1
|
Chu DT, Thi HV, Bui NL, Le NH. The effects of a diet with high fat content from lard on the health and adipose-markers' mRNA expression in mice. Sci Prog 2024; 107:368504241269431. [PMID: 39090965 PMCID: PMC11297511 DOI: 10.1177/00368504241269431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Pork is one type of the most frequently consumed meat with about 30% globally. Thus, the questions regarding to the health effects of diet with high fat content from lard are raised. Here, we developed a model of mice fed with high fat (HF) from lard to investigate and have more insights on the effects of long-time feeding with HF on health. The results showed that 66 days on HF induced a significant gain in the body weight of mice, and this weight gain was associated to the deposits in the white fat, but not brown fat. The glucose tolerance, not insulin resistance, in mice was decreased by the HF diet, and this was accompanied with significantly higher blood levels of total cholesterol and triglycerides. Furthermore, the weight gains in mice fed with HF seemed to link to increased mRNA levels of adipose biomarkers in lipogenesis, including Acly and Acaca genes, in white fat tissues. Thus, our study shows that a diet with high fat from lard induced the increase in body weight, white fat depots' expansion, disruption of glucose tolerance, blood dyslipidemia, and seemed to start affecting the mRNA expression of some adipose biomarkers in a murine model.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Ngoc-Hoan Le
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| |
Collapse
|
2
|
Le TPH, Nguyen NTT, Le DDT, Anwar MA, Lee SY. Lipid kinase PIP5Kα contributes to Hippo pathway activation via interaction with Merlin and by mediating plasma membrane targeting of LATS1. Cell Commun Signal 2023; 21:149. [PMID: 37337213 DOI: 10.1186/s12964-023-01161-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The Hippo pathway plays a critical role in controlled cell proliferation. The tumor suppressor Merlin and large tumor suppressor kinase 1 (LATS1) mediate activation of Hippo pathway, consequently inhibiting the primary effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Phosphatidylinositol 4,5-bisphosphate (PIP2), a lipid present in the plasma membrane (PM), binds to and activates Merlin. Phosphatidylinositol 4-phosphate 5-kinase α (PIP5Kα) is an enzyme responsible for PIP2 production. However, the functional role of PIP5Kα in regulation of Merlin and LATS1 under Hippo signaling conditions remains unclear. METHODS PIP5Kα, Merlin, or LATS1 knockout or knockdown cells and transfected cells with them were used. LATS1, YAP, and TAZ activities were measured using biochemical methods and PIP2 levels were evaluated using cell imaging. Low/high cell density and serum starvation/stimulation conditions were tested. Colocalization of PIP5Kα and PIP2 with Merlin and LATS1, and their protein interactions were examined using transfection, confocal imaging, immunoprecipitation, western blotting, and/or pull-down experiments. Colony formation and adipocyte differentiation assays were performed. RESULTS We found that PIP5Kα induced LATS1 activation and YAP/TAZ inhibition in a kinase activity-dependent manner. Consistent with these findings, PIP5Kα suppressed cell proliferation and enhanced adipocyte differentiation of mesenchymal stem cells. Moreover, PIP5Kα protein stability and PIP2 levels were elevated at high cell density compared with those at low cell density, and both PIP2 and YAP phosphorylation levels initially declined, then recovered upon serum stimulation. Under these conditions, YAP/TAZ activity was aberrantly regulated by PIP5Kα deficiency. Mechanistically, either Merlin deficiency or LATS1 deficiency abrogated PIP5Kα-mediated YAP/TAZ inactivation. Additionally, the catalytic domain of PIP5Kα directly interacted with the band 4.1/ezrin/radixin/moesin domain of Merlin, and this interaction reinforced interaction of Merlin with LATS1. In accordance with these findings, PIP5Kα and PIP2 colocalized with Merlin and LATS1 in the PM. In PIP5Kα-deficient cells, Merlin colocalization with PIP2 was reduced, and LATS1 solubility increased. CONCLUSIONS Collectively, our results support that PIP5Kα serves as an activator of the Hippo pathway through interaction and colocalization with Merlin, which promotes PIP2-dependent Merlin activation and induces local recruitment of LATS1 to the PIP2-rich PM and its activation, thereby negatively regulating YAP/TAZ activity. Video Abstract.
Collapse
Affiliation(s)
- Truc Phan Hoang Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea
| | - Nga Thi Thanh Nguyen
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea
| | - Duong Duy Thai Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea
| | - Muhammad Ayaz Anwar
- Department of Applied Chemistry, Kyung Hee University International Campus, Yongin, Gyeonggi, 17104, Republic of Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.
| |
Collapse
|
3
|
Chu DT, Nguyen TL. Frizzled receptors and SFRP5 in lipid metabolism: Current findings and potential applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:377-393. [PMID: 36631199 DOI: 10.1016/bs.pmbts.2022.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipid metabolism plays a very important role as the central metabolic process of the body. Lipid metabolism interruptions may cause many chronic diseases, for example, non-alcoholic fatty liver disease (NAFLD), diabetes, and obesity. Secreted Frizzled Related Protein 5 (SFRP5) and Frizzled receptors (FZD) are two newly discovered adipokines that are involved in lipid metabolism as well as lipogenesis. Both of these adipokines affect lipid metabolism and adipogenesis through three WNT signaling pathways (WNTSP): WNT/β-catenin, WNT/Ca2+, and WNT/JNK. FZD consists of 10 species, which have a cysteine-rich domain (CRD) to bind to the WNT protein for signal transduction. Depending on the type of ligand or co-receptor, they can stimulate or inhibit adipogenesis. In lipid metabolism, they play a role in recognizing fatty acids. In obesity, gene expression of the WNT/FZD receptors is significantly increased. In contrast, SFPR5 serves as an antagonist that can compete with FZD for inhibition of WNTSP. It is believed to have anti-inflammatory potential in obesity and diseases related to abnormal lipid metabolism. In these cases, the expression of SFRP5 is found to be very low leading to the promoted production of proinflammatory cytokines (PICS). Some methods that include using recombinant SFRP5 to improve non-alcoholic steatohepatitis (NASH), using secreted Ly-6/uPAR-related protein 1 (Slurp1) to regulate fat accumulation in the liver through SFRP5, and dietary and lifestyle interventions to improve overweight/obesity have been studied. However, understandings of the molecular mechanisms of these two adipokines and their interactions are very limited. Therefore, more in-depth studies are needed in the future.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Thanh-Lam Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
4
|
Verma R, Fu M, Yang G, Wu L, Wang R. Hydrogen Sulfide Promotes Adipocyte Differentiation, Hyperplasia, and Hypertrophy. ENGINEERING 2023; 20:36-48. [DOI: 10.1016/j.eng.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Disturbance of calcium homeostasis and myogenesis caused by TET2 deletion in muscle stem cells. Cell Death Dis 2022; 8:236. [PMID: 35490157 PMCID: PMC9056526 DOI: 10.1038/s41420-022-01041-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 01/22/2023]
Abstract
Skeletal muscle myogenesis is a sophisticated process controlled by genetic and epigenetic regulators. In animals, one of the key enzymes for the DNA demethylation of 5-methylcytosine is TET2. Although TET2 is essential for muscle development, the mechanisms by which TET2 regulates myogenesis, particularly the implication for muscle stem cells, remains unclear. In the present study, we employed the TET2 knockout mouse model to investigate the function of TET2 in muscle development and regeneration. We observed that TET2 deficiency caused impaired muscle stem cell proliferation and differentiation, resulting in the reduction in both myofiber number and muscle tissue size. Specifically, TET2 maintains calcium homeostasis in muscle stem cells by controlling the DNA methylation levels of the calcium pathway genes. Forced expression of the sodium/calcium exchanger protein SLC8A3 could rescue the myogenic defects in TET2 knockout cells. Our data not only illustrated the vital function of TET2 during myogenesis but also identified novel targets that contribute to calcium homeostasis for enhancing muscle function.
Collapse
|
6
|
Yue Y, Hua Y, Zhang J, Guo Y, Zhao D, Huo W, Xiong Y, Chen F, Lin Y, Xiong X, Li J. Establishment of a subcutaneous adipogenesis model and distinct roles of LKB1 regulation on adipocyte lipid accumulation in high-altitude Bos grunniens. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2042001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yongqi Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Yonglin Hua
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Jing Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Yu Guo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Dan Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Wentao Huo
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Fenfen Chen
- School of Life Sciences, Southwest Forestry University, Kunming, People’s Republic of China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| |
Collapse
|
7
|
Adipogenesis of ear mesenchymal stem cells (EMSCs): adipose biomarker-based assessment of genetic variation, adipocyte function, and brown/brite differentiation. Mol Cell Biochem 2022; 477:1053-1063. [PMID: 34997885 DOI: 10.1007/s11010-021-04350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Ear mesenchymal stem cells (EMSCs) have been investigated to differentiate into adipocytes, chondrocytes, and muscle cells in vitro. However, the factors controlling adipogenesis of this stem cell population in vitro, function, and type of adipocytes raised from them are still unclear. Here we found that genetics have a modest effect on adipogenic capacity of EMSCs. Adipocytes differentiated from EMSCs have a potential function in lipid metabolism as indicated by expression of lipogenic genes and this function of EMSC adipocytes is regulated by genetics. EMSCs failed to be differentiated into brite/brown adipocytes due to their lack of a thermogenic program, but adipocytes raised from EMSCs showed a fate of white adipocytes. Overall, our data suggest that EMSCs differentiate into functional white adipocytes in vitro and this is genetic-dependent.
Collapse
|
8
|
Rosita R, Yueniwati Y, Endharti AT, Widodo MA. High-Glucose and Free Fatty Acid-Induced Adipocytes Generate Increasing of HMGB1 and Reduced GLUT4 Expression. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background
High-mobility group box 1 protein (HMGB1) is released from necrotic adipocytes into the extracellular milieu as an inflammatory alarmin in obesity. Although the impact of excess nutrient on adipocytes is well known, it is not clear how specific its component drive cell-size and damaged of adipocytes, and how this relates to the risk of insulin resistance.
Objectives
The aim of this study was to determine HMGB1 level in adipocytes cultures after high glucose and/or FFA exposures and to assess GLUT4 expression. We determined cellular features of adipocytes that correlates to HMGB1 released and insulin resistance.
Methods
Differentiated adipocytes were exposed to high glucose and/or FFAs for 7 days. ELISA was performed on supernatant to assess the HMGB1 level. Total GLUT4 expression were quantified by immunofluorescense.
Results
High glucose and FFA-exposed cells have significant increase of HMGB1 level with decreased of cell size and necrotic adipocytes features. The total GLUT4 were reduced in HG-cells (p <0,045), but not in FFA cells. Hypertrophic adipocytes (p <0.05) and slight decrease of GLUT4 expression were showed on HG+FFA exposures with no increase of HMGB1 level. There was a significant correlation between cell size and HMGB1 level (R -0,637, p < 0.026)
Conclusion
The expression level studies between high glucose, FFA, and a combination of both on adipocytes results strongly suggest that high glucose is more damaging to adipocyte compared to FFA. Nevertheless, the combination of the two causes adipocyte dysfunction with general features of adipose tissue in obesity, suggested it can be used as a hypertrophic adipocytes model to study obesity in vitro.
Collapse
|
9
|
Komakula SSB, Blaze B, Ye H, Dobrzyn A, Sampath H. A Novel Role for the DNA Repair Enzyme 8-Oxoguanine DNA Glycosylase in Adipogenesis. Int J Mol Sci 2021; 22:ijms22031152. [PMID: 33503804 PMCID: PMC7865743 DOI: 10.3390/ijms22031152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Cells sustain constant oxidative stress from both exogenous and endogenous sources. When unmitigated by antioxidant defenses, reactive oxygen species damage cellular macromolecules, including DNA. Oxidative lesions in both nuclear and mitochondrial DNA are repaired via the base excision repair (BER) pathway, initiated by DNA glycosylases. We have previously demonstrated that the BER glycosylase 8-oxoguanine DNA glycosylase (OGG1) plays a novel role in body weight maintenance and regulation of adiposity. Specifically, mice lacking OGG1 (Ogg1−/−) are prone to increased fat accumulation with age and consumption of hypercaloric diets. Conversely, transgenic animals with mitochondrially-targeted overexpression of OGG1 (Ogg1Tg) are resistant to age- and diet-induced obesity. Given these phenotypes of altered adiposity in the context of OGG1 genotype, we sought to determine if OGG1 plays a cell-intrinsic role in adipocyte maturation and lipid accumulation. Here, we report that preadipocytes from Ogg1−/− mice differentiate more efficiently and accumulate more lipids than those from wild-type animals. Conversely, OGG1 overexpression significantly blunts adipogenic differentiation and lipid accretion in both pre-adipocytes from Ogg1Tg mice, as well as in 3T3-L1 cells with adenovirus-mediated OGG1 overexpression. Mechanistically, changes in adipogenesis are accompanied by significant alterations in cellular PARylation, corresponding with OGG1 genotype. Specifically, deletion of OGG1 reduces protein PARylation, concomitant with increased adipogenic differentiation, while OGG1 overexpression significantly increases PARylation and blunts adipogenesis. Collectively, these data indicate a novel role for OGG1 in modulating adipocyte differentiation and lipid accretion. These findings have important implications to our knowledge of the fundamental process of adipocyte differentiation, as well as to our understanding of lipid-related diseases such as obesity.
Collapse
Affiliation(s)
- Sai Santosh Babu Komakula
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA; (S.S.B.K.); (B.B.); (H.Y.)
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Bhavya Blaze
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA; (S.S.B.K.); (B.B.); (H.Y.)
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hong Ye
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA; (S.S.B.K.); (B.B.); (H.Y.)
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Harini Sampath
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA; (S.S.B.K.); (B.B.); (H.Y.)
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence:
| |
Collapse
|
10
|
Fang W, Deng Z, Benadjaoud F, Yang D, Yang C, Shi GP. Regulatory T cells promote adipocyte beiging in subcutaneous adipose tissue. FASEB J 2020; 34:9755-9770. [PMID: 32510702 DOI: 10.1096/fj.201902518r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 12/28/2022]
Abstract
Regulatory T cells (Tregs) play essential roles in obesity and diabetes. Here, we report a role of Tregs in enhancing β3-adrenergic receptor agonist CL316243 (CL)-stimulated thermogenic program in subcutaneous adipose tissue (SAT), but not in visceral fat. CL treatment for 7 days increased SAT adipocyte beiging and thermogenic gene expression in male or female mice. Adoptive transfer of Tregs enhanced this CL activity. Such Treg activity lost in male epididymal white adipose tissue (eWAT) and female gonadal gWAT. Adipocyte culture yielded the same conclusion. Tregs enhanced the expression of CL-induced thermogenic genes in SAT from male and female mice. This activity of Tregs reduced or disappeared in adipocytes from eWAT or gWAT. Both CL and Tregs induced much higher UCP-1 (uncoupling protein-1) expression in SAT from females than that from males. A mechanistic study demonstrated a role of Tregs in suppressing the expression of M1 macrophage markers (Tnfa, Il6, iNos, Ip10) and promoting the expression of M2 macrophage markers (Mrc1, Arg1, Il10) in bone-marrow-derived macrophages or in SAT from male or female mice. In female mice with pre-established obesity, Treg adoptive transfer reduced the gWAT weight in 2 weeks. Together with CL treatment, Treg adoptive transfer reduced the SAT weight and further improved CL-induced glucose metabolism and insulin sensitivity in female obese mice, but did not affect CL-induced body weight loss in male or female obese mice. This study revealed a predominant role of Tregs in female mice in promoting adipocyte beiging and thermogenesis in SAT, in part by slanting M2 macrophage polarization.
Collapse
Affiliation(s)
- Wenqian Fang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Zhiyong Deng
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Geriatrics, National Key Clinic Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Feriel Benadjaoud
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dafeng Yang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chongzhe Yang
- Department of Geriatrics, National Key Clinic Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Cubillos-Angulo JM, Vinhaes CL, Fukutani ER, Albuquerque VVS, Queiroz ATL, Andrade BB, Fukutani KF. In silico transcriptional analysis of mRNA and miRNA reveals unique biosignatures that characterizes different types of diabetes. PLoS One 2020; 15:e0239061. [PMID: 32956382 PMCID: PMC7505453 DOI: 10.1371/journal.pone.0239061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes (DM) has a significant impact on public health. We performed an in silico study of paired datasets of messenger RNA (mRNA) micro-RNA (miRNA) transcripts to delineate potential biosignatures that could distinguish prediabetes (pre-DM), type-1DM (T1DM) and type-2DM (T2DM). Two publicly available datasets containing expression values of mRNA and miRNA obtained from individuals diagnosed with pre-DM, T1DM or T2DM, and normoglycemic controls (NC), were analyzed using systems biology approaches to define combined signatures to distinguish different clinical groups. The mRNA profile of both pre-DM and T2DM was hallmarked by several differentially expressed genes (DEGs) compared to NC. Nevertheless, T1DM was characterized by an overall low number of DEGs. The miRNA signature profiles were composed of a substantially lower number of differentially expressed targets. Gene enrichment analysis revealed several inflammatory pathways in T2DM and fewer in pre-DM, but with shared findings such as Tuberculosis. The integration of mRNA and miRNA datasets improved the identification and discriminated the group composed by pre-DM and T2DM patients from that constituted by normoglycemic and T1DM individuals. The integrated transcriptomic analysis of mRNA and miRNA expression revealed a unique biosignature able to characterize different types of DM.
Collapse
Affiliation(s)
- Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Caian L. Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | | | - Artur T. L. Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Kiyoshi F. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| |
Collapse
|
12
|
Montanari T, Boschi F, Colitti M. Comparison of the Effects of Browning-Inducing Capsaicin on Two Murine Adipocyte Models. Front Physiol 2019; 10:1380. [PMID: 31749714 PMCID: PMC6848400 DOI: 10.3389/fphys.2019.01380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
The increasing prevalence of obesity and its associated comorbidities has gained attention in developing effective treatments and strategies that promote energy expenditure and the conversion of fat from a white to a brite phenotype. Capsaicin, bioactive component of chili peppers and a transient receptor potential channel vanilloid 1 (TRPV1) agonist, has been known to stimulate the process of thermogenesis. In this study, the effects of capsaicin were assessed on two murine cellular models by quantifying the dynamic of lipid droplets (LDs) and the expression of genes involved in adipocyte browning. Present findings demonstrated that treatment with norepinephrine or capsaicin combined with norepinephrine on 3T3-L1 cells and X9 cells significantly promoted the reduction of LDs area surface and size. The transcription of browning related genes such as uncoupling protein 1 (Ucp1), T-box transcription factor 1 (Tbx1), PR domain containing 16 (Prdm16), peroxisome proliferator-activated receptor γ coactivator 1α (Ppargc1a) and cell death-inducing DNA fragmentation factor A-like effector A (Cidea) was up-regulated by chronic capsaicin treatment on differentiated 3T3-L1 cells. Instead, X9 cells were significantly responsive only to the treatment with norepinephrine, used as positive control.
Collapse
Affiliation(s)
- Tommaso Montanari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Monica Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
13
|
Chen SQ, Niu Q, Ju LP, Alimujiang M, Yan H, Bai NN, Xu J, Fang QC, Han JF, Yang Y, Jia WP. Predicted secreted protein analysis reveals synaptogenic function of Clstn3 during WAT browning and BAT activation in mice. Acta Pharmacol Sin 2019; 40:999-1009. [PMID: 30796355 DOI: 10.1038/s41401-019-0211-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/05/2019] [Indexed: 11/09/2022]
Abstract
Promoting white adipose tissue (WAT) browning and enhancing brown adipose tissue (BAT) activity are attractive therapeutic strategies for obesity and its metabolic complications. Targeting sympathetic innervation in WAT and BAT represents a promising therapeutic concept. However, there are few reports on extracellular microenvironment remodeling, especially changes in nerve terminal connections. Identifying the key molecules mediating the neuro-adipose synaptic junctions is a key point. In this study, we used bioinformatics methods to identify the differentially expressed predicted secreted genes (DEPSGs) during WAT browning and BAT activation. These DEPSGs largely reflect changes of cytokines, extracellular matrix remodeling, vascularization, and adipocyte-neuronal cross-talk. We then performed functional enrichment and cellular distribution specificity analyses. The upregulated and downregulated DEPDGs during WAT browning displayed a distinctive biological pattern and cellular distribution. We listed a cluster of adipocyte-enriched DEPSGs, which might participate in the cross-talk between mature adipocytes and other cells; then identified a synaptogenic adhesion molecule, Clstn3, as the top gene expressed enriched in both mature white and brown adipocytes. Using Q-PCR and immunohistochemistry, we found significantly increased Clstn3 expression level during WAT browning and BAT activation in mice subjected to cold exposure (4 °C). We further demonstrated that treatment with isoproterenol significantly increased Clstn3 and UCP1 expression in differentiated white and beige adipocytes in vitro. In conclusion, our study demonstrates that the secretion pattern was somewhat different between WAT browning and BAT activation. We reveal that Clstn3 may be a key gene mediating the neuro-adipose junction formation or remodeling in WAT browning and BAT activation process.
Collapse
|
14
|
Chu DT, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, Thanh VV, Gia Anh P, Pham VH, Thi Nga V. Adipose Tissue Stem Cells for Therapy: An Update on the Progress of Isolation, Culture, Storage, and Clinical Application. J Clin Med 2019; 8:E917. [PMID: 31247996 PMCID: PMC6678927 DOI: 10.3390/jcm8070917] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue stem cells (ASCs), known as multipotent stem cells, are most commonly used in the clinical applications in recent years. Adipose tissues (AT) have the advantage in the harvesting, isolation, and expansion of ASCs, especially an abundant amount of stem cells compared to bone marrow. ASCs can be found in stromal vascular fractions (SVF) which are easily obtained from the dissociation of adipose tissue. Both SVFs and culture-expanded ASCs exhibit the stem cell characteristics such as differentiation into multiple cell types, regeneration, and immune regulators. Therefore, SVFs and ASCs have been researched to evaluate the safety and benefits for human use. In fact, the number of clinical trials on ASCs is going to increase by years; however, most trials are in phase I and II, and lack phase III and IV. This systemic review highlights and updates the process of the harvesting, characteristics, isolation, culture, storage, and application of ASCs, as well as provides further directions on the therapeutic use of ASCs.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Pham Gia Anh
- Oncology Department, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Vu Thi Nga
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam.
| |
Collapse
|
15
|
Keeley T, Kirov A, Koh WY, Demambro V, Bergquist I, Cotter J, Caradonna P, Siviski ME, Best B, Henderson T, Rosen CJ, Liaw L, Prudovsky I, Small DJ. Resistance to visceral obesity is associated with increased locomotion in mice expressing an endothelial cell-specific fibroblast growth factor 1 transgene. Physiol Rep 2019; 7:e14034. [PMID: 30972920 PMCID: PMC6458108 DOI: 10.14814/phy2.14034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Overdevelopment of visceral adipose is positively correlated with the etiology of obesity-associated pathologies including cardiovascular disease and insulin resistance. However, identification of genetic, molecular, and physiological factors regulating adipose development and function in response to nutritional stress is incomplete. Fibroblast Growth Factor 1 (FGF1) is a cytokine expressed and released by both adipocytes and endothelial cells under hypoxia, thermal, and oxidative stress. Expression of Fibroblast Growth Factor 1 (FGF1) in adipose is required for normal depot development and remodeling. Loss of FGF1 leads to deleterious changes in adipose morphology, metabolism, and insulin resistance. Conversely, diabetic and obese mice injected with recombinant FGF1 display improvements in insulin sensitivity and a reduction in adiposity. We report in this novel, in vivo study that transgenic mice expressing an endothelial-specific FGF1 transgene (FGF1-Tek) are resistant to high-fat diet-induced abdominal adipose accretion and are more glucose-tolerant than wild-type control animals. Metabolic chamber analyses indicate that suppression of the development of visceral adiposity and insulin resistance was not associated with alterations in appetite or resting metabolic rate in the FGF1-Tek strain. Instead, FGF1-Tek mice display increased locomotor activity that likely promotes the utilization of dietary fatty acids before they can accumulate in adipose and liver. This study provides insight into the impact that genetic differences dictating the production of FGF1 has on the risk for developing obesity-related metabolic disease in response to nutritional stress.
Collapse
Affiliation(s)
- Tyler Keeley
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Aleksandr Kirov
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Woon Yuen Koh
- Department of Mathematical SciencesCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Victoria Demambro
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Ivy Bergquist
- Center for Excellence in NeuroscienceCollege of MedicineUniversity of New EnglandBiddefordMaine
| | - Jessica Cotter
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Peter Caradonna
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Matthew E. Siviski
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Bradley Best
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Terry Henderson
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Clifford J. Rosen
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Lucy Liaw
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Igor Prudovsky
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Deena J. Small
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| |
Collapse
|
16
|
Trang LT, Trung NN, Chu DT, Hanh NTH. Percentage Body Fat is As a Good Indicator for Determining Adolescents Who Are Overweight or Obese: A Cross-Sectional Study in Vietnam. Osong Public Health Res Perspect 2019; 10:108-114. [PMID: 31065538 PMCID: PMC6481572 DOI: 10.24171/j.phrp.2019.10.2.10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES To identify trends in percentage body fat (PBF) in adolescents to determine gender-specific classification thresholds for being overweight and obese. METHODS A cross-sectional study of 899 adolescents (11 to 14.5 years) from Hanoi and Nam Dinh was conducted in Vietnam. PBF, subcutaneous fat and percentage of lean mass were measured directly using OMRON HBF 375 scales to measure bioelectrical impedance. RESULTS PBF decreased in boys with increasing age (p < 0.001). The difference in PBF between boys and girls, significantly increased with age after 12.5 years (p < 0.001). There was a stronger correlation between PBF and fat content (Pearson's r = 0.860, p < 0.0001) than that between (BMI) and fat content (Pearson's r = 0.521, p < 0.0001). The prevalence of being overweight or obese in girls was similar when determined by PBF or BMI. Hanoi had higher rates of adolescents being overweight or obese compared with Nam Dinh. CONCLUSION PBF provides a more accurate body assessment for being overweight or obese in adolescents compared with BMI.
Collapse
Affiliation(s)
- Le Thu Trang
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Nguyen Nam Trung
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
- School of Odonto Stomatology, Hanoi Medical University, Hanoi, Vietnam
| | | |
Collapse
|
17
|
Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth into Retinal Photoreceptor-Like Cells and Their Sustainability In Vivo. Stem Cells Int 2019; 2019:2562981. [PMID: 30906327 PMCID: PMC6393909 DOI: 10.1155/2019/2562981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 01/14/2023] Open
Abstract
Retinal degeneration is characterized by the progressive loss of photoreceptors, and stem cell therapy has become a promising strategy. Many studies have reported that mesenchymal stem cell transplantation can sustain retinal structure and prolong retinal functions based on two mechanisms. One is cell replacement, and the other is the paracrine action of stem cells. Cells from human exfoliated deciduous teeth (SHEDs) show characteristics typical of mesenchymal stem cells. They are derived from the neural crest and are a potential cellular source for neural regeneration in stem cell therapy. In this study, we explored the potential of SHEDs to be induced towards the retinal photoreceptor phenotype and to be sustainable in an animal model of retinal degeneration. A factor-cocktail protocol was used to induce SHEDs towards retinal photoreceptors for 24 days, and the characteristics of the induced cells were identified in terms of morphological changes, biomarker expression and subcellular distribution, and calcium influx. SHEDs were labeled with firefly luciferase for in vivo tracking by bioluminescent imaging and then transplanted into the subretinal space of mice. Our results showed that SHEDs successfully transdifferentiated into photoreceptor-like cells, which displayed neuron-like morphology, and expressed specific genes and proteins associated with retinal precursors, photoreceptor precursors, and mature photoreceptors. In addition, calcium influx was significantly greater in the retinal-induced than in noninduced SHEDs. In vivo tracking confirmed at least 2 weeks of good survival by bioluminescent imaging and 3 months of sustainability of SHEDs by histological analysis. We conclude that SHEDs have the potential to transdifferentiate into retinal photoreceptor-like cells in vitro and maintain good viability in vivo after transplantation into mice with a normal immune system. This demonstrates preliminary success in generating photoreceptor-like cells from SHEDs and applying SHEDs in treating retinal degeneration.
Collapse
|
18
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
19
|
de Jong JMA, Cannon B, Nedergaard J. Promotion of lipid storage rather than of thermogenic competence by fetal versus newborn calf serum in primary cultures of brown adipocytes. Adipocyte 2018; 7:166-179. [PMID: 29912625 PMCID: PMC6224186 DOI: 10.1080/21623945.2018.1479578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Much current understanding of brown adipocyte development comes from in-vitro cell models. Serum type may affect the behavior of cultured cells and thus conclusions drawn. Here, we investigate effects of serum type (“fetal bovine” versus “newborn calf”) on responses to differentiation inducers (the PPARγ agonist rosiglitazone or the neurotransmitter norepinephrine) in cultured primary brown adipocytes. Lipid storage was enhanced by fetal versus newborn serum. However, molecular adipose conversion (Pparg2 and Fabp4 expression) was not affected by serum type. Rosiglitazone-induced (7-days) expression of thermogenic genes (i.e. Ucp1, Pgc1a, Dio2 and Elovl3) was not systematically affected by serum type. However, importantly, acute (2 h) norepinephrine-induced thermogenic gene expression was overall markedly higher (and adipose genes somewhat lower) in cells cultured in newborn serum. Thus, newborn serum promotes thermogenic competence, and the use of fetal serum in brown adipocyte cultures (as is often routine) counteracts adequate differentiation. Agents that counteract this inhibition may therefore confoundingly be ascribed genuine thermogenic competence-inducing properties.
Collapse
Affiliation(s)
- Jasper M. A. de Jong
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Bukowska J, Frazier T, Smith S, Brown T, Bender R, McCarthy M, Wu X, Bunnell BA, Gimble JM. Bone Marrow Adipocyte Developmental Origin and Biology. Curr Osteoporos Rep 2018; 16:312-319. [PMID: 29667012 PMCID: PMC5948173 DOI: 10.1007/s11914-018-0442-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review explores how the relationships between bone marrow adipose tissue (BMAT) adipogenesis with advancing age, obesity, and/or bone diseases (osteopenia or osteoporosis) contribute to mechanisms underlying musculoskeletal pathophysiology. RECENT FINDINGS Recent studies have re-defined adipose tissue as a dynamic, vital organ with functions extending beyond its historic identity restricted solely to that of an energy reservoir or sink. "State of the art" methodologies provide novel insights into the developmental origin, physiology, and function of different adipose tissue depots. These include genetic tracking of adipose progenitors, viral vectors application, and sophisticated non-invasive imaging modalities. While constricted within the rigid bone cavity, BMAT vigorously contributes to local and systemic metabolic processes including hematopoiesis, osteogenesis, and energy metabolism and undergoes dynamic changes as a function of age, diet, bone topography, or sex. These insights will impact future research and therapies relating to osteoporosis.
Collapse
Affiliation(s)
- Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Trivia Frazier
- LaCell LLC, New Orleans, LA, USA
- Obatala Sciences, Inc., New Orleans, LA, USA
| | | | - Theodore Brown
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Michelle McCarthy
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiying Wu
- LaCell LLC, New Orleans, LA, USA
- Obatala Sciences, Inc., New Orleans, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jeffrey M Gimble
- LaCell LLC, New Orleans, LA, USA.
- Obatala Sciences, Inc., New Orleans, LA, USA.
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
21
|
Evaluation and optimization of differentiation conditions for human primary brown adipocytes. Sci Rep 2018; 8:5304. [PMID: 29593245 PMCID: PMC5871774 DOI: 10.1038/s41598-018-23700-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
As an effective way to improve energy expenditure, increasing the mass and activity of brown adipose tissue (BAT) has become a promising treatment for obesity and its associated disorders. Many efforts have been made to promote brown adipogenesis and increase the thermogenic capacity of brown adipose cells (BACs). The present culture schemes for human BAC differentiation are mostly derived from white adipocyte differentiation schemes. To solve this issue, we compared the adipogenic and thermogenic effects of various components on human BAC differentiation and optimized their concentrations as well as the culture time for BAC differentiation. In this study, we found that the induction factors did not show a dose-dependent promotion of brown adipogenesis or thermogenic capacity. The higher differentiation levels did not inevitably result in higher BAT-specific gene expression levels or increased β3-receptor agonist sensitivity. As an important element of culture medium, triiodothyronine was found to be essential for differentiation and metabolic property maintenance. Furthermore, compared with other reported methods, this protocol induced a specific intrinsic differentiation program. Our study provides not only an optimized method for human BAC differentiation but also a cell model with good differentiation and thermogenic capacity for brown adipose research.
Collapse
|
22
|
Lau FH, Vogel K, Luckett JP, Hunt M, Meyer A, Rogers CL, Tessler O, Dupin CL, St Hilaire H, Islam KN, Frazier T, Gimble JM, Scahill S. Sandwiched White Adipose Tissue: A Microphysiological System of Primary Human Adipose Tissue. Tissue Eng Part C Methods 2018; 24:135-145. [PMID: 29141507 DOI: 10.1089/ten.tec.2017.0339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
White adipose tissue (WAT) is a critical organ in both health and disease. However, physiologically faithful tissue culture models of primary human WAT remain limited, at best. In this study we describe a novel WAT culture system in which primary human WAT is sandwiched between tissue-engineered sheets of adipose-derived stromal cells. This construct, called "sandwiched white adipose tissue" (SWAT), can be defined as a microphysiological system (MPS) since it is a tissue-engineered, multicellular, three-dimensional organ construct produced using human cells. We validated SWAT against the National Institutes of Health MPS standards and found that SWAT is viable in culture for 8 weeks, retains physiologic responses to exogenous signaling, secretes adipokines, and engrafts into animal models. These attributes position SWAT as a powerful tool for the study of WAT physiology, pathophysiology, personalized medicine, and pharmaceutical development.
Collapse
Affiliation(s)
- Frank H Lau
- 1 LSUHSC SOM's Department of Surgery, Louisiana State University Health Sciences Center School of Medicine , New Orleans, Louisiana
| | - Kelly Vogel
- 1 LSUHSC SOM's Department of Surgery, Louisiana State University Health Sciences Center School of Medicine , New Orleans, Louisiana
| | - John P Luckett
- 1 LSUHSC SOM's Department of Surgery, Louisiana State University Health Sciences Center School of Medicine , New Orleans, Louisiana
| | - Maxwell Hunt
- 1 LSUHSC SOM's Department of Surgery, Louisiana State University Health Sciences Center School of Medicine , New Orleans, Louisiana
| | - Alicia Meyer
- 1 LSUHSC SOM's Department of Surgery, Louisiana State University Health Sciences Center School of Medicine , New Orleans, Louisiana
| | - Camille L Rogers
- 1 LSUHSC SOM's Department of Surgery, Louisiana State University Health Sciences Center School of Medicine , New Orleans, Louisiana
| | - Oren Tessler
- 1 LSUHSC SOM's Department of Surgery, Louisiana State University Health Sciences Center School of Medicine , New Orleans, Louisiana
| | - Charles L Dupin
- 1 LSUHSC SOM's Department of Surgery, Louisiana State University Health Sciences Center School of Medicine , New Orleans, Louisiana
| | - Hugo St Hilaire
- 1 LSUHSC SOM's Department of Surgery, Louisiana State University Health Sciences Center School of Medicine , New Orleans, Louisiana
| | - Kazi N Islam
- 1 LSUHSC SOM's Department of Surgery, Louisiana State University Health Sciences Center School of Medicine , New Orleans, Louisiana
| | - Trivia Frazier
- 2 New Orleans BioInnovation Center , LaCell LLC, New Orleans Louisiana
| | - Jeffrey M Gimble
- 3 Center for Stem Cell Research and Regenerative Medicine, Tulane University , New Orleans, Louisiana
| | - Steven Scahill
- 1 LSUHSC SOM's Department of Surgery, Louisiana State University Health Sciences Center School of Medicine , New Orleans, Louisiana
| |
Collapse
|
23
|
Chen K, Jih A, Osborn O, Kavaler ST, Fu W, Sasik R, Saito R, Kim JJ. Distinct gene signatures predict insulin resistance in young mice with high fat diet-induced obesity. Physiol Genomics 2018; 50:144-157. [PMID: 29341863 DOI: 10.1152/physiolgenomics.00045.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Highly inbred C57BL/6 mice show wide variation in their degree of insulin resistance in response to diet-induced obesity even though they are almost genetically identical. Here we employed transcriptional profiling by RNA sequencing (RNA-Seq) of visceral adipose tissue (VAT) and liver in young mice to determine how gene expression patterns correlate with the later development of high-fat diet (HFD)-induced insulin resistance in adulthood. To accomplish this goal, we partially removed and banked tissues from pubertal mice. Mice subsequently received HFD followed by metabolic phenotyping to identify two well-defined groups of mice with either severe or mild insulin resistance. The remaining tissues were collected at study termination. We then applied RNA-Seq to generate transcriptome profiles associated with worsened insulin resistance before and after the initiation of HFD. We found 244 up- and 109 downregulated genes in VAT of the most insulin-resistant mice even before HFD exposure. Downregulated genes included serine protease inhibitor, major urinary protein, and complement genes; upregulated genes represented mostly muscle constituents. These gene families were also differentially expressed in VAT of mice with high or low insulin resistance after HFD. Inflammatory genes predicted insulin resistance in liver, but not in VAT. In contrast, when we compared VAT of all mice before and after HFD, differentially expressed genes were predominantly composed of immune response genes. These data show a distinct set of gene transcripts in young mice correlates with the severity of insulin resistance in adulthood, providing insight into the pathogenesis of insulin resistance in early life.
Collapse
Affiliation(s)
- Katherine Chen
- Department of Pediatrics, University of California at San Diego , La Jolla, California
| | - Alice Jih
- Department of Pediatrics, University of California at San Diego , La Jolla, California
| | - Olivia Osborn
- Department of Medicine, University of California at San Diego , La Jolla, California
| | - Sarah T Kavaler
- Department of Pediatrics, University of California at San Diego , La Jolla, California
| | - Wenxian Fu
- Department of Pediatrics, University of California at San Diego , La Jolla, California
| | - Roman Sasik
- Department of Medicine, University of California at San Diego , La Jolla, California
| | - Rintaro Saito
- Department of Medicine, University of California at San Diego , La Jolla, California
| | - Jane J Kim
- Department of Pediatrics, University of California at San Diego , La Jolla, California.,Rady Children's Hospital of San Diego , San Diego, California
| |
Collapse
|
24
|
Chu DT, Malinowska E, Jura M, Kozak LP. C57BL/6J mice as a polygenic developmental model of diet-induced obesity. Physiol Rep 2017; 5:5/7/e13093. [PMID: 28400497 PMCID: PMC5392500 DOI: 10.14814/phy2.13093] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/08/2016] [Accepted: 11/30/2016] [Indexed: 12/03/2022] Open
Abstract
Susceptibility to obesity changes during the course of life. We utilized the C57BL/6J (B6) and 129S mouse as a genetic model for variation in diet‐induced obesity to define the adiposity phenotypes from birth to maturity at 8 weeks‐of‐age. From birth to 8 weeks‐of‐age, both male and female 129S mice had significantly higher fat mass and adiposity index than B6 mice, although they were not obese. After 8 weeks‐of‐age, B6 had greater adiposity/obesity than 129S mice in response to a high fat (HF). We sought to determine the mechanism activating the fat accumulation in B6 mice at 8‐weeks‐of‐age. We used microarray analysis of gene expression during development of inguinal fat to show that molecular networks of lipogenesis were maximally expressed at 8 weeks‐of‐age. In addition, the DNA methylation analysis of the Sfrp5 promoter and binding of acetylated histones to Sfrp5 and Acly promoter regions showed that major differences in the expression of genes of lipogenesis and chromatin structure occur during development. Differences in lipogenesis networks could account for the strain‐dependent differences in adiposity up to 8 weeks‐of‐age; however, changes in the expression of genes in these networks were not associated with the susceptibility to DIO in B6 male mice beyond 8 weeks‐of‐age.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Elzbieta Malinowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Magdalena Jura
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Leslie P Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
25
|
Chu DT, Gawronska-Kozak B. Brown and brite adipocytes: Same function, but different origin and response. Biochimie 2017; 138:102-105. [DOI: 10.1016/j.biochi.2017.04.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/28/2017] [Indexed: 01/10/2023]
|
26
|
Anunciado-Koza RP, Manuel J, Mynatt RL, Zhang J, Kozak LP, Koza RA. Diet-induced adipose tissue expansion is mitigated in mice with a targeted inactivation of mesoderm specific transcript (Mest). PLoS One 2017. [PMID: 28640866 PMCID: PMC5481029 DOI: 10.1371/journal.pone.0179879] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interindividual variation of white adipose tissue (WAT) expression of mesoderm specific transcript (Mest), a paternally-expressed imprinted gene belonging to the α/β-hydrolase fold protein family, becomes apparent among genetically inbred mice fed high fat diet (HFD) and is positively associated with adipose tissue expansion (ATE). To elucidate a role for MEST in ATE, mice were developed with global and adipose tissue inactivation of Mest. Mice with homozygous (MestgKO) and paternal allelic (MestpKO) inactivation of Mest were born at expected Mendelian frequencies, showed no behavioral or physical abnormalities, and did not perturb expression of the Mest locus-derived microRNA miR-335. MestpKO mice fed HFD showed reduced ATE and adipocyte hypertrophy, improved glucose tolerance, and reduced WAT expression of genes associated with hypoxia and inflammation compared to littermate controls. Remarkably, caloric intake and energy expenditure were unchanged between genotypes. Mice with adipose tissue inactivation of Mest were phenotypically similar to MestpKO, supporting a role for WAT MEST in ATE. Global profiling of WAT gene expression of HFD-fed control and MestpKO mice detected few differences between genotypes; nevertheless, genes with reduced expression in MestpKO mice were associated with immune processes and consistent with improved glucose homeostasis. Ear-derived mesenchymal stem cells (EMSC) from MestgKO mice showed no differences in adipogenic differentiation compared to control cells unless challenged by shRNA knockdown of Gpat4, an enzyme that mediates lipid accumulation in adipocytes. Reduced adipogenic capacity of EMSC from MestgKO after Gpat4 knockdown suggests that MEST facilitates lipid accumulation in adipocytes. Our data suggests that reduced diet-induced ATE in MEST-deficient mice diminishes hypoxia and inflammation in WAT leading to improved glucose tolerance and insulin sensitivity. Since inactivation of Mest in mice has minimal additional effects aside from reduction of ATE, an intervention that mitigates MEST function in adipocytes is a plausible strategy to obviate obesity and type-2-diabetes.
Collapse
Affiliation(s)
- Rea P. Anunciado-Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Justin Manuel
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Randall L. Mynatt
- Transgenics Core Facility, Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, United States of America
| | - Jingying Zhang
- Transgenics Core Facility, Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, United States of America
| | - Leslie P. Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Robert A. Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- * E-mail:
| |
Collapse
|
27
|
Chu DT, Tao Y, Son LH, Le DH. Cell source, differentiation, functional stimulation, and potential application of human thermogenic adipocytes in vitro. J Physiol Biochem 2017; 73:315-321. [PMID: 28612196 DOI: 10.1007/s13105-017-0567-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Recent investigations have showed that the functional thermogenic adipocytes are present in both infants and adult humans. Accumulating evidence suggests that the coexistence of classical and inducible brown (brite) adipocytes in humans at adulthood and these adipocytes function to generate heat from energy resulting in reducing body fat and improving glucose metabolism. Human thermogenic adipocytes can be differentiated in vitro from stem cells, cell lines, or adipose stromal vascular fraction. Pre-activated human brite adipocytes in vitro can maintain their thermogenic function in normal or obese immunodeficient mice; therefore, they improve glucose homeostasis and reduce fat mass in obese animals. These key findings have opened a new door to use in vitro thermogenic adipocytes as a cell therapy to prevent obesity and related disorders. Thus, this paper intends to highlight our knowledge in aspects of in vitro human brite/brown adipocytes for the further studies.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Institute for Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam. .,Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Vietnam
| | - Le Hoang Son
- VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Duc-Hau Le
- VINMEC Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| |
Collapse
|
28
|
Hanh NTH, Tuyet LT, Dao DTA, Tao Y, Chu DT. Childhood Obesity Is a High-risk Factor for Hypertriglyceridemia: A Case-control Study in Vietnam. Osong Public Health Res Perspect 2017; 8:138-146. [PMID: 28540158 PMCID: PMC5441441 DOI: 10.24171/j.phrp.2017.8.2.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 12/25/2022] Open
Abstract
Objectives To investigate the relationship between dyslipidemia and obesity status among Viet-namese adolescents. Methods In this case-control study, 282 adolescents (6–11 years), including 88 obese cases and 194 normal-weight controls, were recruited from a population-based cross-sectional study from two provinces in Vietnam. The anthropometric, blood lipid, and other laboratory test results of the study subjects were analyzed. Results Obese children tended to have more visceral fat (Pearson’s r = 0.795, p < 0.0001) than subcutaneous fat (Pearson’s r = 0.754, p < 0.0001), and this difference was associated with an increase in blood triglyceride level (Pearson’s r = 0.232, p < 0.05) and a strikingly high rate of hypertriglyceridemia (38.6%). We also found that birth weight and parental body mass index were related to the status of obesity among the study subjects. However, only birth weight was significantly higher in the obese group than in the normal weight group. These findings indicate the effect of prenatal nutrition on childhood obesity. Furthermore, high-birth weight children had a surprisingly high rate of obesity. Conclusion Together, our data suggest that obesity increased the risk for hypertriglyceridemia, which was, at least partially, due to prenatal nutrition.
Collapse
Affiliation(s)
| | - Le Thi Tuyet
- Hanoi National University of Education, Hanoi, Vietnam
| | | | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, China
| | - Dinh-Toi Chu
- Hanoi National University of Education, Hanoi, Vietnam.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Chu DT, Tao Y. A homologous stem cell therapy for obesity and its related metabolic disorders. Med Hypotheses 2017; 103:26-28. [PMID: 28571802 DOI: 10.1016/j.mehy.2017.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/30/2017] [Indexed: 01/08/2023]
Abstract
Obesity and overweight have become a leading health problem in the world. But we have not yet had any optimal therapy to prevent this health issue. Accumulating evidence suggests that there is existence of functional brown/brite adipocytes in both infants and adult humans, and the activated brown/brite can burn energy by generating heat. These adipocytes can be differentiated from stem cells and transplantation of pre-activated human thermogenic adipocytes in vitro benefits to glucose homeostasis, insulin sensitivity and reduces body fat in normal or obese immunodeficient mice. These investigations lead us to hypothesize a homologous stem cell therapy to treat obesity and its related disorders. The therapy bases on functional brown/brite adipocytes which are differentiated from homologous stem cells isolated from fat depot of an obese person, and those adipocytes are activated to have a full thermogenic program before being transplanted back to that patient to improve glucose homeostasis and reduce fat content.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Institute for Research and Development, Duy Tan University, K7/25 Quang Trung, Danang, Viet Nam; Faculty of Biology, Hanoi National University of Education, Hanoi, Viet Nam.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 8 210095, China
| |
Collapse
|
30
|
Chu DT, Tao Y, Taskén K. OPA1 in Lipid Metabolism: Function of OPA1 in Lipolysis and Thermogenesis of Adipocytes. Horm Metab Res 2017; 49:276-285. [PMID: 28427098 DOI: 10.1055/s-0043-100384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OPA1 (Optic Atrophy 1) is a mitochondrial GTPase known to regulate fission of mitochondria. It was recently also shown to locate on lipid droplets in adipocytes where it functions as an A-kinase anchoring protein (AKAP) that mediates adrenergic control of lipolysis by facilitating PKA phosphorylation of perilipin (Plin1). In brown adipocytes indirect evidence support the notion that OPA1 regulation of fission serves to increase thermogenesis, which thereby contributes to dissipation of energy. In white adipocytes, OPA1 located on lipid droplets serves as a gatekeeper to control lipolysis induced by adrenergic agonists. However, the function of OPA1 in lipolysis and thermogenesis in inducible brown adipocytes (brite/beige cells) remains elusive. Here we discuss the role of OPA1 in lipid metabolism.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
31
|
Molecular connections of obesity and aging: a focus on adipose protein 53 and retinoblastoma protein. Biogerontology 2017; 18:321-332. [PMID: 28357524 DOI: 10.1007/s10522-017-9698-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/27/2017] [Indexed: 12/13/2022]
Abstract
Obesity is an induced health problem that human beings have been facing with non-optimal treatment so far. Humans are on average getting fatter with age, and obesity and aging interact each other to shorten lifetime and decrease life quality. Obesity also causes several aging related-disorders such as cancer, strokes, cardiovascular disease, high blood pressure and type 2 diabetes. So, the molecular connections between aging and obesity are promising targets for bio-medical researches and innovative therapies of many health problems. In this review, we discuss the findings of adipose p53 and Rb-two central molecular linkages between aging and obesity-on lipid metabolism and obesity.
Collapse
|
32
|
Busby ER, Sherwood NM. Gonadotropin-releasing hormone receptor (Gnrhr) gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice. PLoS One 2017; 12:e0174452. [PMID: 28346489 PMCID: PMC5367835 DOI: 10.1371/journal.pone.0174452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/09/2017] [Indexed: 11/27/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.
Collapse
Affiliation(s)
- Ellen R. Busby
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
33
|
Lee YH, Kim SN, Kwon HJ, Granneman JG. Metabolic heterogeneity of activated beige/brite adipocytes in inguinal adipose tissue. Sci Rep 2017; 7:39794. [PMID: 28045125 PMCID: PMC5206656 DOI: 10.1038/srep39794] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Sustained β3 adrenergic receptor (ADRB3) activation simultaneously upregulates fatty acid synthesis and oxidation in mouse brown, beige, and white adipose tissues; however, the cellular basis of this dual regulation is not known. Treatment of mice with the ADRB3 agonist CL316,243 (CL) increased expression of fatty acid synthase (FASN) and medium chain acyl-CoA dehydrogenase (MCAD) protein within the same cells in classic brown and white adipose tissues. Surprisingly, in inguinal adipose tissue, CL-upregulated FASN and MCAD in distinct cell populations: high MCAD expression occurred in multilocular adipocytes that co-expressed UCP1+, whereas high FASN expression occurred in paucilocular adipocytes lacking detectable UCP1. Genetic tracing with UCP1-cre, however, indicated nearly half of adipocytes with a history of UCP1 expression expressed high levels of FASN without current expression of UCP1. Global transcriptomic analysis of FACS-isolated adipocytes confirmed the presence of distinct anabolic and catabolic phenotypes, and identified differential expression of transcriptional pathways known to regulate lipid synthesis and oxidation. Surprisingly, paternally-expressed genes of the non-classical gene imprinted network were strikingly enriched in anabolic phenotypes, suggesting possible involvement in maintaining the balance of metabolic phenotypes. The results indicate that metabolic heterogeneity is a distinct property of activated beige/brite adipocytes that might be under epigenetic control.
Collapse
Affiliation(s)
- Yun-Hee Lee
- College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Sang-Nam Kim
- College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hyun-Jung Kwon
- College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - James G Granneman
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
34
|
Mest and Sfrp5 are biomarkers for healthy adipose tissue. Biochimie 2015; 124:124-133. [PMID: 26001362 DOI: 10.1016/j.biochi.2015.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/09/2015] [Indexed: 01/17/2023]
Abstract
Obesity depends on a close interplay between genetic and environmental factors. However, it is unknown how these factors interact to cause changes in the obese condition during the progression of obesity from the neonatal to the aged individual. We have utilized Mest and Sfrp5 genes, two genes highly correlated with adipose tissue expansion in diet-induced obesity, to characterize the obese condition during development of 2 genetic models of obesity. A model for the early onset of obesity was presented by leptin-deficient mice (ob/ob), whereas late onset of obesity was induced with high-fat diet (HFD) consumption in C57BL/6J mice with inherent risk of obesity (DIO). We correlated obese and diabetic phenotypes with Mest and Sfrp5 gene expression profiles in subcutaneous fat during pre-weaning, pre-adulthood and adulthood. A rapid development of obesity began in ob/ob mice immediately after weaning at 21 days of age, whereas the obesity of DIO mice was not evident until after 2 months of age. Even after 5 months of HFD treatment, the adiposity index of DIO mice was lower than in ob/ob mice at 2 months of age. In both obesity models, the expression of Mest and Sfrp5 genes increased in parallel with fat mass expansion; however, gene expression proceeded to decrease when the adiposity reached a plateau. The reduction in the expression of genes of caveolae structure and glucose metabolism were also suppressed in the aging adipose tissue. The analysis of fat mass and adipocyte size suggests that reduction in Mest and Sfrp5 is more sensitive to the age of the fat than its morphology. The balance of factors controlling fat deposition can be evaluated in part by the differential expression profiles of Mest and Sfrp5 genes with functions linked to fat deposition as long as there is an active accumulation of fat mass.
Collapse
|
35
|
Abstract
Evidence from rodents established an important role of brown adipose tissue (BAT) in energy expenditure. Moreover, to sustain thermogenesis, BAT has been shown to be a powerful sink for draining and oxidation of glucose and triglycerides from blood. The potential of BAT activity in protection against obesity and metabolic syndrome is recognized. Recently, an unexpected presence and activity of BAT has been found in adult humans. Here we review the most recent research in this field and, specifically, how new findings apply to humans. Moreover, we seek to clarify the underlying biological processes occurring beyond the burst of new nomenclature in the field. The cell type responsible for thermogenesis, the brown adipocyte, arises from complex developmental processes. In addition to 'classical' brown adipocytes, present in developmentally programmed BAT depots, there are brown adipocytes, named 'brite' (from 'brown-in-white') or 'beige', which appear in response to thermogenic stimuli in white fat due to the so-called 'browning' process. Beige/brite cells appear to be important components of BAT depots in adult humans. In addition to the known control of BAT activity by the sympathetic nervous system, metabolic and hormonal signals originating in muscle or liver (e.g. irisin, FGF21) are recognized as activators of BAT and beige/brite adipocytes.
Collapse
Affiliation(s)
- Rubén Cereijo
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición , Barcelona, Catalonia , Spain
| | | | | |
Collapse
|
36
|
|
37
|
Bi WR, Yang CQ, Xing HL. Transfection with recombinant adenovirus vector expressing secreted frizzled related protein inhibits liver fibrosis in mice. Shijie Huaren Xiaohua Zazhi 2014; 22:4379-4385. [DOI: 10.11569/wcjd.v22.i29.4379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a recombinant adenovirus vector expressing secreted frizzled related protein (SFRP), and to assess the inhibitory effect of SFRP overexpression on experimental hepatic fibrosis (HF) in mice.
METHODS: Liposome-mediated transfection was used to introduce recombinant adenovirus pAd-Track-PPARγ2-CMV carrying the SFRP5 gene into liver cells from mice with CCl4 induced HF to obtain recombinant adenovirus infected HF cells. Western blot, immunofluorescence microscopy and confocal laser microscopy were used to analyze the inhibitory effect of SFRP overexpression on experimental HF.
RESULTS: Cells infected with the recombinant adenovirus vector had higher expression of SFRP5 protein. Double immunofluorescence showed SFRP5 over expression inhibited the expression of α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1) in liver cells. Pathological examination revealed that SFRP5 over expression significantly reduced the occurrence of epithelial-mesenchymal transition (EMT) in liver cells (SFRP group vs control group, P < 0.05).
CONCLUSION: We have successfully constructed a recombinant adenovirus containing the SFRP5 gene, and it can effectively increase the expression of SFRP5 gene in mouse HF cells, thereby inhibiting the occurrence of EMT and HF.
Collapse
|