromised because only correct bases are inserted and extended.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
17
|
Rechkoblit O, Johnson RE, Gupta YK, Prakash L, Prakash S, Aggarwal AK. Structural basis of DNA synthesis opposite 8-oxoguanine by human PrimPol primase-polymerase. Nat Commun 2021; 12:4020. [PMID: 34188055 PMCID: PMC8241999 DOI: 10.1038/s41467-021-24317-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
PrimPol is a human DNA polymerase-primase that localizes to mitochondria and nucleus and bypasses the major oxidative lesion 7,8-dihydro-8-oxoguanine (oxoG) via translesion synthesis, in mostly error-free manner. We present structures of PrimPol insertion complexes with a DNA template-primer and correct dCTP or erroneous dATP opposite the lesion, as well as extension complexes with C or A as a 3′−terminal primer base. We show that during the insertion of C and extension from it, the active site is unperturbed, reflecting the readiness of PrimPol to accommodate oxoG(anti). The misinsertion of A opposite oxoG(syn) also does not alter the active site, and is likely less favorable due to lower thermodynamic stability of the oxoG(syn)•A base-pair. During the extension step, oxoG(syn) induces an opening of its base-pair with A or misalignment of the 3′-A primer terminus. Together, the structures show how PrimPol accurately synthesizes DNA opposite oxidatively damaged DNA in human cells. The human DNA primase and DNA polymerase PrimPol replicates through the major oxidative DNA damage lesion 7,8-dihydro-8-oxoguanine (oxoG) via translesion synthesis in a mostly error-free manner thus suppressing oxoG-induced mutagenesis in mitochondria and the nucleus. Here, the authors present crystal structures of PrimPol in complex with an oxoG lesion in different contexts that provide mechanistic insights into how PrimPol performs predominantly accurate synthesis on oxidative-damaged DNAs in human cells.
Collapse
Affiliation(s)
- Olga Rechkoblit
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert E Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yogesh K Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Greehey Children's Cancer Research Institute & Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Insights into the mismatch discrimination mechanism of Y-family DNA polymerase Dpo4. Biochem J 2021; 478:1769-1781. [PMID: 33881499 DOI: 10.1042/bcj20210162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Nucleobases within DNA are attacked by reactive oxygen species to produce 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major oxidative lesions. The high mutagenicity of oxoG is attributed to the lesion's ability to adopt syn-oxoG:anti-dA with Watson-Crick-like geometry. Recent studies have revealed that Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) inserts nucleotide opposite oxoA in an error-prone manner and accommodates syn-oxoA:anti-dGTP with Watson-Crick-like geometry, highlighting a promutagenic nature of oxoA. To gain further insights into the bypass of oxoA by Dpo4, we have conducted kinetic and structural studies of Dpo4 extending oxoA:dT and oxoA:dG by incorporating dATP opposite templating dT. The extension past oxoA:dG was ∼5-fold less efficient than that past oxoA:dT. Structural studies revealed that Dpo4 accommodated dT:dATP base pair past anti-oxoA:dT with little structural distortion. In the Dpo4-oxoA:dG extension structure, oxoA was in an anti conformation and did not form hydrogen bonds with the primer terminus base. Unexpectedely, the dG opposite oxoA exited the primer terminus site and resided in an extrahelical site, where it engaged in minor groove contacts to the two immediate upstream bases. The extrahelical dG conformation appears to be induced by the stabilization of anti-oxoA conformation via bifurcated hydrogen bonds with Arg332. This unprecedented structure suggests that Dpo4 may use Arg332 to sense 8-oxopurines at the primer terminus site and slow the extension from the mismatch by promoting anti conformation of 8-oxopurines.
Collapse
|
19
|
Ghodke PP, Mali JR, Patra A, Rizzo CJ, Guengerich FP, Egli M. Enzymatic bypass and the structural basis of miscoding opposite the DNA adduct 1,N 2-ethenodeoxyguanosine by human DNA translesion polymerase η. J Biol Chem 2021; 296:100642. [PMID: 33839151 PMCID: PMC8121704 DOI: 10.1016/j.jbc.2021.100642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022] Open
Abstract
Etheno (ε)-adducts, e.g., 1,N2-ε−guanine (1,N2-ε-G) and 1,N6-ε−adenine (1,N6-ε-A), are formed through the reaction of DNA with metabolites of vinyl compounds or with lipid peroxidation products. These lesions are known to be mutagenic, but it is unknown how they lead to errors in DNA replication that are bypassed by DNA polymerases. Here we report the structural basis of misincorporation frequencies across from 1,N2-ε-G by human DNA polymerase (hpol) η. In single-nucleotide insertions opposite the adduct 1,N2-ε-G, hpol η preferentially inserted dGTP, followed by dATP, dTTP, and dCTP. This preference for purines was also seen in the first extension step. Analysis of full-length extension products by LC-MS/MS revealed that G accounted for 85% of nucleotides inserted opposite 1,N2-ε-G in single base insertion, and 63% of bases inserted in the first extension step. Extension from the correct nucleotide pair (C) was not observed, but the primer with A paired opposite 1,N2-ε-G was readily extended. Crystal structures of ternary hpol η insertion-stage complexes with nonhydrolyzable nucleotides dAMPnPP or dCMPnPP showed a syn orientation of the adduct, with the incoming A staggered between adducted base and the 5’-adjacent T, while the incoming C and adducted base were roughly coplanar. The formation of a bifurcated H-bond between incoming dAMPnPP and 1,N2-ε-G and T, compared with the single H-bond formed between incoming dCMPnPP and 1,N2-ε-G, may account for the observed facilitated insertion of dGTP and dATP. Thus, preferential insertion of purines by hpol η across from etheno adducts contributes to distinct outcomes in error-prone DNA replication.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jyotirling R Mali
- Department of Chemistry, College of Arts and Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Amritraj Patra
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Carmelo J Rizzo
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, College of Arts and Science, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA.
| |
Collapse
|
20
|
Jamsen JA, Sassa A, Shock DD, Beard WA, Wilson SH. Watching a double strand break repair polymerase insert a pro-mutagenic oxidized nucleotide. Nat Commun 2021; 12:2059. [PMID: 33824325 PMCID: PMC8024293 DOI: 10.1038/s41467-021-21354-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/08/2020] [Indexed: 01/07/2023] Open
Abstract
Oxidized dGTP (8-oxo-7,8-dihydro-2´-deoxyguanosine triphosphate, 8-oxodGTP) insertion by DNA polymerases strongly promotes cancer and human disease. How DNA polymerases discriminate against oxidized and undamaged nucleotides, especially in error-prone double strand break (DSB) repair, is poorly understood. High-resolution time-lapse X-ray crystallography snapshots of DSB repair polymerase μ undergoing DNA synthesis reveal that a third active site metal promotes insertion of oxidized and undamaged dGTP in the canonical anti-conformation opposite template cytosine. The product metal bridged O8 with product oxygens, and was not observed in the syn-conformation opposite template adenine (At). Rotation of At into the syn-conformation enabled undamaged dGTP misinsertion. Exploiting metal and substrate dynamics in a rigid active site allows 8-oxodGTP to circumvent polymerase fidelity safeguards to promote pro-mutagenic double strand break repair.
Collapse
Affiliation(s)
- Joonas A. Jamsen
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Akira Sassa
- grid.136304.30000 0004 0370 1101Laboratory of Chromatin Metabolism and Epigenetics, Graduate School of Science, Chiba University, Chiba, Japan
| | - David D. Shock
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - William A. Beard
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Samuel H. Wilson
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| |
Collapse
|
21
|
Translesion synthesis of the major nitrogen mustard-induced DNA lesion by human DNA polymerase η. Biochem J 2021; 477:4543-4558. [PMID: 33175093 DOI: 10.1042/bcj20200767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
Nitrogen mustards are among the first modern anticancer chemotherapeutics that are still widely used as non-specific anticancer alkylating agents. While the mechanism of action of mustard drugs involves the generation of DNA interstrand cross-links, the predominant lesions produced by these drugs are nitrogen half-mustard-N7-dG (NHMG) adducts. The bulky major groove lesion NHMG, if left unrepaired, can be bypassed by translesion synthesis (TLS) DNA polymerases. However, studies of the TLS past NHMG have not been reported so far. Here, we present the first synthesis of an oligonucleotide containing a site-specific NHMG. We also report kinetic and structural characterization of human DNA polymerase η (polη) bypassing NHMG. The templating NHMG slows dCTP incorporation ∼130-fold, while it increases the misincorporation frequency ∼10-30-fold, highlighting the promutagenic nature of NHMG. A crystal structure of polη incorporating dCTP opposite NHMG shows a Watson-Crick NHMG:dCTP base pair with a large propeller twist angle. The nitrogen half-mustard moiety fits snugly into an open cleft created by the Arg61-Trp64 loop of polη, suggesting a role of the Arg61-Trp64 loop in accommodating bulky major groove adducts during lesion bypass. Overall, our results presented here to provide first insights into the TLS of the major DNA adduct formed by nitrogen mustard drugs.
Collapse
|
22
|
Enhanced cytarabine-induced killing in OGG1-deficient acute myeloid leukemia cells. Proc Natl Acad Sci U S A 2021; 118:2016833118. [PMID: 33836581 DOI: 10.1073/pnas.2016833118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human clinical trials suggest that inhibition of enzymes in the DNA base excision repair (BER) pathway, such as PARP1 and APE1, can be useful in anticancer strategies when combined with certain DNA-damaging agents or tumor-specific genetic deficiencies. There is also evidence suggesting that inhibition of the BER enzyme 8-oxoguanine DNA glycosylase-1 (OGG1), which initiates repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-dG), could be useful in treating certain cancers. Specifically, in acute myeloid leukemia (AML), both the RUNX1-RUNX1T1 fusion and the CBFB-MYH11 subtypes have lower levels of OGG1 expression, which correlate with increased therapeutic-induced cell cytotoxicity and good prognosis for improved, relapse-free survival compared with other AML patients. Here we present data demonstrating that AML cell lines deficient in OGG1 have enhanced sensitivity to cytarabine (cytosine arabinoside [Ara-C]) relative to OGG1-proficient cells. This enhanced cytotoxicity correlated with endogenous oxidatively-induced DNA damage and Ara-C-induced DNA strand breaks, with a large proportion of these breaks occurring at common fragile sites. This lethality was highly specific for Ara-C treatment of AML cells deficient in OGG1, with no other replication stress-inducing agents showing a correlation between cell killing and low OGG1 levels. The mechanism for this preferential toxicity was addressed using in vitro replication assays in which DNA polymerase δ was shown to insert Ara-C opposite 8-oxo-dG, resulting in termination of DNA synthesis. Overall, these data suggest that incorporation of Ara-C opposite unrepaired 8-oxo-dG may be the fundamental mechanism conferring selective toxicity and therapeutic effectiveness in OGG1-deficient AML cells.
Collapse
|
23
|
Mäkinen JJ, Shin Y, Vieras E, Virta P, Metsä-Ketelä M, Murakami KS, Belogurov GA. The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases. Nat Commun 2021; 12:796. [PMID: 33542236 PMCID: PMC7862312 DOI: 10.1038/s41467-021-21005-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/06/2021] [Indexed: 01/18/2023] Open
Abstract
RNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2'dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2'OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2'dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here, we show that a conserved Arg residue uses a two-pronged strategy to select against 2'dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2'OH group to promote NTP binding, but selectively inhibits incorporation of 2'dNTPs by interacting with their 3'OH group to favor the catalytically-inert 2'-endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs.
Collapse
Affiliation(s)
- Janne J Mäkinen
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Yeonoh Shin
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Eeva Vieras
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, Turku, Finland
| | | | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| | | |
Collapse
|
24
|
Ghodke PP, Gonzalez-Vasquez G, Wang H, Johnson KM, Sedgeman CA, Guengerich FP. Enzymatic bypass of an N 6-deoxyadenosine DNA-ethylene dibromide-peptide cross-link by translesion DNA polymerases. J Biol Chem 2021; 296:100444. [PMID: 33617883 PMCID: PMC8024977 DOI: 10.1016/j.jbc.2021.100444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Unrepaired DNA-protein cross-links, due to their bulky nature, can stall replication forks and result in genome instability. Large DNA-protein cross-links can be cleaved into DNA-peptide cross-links, but the extent to which these smaller fragments disrupt normal replication is not clear. Ethylene dibromide (1,2-dibromoethane) is a known carcinogen that can cross-link the repair protein O6-alkylguanine-DNA alkyltransferase (AGT) to the N6 position of deoxyadenosine (dA) in DNA, as well as four other positions in DNA. We investigated the effect of a 15-mer peptide from the active site of AGT, cross-linked to the N6 position of dA, on DNA replication by human translesion synthesis DNA polymerases (Pols) η, ⍳, and κ. The peptide-DNA cross-link was bypassed by the three polymerases at different rates. In steady-state kinetics, the specificity constant (kcat/Km) for incorporation of the correct nucleotide opposite to the adduct decreased by 220-fold with Pol κ, tenfold with pol η, and not at all with Pol ⍳. Pol η incorporated all four nucleotides across from the lesion, with the preference dT > dC > dA > dG, while Pol ⍳ and κ only incorporated the correct nucleotide. However, LC-MS/MS analysis of the primer-template extension product revealed error-free bypass of the cross-linked 15-mer peptide by Pol η. We conclude that a bulky 15-mer peptide cross-linked to the N6 position of dA can retard polymerization and cause miscoding but that overall fidelity is not compromised because only correct pairs are extended.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Hui Wang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kevin M Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Carl A Sedgeman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
25
|
Structural insights into the bypass of the major deaminated purines by translesion synthesis DNA polymerase. Biochem J 2020; 477:4797-4810. [PMID: 33258913 DOI: 10.1042/bcj20200800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
The exocyclic amines of nucleobases can undergo deamination by various DNA damaging agents such as reactive oxygen species, nitric oxide, and water. The deamination of guanine and adenine generates the promutagenic xanthine and hypoxanthine, respectively. The exocyclic amines of bases in DNA are hydrogen bond donors, while the carbonyl moiety generated by the base deamination acts as hydrogen bond acceptors, which can alter base pairing properties of the purines. Xanthine is known to base pair with both cytosine and thymine, while hypoxanthine predominantly pairs with cytosine to promote A to G mutations. Despite the known promutagenicity of the major deaminated purines, structures of DNA polymerase bypassing these lesions have not been reported. To gain insights into the deaminated-induced mutagenesis, we solved crystal structures of human DNA polymerase η (polη) catalyzing across xanthine and hypoxanthine. In the catalytic site of polη, the deaminated guanine (i.e., xanthine) forms three Watson-Crick-like hydrogen bonds with an incoming dCTP, indicating the O2-enol tautomer of xanthine involves in the base pairing. The formation of the enol tautomer appears to be promoted by the minor groove contact by Gln38 of polη. When hypoxanthine is at the templating position, the deaminated adenine uses its O6-keto tautomer to form two Watson-Crick hydrogen bonds with an incoming dCTP, providing the structural basis for the high promutagenicity of hypoxanthine.
Collapse
|
26
|
Koag MC, Jung H, Lee S. Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Nucleic Acids Res 2020; 48:5119-5134. [PMID: 32282906 PMCID: PMC7229865 DOI: 10.1093/nar/gkaa193] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species generate the genotoxic 8-oxoguanine (oxoG) and 8-oxoadenine (oxoA) as major oxidative lesions. The mutagenicity of oxoG is attributed to the lesion's ability to evade the geometric discrimination of DNA polymerases by adopting Hoogsteen base pairing with adenine in a Watson–Crick-like geometry. Compared with oxoG, the mutagenesis mechanism of oxoA, which preferentially induces A-to-C mutations, is poorly understood. In the absence of protein contacts, oxoA:G forms a wobble conformation, the formation of which is suppressed in the catalytic site of most DNA polymerases. Interestingly, human DNA polymerase η (polη) proficiently incorporates dGTP opposite oxoA, suggesting the nascent oxoA:dGTP overcomes the geometric discrimination of polη. To gain insights into oxoA-mediated mutagenesis, we determined crystal structures of polη bypassing oxoA. When paired with dGTP, oxoA adopted a syn-conformation and formed Hoogsteen pairing while in a wobble geometry, which was stabilized by Gln38-mediated minor groove contacts to oxoA:dGTP. Gln38Ala mutation reduced misinsertion efficiency ∼55-fold, indicating oxoA:dGTP misincorporation was promoted by minor groove interactions. Also, the efficiency of oxoA:dGTP insertion by the X-family polβ decreased ∼380-fold when Asn279-mediated minor groove contact to dGTP was abolished. Overall, these results suggest that, unlike oxoG, oxoA-mediated mutagenesis is greatly induced by minor groove interactions.
Collapse
Affiliation(s)
- Myong-Chul Koag
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
27
|
Zhang H. Mechanisms of mutagenesis induced by DNA lesions: multiple factors affect mutations in translesion DNA synthesis. Crit Rev Biochem Mol Biol 2020; 55:219-251. [PMID: 32448001 DOI: 10.1080/10409238.2020.1768205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmental mutagens lead to mutagenesis. However, the mechanisms are very complicated and not fully understood. Environmental mutagens produce various DNA lesions, including base-damaged or sugar-modified DNA lesions, as well as epigenetically modified DNA. DNA polymerases produce mutation spectra in translesion DNA synthesis (TLS) through misincorporation of incorrect nucleotides, frameshift deletions, blockage of DNA replication, imbalance of leading- and lagging-strand DNA synthesis, and genome instability. Motif or subunit in DNA polymerases further affects the mutations in TLS. Moreover, protein interactions and accessory proteins in DNA replisome also alter mutations in TLS, demonstrated by several representative DNA replisomes. Finally, in cells, multiple DNA polymerases or cellular proteins collaborate in TLS and reduce in vivo mutagenesis. Summaries and perspectives were listed. This review shows mechanisms of mutagenesis induced by DNA lesions and the effects of multiple factors on mutations in TLS in vitro and in vivo.
Collapse
Affiliation(s)
- Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Koag MC, Jung H, Kou Y, Lee S. Bypass of the Major Alkylative DNA Lesion by Human DNA Polymerase η. Molecules 2019; 24:molecules24213928. [PMID: 31683505 PMCID: PMC6864850 DOI: 10.3390/molecules24213928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/13/2023] Open
Abstract
A wide range of endogenous and exogenous alkylating agents attack DNA to generate various alkylation adducts. N7-methyl-2-deoxyguanosine (Fm7dG) is the most abundant alkylative DNA lesion. If not repaired, Fm7dG can undergo spontaneous depurination, imidazole ring-opening, or bypass by translesion synthesis DNA polymerases. Human DNA polymerase η (polη) efficiently catalyzes across Fm7dG in vitro, but its structural basis is unknown. Herein, we report a crystal structure of polη in complex with templating Fm7dG and an incoming nonhydrolyzable dCTP analog, where a 2'-fluorine-mediated transition destabilization approach was used to prevent the spontaneous depurination of Fm7dG. The structure showed that polη readily accommodated the Fm7dG:dCTP base pair with little conformational change of protein and DNA. In the catalytic site, Fm7dG and dCTP formed three hydrogen bonds with a Watson-Crick geometry, indicating that the major keto tautomer of Fm7dG is involved in base pairing. The polη-Fm7dG:dCTP structure was essentially identical to the corresponding undamaged structure, which explained the efficient bypass of the major methylated lesion. Overall, the first structure of translesion synthesis DNA polymerase bypassing Fm7dG suggests that in the catalytic site of Y-family DNA polymerases, small N7-alkylguanine adducts may be well tolerated and form the canonical Watson-Crick base pair with dCTP through their keto tautomers.
Collapse
Affiliation(s)
- Myong-Chul Koag
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, TX 78712, USA.
| | - Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, TX 78712, USA.
| | - Yi Kou
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, TX 78712, USA.
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, TX 78712, USA.
| |
Collapse
|
29
|
Ketkar A, Maddukuri L, Penthala NR, Reed MR, Zafar MK, Crooks PA, Eoff RL. Inhibition of Human DNA Polymerases Eta and Kappa by Indole-Derived Molecules Occurs through Distinct Mechanisms. ACS Chem Biol 2019; 14:1337-1351. [PMID: 31082191 DOI: 10.1021/acschembio.9b00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Overexpression of human DNA polymerase kappa (hpol κ) in glioblastoma is associated with shorter survival time and resistance to the alkylating agent temozolomide (TMZ), making it an attractive target for the development of small-molecule inhibitors. We previously reported on the development and characterization of indole barbituric acid-derived (IBA) inhibitors of translesion DNA synthesis polymerases (TLS pols). We have now identified a potent and selective inhibitor of hpol κ based on the indole-aminoguanidine (IAG) chemical scaffold. The most promising IAG analogue, IAG-10, exhibited greater inhibitory action against hpol κ than any other human Y-family member, as well as pols from the A-, B-, and X-families. Inhibition of hpol κ by IAG analogues appears to proceed through a mechanism that is distinct from inhibition of hpol η based on changes in DNA binding affinity and nucleotide insertion kinetics. By way of comparison, both IAG and IBA analogues inhibited binary complex formation by hpol κ and ternary complex formation by hpol η. Decreasing the concentration of enzyme and DNA in the reaction mixture lowered the IC50 value of IAG-10 to submicromolar values, consistent with inhibition of binary complex formation for hpol κ. Chemical footprinting experiments revealed that IAG-10 binds to a cleft between the finger, little finger, and N-clasp domains on hpol κ and that this likely disrupts the interaction between the N-clasp and the TLS pol core. In cell culture, IAG-10 potentiated the antiproliferative activity and DNA damaging effects of TMZ in hpol κ-proficient cells but not in hpol κ-deficient cells, indicative of a target-dependent effect. Mutagenic replication across alkylation damage increased in hpol κ-proficient cells treated with IAG-10, while no change in mutation frequency was observed for hpol κ-deficient cells. In summary, we developed a potent and selective small-molecule inhibitor of hpol κ that takes advantage of structural features unique to this TLS enzyme to potentiate TMZ, a standard-of-care drug used in the treatment of malignant brain tumors. Furthermore, the IAG scaffold represents a new chemical space for the exploration of TLS pol inhibitors, which could prove useful as a strategy for improving patient response to genotoxic drugs.
Collapse
Affiliation(s)
- Amit Ketkar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Narsimha R. Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Megan R. Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Maroof K. Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Robert L. Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
30
|
Abstract
7,8-Dihydro-8-oxoguanine (oxoG) is the most abundant oxidative DNA lesion with dual coding properties. It forms both Watson–Crick (anti)oxoG:(anti)C and Hoogsteen (syn)oxoG:(anti)A base pairs without a significant distortion of a B-DNA helix. DNA polymerases bypass oxoG but the accuracy of nucleotide incorporation opposite the lesion varies depending on the polymerase-specific interactions with the templating oxoG and incoming nucleotides. High-fidelity replicative DNA polymerases read oxoG as a cognate base for A while treating oxoG:C as a mismatch. The mutagenic effects of oxoG in the cell are alleviated by specific systems for DNA repair and nucleotide pool sanitization, preventing mutagenesis from both direct DNA oxidation and oxodGMP incorporation. DNA translesion synthesis could provide an additional protective mechanism against oxoG mutagenesis in cells. Several human DNA polymerases of the X- and Y-families efficiently and accurately incorporate nucleotides opposite oxoG. In this review, we address the mutagenic potential of oxoG in cells and discuss the structural basis for oxoG bypass by different DNA polymerases and the mechanisms of the recognition of oxoG by DNA glycosylases and dNTP hydrolases.
Collapse
|
31
|
Njuma OJ, Su Y, Guengerich FP. The abundant DNA adduct N 7-methyl deoxyguanosine contributes to miscoding during replication by human DNA polymerase η. J Biol Chem 2019; 294:10253-10265. [PMID: 31101656 DOI: 10.1074/jbc.ra119.008986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Aside from abasic sites and ribonucleotides, the DNA adduct N 7-methyl deoxyguanosine (N7 -CH3 dG) is one of the most abundant lesions in mammalian DNA. Because N7 -CH3 dG is unstable, leading to deglycosylation and ring-opening, its miscoding potential is not well-understood. Here, we employed a 2'-fluoro isostere approach to synthesize an oligonucleotide containing an analog of this lesion (N7 -CH3 2'-F dG) and examined its miscoding potential with four Y-family translesion synthesis DNA polymerases (pols): human pol (hpol) η, hpol κ, and hpol ι and Dpo4 from the archaeal thermophile Sulfolobus solfataricus We found that hpol η and Dpo4 can bypass the N7 -CH3 2'-F dG adduct, albeit with some stalling, but hpol κ is strongly blocked at this lesion site, whereas hpol ι showed no distinction with the lesion and the control templates. hpol η yielded the highest level of misincorporation opposite the adduct by inserting dATP or dTTP. Moreover, hpol η did not extend well past an N 7-CH3 2'-F dG:dT mispair. MS-based sequence analysis confirmed that hpol η catalyzes mainly error-free incorporation of dC, with misincorporation of dA and dG in 5-10% of products. We conclude that N 7-CH3 2'-F dG and, by inference, N 7-CH3 dG have miscoding and mutagenic potential. The level of misincorporation arising from this abundant adduct can be considered as potentially mutagenic as a highly miscoding but rare lesion.
Collapse
Affiliation(s)
- Olive J Njuma
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Yan Su
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
32
|
Du K, Zhang X, Zou Z, Li B, Gu S, Zhang S, Qu X, Ling Y, Zhang H. Epigenetically modified N 6-methyladenine inhibits DNA replication by human DNA polymerase η. DNA Repair (Amst) 2019; 78:81-90. [PMID: 30991231 DOI: 10.1016/j.dnarep.2019.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
N6-methyladenine (6mA), as a newly reported epigenetic marker, plays significant roles in regulation of various biological processes in eukaryotes. However, the effect of 6mA on human DNA replication remain elusive. In this work, we used Y-family human DNA polymerase η as a model to investigate the kinetics of bypass of 6mA by hPol η. We found 6mA and its intermediate hypoxanthine (I) on template partially inhibited DNA replication by hPol η. dTMP incorporation opposite 6mA and dCMP incorporation opposite I can be considered as correct incorporation. However, both 6mA and I reduced correct incorporation efficiency, next-base extension efficiency, and the priority in extension beyond correct base pair. Both dTMP incorporation opposite 6mA and dCTP opposite I showed fast burst phases. However, 6mA and I reduced the burst incorporation rates (kpol) and increased the dissociation constant (Kd,dNTP), compared with that of dTMP incorporation opposite unmodified A. Biophysical binding assays revealed that both 6mA and I on template reduced the binding affinity of hPol η to DNA in binary or ternary complex compared with unmodified A. All the results explain the inhibition effects of 6mA and I on DNA replication by hPol η, providing new insight in the effects of epigenetically modified 6mA on human DNA replication.
Collapse
Affiliation(s)
- Ke Du
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangqian Zhang
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China
| | - Zhenyu Zou
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Bianbian Li
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiling Gu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyi Qu
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Panyu District, Guangzhou, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
33
|
Oertell K, Florián J, Haratipour P, Crans DC, Kashemirov BA, Wilson SH, McKenna CE, Goodman MF. A Transition-State Perspective on Y-Family DNA Polymerase η Fidelity in Comparison with X-Family DNA Polymerases λ and β. Biochemistry 2019; 58:1764-1773. [PMID: 30839203 DOI: 10.1021/acs.biochem.9b00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deoxynucleotide misincorporation efficiencies can span a wide 104-fold range, from ∼10-2 to ∼10-6, depending principally on polymerase (pol) identity and DNA sequence context. We have addressed DNA pol fidelity mechanisms from a transition-state (TS) perspective using our "tool-kit" of dATP- and dGTP-β,γ substrate analogues in which the pyrophosphate leaving group (p Ka4 = 8.9) has been replaced by a series of bisphosphonates covering a broad acidity range spanning p Ka4 values from 7.8 (CF2) to 12.3 [C(CH3)2]. Here, we have used a linear free energy relationship (LFER) analysis, in the form of a Brønsted plot of log( kpol) versus p Ka4, for Y-family error-prone pol η and X-family pols λ and β to determine the extent to which different electrostatic active site environments alter kpol values. The apparent chemical rate constant ( kpol) is the rate-determining step for the three pols. The pols each exhibit a distinct catalytic signature that differs for formation of right (A·T) and wrong (G·T) incorporations observed as changes in slopes and displacements of the Brønsted lines, in relation to a reference LFER. Common to this signature among all three pols is a split linear pattern in which the analogues containing two halogens show kpol values that are systematically lower than would be predicted from their p Ka4 values measured in aqueous solution. We discuss how metal ions and active site amino acids are responsible for causing "effective" p Ka4 values that differ for dihalo and non-dihalo substrates as well as for individual R and S stereoisomers for CHF and CHCl.
Collapse
Affiliation(s)
- Keriann Oertell
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States
| | - Jan Florián
- Department of Chemistry and Biochemistry , Loyola University Chicago , 1032 West Sheridan Road , Chicago , Illinois 60660 , United States
| | - Pouya Haratipour
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States
| | - Debbie C Crans
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Boris A Kashemirov
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina 27709 , United States
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States
| | - Myron F Goodman
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States.,Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States
| |
Collapse
|
34
|
Koag MC, Jung H, Lee S. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases. J Am Chem Soc 2019; 141:4584-4596. [PMID: 30817143 DOI: 10.1021/jacs.8b08551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species attack DNA to produce 7,8-dihyro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major lesions. The structural basis for the mutagenicity of oxoG, which induces G to T mutations, is well understood. However, the structural basis for the mutagenic potential of oxoA, which induces A to C mutations, remains poorly understood. To gain insight into oxoA-induced mutagenesis, we conducted kinetic studies of human DNA polymerases β and η replicating across oxoA and structural studies of polβ incorporating dTTP/dGTP opposite oxoA. While polη readily bypassed oxoA, it incorporated dGTP opposite oxoA with a catalytic specificity comparable to that of correct insertion, underscoring the promutagenic nature of the major oxidative adenine lesion. Polη and polβ incorporated dGTP opposite oxoA ∼170-fold and ∼100-fold more efficiently than that opposite dA, respectively, indicating that the 8-oxo moiety greatly facilitated error-prone replication. Crystal structures of polβ showed that, when paired with an incoming dTTP, the templating oxoA adopted an anti conformation and formed Watson-Crick base pair. When paired with dGTP, oxoA adopted a syn conformation and formed a Hoogsteen base pair with Watson-Crick-like geometry, highlighting the dual-coding potential of oxoA. The templating oxoA was stabilized by Lys280-mediated stacking and hydrogen bonds. Overall, these results provide insight into the mutagenic potential and dual-coding nature of the major oxidative adenine lesion.
Collapse
Affiliation(s)
- Myong-Chul Koag
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
35
|
Su Y, Ghodke PP, Egli M, Li L, Wang Y, Guengerich FP. Human DNA polymerase η has reverse transcriptase activity in cellular environments. J Biol Chem 2019; 294:6073-6081. [PMID: 30842261 DOI: 10.1074/jbc.ra119.007925] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
Classical DNA and RNA polymerase (pol) enzymes have defined roles with their respective substrates, but several pols have been found to have multiple functions. We reported previously that purified human DNA pol η (hpol η) can incorporate both deoxyribonucleoside triphosphates (dNTPs) and ribonucleoside triphosphates (rNTPs) and can use both DNA and RNA as substrates. X-ray crystal structures revealed that two pol η residues, Phe-18 and Tyr-92, behave as steric gates to influence sugar selectivity. However, the physiological relevance of these phenomena has not been established. Here, we show that purified hpol η adds rNTPs to DNA primers at physiological rNTP concentrations and in the presence of competing dNTPs. When two rATPs were inserted opposite a cyclobutane pyrimidine dimer, the substrate was less efficiently cleaved by human RNase H2. Human XP-V fibroblast extracts, devoid of hpol η, could not add rNTPs to a DNA primer, but the expression of transfected hpol η in the cells restored this ability. XP-V cell extracts did not add dNTPs to DNA primers hybridized to RNA, but could when hpol η was expressed in the cells. HEK293T cell extracts could add dNTPs to DNA primers hybridized to RNA, but lost this ability if hpol η was deleted. Interestingly, a similar phenomenon was not observed when other translesion synthesis (TLS) DNA polymerases-hpol ι, κ, or ζ-were individually deleted. These results suggest that hpol η is one of the major reverse transcriptases involved in physiological processes in human cells.
Collapse
Affiliation(s)
- Yan Su
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Pratibha P Ghodke
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Lin Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
36
|
Wilson KA, Holland CD, Wetmore SD. Uncovering a unique approach for damaged DNA replication: A computational investigation of a mutagenic tobacco-derived thymine lesion. Nucleic Acids Res 2019; 47:1871-1879. [PMID: 30605521 PMCID: PMC6393286 DOI: 10.1093/nar/gky1265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 01/01/2023] Open
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone is a potent nicotine carcinogen that leads to many DNA lesions, the most persistent being the O2-[4-oxo-4-(3-pyridyl)butyl]thymine adduct (POB-T). Although the experimental mutagenic profile for the minor groove POB-T lesion has been previously reported, the findings are puzzling in terms of the human polymerases involved. Specifically, while pol κ typically replicates minor groove adducts, in vivo studies indicate pol η replicates POB-T despite being known for processing major groove adducts. Our multiscale modeling approach reveals that the canonical (anti) glycosidic orientation of POB-T can fit in the pol κ active site, but only a unique (syn) POB-T conformation is accommodated by pol η. These distinct binding orientations rationalize the differential in vitro mutagenic spectra based on the preferential stabilization of dGTP and dTTP opposite the lesion for pol κ and η, respectively. Overall, by uncovering the first evidence for the replication of a damaged pyrimidine in the syn glycosidic orientation, the current work provides the insight necessary to clarify a discrepancy in the DNA replication literature, expand the biological role of the critical human pol η, and understand the mutational signature in human cancers associated with tobacco exposure.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Carl D Holland
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
37
|
Wilson KA, Garden JL, Wetmore NT, Wetmore SD. Computational insights into the mutagenicity of two tobacco-derived carcinogenic DNA lesions. Nucleic Acids Res 2018; 46:11858-11868. [PMID: 30407571 PMCID: PMC6294509 DOI: 10.1093/nar/gky1071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/20/2023] Open
Abstract
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is a potent carcinogen found in all tobacco products that leads to a variety of DNA lesions in cells, including O6-[4-oxo-4-(3-pyridyl)butyl]guanine (POB-G) and O6-[4-hydroxy-4-(3-pyridyl)butyl]guanine (PHB-G), which differ by only a single substituent in the bulky moiety. This work uses a multiscale computational approach to shed light on the intrinsic conformational and base-pairing preferences of POB-G and PHB-G, and the corresponding properties in DNA and the polymerase η active site. Our calculations reveal that both lesions form stable pairs with C and T, with the T pairs being the least distorted relative to canonical DNA. This rationalizes the experimentally reported mutational profile for POB-G and validates our computational model. The same approach predicts that PHB-G is more mutagenic than POB-G due to a difference in the bulky moiety hydrogen-bonding pattern, which increases the stability of the PHB-G:T pair. The mutagenicity of PHB-G is likely further increased by stabilization of an intercalated DNA conformation that is associated with deletion mutations. This work thereby uncovers structural explanations for the reported mutagenicity of POB-G, provides the first clues regarding the mutagenicity of PHB-G and complements a growing body of literature highlighting that subtle chemical changes can affect the biological outcomes of DNA adducts.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Josh L Garden
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Natasha T Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
38
|
Bypassing a 8,5'-cyclo-2'-deoxyadenosine lesion by human DNA polymerase η at atomic resolution. Proc Natl Acad Sci U S A 2018; 115:10660-10665. [PMID: 30275308 DOI: 10.1073/pnas.1812856115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oxidatively induced DNA lesions 8,5'-cyclopurine-2'-deoxynucleosides (cdPus) are prevalent and cytotoxic by impeding DNA replication and transcription. Both the 5'R- and 5'S-diastereomers of cdPu can be removed by nucleotide excision repair; however, the 5'S-cdPu is more resistant to repair than the 5'R counterpart. Here, we report the crystal structures of human polymerase (Pol) η bypassing 5'S-8,5'-cyclo-2'-deoxyadenosine (cdA) in insertion and the following two extension steps. The cdA-containing DNA structures vary in response to the protein environment. Supported by the "molecular splint" of Pol η, the structure of 5'S-cdA at 1.75-Å resolution reveals that the backbone is pinched toward the minor groove and the adenine base is tilted. In the templating position, the cdA takes up the extra space usually reserved for the thymine dimer, and dTTP is efficiently incorporated by Pol η in the presence of Mn2+ Rigid distortions of the DNA duplex by cdA, however, prevent normal base pairing and hinder immediate primer extension by Pol η. Our results provide structural insights into the strong replication blockage effect and the mutagenic property of the cdPu lesions in cells.
Collapse
|
39
|
The active site residues Gln55 and Arg73 play a key role in DNA damage bypass by S. cerevisiae Pol η. Sci Rep 2018; 8:10314. [PMID: 29985422 PMCID: PMC6037775 DOI: 10.1038/s41598-018-28664-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic DNA polymerase eta (Pol η) plays a key role in the efficient and accurate DNA translesion synthesis (TLS) opposite UV-induced thymine dimers. Pol η is also involved in bypass of many other DNA lesions but possesses low fidelity on undamaged DNA templates. To better understand the mechanism of DNA synthesis by Pol η we investigated substitutions of evolutionary conserved active site residues Gln55 and Arg73 in Saccharomyces cerevisiae Pol η. We analyzed the efficiency and fidelity of DNA synthesis by the mutant Pol η variants opposite thymine dimers, abasic site, thymine glycol, 8-oxoguanine and on undamaged DNA. Substitutions Q55A and R73A decreased the catalytic activity and significantly affected DNA damage bypass by Pol η. In particular, the Q55A substitution reduced the efficiency of thymine dimers bypass, R73A had a stronger effect on the TLS-activity opposite abasic site, while both substitutions impaired replication opposite thymine glycol. Importantly, the R73A substitution also increased the fidelity of Pol η. Altogether, these results reveal a key role of residues Gln55 and Arg73 in DNA synthesis opposite various types of DNA lesions and highlight the evolutionary importance of the Pol η TLS function at the cost of DNA replication accuracy.
Collapse
|
40
|
Stevens DR, Hammes-Schiffer S. Exploring the Role of the Third Active Site Metal Ion in DNA Polymerase η with QM/MM Free Energy Simulations. J Am Chem Soc 2018; 140:8965-8969. [PMID: 29932331 DOI: 10.1021/jacs.8b05177] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enzyme human DNA polymerase η (Pol η) is critical for bypassing lesions during DNA replication. In addition to the two Mg2+ ions aligning the active site, experiments suggest that a third Mg2+ ion could play an essential catalytic role. Herein the role of this third metal ion is investigated with quantum mechanical/molecular mechanical (QM/MM) free energy simulations of the phosphoryl transfer reaction and a proposed self-activating proton transfer from the incoming nucleotide to the pyrophosphate leaving group. The simulations with only two metal ions in the active site support a sequential mechanism, with phosphoryl transfer followed by relatively fast proton transfer. The simulations with three metal ions in the active site suggest that the third metal ion may play a catalytic role through electrostatic interactions with the leaving group. These electrostatic interactions stabilize the product, making the phosphoryl transfer reaction more thermodynamically favorable with a lower free energy barrier relative to the activated state corresponding to the deprotonated 3'OH nucleophile, and also inhibit the subsequent proton transfer. The possibility that Mg2+-bound hydroxide acts as the base deprotonating the 3'OH nucleophile is also explored.
Collapse
Affiliation(s)
- David R Stevens
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| |
Collapse
|
41
|
Genna V, Carloni P, De Vivo M. A Strategically Located Arg/Lys Residue Promotes Correct Base Paring During Nucleic Acid Biosynthesis in Polymerases. J Am Chem Soc 2018; 140:3312-3321. [PMID: 29424536 DOI: 10.1021/jacs.7b12446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymerases (Pols) synthesize the double-stranded nucleic acids in the Watson-Crick (W-C) conformation, which is critical for DNA and RNA functioning. Yet, the molecular basis to catalyze the W-C base pairing during Pol-mediated nucleic acids biosynthesis remains unclear. Here, through bioinformatics analyses on a large data set of Pol/DNA structures, we first describe the conserved presence of one positively charged residue (Lys or Arg), which is similarly located near the enzymatic two-metal active site, always interacting directly with the incoming substrate (d)NTP. Incidentally, we noted that some Pol/DNA structures showing the alternative Hoogsteen base pairing were often solved with this specific residue either mutated, displaced, or missing. We then used quantum and classical simulations coupled to free-energy calculations to illustrate how, in human DNA Pol-η, the conserved Arg61 favors W-C base pairing through defined interactions with the incoming nucleotide. Taken together, these structural observations and computational results suggest a structural framework in which this specific residue is critical for stabilizing the incoming (d)NTP nucleotide and base pairing during Pol-mediated nucleic acid biosynthesis. These results may benefit enzyme engineering for nucleic acid processing and encourage new drug discovery strategies to modulate Pols function.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy.,Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy.,Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| |
Collapse
|
42
|
General misincorporation frequency: Re-evaluation of the fidelity of DNA polymerases. Biochem Biophys Res Commun 2018; 496:1076-1081. [DOI: 10.1016/j.bbrc.2018.01.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 01/07/2023]
|
43
|
Liu X, Zou X, Li H, Zou Z, Yang J, Wang C, Wu S, Zhang H. Bypass of an Abasic Site via the A-Rule by DNA Polymerase of Pseudomonas aeruginosa Phage PaP1. Chem Res Toxicol 2017; 31:58-65. [PMID: 29183115 DOI: 10.1021/acs.chemrestox.7b00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaoying Liu
- School
of Public Health, Xinjiang Medical University, Urumqi 830011, China
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Xiaoli Zou
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Huangyuan Li
- Key
Laboratory of Environment and Health among Universities and Colleges
in Fujian, School of Public Health, Fujian Medical University, Minhou
County, Fuzhou 350108, China
| | - Zhenyu Zou
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Jie Yang
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Chenlu Wang
- School
of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Shunhua Wu
- School
of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Huidong Zhang
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| |
Collapse
|
44
|
Minko IG, Rizzo CJ, Lloyd RS. Mutagenic potential of nitrogen mustard-induced formamidopyrimidine DNA adduct: Contribution of the non-canonical α-anomer. J Biol Chem 2017; 292:18790-18799. [PMID: 28972137 DOI: 10.1074/jbc.m117.802520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
Nitrogen mustards (NMs) are DNA-alkylating compounds that represent the earliest anticancer drugs. However, clinical use of NMs is limited because of their own mutagenic properties. The mechanisms of NM-induced mutagenesis remain unclear. The major product of DNA alkylation by NMs is a cationic NM-N7-dG adduct that can yield the imidazole ring-fragmented lesion, N5-NM-substituted formamidopyrimidine (NM-Fapy-dG). Characterization of this adduct is complicated because it adopts different conformations, including both a canonical β- and an unnatural α-anomeric configuration. Although formation of NM-Fapy-dG in cellular DNA has been demonstrated, its potential role in NM-induced mutagenesis is unknown. Here, we created site-specifically modified single-stranded vectors for replication in primate (COS7) or Escherichia coli cells. In COS7 cells, NM-Fapy-dG caused targeted mutations, predominantly G → T transversions, with overall frequencies of ∼11-12%. These frequencies were ∼2-fold higher than that induced by 8-oxo-dG adduct. Replication in E. coli was essentially error-free. To elucidate the mechanisms of bypass of NM-Fapy-dG, we performed replication assays in vitro with a high-fidelity DNA polymerase, Saccharomyces cerevisiae polymerase (pol) δ. It was found that pol δ could catalyze high-fidelity synthesis past NM-Fapy-dG, but only on a template subpopulation, presumably containing the β-anomeric adduct. Consistent with the low mutagenic potential of the β-anomer in vitro, the mutation frequency was significantly reduced when conditions for vector preparation were modified to favor this configuration. Collectively, these data implicate the α-anomer as a major contributor to NM-Fapy-dG-induced mutagenesis in primate cells.
Collapse
Affiliation(s)
- Irina G Minko
- From the Oregon Institute of Occupational Health Sciences and
| | - Carmelo J Rizzo
- the Departments of Chemistry and Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - R Stephen Lloyd
- From the Oregon Institute of Occupational Health Sciences and .,the Departments of Molecular and Medical Genetics and Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239 and
| |
Collapse
|
45
|
Increased Processivity, Misincorporation, and Nucleotide Incorporation Efficiency in Sulfolobus solfataricus Dpo4 Thumb Domain Mutants. Appl Environ Microbiol 2017; 83:AEM.01013-17. [PMID: 28710267 DOI: 10.1128/aem.01013-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 01/21/2023] Open
Abstract
The present study aimed to increase the processivity of Sulfolobus solfataricus DNA polymerase Dpo4. Protein engineering and bioinformatics were used to compile a library of potential Dpo4 mutation sites. Ten potential mutants were identified and constructed. A primer extension assay was used to evaluate the processivity of Dpo4 mutants. Thumb (A181D) and finger (E63K) domain mutants showed a processivity of 20 and 19 nucleotides (nt), respectively. A little finger domain mutant (I248Y) exhibited a processivity of 17 nt, only 1 nt more than wild-type Dpo4. Furthermore, the A181D mutant showed lower fidelity and higher nucleotide incorporation efficiency (4.74 × 10-4 s-1 μM-1) than E63K and I248Y mutants. When tasked with bypassing damage, the A181D mutant exhibited a 3.81-fold and 2.62-fold higher catalytic efficiency (kcat/Km ) at incorporating dCTP and dATP, respectively, than wild-type Dpo4. It also showed a 55% and 91.5% higher catalytic efficiency when moving beyond the damaged 8-oxoG:C and 8-oxoG:A base pairs, respectively, compared to wild-type Dpo4. Protein engineering and bioinformatics methods can effectively increase the processivity and translesion synthesis ability of Dpo4.IMPORTANCE DNA polymerases with poor fidelity can be exploited to store data and record changes in response to the intracellular environment. Sulfolobus solfataricus Dpo4 is such an enzyme, although its use is hindered by its low processivity. In this work, we used a bioinformatics and protein engineering approach to generate Dpo4 mutants with improved processivity. We identified the Dpo4 thumb domain as the most relevant in controlling processivity.
Collapse
|
46
|
DNA binding strength increases the processivity and activity of a Y-Family DNA polymerase. Sci Rep 2017; 7:4756. [PMID: 28684739 PMCID: PMC5500549 DOI: 10.1038/s41598-017-02578-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
DNA polymerase (pol) processivity, i.e., the bases a polymerase extends before falling off the DNA, and activity are important for copying difficult DNA sequences, including simple repeats. Y-family pols would be appealing for copying difficult DNA and incorporating non-natural dNTPs, due to their low fidelity and loose active site, but are limited by poor processivity and activity. In this study, the binding between Dbh and DNA was investigated to better understand how to rationally design enhanced processivity in a Y-family pol. Guided by structural simulation, a fused pol Sdbh with non-specific dsDNA binding protein Sso7d in the N-terminus was designed. This modification increased in vitro processivity 4-fold as compared to the wild-type Dbh. Additionally, bioinformatics was used to identify amino acid mutations that would increase stabilization of Dbh bound to DNA. The variant SdbhM76I further improved the processivity of Dbh by 10 fold. The variant SdbhKSKIP241–245RVRKS showed higher activity than Dbh on the incorporation of dCTP (correct) and dATP (incorrect) opposite the G (normal) or 8-oxoG(damaged) template base. These results demonstrate the capability to rationally design increases in pol processivity and catalytic efficiency through computational DNA binding predictions and the addition of non-specific DNA binding domains.
Collapse
|
47
|
Ignatov A, Bondarenko K, Makarova A. Non-bulky Lesions in Human DNA: the Ways of Formation, Repair, and Replication. Acta Naturae 2017; 9:12-26. [PMID: 29104772 PMCID: PMC5662270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/06/2022] Open
Abstract
DNA damage is a major cause of replication interruption, mutations, and cell death. DNA damage is removed by several types of repair processes. The involvement of specialized DNA polymerases in replication provides an important mechanism that helps tolerate persistent DNA damage. Specialized DNA polymerases incorporate nucleotides opposite lesions with high efficiency but demonstrate low accuracy of DNA synthesis. In this review, we summarize the types and mechanisms of formation and repair of non-bulky DNA lesions, and we provide an overview of the role of specialized DNA polymerases in translesion DNA synthesis.
Collapse
Affiliation(s)
- A.V. Ignatov
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
- Department of Molecular Biology, Faculty of Biology, Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119991, Russia
| | - K.A. Bondarenko
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
| | - A.V. Makarova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
| |
Collapse
|
48
|
Gu S, Xiong J, Shi Y, You J, Zou Z, Liu X, Zhang H. Error-prone bypass of O 6-methylguanine by DNA polymerase of Pseudomonas aeruginosa phage PaP1. DNA Repair (Amst) 2017. [PMID: 28651167 DOI: 10.1016/j.dnarep.2017.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O6-Methylguanine (O6-MeG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, generally leads to G:C to A:T mutagenesis. To study DNA replication encountering O6-MeG by the DNA polymerase (gp90) of P. aeruginosa phage PaP1, we analyzed steady-state and pre-steady-state kinetics of nucleotide incorporation opposite O6-MeG by gp90 exo-. O6-MeG partially inhibited full-length extension by gp90 exo-. O6-MeG greatly reduces dNTP incorporation efficiency, resulting in 67-fold preferential error-prone incorporation of dTTP than dCTP. Gp90 exo- extends beyond T:O6-MeG 2-fold more efficiently than C:O6-MeG. Incorporation of dCTP opposite G and incorporation of dCTP or dTTP opposite O6-MeG show fast burst phases. The pre-steady-state incorporation efficiency (kpol/Kd,dNTP) is decreased in the order of dCTP:G>dTTP:O6-MeG>dCTP:O6-MeG. The presence of O6-MeG at template does not affect the binding affinity of polymerase to DNA but it weakened their binding in the presence of dCTP and Mg2+. Misincorporation of dTTP opposite O6-MeG further weakens the binding affinity of polymerase to DNA. The priority of dTTP incorporation opposite O6-MeG is originated from the fact that dTTP can induce a faster conformational change step and a faster chemical step than dCTP. This study reveals that gp90 bypasses O6-MeG in an error-prone manner and provides further understanding in DNA replication encountering mutagenic alkylation DNA damage for P. aeruginosa phage PaP1.
Collapse
Affiliation(s)
- Shiling Gu
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Jingyuan Xiong
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Ying Shi
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Jia You
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhenyu Zou
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Xiaoying Liu
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Yoon H, Warshel A. Simulating the fidelity and the three Mg mechanism of pol η and clarifying the validity of transition state theory in enzyme catalysis. Proteins 2017; 85:1446-1453. [PMID: 28383109 DOI: 10.1002/prot.25305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/06/2022]
Abstract
Pol η belongs to the important Y family of DNA polymerases that can catalyze translesion synthesis across sites of damaged DNA. This activity involves the reduced fidelity of Pol η for 8-oxo-7,8-dhyedro-2'-deoxoguanosin(8-oxoG). The fundamental interest in Pol η has grown recently with the demonstration of the importance of a 3rd Mg2+ ion. The current work explores both the fidelity of Pol η and the role of the 3rd metal ion, by using empirical valence bond (EVB) simulations. The simulations reproduce the observed trend in fidelity and shed a new light on the role of the 3rd metal ion. It is found that this ion does not lead to a major catalytic effect, but most probably plays an important role in reducing the product release barrier. Furthermore, it is concluded, in contrast to some implications, that the effect of this metal does not violate transition state theory, and the evaluation of the catalytic effect must conserve the molecular composition upon moving from the reactant to the transition state. Proteins 2017; 85:1446-1453. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hanwool Yoon
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave, Los Angeles, California, 90089-1062
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave, Los Angeles, California, 90089-1062
| |
Collapse
|
50
|
Sedgeman CA, Su Y, Guengerich FP. Formation of S-[2-(N 6-Deoxyadenosinyl)ethyl]glutathione in DNA and Replication Past the Adduct by Translesion DNA Polymerases. Chem Res Toxicol 2017; 30:1188-1196. [PMID: 28395138 DOI: 10.1021/acs.chemrestox.7b00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1,2-Dibromoethane (DBE, ethylene dibromide) is a potent carcinogen due at least in part to its DNA cross-linking effects. DBE cross-links glutathione (GSH) to DNA, notably to sites on 2'-deoxyadenosine and 2'-deoxyguanosine ( Cmarik , J. L. , et al. ( 1991 ) J. Biol. Chem. 267 , 6672 - 6679 ). Adduction at the N6 position of 2'-deoxyadenosine (dA) had not been detected, but this is a site for the linkage of O6-alkylguanine DNA alkyltransferase ( Chowdhury , G. , et al. ( 2013 ) Angew. Chem. Int. Ed. 52 , 12879 - 12882 ). We identified and quantified a new adduct, S-[2-(N6-deoxyadenosinyl)ethyl]GSH, in calf thymus DNA using LC-MS/MS. Replication studies were performed in duplex oligonucleotides containing this adduct with human DNA polymerases (hPols) η, ι, and κ, as well as with Sulfolobus solfataricus Dpo4, Escherichia coli polymerase I Klenow fragment, and bacteriophage T7 polymerase. hPols η and ι, Dpo4, and Klenow fragment were able to bypass the adduct with only slight impedance; hPol η and ι showed increased misincorporation opposite the adduct compared to that of unmodified 2'-deoxyadenosine. LC-MS/MS analysis of full-length primer extension products by hPol η confirmed the incorporation of dC opposite S-[2-(N6-deoxyadenosinyl)ethyl]GSH and also showed the production of a -1 frameshift. These results reveal the significance of N6-dA GSH-DBE adducts in blocking replication, as well as producing mutations, by human translesion synthesis DNA polymerases.
Collapse
Affiliation(s)
- Carl A Sedgeman
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Yan Su
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| |
Collapse
|