1
|
Øye H, Lundekvam M, Caiella A, Hellesvik M, Arnesen T. Protein N-terminal modifications: molecular machineries and biological implications. Trends Biochem Sci 2025; 50:290-310. [PMID: 39837675 DOI: 10.1016/j.tibs.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation. Modifications at protein N termini are thereby core components of a large number of biological processes, including cell signaling and motility, autophagy regulation, and plant and animal oxygen sensing. Dysregulation of Nt-modifying enzymes is implicated in several human diseases. In this feature review we provide an overview of the various protein Nt modifications occurring either co- or post-translationally, the enzymes involved, and the biological impact.
Collapse
Affiliation(s)
- Hanne Øye
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
2
|
Meng Y, Huang R. Decoding the protein methylome: Identification, validation, and functional insights. Bioorg Med Chem 2025; 118:118056. [PMID: 39754853 PMCID: PMC11735303 DOI: 10.1016/j.bmc.2024.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Protein methylation regulates diverse cellular processes including gene expression and DNA repair. This review discusses the methods of identifying and validating substrates for protein methyltransferases (MTases), as well as the biological roles of methylation. Meanwhile, we outline continued efforts necessary to fully map MTase-substrate pairs and uncover the complex regulatory roles of protein methylation in cellular function.
Collapse
Affiliation(s)
- Ying Meng
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Rong Huang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
3
|
Meng Y, Li Z, He M, Zhang Q, Deng Y, Wang Y, Huang R. Characterizations of Protein Arginine Deiminase 1 as a Substrate of NTMT1: Implications of Nα-Methylation in Protein Stability and Interaction. J Proteome Res 2024; 23:4589-4600. [PMID: 39287128 PMCID: PMC11452276 DOI: 10.1021/acs.jproteome.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
α-N-Methylation (Nα-methylation), catalyzed by protein N-terminal methyltransferases (NTMTs), constitutes a crucial post-translational modification involving the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to the Nα-terminal amino group of substrate proteins. NTMT1/2 are known to methylate canonical Nα sequences, such as X-P-K/R. With over 300 potential human protein substrates, only a small fraction has been validated, and even less is known about the functions of Nα-methylation. This study delves into the characterizations of protein arginine deiminase 1 (PAD1) as a substrate of NTMT1. By employing biochemical and cellular assays, we demonstrated NTMT1-mediated Nα-methylation of PAD1, leading to an increase in protein half-life and the modulation of protein-protein interactions in HEK293T cells. The methylation of PAD1 appears nonessential to its enzymatic activity or cellular localization. Proteomic studies revealed differential protein interactions between unmethylated and Nα-methylated PAD1, suggesting a regulatory role for Nα-methylation in modulating PAD1's protein-protein interactions. These findings shed light on the intricate molecular mechanisms governing PAD1 function and expand our knowledge of Nα-methylation in regulating protein function.
Collapse
Affiliation(s)
- Ying Meng
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| | - Zhouxian Li
- Department of Chemistry, University of California
Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Ming He
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| | - Quanqing Zhang
- Department of Chemistry, University of California
Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Youchao Deng
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| | - Yinsheng Wang
- Department of Chemistry, University of California
Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Rong Huang
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| |
Collapse
|
4
|
Li X, Wang N, Liu Y, Li W, Bai X, Liu P, He CY. Backbone N-methylation of peptides: Advances in synthesis and applications in pharmaceutical drug development. Bioorg Chem 2023; 141:106892. [PMID: 37776681 DOI: 10.1016/j.bioorg.2023.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Peptide-based drugs have garnered considerable attention in recent years owing to their increasingly crucial role in the treatment of diverse diseases. However, the limited pharmacokinetic properties of peptides have hindered their full potential. One prominent strategy for enhancing the druggability of peptides is N-methylation, which involves the addition of a methyl group to the nitrogen atom of the peptide backbone. This modification significantly improves the stability, bioavailability, receptor binding affinity and selectivity of peptide drug candidates. In this review, we provide a comprehensive overview of the advancements in synthetic methods for N-methylated peptide synthesis, as well as the associated limitations. Moreover, we explore the versatile effects of N-methylation on various aspects of peptide properties. Furthermore, we emphasize the efforts dedicated to N-methylated peptide pharmaceuticals that have successfully obtained marketing approval.
Collapse
Affiliation(s)
- Xuefei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Ningchao Wang
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yuhang Liu
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Weipiao Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chun-Yang He
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
5
|
Tan L, Li W, Su Q. The comprehensive analysis of the prognostic and functional role of N-terminal methyltransferases 1 in pan-cancer. PeerJ 2023; 11:e16263. [PMID: 37901469 PMCID: PMC10607204 DOI: 10.7717/peerj.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Background NTMT1, a transfer methylase that adds methyl groups to the N-terminus of proteins, has been identified as a critical player in tumor development and progression. However, its precise function in pan-cancer is still unclear. To gain a more comprehensive understanding of its role in cancer, we performed a thorough bioinformatics analysis. Methods To conduct our analysis, we gathered data from multiple sources, including RNA sequencing and clinical data from the TCGA database, protein expression data from the UALCAN and HPA databases, and single-cell expression data from the CancerSEA database. Additionally, we utilized TISIDB to investigate the interaction between the tumor and the immune system. To assess the impact of NTMT1 on the proliferation of SNU1076 cells, we performed a CCK8 assay. We also employed cellular immunofluorescence to detect DNA damage and used flow cytometry to measure tumor cell apoptosis. Results Our analysis revealed that NTMT1 was significantly overexpressed in various types of tumors and that high levels of NTMT1 were associated with poor survival outcomes. Functional enrichment analysis indicated that NTMT1 may contribute to tumor development and progression by regulating pathways involved in cell proliferation and immune response. In addition, we found that knockdown of NTMT1 expression led to reduced cell proliferation, increased DNA damage, and enhanced apoptosis in HNSCC cells. Conclusion High expression of NTMT1 in tumors is associated with poor prognosis. The underlying regulatory mechanism of NTMT1 in cancer is complex, and it may be involved in both the promotion of tumor development and the inhibition of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Lifan Tan
- Department of Otolaryngology, West China-Guang’an Hospital, Sichuan University, Guang’an, Sichuan, China
| | - Wensong Li
- Department of Otolaryngology, West China-Guang’an Hospital, Sichuan University, Guang’an, Sichuan, China
| | - Qin Su
- Department of Otolaryngology, The People’s Hospital of Dujiangyan, Dujiangyan, Sichuan, China
| |
Collapse
|
6
|
Emenike B, Donovan J, Raj M. Multicomponent Oxidative Nitrile Thiazolidination Reaction for Selective Modification of N-terminal Dimethylation Posttranslational Modification. J Am Chem Soc 2023; 145:16417-16428. [PMID: 37486086 PMCID: PMC10401698 DOI: 10.1021/jacs.3c02369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 07/25/2023]
Abstract
Protein α-N-terminal dimethylation (Nme2) is an underexplored posttranslational modification (PTM) despite the increasing implications of α-N-terminal dimethylation in vital physiological and pathological processes across diverse species; thus, it is imperative to identify the sites of α-N-terminal dimethylation in the proteome. So far, only ∼300 α-N-terminal methylation sites have been discovered including mono-, di-, and tri-methylation, due to the lack of a pan-selective method for detecting α-N-terminal dimethylation. Herein, we introduce the three-component coupling reaction, oxidative nitrile thiazolidination (OxNiTha) for chemoselective modification of α-Nme2 to thiazolidine ring in the presence of selectfluor, sodium cyanide, and 1,2 aminothiols. One of the major challenges in developing a pan-specific method for the selective modification of α-Nme2 PTM is the competing reaction with dimethyl lysine (Kme2) PTM of a similar structure. We tackle this challenge by trapping nitrile-modified Nme2 with aminothiols, leading to the conversion of Nme2 to a five-membered thiazolidine ring. Surprisingly, the 1,2 aminothiol reaction with nitrile-modified Kme2 led to de-nitrilation along with the de-methylation to generate monomethyl lysine (Kme1). We demonstrated the application of OxNiTha reaction in pan-selective and robust modification of α-Nme2 in peptides and proteins to thiazolidine functionalized with varying fluorescent and affinity tags under physiological conditions. Further study with cell lysate enabled the enrichment of Nme2 PTM containing proteins.
Collapse
Affiliation(s)
- Benjamin Emenike
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| | - Julia Donovan
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| | - Monika Raj
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
8
|
Chen P, Huang R, Hazbun TR. Unlocking the Mysteries of Alpha-N-Terminal Methylation and its Diverse Regulatory Functions. J Biol Chem 2023:104843. [PMID: 37209820 PMCID: PMC10293735 DOI: 10.1016/j.jbc.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Protein post-translation modifications (PTMs) are a critical regulatory mechanism of protein function. Protein α-N-terminal (Nα) methylation is a conserved PTM across prokaryotes and eukaryotes. Studies of the Nα methyltransferases responsible for Να methylation and their substrate proteins have shown that the PTM involves diverse biological processes, including protein synthesis and degradation, cell division, DNA damage response, and transcription regulation. This review provides an overview of the progress toward the regulatory function of Να methyltransferases and their substrate landscape. More than 200 proteins in humans and 45 in yeast are potential substrates for protein Nα methylation based on the canonical recognition motif, XP[KR]. Based on recent evidence for a less stringent motif requirement, the number of substrates might be increased, but further validation is needed to solidify this concept. A comparison of the motif in substrate orthologs in selected eukaryotic species indicates intriguing gain and loss of the motif across the evolutionary landscape. We discuss the state of knowledge in the field that has provided insights into the regulation of protein Να methyltransferases and their role in cellular physiology and disease. We also outline the current research tools that are key to understanding Να methylation. Finally, challenges are identified and discussed that would aid in unlocking a system-level view of the roles of Να methylation in diverse cellular pathways.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
9
|
Parker HV, Schaner Tooley CE. Opposing regulation of the Nα-trimethylase METTL11A by its family members METTL11B and METTL13. J Biol Chem 2023; 299:104588. [PMID: 36889590 PMCID: PMC10166787 DOI: 10.1016/j.jbc.2023.104588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
N-terminal protein methylation (Nα-methylation) is a posttranslational modification that influences numerous biological processes by regulating protein stability, protein-DNA interactions, and protein-protein interactions. Although significant progress has been made in understanding the biological roles of Nα-methylation, we still do not completely understand how the modifying methyltransferases are regulated. A common mode of methyltransferase regulation is through complex formation with close family members, and we have previously shown that the Nα-trimethylase METTL11A (NRMT1/NTMT1) is activated through binding of its close homolog METTL11B (NRMT2/NTMT2). Other recent reports indicate that METTL11A co-fractionates with a third METTL family member METTL13, which methylates both the N-terminus and lysine 55 (K55) of eukaryotic elongation factor 1 alpha. Here, using co-immunoprecipitations, mass spectrometry, and in vitro methylation assays, we confirm a regulatory interaction between METTL11A and METTL13 and show that while METTL11B is an activator of METTL11A, METTL13 inhibits METTL11A activity. This is the first example of a methyltransferase being opposingly regulated by different family members. Similarly, we find that METTL11A promotes the K55 methylation activity of METTL13 but inhibits its Nα-methylation activity. We also find that catalytic activity is not needed for these regulatory effects, demonstrating new, noncatalytic functions for METTL11A and METTL13. Finally, we show METTL11A, METTL11B, and METTL13 can complex together, and when all three are present, the regulatory effects of METTL13 take precedence over those of METTL11B. These findings provide a better understanding of Nα-methylation regulation and suggest a model where these methyltransferases can serve in both catalytic and noncatalytic roles.
Collapse
Affiliation(s)
- Haley V Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
10
|
Meng Y, Huang R. Site-specific methylation on α-N-terminus of peptides through chemical and enzymatic methods. Methods Enzymol 2023; 684:113-133. [PMID: 37230586 PMCID: PMC10525076 DOI: 10.1016/bs.mie.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein α-N-terminal (Nα) methylation is a post-translational modification catalyzed by N-terminal methyltransferase 1/2 (NTMT1/2) and METTL13. Nα methylation affects protein stability, protein-protein interaction, and protein-DNA interaction. Thus, Nα methylated peptides are essential tools to study the function of Nα methylation, generate specific antibodies for different states of Nα methylation, and characterize the enzyme kinetics and activity. Here, we describe chemical methods of site-specific synthesis of Nα mono-, di-, and trimethylated peptides in the solid phase. In addition, we describethe preparation of trimethylation peptides by recombinant NTMT1 catalysis.
Collapse
Affiliation(s)
- Ying Meng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
11
|
Deng Y, Dong G, Meng Y, Noinaj N, Huang R. Structure-Activity Relationship Studies of Venglustat on NTMT1 Inhibition. J Med Chem 2023; 66:1601-1615. [PMID: 36634151 PMCID: PMC9892271 DOI: 10.1021/acs.jmedchem.2c01854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The protein N-terminal methyltransferase 1 (NTMT1) is implicated in neurogenesis, retinoblastoma, and cervical cancer. However, its pharmacological potentials have not been elucidated due to the lack of drug-like inhibitors. Here, we report the discovery of the first NTMT1 in vivo chemical probe GD433 by structure-guided optimization of our previously reported lead compound venglustat. GD433 (IC50 = 27 ± 1.1 nM) displays improved potency and selectivity than venglustat across biochemical, biophysical, and cellular assays. GD433 also displays good oral bioavailability and can serve as an in vivo chemical probe to dissect the pharmacological roles of Nα methylation. In addition, we also identified a close analogue (YD2160) that is inactive against NTMT1. The active inhibitor and negative control will serve as valuable tools to examine the physiological and pharmacological functions of NTMT1 catalytic activity.
Collapse
Affiliation(s)
- Youchao Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ying Meng
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Conner MM, Schaner Tooley CE. Three's a crowd - why did three N-terminal methyltransferases evolve for one job? J Cell Sci 2023; 136:jcs260424. [PMID: 36647772 PMCID: PMC10022744 DOI: 10.1242/jcs.260424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
N-terminal methylation of the α-amine group (Nα-methylation) is a post-translational modification (PTM) that was discovered over 40 years ago. Although it is not the most abundant of the Nα-PTMs, there are more than 300 predicted substrates of the three known mammalian Nα-methyltransferases, METTL11A and METTL11B (also known as NTMT1 and NTMT2, respectively) and METTL13. Of these ∼300 targets, the bulk are acted upon by METTL11A. Only one substrate is known to be Nα-methylated by METTL13, and METTL11B has no proven in vivo targets or predicted targets that are not also methylated by METTL11A. Given that METTL11A could clearly handle the entire substrate burden of Nα-methylation, it is unclear why three distinct Nα-methyltransferases have evolved. However, recent evidence suggests that many methyltransferases perform important biological functions outside of their catalytic activity, and the Nα-methyltransferases might be part of this emerging group. Here, we describe the distinct expression, localization and physiological roles of each Nα-methyltransferase, and compare these characteristics to other methyltransferases with non-catalytic functions, as well as to methyltransferases with both catalytic and non-catalytic functions, to give a better understanding of the global roles of these proteins. Based on these comparisons, we hypothesize that these three enzymes do not just have one common function but are actually performing three unique jobs in the cell.
Collapse
Affiliation(s)
- Meghan M. Conner
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
13
|
Abstract
The methyltransferase-like (METTL) family is a diverse group of methyltransferases that can methylate nucleotides, proteins, and small molecules. Despite this diverse array of substrates, they all share a characteristic seven-beta-strand catalytic domain, and recent evidence suggests many also share an important role in stem cell biology. The most well characterized family members METTL3 and METTL14 dimerize to form an N6-methyladenosine (m6A) RNA methyltransferase with established roles in cancer progression. However, new mouse models indicate that METTL3/METTL14 are also important for embryonic stem cell (ESC) development and postnatal hematopoietic and neural stem cell self-renewal and differentiation. METTL1, METTL5, METTL6, METTL8, and METTL17 also have recently identified roles in ESC pluripotency and differentiation, while METTL11A/11B, METTL4, METTL7A, and METTL22 have been shown to play roles in neural, mesenchymal, bone, and hematopoietic stem cell development, respectively. Additionally, a variety of other METTL family members are translational regulators, a role that could place them as important players in the transition from stem cell quiescence to differentiation. Here we will summarize what is known about the role of METTL proteins in stem cell differentiation and highlight the connection between their growing importance in development and their established roles in oncogenesis.
Collapse
Affiliation(s)
- John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - James P Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA.
| |
Collapse
|
14
|
Zhou Q, Wu W, Jia K, Qi G, Sun XS, Li P. Design and characterization of PROTAC degraders specific to protein N-terminal methyltransferase 1. Eur J Med Chem 2022; 244:114830. [PMID: 36228414 PMCID: PMC10520980 DOI: 10.1016/j.ejmech.2022.114830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022]
Abstract
Protein N-terminal methylation catalyzed by N-terminal methyltransferase 1 (NTMT1) is an emerging methylation present in eukaryotes, playing important regulatory roles in various biological and cellular processes. Although dysregulation of NTMT1 has been linked to many diseases such as colorectal cancer, their molecular and cellular mechanisms remain elusive due to inaccessibility to an effective cellular probe. Here we report the design, synthesis, and characterization of the first-in-class NTMT1 degraders based on proteolysis-targeting chimera (PROTAC) strategy. Through a brief structure-activity relationship (SAR) study of linker length, a cell permeable degrader 1 involving a von Hippel-Lindau (VHL) E3 ligase ligand was developed and demonstrated to reduce NTMT1 protein levels effectively and selectively in time- and dose-dependent manners in colorectal carcinoma cell lines HCT116 and HT29. Degrader 1 displayed DC50 = 7.53 μM and Dmax > 90% in HCT116 (cellular IC50 > 100 μM for its parent inhibitor DC541). While degrader 1 had marginal cytotoxicity, it displayed anti-proliferative activity in 2D and 3D culture environment, resulting from cell cycle arrested at G0/G1 phase in HCT116. Label-free global proteomic analysis revealed that degrader 1 induced overexpression of calreticulin (CALR), an immunogenic cell death (ICD) signal protein that is known to elicit antitumor immune response and clinically linked to a high survival rate of patients with colorectal cancer upon its upregulation. Collectively, degrader 1 offers the first selective cellular probe for NTMT1 exploration and a new drug discovery modality for NTMT1-related oncology and diseases.
Collapse
Affiliation(s)
- Qilong Zhou
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA; Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine
| | - Wei Wu
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaimin Jia
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Guangyan Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA; Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Ping Li
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
15
|
Dong G, Deng Y, Yasgar A, Yadav R, Talley D, Zakharov AV, Jain S, Rai G, Noinaj N, Simeonov A, Huang R. Venglustat Inhibits Protein N-Terminal Methyltransferase 1 in a Substrate-Competitive Manner. J Med Chem 2022; 65:12334-12345. [PMID: 36074125 PMCID: PMC9813856 DOI: 10.1021/acs.jmedchem.2c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Venglustat is a known allosteric inhibitor for ceramide glycosyltransferase, investigated in diseases caused by lysosomal dysfunction. Here, we identified venglustat as a potent inhibitor (IC50 = 0.42 μM) of protein N-terminal methyltransferase 1 (NTMT1) by screening 58,130 compounds. Furthermore, venglustat exhibited selectivity for NTMT1 over 36 other methyltransferases. The crystal structure of NTMT1-venglustat and inhibition mechanism revealed that venglustat competitively binds at the peptide substrate site. Meanwhile, venglustat potently inhibited protein N-terminal methylation levels in cells (IC50 = 0.5 μM). Preliminary structure-activity relationships indicated that the quinuclidine and fluorophenyl parts of venglustat are important for NTMT1 inhibition. In summary, we confirmed that venglustat is a bona fide NTMT1 inhibitor, which would advance the study on the biological roles of NTMT1. Additionally, this is the first disclosure of NTMT1 as a new molecular target of venglustat, which would cast light on its mechanism of action to guide the clinical investigations.
Collapse
Affiliation(s)
- Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- These authors contributed equally
| | - Youchao Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- These authors contributed equally
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ravi Yadav
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, United States
| | - Daniel Talley
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Sankalp Jain
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn P, Hanefeld U. Methyltransferases: Functions and Applications. Chembiochem 2022; 23:e202200212. [PMID: 35691829 PMCID: PMC9539859 DOI: 10.1002/cbic.202200212] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 11/25/2022]
Abstract
In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.
Collapse
Affiliation(s)
- Eman Abdelraheem
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Romina Fernández Varela
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Emely Jockmann
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Désirée Popadić
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTUK
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Peter‐Leon Hagedoorn
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Ulf Hanefeld
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| |
Collapse
|
17
|
Conner MM, Parker HV, Falcone DR, Chung G, Schaner Tooley CE. Novel regulation of the transcription factor ZHX2 by N-terminal methylation. Transcription 2022; 13:1-15. [PMID: 35613330 DOI: 10.1080/21541264.2022.2079184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
N-terminal methylation (Nα-methylation) by the methyltransferase NRMT1 is an important post-translational modification that regulates protein-DNA interactions. Accordingly, its loss impairs functions that are reliant on such interactions, including DNA repair and transcriptional regulation. The global loss of Nα-methylation results in severe developmental and premature aging phenotypes, but given over 300 predicted substrates, it is hard to discern which physiological substrates contribute to each phenotype. One of the most striking phenotypes in NRMT1 knockout (Nrmt1-/-) mice is early liver degeneration. To identify the disrupted signaling pathways leading to this phenotype and the NRMT1 substrates involved, we performed RNA-sequencing analysis of control and Nrmt1-/- adult mouse livers. We found both a significant upregulation of transcripts in the cytochrome P450 (CYP) family and downregulation of transcripts in the major urinary protein (MUP) family. Interestingly, transcription of both families is inversely regulated by the transcription factor zinc fingers and homeoboxes 2 (ZHX2). ZHX2 contains a non-canonical NRMT1 consensus sequence, indicating that its function could be directly regulated by Nα-methylation. We confirmed misregulation of CYP and MUP mRNA and protein levels in Nrmt1-/- livers and verified NRMT1 can methylate ZHX2 in vitro. In addition, we used a mutant of ZHX2 that cannot be methylated to directly demonstrate Nα-methylation promotes ZHX2 transcription factor activity and target promoter occupancy. Finally, we show Nrmt1-/- mice also exhibit early postnatal de-repression of ZHX2 targets involved in fetal liver development. Taken together, these data implicate ZHX2 misregulation as a driving force behind the liver phenotype seen in Nrmt1-/- mice.
Collapse
Affiliation(s)
- Meghan M Conner
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Haley V Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Daniela R Falcone
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
18
|
Improved Cell-Potent and Selective Peptidomimetic Inhibitors of Protein N-Terminal Methyltransferase 1. Molecules 2022; 27:molecules27041381. [PMID: 35209173 PMCID: PMC8874984 DOI: 10.3390/molecules27041381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Protein N-terminal methyltransferase 1 (NTMT1) recognizes a unique N-terminal X-P-K/R motif (X represents any amino acid other than D/E) and transfers 1–3 methyl groups to the N-terminal region of its substrates. Guided by the co-crystal structures of NTMT1 in complex with the previously reported peptidomimetic inhibitor DC113, we designed and synthesized a series of new peptidomimetic inhibitors. Through a focused optimization of DC113, we discovered a new cell-potent peptidomimetic inhibitor GD562 (IC50 = 0.93 ± 0.04 µM). GD562 exhibited improved inhibition of the cellular N-terminal methylation levels of both the regulator of chromosome condensation 1 and the oncoprotein SET with an IC50 value of ~50 µM in human colorectal cancer HCT116 cells. Notably, the inhibitory activity of GD562 for the SET protein increased over 6-fold compared with the previously reported cell-potent inhibitor DC541. Furthermore, GD562 also exhibited over 100-fold selectivity for NTMT1 against several other methyltransferases. Thus, this study provides a valuable probe to investigate the biological functions of NTMT1.
Collapse
|
19
|
Catlin JP, Marziali LN, Rein B, Yan Z, Feltri ML, Schaner Tooley CE. Age-related neurodegeneration and cognitive impairments of NRMT1 knockout mice are preceded by misregulation of RB and abnormal neural stem cell development. Cell Death Dis 2021; 12:1014. [PMID: 34711807 PMCID: PMC8553844 DOI: 10.1038/s41419-021-04316-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
N-terminal methylation is an important posttranslational modification that regulates protein/DNA interactions and plays a role in many cellular processes, including DNA damage repair, mitosis, and transcriptional regulation. Our generation of a constitutive knockout mouse for the N-terminal methyltransferase NRMT1 demonstrated its loss results in severe developmental abnormalities and premature aging phenotypes. As premature aging is often accompanied by neurodegeneration, we more specifically examined how NRMT1 loss affects neural pathology and cognitive behaviors. Here we find that Nrmt1-/- mice exhibit postnatal enlargement of the lateral ventricles, age-dependent striatal and hippocampal neurodegeneration, memory impairments, and hyperactivity. These morphological and behavior abnormalities are preceded by alterations in neural stem cell (NSC) development. Early expansion and differentiation of the quiescent NSC pool in Nrmt1-/- mice is followed by its subsequent depletion and many of the resulting neurons remain in the cell cycle and ultimately undergo apoptosis. These cell cycle phenotypes are reminiscent to those seen with loss of the NRMT1 target retinoblastoma protein (RB). Accordingly, we find misregulation of RB phosphorylation and degradation in Nrmt1-/- mice, and significant de-repression of RB target genes involved in cell cycle. We also identify novel de-repression of Noxa, an RB target gene that promotes apoptosis. These data identify Nα-methylation as a novel regulatory modification of RB transcriptional repression during neurogenesis and indicate that NRMT1 and RB work together to promote NSC quiescence and prevent neuronal apoptosis.
Collapse
Affiliation(s)
- James P Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Leandro N Marziali
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Benjamin Rein
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - M Laura Feltri
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
20
|
Chen P, Paschoal Sobreira TJ, Hall MC, Hazbun TR. Discovering the N-Terminal Methylome by Repurposing of Proteomic Datasets. J Proteome Res 2021; 20:4231-4247. [PMID: 34382793 PMCID: PMC11955830 DOI: 10.1021/acs.jproteome.1c00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein α-N-methylation is an underexplored post-translational modification involving the covalent addition of methyl groups to the free α-amino group at protein N-termini. To systematically explore the extent of α-N-terminal methylation in yeast and humans, we reanalyzed publicly accessible proteomic datasets to identify N-terminal peptides contributing to the α-N-terminal methylome. This repurposing approach found evidence of α-N-methylation of established and novel protein substrates with canonical N-terminal motifs of established α-N-terminal methyltransferases, including human NTMT1/2 and yeast Tae1. NTMT1/2 are implicated in cancer and aging processes but have unclear and context-dependent roles. Moreover, α-N-methylation of noncanonical sequences was surprisingly prevalent, suggesting unappreciated and cryptic methylation events. Analysis of the amino acid frequencies of α-N-methylated peptides revealed a [S]1-[S/A/Q]2 pattern in yeast and [A/N/G]1-[A/S/V]2-[A/G]3 in humans, which differs from the canonical motif. We delineated the distribution of the two types of prevalent N-terminal modifications, acetylation and methylation, on amino acids at the first position. We tested three potentially methylated proteins and confirmed the α-N-terminal methylation of Hsp31 by additional proteomic analysis and immunoblotting. The other two proteins, Vma1 and Ssa3, were found to be predominantly acetylated, indicating that proteomic searching for α-N-terminal methylation requires careful consideration of mass spectra. This study demonstrates the feasibility of reprocessing proteomic data for global α-N-terminal methylome investigations.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | | | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
21
|
Chen D, Meng Y, Yu D, Noinaj N, Cheng X, Huang R. Chemoproteomic Study Uncovers HemK2/KMT9 As a New Target for NTMT1 Bisubstrate Inhibitors. ACS Chem Biol 2021; 16:1234-1242. [PMID: 34192867 DOI: 10.1021/acschembio.1c00279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Understanding the selectivity of methyltransferase inhibitors is important to dissecting the functions of each methyltransferase target. From this perspective, we report a chemoproteomic study to profile the selectivity of a potent protein N-terminal methyltransferase 1 (NTMT1) bisubstrate inhibitor NAH-C3-GPKK (Ki, app = 7 ± 1 nM) in endogenous proteomes. First, we describe the rational design, synthesis, and biochemical characterization of a new chemical probe 6, a biotinylated analogue of NAH-C3-GPKK. Next, we systematically analyze protein networks that may selectively interact with the biotinylated probe 6 in concert with the competitor NAH-C3-GPKK. Besides NTMT1, the designated NTMT1 bisubstrate inhibitor NAH-C3-GPKK was found to also potently inhibit a methyltransferase complex HemK2-Trm112 (also known as KMT9-Trm112), highlighting the importance of systematic selectivity profiling. Furthermore, this is the first potent inhibitor for HemK2/KMT9 reported until now. Thus, our studies lay the foundation for future efforts to develop selective inhibitors for either methyltransferase.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ying Meng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Past, present, and perspectives of protein N-terminal methylation. Curr Opin Chem Biol 2021; 63:115-122. [PMID: 33839647 DOI: 10.1016/j.cbpa.2021.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 01/16/2023]
Abstract
The posttranslational methylation of the α-N-terminal amino group of proteins was first documented over 40 years ago, but the functional significance of this modification has been underexplored relative to lysine and arginine methylation. Increasing reports implicates α-N-terminal methylation as a widespread and critical regulator of mitosis, chromatin interactions, DNA repair, and translation fidelity. Here, we summarize advances in the current understanding of protein α-N-terminal methylation biological functions and mechanisms across eukaryotic organisms. Also, we describe the recent literature on substrate recognition and the discovery of potent and selective inhibitors for protein N-terminal methyltransferases. Finally, we summarize the emergent crosstalk between α-N-terminal methylation and other N-terminal modifications.
Collapse
|
23
|
Tooley JG, Catlin JP, Schaner Tooley CE. CREB-mediated transcriptional activation of NRMT1 drives muscle differentiation. Transcription 2021; 12:72-88. [PMID: 34403304 PMCID: PMC8555533 DOI: 10.1080/21541264.2021.1963627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
The N-terminal methyltransferase NRMT1 is an important regulator of protein/DNA interactions and plays a role in many cellular processes, including mitosis, cell cycle progression, chromatin organization, DNA damage repair, and transcriptional regulation. Accordingly, loss of NRMT1 results in both developmental pathologies and oncogenic phenotypes. Though NRMT1 plays such important and diverse roles in the cell, little is known about its own regulation. To better understand the mechanisms governing NRMT1 expression, we first identified its predominant transcriptional start site and minimal promoter region with predicted transcription factor motifs. We then used a combination of luciferase and binding assays to confirm CREB1 as the major regulator of NRMT1 transcription. We tested which conditions known to activate CREB1 also activated NRMT1 transcription, and found CREB1-mediated NRMT1 expression was increased during recovery from serum starvation and muscle cell differentiation. To determine how NRMT1 expression affects myoblast differentiation, we used CRISPR/Cas9 technology to knock out NRMT1 expression in immortalized C2C12 mouse myoblasts. C2C12 cells depleted of NRMT1 lacked Pax7 expression and were unable to proceed down the muscle differentiation pathway. Instead, they took on characteristics of C2C12 cells that have transdifferentiated into osteoblasts, including increased alkaline phosphatase and type I collagen expression and decreased proliferation. These data implicate NRMT1 as an important downstream target of CREB1 during muscle cell differentiation.
Collapse
Affiliation(s)
- John G. Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - James P. Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
24
|
Chen D, Dong G, Deng Y, Noinaj N, Huang R. Structure-based Discovery of Cell-Potent Peptidomimetic Inhibitors for Protein N-Terminal Methyltransferase 1. ACS Med Chem Lett 2021; 12:485-493. [PMID: 33738076 DOI: 10.1021/acsmedchemlett.1c00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Protein N-terminal methyltransferases (NTMTs) catalyze the methylation of the α-N-terminal amines of proteins starting with an X-P-K/R motif. NTMT1 has been implicated in various cancers and in aging, implying its role as a potential therapeutic target. Through structural modifications of a lead NTMT1 inhibitor, BM30, we designed and synthesized a diverse set of inhibitors to probe the NTMT1 active site. The incorporation of a naphthyl group at the N-terminal region and an ortho-aminobenzoic amide at the C-terminal region of BM30 generates the top cell-potent inhibitor DC541, demonstrating increased activity on both purified NTMT1 (IC50 of 0.34 ± 0.02 μM) and the cellular α-N-terminal methylation level of regulator of chromosome condensation 1 (RCC1, IC50 value of 30 μM) in human colorectal cancer HT29 cells. Furthermore, DC541 exhibits over 300-fold selectivity to several methyltransferases. This study points out the direction for the development of more cell-potent inhibitors for NTMT1.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Youchao Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Modulation of N-terminal methyltransferase 1 by an N 6-methyladenosine-based epitranscriptomic mechanism. Biochem Biophys Res Commun 2021; 546:54-58. [PMID: 33561748 DOI: 10.1016/j.bbrc.2021.01.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Abstract
Protein α-N-methylation is an evolutionarily conserved type of post-translational modification; however, little is known about the regulatory mechanisms for this modification. Methylation at the N6 position of adenosine in mRNAs is dynamic and modulates their stability, splicing, and translational efficiency. Here, we found that the expression of N-terminal methyltransferase 1 (NTMT1) protein is altered by depletion of those genes encoding the reader/writer/eraser proteins of N6-methyladenosine (m6A). We also observed that MRG15 is N-terminally methylated by NTMT1, and this methylation could also be modulated by reader/writer/eraser proteins of m6A. Together, these results revealed a novel m6A-based epitranscriptomic mechanism in regulating protein N-terminal methylation.
Collapse
|
26
|
Zacarias E, Casas-Mollano JA. Cataloging Posttranslational Modifications in Plant Histones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:131-154. [DOI: 10.1007/978-3-030-80352-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Chen D, Dong C, Dong G, Srinivasan K, Min J, Noinaj N, Huang R. Probing the Plasticity in the Active Site of Protein N-terminal Methyltransferase 1 Using Bisubstrate Analogues. J Med Chem 2020; 63:8419-8431. [PMID: 32605369 PMCID: PMC7429357 DOI: 10.1021/acs.jmedchem.0c00770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bisubstrate analogue strategy is a promising approach to develop potent and selective inhibitors for protein methyltransferases. Herein, the interactions of a series of bisubstrate analogues with protein N-terminal methyltransferase 1 (NTMT1) were examined to probe the molecular properties of the active site of NTMT1. Our results indicate that a 2-C to 4-C atom linker enables its respective bisubstrate analogue to occupy both substrate- and cofactor-binding sites of NTMT1, but the bisubstrate analogue with a 5-C atom linker only interacts with the substrate-binding site and functions as a substrate. Furthermore, the 4-C atom linker is the optimal and produces the most potent inhibitor (Ki,app = 130 ± 40 pM) for NTMT1 to date, displaying more than 3000-fold selectivity for other methyltransferases and even for its homologue NTMT2. This study reveals the molecular basis for the plasticity of the active site of NTMT1. Additionally, our study outlines general guidance on the development of bisubstrate inhibitors for any methyltransferases.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Cheng Dong
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Karthik Srinivasan
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinrong Min
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
28
|
Mackie BD, Chen D, Dong G, Dong C, Parker H, Schaner Tooley CE, Noinaj N, Min J, Huang R. Selective Peptidomimetic Inhibitors of NTMT1/2: Rational Design, Synthesis, Characterization, and Crystallographic Studies. J Med Chem 2020; 63:9512-9522. [PMID: 32689795 DOI: 10.1021/acs.jmedchem.0c00689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein N-terminal methyltransferases (NTMTs) methylate the α-N-terminal amines of proteins starting with the canonical X-P-K/R motif. Genetic studies imply that NTMT1 regulates cell mitosis and DNA damage repair. Herein, we report the rational design and development of the first potent peptidomimetic inhibitor for NTMT1/2. Biochemical and cocrystallization studies manifest that BM30 (with a half-maximal inhibitory concentration of 0.89 ± 0.10 μM) is a competitive inhibitor to the peptide substrate and noncompetitive to the cofactor S-adenosylmethionine. BM30 exhibits over 100-fold selectivity to NTMT1/2 among a panel of 41 MTs, indicating its potential to achieve high selectivity when targeting the peptide substrate binding site of NTMT1/2. Its cell-permeable analogue DC432 (IC50 of 54 ± 4 nM) decreases the N-terminal methylation level of the regulator of chromosome condensation 1 and SET proteins in HCT116 cells. This proof-of principle study provides valuable probes for NTMT1/2 and highlights the opportunity to develop more cell-potent inhibitors to elucidate the function of NTMTs in the future.
Collapse
Affiliation(s)
- Brianna D Mackie
- Department of Medicinal Chemistry, Institute of Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Cheng Dong
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Haley Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinrong Min
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Rong Huang
- Department of Medicinal Chemistry, Institute of Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
Sun X, Li H, Thapa S, Reddy Sangireddy S, Pei X, Liu W, Jiang Y, Yang S, Hui D, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW. Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene. HORTICULTURE RESEARCH 2020; 7:43. [PMID: 32257229 PMCID: PMC7109090 DOI: 10.1038/s41438-020-0264-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Glyoxalase I (Gly I) is the first enzyme in the glutathionine-dependent glyoxalase pathway for detoxification of methylglyoxal (MG) under stress conditions. Transgenic tomato 'Money Maker' plants overexpressing tomato SlGlyI gene (tomato unigene accession SGN-U582631/Solyc09g082120.3.1) were generated and homozygous lines were obtained after four generations of self-pollination. In this study, SlGlyI-overepxressing line (GlyI), wild type (WT, negative control) and plants transformed with empty vector (ECtr, positive control), were subjected to Al-treatment by growing in Magnavaca's nutrient solution (pH 4.5) supplemented with 20 µM Al3+ ion activity. After 30 days of treatments, the fresh and dry weight of shoots and roots of plants from Al-treated conditions decreased significantly compared to the non-treated conditions for all the three lines. When compared across the three lines, root fresh and dry weight of GlyI was significant higher than WT and ECtr, whereas there was no difference in shoot tissues. The basal 5 mm root-tips of GlyI plants expressed a significantly higher level of glyoxalase activity under both non-Al-treated and Al-treated conditions compared to the two control lines. Under Al-treated condition, there was a significant increase in MG content in ECtr and WT lines, but not in GlyI line. Quantitative proteomics analysis using tandem mass tags mass spectrometry identified 4080 quantifiable proteins and 201 Al-induced differentially expressed proteins (DEPs) in root-tip tissues from GlyI, and 4273 proteins and 230 DEPs from ECtr. The Al-down-regulated DEPs were classified into molecular pathways of gene transcription, RNA splicing and protein biosynthesis in both GlyI and ECtr lines. The Al-induced DEPs in GlyI associated with tolerance to Al3+ and MG toxicity are involved in callose degradation, cell wall components (xylan acetylation and pectin degradation), oxidative stress (antioxidants) and turnover of Al-damaged epidermal cells, repair of damaged DNA, epigenetics, gene transcription, and protein translation. A protein-protein association network was constructed to aid the selection of proteins in the same pathway but differentially regulated in GlyI or ECtr lines. Proteomics data are available via ProteomeXchange with identifiers PXD009456 under project title '25Dec2017_Suping_XSexp2_ITAG3.2' for SlGlyI-overexpressing tomato plants and PXD009848 under project title '25Dec2017_Suping_XSexp3_ITAG3.2' for positive control ECtr line transformed with empty vector.
Collapse
Affiliation(s)
- Xudong Sun
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
- College of Horticulture, Shandong Agricultural University, Taian, Shandong P.R. China
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Xiaobo Pei
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Wei Liu
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yuping Jiang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Shaolan Yang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Dafeng Hui
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sarabjit Bhatti
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yong Yang
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Tara Fish
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Theodore W. Thannhauser
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
30
|
Jia K, Huang G, Wu W, Shrestha R, Wu B, Xiong Y, Li P. In vivo methylation of OLA1 revealed by activity-based target profiling of NTMT1. Chem Sci 2019; 10:8094-8099. [PMID: 31857877 PMCID: PMC6889141 DOI: 10.1039/c9sc02550b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 01/11/2023] Open
Abstract
Target profiling of NTMT1 by Hey-SAM revealed that OLA1 undergoes N-terminal methylation catalyzed by NTMT1 in vivo.
N-Terminal methyltransferase 1 (NTMT1) catalyzes the N-terminal methylation of proteins with a specific N-terminal motif after methionine removal. Aberrant N-terminal methylation has been implicated in several cancers and developmental diseases. Together with motif sequence and signal peptide analyses, activity-based substrate profiling of NTMT1 utilizing (E)-hex-2-en-5-ynyl-S-adenosyl-l-methionine (Hey-SAM) revealed 72 potential targets, which include several previously confirmed ones and many unknowns. Target validation using normal and NTMT1 knock-out (KO) HEK293FT cells generated by CRISPR-Cas9 demonstrated that Obg-like ATPase 1 (OLA1), a protein involved in many critical cellular functions, is methylated in vivo by NTMT1. Additionally, Hey-SAM synthesis achieved ≥98% yield for SAH conversion.
Collapse
Affiliation(s)
- Kaimin Jia
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Gaochao Huang
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Wei Wu
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Ruben Shrestha
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Bingbing Wu
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Yulan Xiong
- Department of Anatomy and Physiology , Kansas State University , Manhattan , Kansas 66506 , USA
| | - Ping Li
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| |
Collapse
|
31
|
Chen D, Dong G, Noinaj N, Huang R. Discovery of Bisubstrate Inhibitors for Protein N-Terminal Methyltransferase 1. J Med Chem 2019; 62:3773-3779. [PMID: 30883119 DOI: 10.1021/acs.jmedchem.9b00206] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein N-terminal methyltransferase 1 (NTMT1) plays an important role in regulating mitosis and DNA repair. Here, we describe the discovery of a potent NTMT1 bisubstrate inhibitor 4 (IC50 = 35 ± 2 nM) that exhibits greater than 100-fold selectivity against a panel of methyltransferases. We also report the first crystal structure of NTMT1 in complex with an inhibitor, which revealed that 4 occupies substrate and cofactor binding sites of NTMT1.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute of Inflammation, Immunology and Infectious Disease , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
32
|
Abstract
Protein α‐N‐terminal methylation is catalyzed by protein N‐terminal methyltransferases. The prevalent occurrence of this methylation in ribosomes, myosin, and histones implies its function in protein–protein interactions. Although its full spectrum of function has not yet been outlined, recent discoveries have revealed the emerging roles of α‐N‐terminal methylation in protein–chromatin interactions, DNA damage repair, and chromosome segregation. Herein, an overview of the discovery of protein N‐terminal methyltransferases and functions of α‐N‐terminal methylation is presented. In addition, substrate recognition, mechanisms, and inhibition of N‐terminal methyltransferases are reviewed. Opportunities and gaps in protein α‐N‐terminal methylation are also discussed.
Collapse
Affiliation(s)
- Rong Huang
- Department of Medicinal Chemistry and Molecular PharmacologyCenter for Cancer Research, Institute for Drug DiscoveryPurdue University West Lafayette IN 47907 USA
| |
Collapse
|
33
|
Sugasawa K. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. DNA Repair (Amst) 2019; 45:99-138. [DOI: 10.1016/bs.enz.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Dong C, Dong G, Li L, Zhu L, Tempel W, Liu Y, Huang R, Min J. An asparagine/glycine switch governs product specificity of human N-terminal methyltransferase NTMT2. Commun Biol 2018; 1:183. [PMID: 30417120 PMCID: PMC6214909 DOI: 10.1038/s42003-018-0196-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023] Open
Abstract
α-N-terminal methylation of proteins is an important post-translational modification that is catalyzed by two different N-terminal methyltransferases, namely NTMT1 and NTMT2. Previous studies have suggested that NTMT1 is a tri-methyltransferase, whereas NTMT2 is a mono-methyltransferase. Here, we report the first crystal structures, to our knowledge, of NTMT2 in binary complex with S-adenosyl-L-methionine as well as in ternary complex with S-adenosyl-L-homocysteine and a substrate peptide. Our structural observations combined with biochemical studies reveal that NTMT2 is also able to di-/tri-methylate the GPKRIA peptide and di-methylate the PPKRIA peptide, otherwise it is predominantly a mono-methyltransferase. The residue N89 of NTMT2 serves as a gatekeeper residue that regulates the binding of unmethylated versus monomethylated substrate peptide. Structural comparison of NTMT1 and NTMT2 prompts us to design a N89G mutant of NTMT2 that can profoundly alter its catalytic activities and product specificities. Cheng Dong et al. resolve the crystal structure of NTMT2, presenting the molecular basis for substrate recognition. Using structural and biochemical studies, they identified a specific residue within NTMT2 that controls its binding affinity to unmethylated or monomethylated substrates.
Collapse
Affiliation(s)
- Cheng Dong
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Li Li
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Licheng Zhu
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada.,School of Life Sciences, Jinggangshan University, 343009, Ji'an, Jiangxi, China
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Yanli Liu
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada. .,Department of Physiology, University of Toronto, Toronto, M5S 1A8, ON, Canada.
| |
Collapse
|
35
|
N-terminal acetylation and methylation differentially affect the function of MYL9. Biochem J 2018; 475:3201-3219. [PMID: 30242065 DOI: 10.1042/bcj20180638] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022]
Abstract
Deciphering the histone code has illustrated that acetylation or methylation on the same residue can have analogous or opposing roles. However, little is known about the interplay between these post-translational modifications (PTMs) on the same nonhistone residues. We have recently discovered that N-terminal acetyltransferases (NATs) and N-terminal methyltransferases (NRMTs) can have overlapping substrates and identified myosin regulatory light chain 9 (MYL9) as the first confirmed protein to occur in either α-amino-methylated (Nα-methyl) or α-amino-acetylated (Nα-acetyl) states in vivo Here we aim to determine if these PTMs function similarly or create different MYL9 proteoforms with distinct roles. We use enzymatic assays to directly verify MYL9 is a substrate of both NRMT1 and NatA and generate mutants of MYL9 that are exclusive for Nα-acetylation or Nα-methylation. We then employ eukaryotic cell models to probe the regulatory functions of these Nα-PTMs on MYL9. Our results show that, contrary to prevailing dogma, neither of these modifications regulate the stability of MYL9. Rather, exclusive Nα-acetylation promotes cytoplasmic roles of MYL9, while exclusive Nα-methylation promotes the nuclear role of MYL9 as a transcription factor. The increased cytoplasmic activity of Nα-acetylated MYL9 corresponds with increased phosphorylation at serine 19, a key MYL9 activating PTM. Increased nuclear activity of Nα-methylated MYL9 corresponds with increased DNA binding. Nα-methylation also results in a decrease of interactions between the N-terminus of MYL9 and a host of cytoskeletal proteins. These results confirm that Nα-acetylation and Nα-methylation differentially affect MYL9 function by creating distinct proteoforms with different internal PTM patterns and binding properties.
Collapse
|
36
|
Faughn JD, Dean WL, Schaner Tooley CE. The N-terminal methyltransferase homologs NRMT1 and NRMT2 exhibit novel regulation of activity through heterotrimer formation. Protein Sci 2018; 27:1585-1599. [PMID: 30151928 DOI: 10.1002/pro.3456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Protein, DNA, and RNA methyltransferases have an ever-expanding list of novel substrates and catalytic activities. Even within families and between homologs, it is becoming clear the intricacies of methyltransferase specificity and regulation are far more diverse than originally thought. In addition to specific substrates and distinct methylation levels, methyltransferase activity can be altered by complex formation with close homologs. We work with the N-terminal methyltransferase homologs NRMT1 and NRMT2. NRMT1 is a ubiquitously expressed distributive trimethylase. NRMT2 is a monomethylase expressed at low levels in a tissue-specific manner. They are both nuclear methyltransferases with overlapping consensus sequences but have distinct enzymatic activities and tissue expression patterns. Co-expression with NRMT2 increases the trimethylation rate of NRMT1, and here we aim to understand how this occurs. We use analytical ultracentrifugation to show that while NRMT1 primarily exists as a dimer and NRMT2 as a monomer, when co-expressed they form a heterotrimer. We use co-immunoprecipitation and molecular modeling to demonstrate in vivo binding and map areas of interaction. While overexpression of NRMT2 increases the half-life of NRMT1, the converse is not true, indicating that NRMT2 may be increasing NRMT1 activity by stabilizing the enzyme. Accordingly, the catalytic activity of NRMT2 is not needed to increase NRMT1 activity or increase its affinity for less preferred substrates. Monomethylation can also not rescue phenotypes seen with loss of trimethylation. Taken together, these data support a model where NRMT2 expression activates NRMT1 activity, not through priming, but by increasing its stability and substrate affinity.
Collapse
Affiliation(s)
- Jon D Faughn
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - William L Dean
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, 14203
| |
Collapse
|
37
|
Shields KM, Tooley JG, Petkowski JJ, Wilkey DW, Garbett NC, Merchant ML, Cheng A, Schaner Tooley CE. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation. Protein Sci 2017; 26:1639-1652. [PMID: 28556566 DOI: 10.1002/pro.3202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
A subset of B-cell lymphoma patients have dominant mutations in the histone H3 lysine 27 (H3K27) methyltransferase EZH2, which change it from a monomethylase to a trimethylase. These mutations occur in aromatic resides surrounding the active site and increase growth and alter transcription. We study the N-terminal trimethylase NRMT1 and the N-terminal monomethylase NRMT2. They are 50% identical, but differ in key aromatic residues in their active site. Given how these residues affect EZH2 activity, we tested whether they are responsible for the distinct catalytic activities of NRMT1/2. Additionally, NRMT1 acts as a tumor suppressor in breast cancer cells. Its loss promotes oncogenic phenotypes but sensitizes cells to DNA damage. Mutations of NRMT1 naturally occur in human cancers, and we tested a select group for altered activity. While directed mutation of the aromatic residues had minimal catalytic effect, NRMT1 mutants N209I (endometrial cancer) and P211S (lung cancer) displayed decreased trimethylase and increased monomethylase/dimethylase activity. Both mutations are located in the peptide-binding channel and indicate a second structural region impacting enzyme specificity. The NRMT1 mutants demonstrated a slower rate of trimethylation and a requirement for higher substrate concentration. Expression of the mutants in wild type NRMT backgrounds showed no change in N-terminal methylation levels or growth rates, demonstrating they are not acting as dominant negatives. Expression of the mutants in cells lacking endogenous NRMT1 resulted in minimal accumulation of N-terminal trimethylation, indicating homozygosity could help drive oncogenesis or serve as a marker for sensitivity to DNA damaging chemotherapeutics or γ-irradiation.
Collapse
Affiliation(s)
- Kaitlyn M Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Daniel W Wilkey
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Nichola C Garbett
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Alan Cheng
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214
| |
Collapse
|
38
|
Sathyan KM, Fachinetti D, Foltz DR. α-amino trimethylation of CENP-A by NRMT is required for full recruitment of the centromere. Nat Commun 2017; 8:14678. [PMID: 28266506 PMCID: PMC5343448 DOI: 10.1038/ncomms14678] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
Centromeres are unique chromosomal domains that control chromosome segregation, and are epigenetically specified by the presence of the CENP-A containing nucleosomes. CENP-A governs centromere function by recruiting the constitutive centromere associated network (CCAN) complex. The features of the CENP-A nucleosome necessary to distinguish centromeric chromatin from general chromatin are not completely understood. Here we show that CENP-A undergoes α-amino trimethylation by the enzyme NRMT in vivo. We show that α-amino trimethylation of the CENP-A tail contributes to cell survival. Loss of α-amino trimethylation causes a reduction in the CENP-T and CENP-I CCAN components at the centromere and leads to lagging chromosomes and spindle pole defects. The function of p53 alters the response of cells to defects associated with decreased CENP-A methylation. Altogether we show an important functional role for α-amino trimethylation of the CENP-A nucleosome in maintaining centromere function and faithful chromosomes segregation.
Collapse
Affiliation(s)
- Kizhakke M Sathyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Daniele Fachinetti
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, Paris 75005, France
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA.,Northwestern University, Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Chicago, Illinois 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
39
|
Pan MR, Li K, Lin SY, Hung WC. Connecting the Dots: From DNA Damage and Repair to Aging. Int J Mol Sci 2016; 17:ijms17050685. [PMID: 27164092 PMCID: PMC4881511 DOI: 10.3390/ijms17050685] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 01/15/2023] Open
Abstract
Mammalian cells evolve a delicate system, the DNA damage response (DDR) pathway, to monitor genomic integrity and to prevent the damage from both endogenous end exogenous insults. Emerging evidence suggests that aberrant DDR and deficient DNA repair are strongly associated with cancer and aging. Our understanding of the core program of DDR has made tremendous progress in the past two decades. However, the long list of the molecules involved in the DDR and DNA repair continues to grow and the roles of the new “dots” are under intensive investigation. Here, we review the connection between DDR and DNA repair and aging and discuss the potential mechanisms by which deficient DNA repair triggers systemic effects to promote physiological or pathological aging.
Collapse
Affiliation(s)
- Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsoung Medical University, Kaohsiung 807, Taiwan.
| | - Kaiyi Li
- The Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Shiaw-Yih Lin
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
40
|
Loss of the N-terminal methyltransferase NRMT1 increases sensitivity to DNA damage and promotes mammary oncogenesis. Oncotarget 2016; 6:12248-63. [PMID: 25909287 PMCID: PMC4494936 DOI: 10.18632/oncotarget.3653] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/27/2015] [Indexed: 12/31/2022] Open
Abstract
Though discovered over four decades ago, the function of N-terminal methylation has mostly remained a mystery. Our discovery of the first mammalian N-terminal methyltransferase, NRMT1, has led to the discovery of many new functions for N-terminal methylation, including regulation of DNA/protein interactions, accurate mitotic division, and nucleotide excision repair (NER). Here we test whether NRMT1 is also important for DNA double-strand break (DSB) repair, and given its previously known roles in cell cycle regulation and the DNA damage response, assay if NRMT1 is acting as a tumor suppressor. We find that NRMT1 knockdown significantly enhances the sensitivity of breast cancer cell lines to both etoposide treatment and γ-irradiation, as well as, increases proliferation rate, invasive potential, anchorage-independent growth, xenograft tumor size, and tamoxifen sensitivity. Interestingly, this positions NRMT1 as a tumor suppressor protein involved in multiple DNA repair pathways, and indicates, similar to BRCA1 and BRCA2, its loss may result in tumors with enhanced sensitivity to diverse DNA damaging chemotherapeutics.
Collapse
|
41
|
Dai X, You C, Wang Y. The Functions of Serine 687 Phosphorylation of Human DNA Polymerase η in UV Damage Tolerance. Mol Cell Proteomics 2016; 15:1913-20. [PMID: 26988343 DOI: 10.1074/mcp.m115.052167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 01/11/2023] Open
Abstract
DNA polymerase η (polη) is a Y-family translesion synthesis polymerase that plays a key role in the cellular tolerance toward UV irradiation-induced DNA damage. Here, we identified, for the first time, the phosphorylation of serine 687 (Ser(687)), which is located in the highly conserved nuclear localization signal (NLS) region of human polη and is mediated by cyclin-dependent kinase 2 (CDK2). We also showed that this phosphorylation is stimulated in human cells upon UV light exposure and results in diminished interaction of polη with proliferating cell nuclear antigen (PCNA). Furthermore, we demonstrated that the phosphorylation of Ser(687) in polη confers cellular protection from UV irradiation and increases the efficiency in replication across a site-specifically incorporated cyclobutane pyrimidine dimer in human cells. Based on these results, we proposed a mechanistic model where Ser(687) phosphorylation functions in the reverse polymerase switching step of translesion synthesis: The phosphorylation brings negative charges to the NLS of polη, which facilitates its departure from PCNA, thereby resetting the replication fork for highly accurate and processive DNA replication. Thus, our study, together with previous findings, supported that the posttranslational modifications of NLS of polη played a dual role in polymerase switching, where Lys(682) deubiquitination promotes the recruitment of polη to PCNA immediately prior to lesion bypass and Ser(687) phosphorylation stimulates its departure from the replication fork immediately after lesion bypass.
Collapse
Affiliation(s)
- Xiaoxia Dai
- From the §Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Changjun You
- From the §Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- From the §Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
42
|
A new GLP-1 analogue with prolonged glucose-lowering activity in vivo via backbone-based modification at the N-terminus. Bioorg Med Chem 2016; 24:1163-70. [PMID: 26895657 DOI: 10.1016/j.bmc.2016.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/18/2016] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an endogenous insulinotropic hormone with wonderful glucose-lowering activity. However, its clinical use in type II diabetes is limited due to its rapid degradation at the N-terminus by dipeptidyl peptidase IV (DPP-IV). Among the N-terminal modifications of GLP-1, backbone-based modification was rarely reported. Herein, we employed two backbone-based strategies to modify the N-terminus of tGLP-1. Firstly, the amide N-methylated analogues 2-6 were designed and synthesized to make a full screening of the N-terminal amide bonds, and the loss of GLP-1 receptor (GLP-1R) activation indicated the importance of amide H-bonds. Secondly, with retaining the N-terminal amide H-bonds, the β-peptide replacement strategy was used and analogues 7-13 were synthesized. By two rounds of screening, analogue 10 was identified. Analogue 10 greatly improved the DPP-IV resistance with maintaining good GLP-1R activation in vitro, and showed approximately a 4-fold prolonged blood glucose-lowering activity in vivo in comparison with tGLP-1. This modification strategy will benefit the development of GLP-1-based anti-diabetic drugs.
Collapse
|
43
|
Hamey JJ, Winter DL, Yagoub D, Overall CM, Hart-Smith G, Wilkins MR. Novel N-terminal and Lysine Methyltransferases That Target Translation Elongation Factor 1A in Yeast and Human. Mol Cell Proteomics 2015; 15:164-76. [PMID: 26545399 DOI: 10.1074/mcp.m115.052449] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) is an essential, highly methylated protein that facilitates translational elongation by delivering aminoacyl-tRNAs to ribosomes. Here, we report a new eukaryotic protein N-terminal methyltransferase, Saccharomyces cerevisiae YLR285W, which methylates eEF1A at a previously undescribed high-stoichiometry N-terminal site and the adjacent lysine. Deletion of YLR285W resulted in the loss of N-terminal and lysine methylation in vivo, whereas overexpression of YLR285W resulted in an increase of methylation at these sites. This was confirmed by in vitro methylation of eEF1A by recombinant YLR285W. Accordingly, we name YLR285W as elongation factor methyltransferase 7 (Efm7). This enzyme is a new type of eukaryotic N-terminal methyltransferase as, unlike the three other known eukaryotic N-terminal methyltransferases, its substrate does not have an N-terminal [A/P/S]-P-K motif. We show that the N-terminal methylation of eEF1A is also present in human; this conservation over a large evolutionary distance suggests it to be of functional importance. This study also reports that the trimethylation of Lys(79) in eEF1A is conserved from yeast to human. The methyltransferase responsible for Lys(79) methylation of human eEF1A is shown to be N6AMT2, previously documented as a putative N(6)-adenine-specific DNA methyltransferase. It is the direct ortholog of the recently described yeast Efm5, and we show that Efm5 and N6AMT2 can methylate eEF1A from either species in vitro. We therefore rename N6AMT2 as eEF1A-KMT1. Including the present work, yeast eEF1A is now documented to be methylated by five different methyltransferases, making it one of the few eukaryotic proteins to be extensively methylated by independent enzymes. This implies more extensive regulation of eEF1A by this posttranslational modification than previously appreciated.
Collapse
Affiliation(s)
- Joshua J Hamey
- From the ‡Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Daniel L Winter
- From the ‡Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Daniel Yagoub
- From the ‡Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Christopher M Overall
- §Centre for Blood Research, Departments of Oral Biological and Medical Sciences/Biochemistry and Molecular Biology, University of British Columbia, British Columbia, V6T 1Z4, Canada
| | - Gene Hart-Smith
- From the ‡Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Marc R Wilkins
- From the ‡Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia;
| |
Collapse
|
44
|
Dong C, Mao Y, Tempel W, Qin S, Li L, Loppnau P, Huang R, Min J. Structural basis for substrate recognition by the human N-terminal methyltransferase 1. Genes Dev 2015; 29:2343-8. [PMID: 26543161 PMCID: PMC4691889 DOI: 10.1101/gad.270611.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/14/2015] [Indexed: 01/17/2023]
Abstract
α-N-terminal methylation represents a highly conserved and prevalent post-translational modification, yet its biological function has remained largely speculative. The recent discovery of α-N-terminal methyltransferase 1 (NTMT1) and its physiological substrates propels the elucidation of a general role of α-N-terminal methylation in mediating DNA-binding ability of the modified proteins. The phenotypes, observed from both NTMT1 knockdown in breast cancer cell lines and knockout mouse models, suggest the potential involvement of α-N-terminal methylation in DNA damage response and cancer development. In this study, we report the first crystal structures of human NTMT1 in complex with cofactor S-adenosyl-L-homocysteine (SAH) and six substrate peptides, respectively, and reveal that NTMT1 contains two characteristic structural elements (a β hairpin and an N-terminal extension) that contribute to its substrate specificity. Our complex structures, coupled with mutagenesis, binding, and enzymatic studies, also present the key elements involved in locking the consensus substrate motif XPK (X indicates any residue type other than D/E) into the catalytic pocket for α-N-terminal methylation and explain why NTMT1 prefers an XPK sequence motif. We propose a catalytic mechanism for α-N-terminal methylation. Overall, this study gives us the first glimpse of the molecular mechanism of α-N-terminal methylation and potentially contributes to the advent of therapeutic agents for human diseases associated with deregulated α-N-terminal methylation.
Collapse
Affiliation(s)
- Cheng Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada
| | - Yunfei Mao
- Department of Medicinal Chemistry, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, USA; The Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada
| | - Li Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada
| | - Rong Huang
- Department of Medicinal Chemistry, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, USA; The Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
45
|
Varland S, Osberg C, Arnesen T. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects. Proteomics 2015; 15:2385-401. [PMID: 25914051 PMCID: PMC4692089 DOI: 10.1002/pmic.201400619] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023]
Abstract
The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Camilla Osberg
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
46
|
Zhang G, Richardson SL, Mao Y, Huang R. Design, synthesis, and kinetic analysis of potent protein N-terminal methyltransferase 1 inhibitors. Org Biomol Chem 2015; 13:4149-54. [PMID: 25712161 PMCID: PMC4857722 DOI: 10.1039/c5ob00120j] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The protein N-terminal methyltransferase 1 (NTMT1) methylates the α-N-terminal amines of proteins. NTMT1 is upregulated in a variety of cancers and knockdown of NTMT1 results in cell mitotic defects. Therefore, NTMT1 inhibitors could be potential anticancer therapeutics. This study describes the design and synthesis of the first inhibitor targeting NTMT1. A novel bisubstrate analogue (NAM-TZ-SPKRIA) was shown to be a potent inhibitor (Ki = 0.20 μM) for NTMT1 and was selective versus protein lysine methyltransferase G9a and arginine methyltransferase 1. NAM-TZ-SPKRIA was found to exhibit a competitive inhibition pattern for both substrates, and mass spectrometry experiments revealed that the inhibitor substantially suppressed the methylation progression. Our results demonstrate the feasibility of using a triazole group to link an S-adenosyl-L-methionine analog with a peptide substrate to construct bisubstrate analogues as NTMT1 potent and selective inhibitors. This study lays a foundation to further discover small molecule NTMT1 inhibitors to interrogate its biological functions, and suggests a general strategy for the development of selective protein methyltransferase inhibitors.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Medicinal Chemistry, and the Institute of Structural Biology & Drug Discovery, Virginia Commonwealth University, Richmond, VA, USA.
| | | | | | | |
Collapse
|
47
|
Bonsignore LA, Tooley JG, Van Hoose PM, Wang E, Cheng A, Cole MP, Schaner Tooley CE. NRMT1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging. Mech Ageing Dev 2015; 146-148:42-52. [PMID: 25843235 DOI: 10.1016/j.mad.2015.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
Though defective genome maintenance and DNA repair have long been known to promote phenotypes of premature aging, the role protein methylation plays in these processes is only now emerging. We have recently identified the first N-terminal methyltransferase, NRMT1, which regulates protein-DNA interactions and is necessary for both accurate mitotic division and nucleotide excision repair. To demonstrate if complete loss of NRMT1 subsequently resulted in developmental or aging phenotypes, we constructed the first NRMT1 knockout (Nrmt1(-/-)) mouse. The majority of these mice die shortly after birth. However, the ones that survive, exhibit decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration; phenotypes characteristic of other mouse models deficient in DNA repair. The livers from Nrmt1(-/-) mice produce less reactive oxygen species (ROS) than wild type controls, and Nrmt1(-/-) mouse embryonic fibroblasts show a decreased capacity for handling oxidative damage. This indicates that decreased mitochondrial function may benefit Nrmt1(-/-) mice and protect them from excess internal ROS and subsequent DNA damage. These studies position the NRMT1 knockout mouse as a useful new system for studying the effects of genomic instability and defective DNA damage repair on organismal and tissue-specific aging.
Collapse
Affiliation(s)
- Lindsay A Bonsignore
- Department of Biochemistry & Molecular Genetics, Gheens Center on Aging, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - John G Tooley
- Department of Biochemistry & Molecular Genetics, Gheens Center on Aging, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Patrick M Van Hoose
- Department of Biochemistry & Molecular Genetics, Gheens Center on Aging, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Eugenia Wang
- Department of Biochemistry & Molecular Genetics, Gheens Center on Aging, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Alan Cheng
- Department of Biochemistry & Molecular Genetics, Gheens Center on Aging, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Marsha P Cole
- Department of Biochemistry & Molecular Genetics, Gheens Center on Aging, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry & Molecular Genetics, Gheens Center on Aging, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
48
|
Richardson SL, Mao Y, Zhang G, Hanjra P, Peterson DL, Huang R. Kinetic mechanism of protein N-terminal methyltransferase 1. J Biol Chem 2015; 290:11601-10. [PMID: 25771539 DOI: 10.1074/jbc.m114.626846] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 01/10/2023] Open
Abstract
The protein N-terminal methyltransferase 1 (NTMT1) catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine to the protein α-amine, resulting in formation of S-adenosyl-l-homocysteine and α-N-methylated proteins. NTMT1 is an interesting potential anticancer target because it is overexpressed in gastrointestinal cancers and plays an important role in cell mitosis. To gain insight into the biochemical mechanism of NTMT1, we have characterized the kinetic mechanism of recombinant NTMT1 using a fluorescence assay and mass spectrometry. The results of initial velocity, product, and dead-end inhibition studies indicate that methylation by NTMT1 proceeds via a random sequential Bi Bi mechanism. In addition, our processivity studies demonstrate that NTMT1 proceeds via a distributive mechanism for multiple methylations. Together, our studies provide new knowledge about the kinetic mechanism of NTMT1 and lay the foundation for the development of mechanism-based inhibitors.
Collapse
Affiliation(s)
- Stacie L Richardson
- From the Department of Medicinal Chemistry, the Institute for Structural Biology and Drug Discovery, and
| | - Yunfei Mao
- From the Department of Medicinal Chemistry, the Institute for Structural Biology and Drug Discovery, and
| | - Gang Zhang
- From the Department of Medicinal Chemistry, the Institute for Structural Biology and Drug Discovery, and
| | - Pahul Hanjra
- From the Department of Medicinal Chemistry, the Institute for Structural Biology and Drug Discovery, and
| | - Darrell L Peterson
- the Institute for Structural Biology and Drug Discovery, and the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Rong Huang
- From the Department of Medicinal Chemistry, the Institute for Structural Biology and Drug Discovery, and
| |
Collapse
|
49
|
Tooley JG, Schaner Tooley CE. New roles for old modifications: emerging roles of N-terminal post-translational modifications in development and disease. Protein Sci 2014; 23:1641-9. [PMID: 25209108 DOI: 10.1002/pro.2547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023]
Abstract
The importance of internal post-translational modification (PTM) in protein signaling and function has long been known and appreciated. However, the significance of the same PTMs on the alpha amino group of N-terminal amino acids has been comparatively understudied. Historically considered static regulators of protein stability, additional functional roles for N-terminal PTMs are now beginning to be elucidated. New findings show that N-terminal methylation, along with N-terminal acetylation, is an important regulatory modification with significant roles in development and disease progression. There are also emerging studies on the enzymology and functional roles of N-terminal ubiquitylation and N-terminal propionylation. Here, will discuss the recent advances in the functional studies of N-terminal PTMs, recount the new N-terminal PTMs being identified, and briefly examine the possibility of dynamic N-terminal PTM exchange.
Collapse
Affiliation(s)
- John G Tooley
- Department of Biochemistry and Molecular Biology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | | |
Collapse
|