1
|
Rangel-Mendoza A, Valenzuela-García LI, Robleto EA, Pedraza-Reyes M. Germination and Outgrowth of Bacillus subtilis Spores Deficient in BER and DisA Unveil Alternative Genetic Checkpoints. Microorganisms 2025; 13:939. [PMID: 40284773 PMCID: PMC12029834 DOI: 10.3390/microorganisms13040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
During Bacillus subtilis spore germination/outgrowth, the rehydration of the spore core and activation of aerobic metabolism can generate reactive oxygen species (ROS)-promoted DNA lesions that are repaired via the base excision repair pathway (BER). Accordingly, spores deficient in the AP-endonucleases (APEs) Nfo and ExoA exhibit a delayed outgrowth that is suppressed following disruption of the checkpoint protein DisA. Here, we report that DisA-independent DNA damage checkpoints operate during B. subtilis spore outgrowth. Consistent with this notion, spores lacking Nfo, ExoA, and Nth, which functions as an APE, did not suppress delayed outgrowth following disA disruption. Furthermore, in reference to the ∆nfo ∆exoA ∆nth spores, spores deficient for these APEs and DisA displayed a significantly higher number of oxidative genetic lesions and failed to properly segregate its chromosome during the first round of replication in the outgrowth stage. Finally, we found that DisA promotes low-fidelity repair and replication events, as revealed by DNA-alkaline gel electrophoresis (AGE) as well as spontaneous and H2O2-promoted RifR mutagenesis. Overall, our results unveil the existence of DisA-independent DNA damage checkpoint(s) that are activated by genomic lesions of an oxidative nature during spore germination and outgrowth, ensuring a proper transition to vegetative growth.
Collapse
Affiliation(s)
| | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Subsede-Durango, Durango 34147, Durango, Mexico;
| | - Eduardo A. Robleto
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| | - Mario Pedraza-Reyes
- Department of Biology, University of Guanajuato, Guanajuato 36050, Guanajuato, Mexico;
| |
Collapse
|
2
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Herzberg C, Meißner J, Warneke R, Stülke J. The many roles of cyclic di-AMP to control the physiology of Bacillus subtilis. MICROLIFE 2023; 4:uqad043. [PMID: 37954098 PMCID: PMC10636490 DOI: 10.1093/femsml/uqad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
The dinucleotide cyclic di-AMP (c-di-AMP) is synthesized as a second messenger in the Gram-positive model bacterium Bacillus subtilis as well as in many bacteria and archaea. Bacillus subtilis possesses three diadenylate cyclases and two phosphodiesterases that synthesize and degrade the molecule, respectively. Among the second messengers, c-di-AMP is unique since it is essential for B. subtilis on the one hand but toxic upon accumulation on the other. This role as an "essential poison" is related to the function of c-di-AMP in the control of potassium homeostasis. C-di-AMP inhibits the expression and activity of potassium uptake systems by binding to riboswitches and transporters and activates the activity of potassium exporters. In this way, c-di-AMP allows the adjustment of uptake and export systems to achieve a balanced intracellular potassium concentration. C-di-AMP also binds to two dedicated signal transduction proteins, DarA and DarB. Both proteins seem to interact with other proteins in their apo state, i.e. in the absence of c-di-AMP. For DarB, the (p)ppGpp synthetase/hydrolase Rel and the pyruvate carboxylase PycA have been identified as targets. The interactions trigger the synthesis of the alarmone (p)ppGpp and of the acceptor molecule for the citric acid cycle, oxaloacetate, respectively. In the absence of c-di-AMP, many amino acids inhibit the growth of B. subtilis. This feature can be used to identify novel players in amino acid homeostasis. In this review, we discuss the different functions of c-di-AMP and their physiological relevance.
Collapse
Affiliation(s)
- Christina Herzberg
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Janek Meißner
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Robert Warneke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Warneke R, Garbers TB, Herzberg C, Aschenbrandt G, Ficner R, Stülke J. Ornithine is the central intermediate in the arginine degradative pathway and its regulation in Bacillus subtilis. J Biol Chem 2023; 299:104944. [PMID: 37343703 PMCID: PMC10404663 DOI: 10.1016/j.jbc.2023.104944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
The Gram-positive bacterium Bacillus subtilis can utilize several proteinogenic and non-proteinogenic amino acids as sources of carbon, nitrogen, and energy. The utilization of the amino acids arginine, citrulline, and ornithine is catalyzed by enzymes encoded in the rocABC and rocDEF operons and by the rocG gene. The expression of these genes is controlled by the alternative sigma factor SigL. RNA polymerase associated with this sigma factor depends on ATP-hydrolyzing transcription activators to initiate transcription. The RocR protein acts as a transcription activator for the roc genes. However, the details of amino acid metabolism via this pathway are unknown. Here, we investigated the contributions of all enzymes of the Roc pathway to the degradation of arginine, citrulline, and ornithine. We identified the previously uncharacterized RocB protein as responsible for the conversion of citrulline to ornithine. In vitro assays with the purified enzyme suggest that RocB acts as a manganese-dependent N-carbamoyl-L-ornithine hydrolase that cleaves citrulline to form ornithine and carbamate. Moreover, the molecular effector that triggers transcription activation by RocR has not been unequivocally identified. Using a combination of transcription reporter assays and biochemical experiments, we demonstrate that ornithine is the molecular inducer of RocR activity. Taken together, our work suggests that binding of ATP to RocR triggers its hexamerization, and binding of ornithine then allows ATP hydrolysis and activation of roc gene transcription. Thus, ornithine is the central molecule of the roc degradative pathway as it is the common intermediate of arginine and citrulline degradation and the molecular effector of RocR.
Collapse
Affiliation(s)
- Robert Warneke
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Tim Benedict Garbers
- Department of Molecular Structural Biology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Georg Aschenbrandt
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Reich SJ, Goldbeck O, Lkhaasuren T, Weixler D, Weiß T, Eikmanns BJ. C-di-AMP Is a Second Messenger in Corynebacterium glutamicum That Regulates Expression of a Cell Wall-Related Peptidase via a Riboswitch. Microorganisms 2023; 11:296. [PMID: 36838266 PMCID: PMC9960051 DOI: 10.3390/microorganisms11020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger discovered in Bacillus subtilis and involved in potassium homeostasis, cell wall maintenance and/or DNA stress response. As the role of c-di-AMP has been mostly studied in Firmicutes, we sought to increase the understanding of its role in Actinobacteria, namely in Corynebacterium glutamicum. This organism is a well-known industrial production host and a model organism for pathogens, such as C. diphtheriae or Mycobacterium tuberculosis. Here, we identify and analyze the minimal set of two C. glutamicum enzymes, the diadenylate cyclase DisA and the phosphodiesterase PdeA, responsible for c-di-AMP metabolism. DisA synthesizes c-di-AMP from two molecules of ATP, whereas PdeA degrades c-di-AMP, as well as the linear degradation intermediate phosphoadenylyl-(3'→5')-adenosine (pApA) to two molecules of AMP. Here, we show that a ydaO/kimA-type c-di-AMP-dependent riboswitch controls the expression of the strictly regulated cell wall peptidase gene nlpC in C. glutamicum. In contrast to previously described members of the ydaO/kimA-type riboswitches, our results suggest that the C. glutamicum nlpC riboswitch likely affects the translation instead of the transcription of its downstream gene. Although strongly regulated by different mechanisms, we show that the absence of nlpC, the first known regulatory target of c-di-AMP in C. glutamicum, is not detrimental for this organism under the tested conditions.
Collapse
Affiliation(s)
- Sebastian J. Reich
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | | | - Dominik Weixler
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Tamara Weiß
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
6
|
Stress-Associated and Growth-Dependent Mutagenesis Are Divergently Regulated by c-di-AMP Levels in Bacillus subtilis. Int J Mol Sci 2022; 24:ijms24010455. [PMID: 36613897 PMCID: PMC9820435 DOI: 10.3390/ijms24010455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
A previous proteomic study uncovered a relationship between nutritional stress and fluctuations in levels of diadenylate cyclases (DACs) and other proteins that regulate DAC activity, degrade, or interact with c-di-AMP, suggesting a possible role of this second messenger in B. subtilis stress-associated mutagenesis (SAM). Here, we investigated a possible role of c-di-AMP in SAM and growth-associated mutagenesis (GAM). Our results showed that in growing cells of B. subtilis YB955 (hisC952, metB25 and leuC427), the DACs CdaA and DisA, which play crucial roles in cell wall homeostasis and chromosomal fidelity, respectively, counteracted spontaneous and Mitomycin-C-induced mutagenesis. However, experiments in which hydrogen peroxide was used to induce mutations showed that single deficiencies in DACs caused opposite effects compared to each other. In contrast, in the stationary-phase, DACs promoted mutations in conditions of nutritional stress. These results tracked with intracellular levels of c-di-AMP, which are significantly lower in cdaA- and disA-deficient strains. The restoration of DAC-deficient strains with single functional copies of the cdaA and/or disA returned SAM and GAM levels to those observed in the parental strain. Taken together, these results reveal a role for c-di-AMP in promoting genetic diversity in growth-limiting conditions in B. subtilis. Finally, we postulate that this novel function of c-di-AMP can be exerted through proteins that possess binding domains for this second messenger and play roles in DNA repair, ion transport, transcriptional regulation, as well as oxidative stress protection.
Collapse
|
7
|
Oberkampf M, Hamiot A, Altamirano-Silva P, Bellés-Sancho P, Tremblay YDN, DiBenedetto N, Seifert R, Soutourina O, Bry L, Dupuy B, Peltier J. c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by Clostridioides difficile. Sci Signal 2022; 15:eabn8171. [PMID: 36067333 PMCID: PMC9831359 DOI: 10.1126/scisignal.abn8171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To colonize the host and cause disease, the human enteropathogen Clostridioides difficile must sense, respond, and adapt to the harsh environment of the gastrointestinal tract. We showed that the production and degradation of cyclic diadenosine monophosphate (c-di-AMP) were necessary during different phases of C. difficile growth, environmental adaptation, and infection. The production of this nucleotide second messenger was essential for growth because it controlled the uptake of potassium and also contributed to biofilm formation and cell wall homeostasis, whereas its degradation was required for osmotolerance and resistance to detergents and bile salts. The c-di-AMP binding transcription factor BusR repressed the expression of genes encoding the compatible solute transporter BusAA-AB. Compared with the parental strain, a mutant lacking BusR was more resistant to hyperosmotic and bile salt stresses, whereas a mutant lacking BusAA was more susceptible. A short exposure of C. difficile cells to bile salts decreased intracellular c-di-AMP concentrations, suggesting that changes in membrane properties induce alterations in the intracellular c-di-AMP concentration. A C. difficile strain that could not degrade c-di-AMP failed to persist in a mouse gut colonization model as long as the wild-type strain did. Thus, the production and degradation of c-di-AMP in C. difficile have pleiotropic effects, including the control of osmolyte uptake to confer osmotolerance and bile salt resistance, and its degradation is important for host colonization.
Collapse
Affiliation(s)
- Marine Oberkampf
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Audrey Hamiot
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Paula Bellés-Sancho
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Yannick D. N. Tremblay
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Roland Seifert
- Institute of Pharmacology and Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Clinical Microbiology Laboratory, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bruno Dupuy
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Johann Peltier
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Mudgal S, Manikandan K, Mukherjee A, Krishnan A, Sinha KM. Cyclic di-AMP: Small molecule with big roles in bacteria. Microb Pathog 2021; 161:105264. [PMID: 34715302 DOI: 10.1016/j.micpath.2021.105264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023]
Abstract
Cyclic dinucleotides are second messengers that are present in all the three domains of life, bacteria, archaea, and eukaryotes. These dinucleotides have important physiological and pathophysiological roles in bacteria. Cyclic di-AMP (cdA) is one of the recently discovered cyclic dinucleotides present predominantly in gram-positive bacteria. cdA is synthesized through diadenylate cyclase (DAC) activity from ATP in a two-step process and hydrolyzed to linear dinucleotide pApA (and to 5' AMP in certain cases) by specific phosphodiesterases. cdA regulates various physiological processes like K+ transport and osmotic balance, DNA repair, cell wall homeostasis, drug resistance, central metabolism either by binding directly to the target protein or regulating its expression. It also participates in host-pathogen interaction by binding to host immune receptors ERAdP, RECON, and STING.
Collapse
Affiliation(s)
- Sudhanshu Mudgal
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Kasi Manikandan
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Ahana Mukherjee
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India.
| | | |
Collapse
|
9
|
Pathania M, Tosi T, Millership C, Hoshiga F, Morgan RML, Freemont PS, Gründling A. Structural basis for the inhibition of the Bacillus subtilis c-di-AMP cyclase CdaA by the phosphoglucomutase GlmM. J Biol Chem 2021; 297:101317. [PMID: 34678313 PMCID: PMC8573169 DOI: 10.1016/j.jbc.2021.101317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Cyclic-di-adenosine monophosphate (c-di-AMP) is an important nucleotide signaling molecule that plays a key role in osmotic regulation in bacteria. c-di-AMP is produced from two molecules of ATP by proteins containing a diadenylate cyclase (DAC) domain. In Bacillus subtilis, the main c-di-AMP cyclase, CdaA, is a membrane-linked cyclase with an N-terminal transmembrane domain followed by the cytoplasmic DAC domain. As both high and low levels of c-di-AMP have a negative impact on bacterial growth, the cellular levels of this signaling nucleotide are tightly regulated. Here we investigated how the activity of the B. subtilis CdaA is regulated by the phosphoglucomutase GlmM, which has been shown to interact with the c-di-AMP cyclase. Using the soluble B. subtilis CdaACD catalytic domain and purified full-length GlmM or the GlmMF369 variant lacking the C-terminal flexible domain 4, we show that the cyclase and phosphoglucomutase form a stable complex in vitro and that GlmM is a potent cyclase inhibitor. We determined the crystal structure of the individual B. subtilis CdaACD and GlmM homodimers and of the CdaACD:GlmMF369 complex. In the complex structure, a CdaACD dimer is bound to a GlmMF369 dimer in such a manner that GlmM blocks the oligomerization of CdaACD and formation of active head-to-head cyclase oligomers, thus suggesting a mechanism by which GlmM acts as a cyclase inhibitor. As the amino acids at the CdaACD:GlmM interphase are conserved, we propose that the observed mechanism of inhibition of CdaA by GlmM may also be conserved among Firmicutes.
Collapse
Affiliation(s)
- Monisha Pathania
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Tommaso Tosi
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Charlotte Millership
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Fumiya Hoshiga
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rhodri M L Morgan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paul S Freemont
- London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, London, United Kingdom; Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom; UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, United Kingdom.
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom.
| |
Collapse
|
10
|
Faßhauer P, Busche T, Kalinowski J, Mäder U, Poehlein A, Daniel R, Stülke J. Functional Redundancy and Specialization of the Conserved Cold Shock Proteins in Bacillus subtilis. Microorganisms 2021; 9:1434. [PMID: 34361870 PMCID: PMC8307031 DOI: 10.3390/microorganisms9071434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
Many bacteria encode so-called cold shock proteins. These proteins are characterized by a conserved protein domain. Often, the bacteria have multiple cold shock proteins that are expressed either constitutively or at low temperatures. In the Gram-positive model bacterium Bacillussubtilis, two of three cold shock proteins, CspB and CspD, belong to the most abundant proteins suggesting a very important function. To get insights into the role of these highly abundant proteins, we analyzed the phenotypes of single and double mutants, tested the expression of the csp genes and the impact of CspB and CspD on global gene expression in B. subtilis. We demonstrate that the simultaneous loss of both CspB and CspD results in a severe growth defect, in the loss of genetic competence, and the appearance of suppressor mutations. Overexpression of the third cold shock protein CspC could compensate for the loss of CspB and CspD. The transcriptome analysis revealed that the lack of CspB and CspD affects the expression of about 20% of all genes. In several cases, the lack of the cold shock proteins results in an increased read-through at transcription terminators suggesting that CspB and CspD might be involved in the control of transcription termination.
Collapse
Affiliation(s)
- Patrick Faßhauer
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany;
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany; (T.B.); (J.K.)
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany; (T.B.); (J.K.)
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17487 Greifswald, Germany;
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany; (A.P.); (R.D.)
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany; (A.P.); (R.D.)
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
11
|
The Diadenylate Cyclase CdaA Is Critical for Borrelia turicatae Virulence and Physiology. Infect Immun 2021; 89:IAI.00787-20. [PMID: 33846120 PMCID: PMC8316131 DOI: 10.1128/iai.00787-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Relapsing fever (RF), caused by spirochetes of the genus Borrelia, is a globally distributed, vector-borne disease with high prevalence in developing countries. To date, signaling pathways required for infection and virulence of RF Borrelia spirochetes are unknown. Cyclic di-AMP (c-di-AMP), synthesized by diadenylate cyclases (DACs), is a second messenger predominantly found in Gram-positive organisms that is linked to virulence and essential physiological processes. Although Borrelia is Gram-negative, it encodes one DAC (CdaA), and its importance remains undefined. To investigate the contribution of c-di-AMP signaling in the RF bacterium Borrelia turicatae, a cdaA mutant was generated. The mutant was significantly attenuated during murine infection, and genetic complementation reversed this phenotype. Because c-di-AMP is essential for viability in many bacteria, whole-genome sequencing was performed on cdaA mutants, and single-nucleotide polymorphisms identified potential suppressor mutations. Additionally, conditional mutation of cdaA confirmed that CdaA is important for normal growth and physiology. Interestingly, mutation of cdaA did not affect expression of homologs of virulence regulators whose levels are impacted by c-di-AMP signaling in the Lyme disease bacterium Borrelia burgdorferi Finally, the cdaA mutant had a significant growth defect when grown with salts, at decreased osmolarity, and without pyruvate. While the salt treatment phenotype was not reversed by genetic complementation, possibly due to suppressor mutations, growth defects at decreased osmolarity and in media lacking pyruvate could be attributed directly to cdaA inactivation. Overall, these results indicate CdaA is critical for B. turicatae pathogenesis and link c-di-AMP to osmoregulation and central metabolism in RF spirochetes.
Collapse
|
12
|
Yin W, Cai X, Ma H, Zhu L, Zhang Y, Chou SH, Galperin MY, He J. A decade of research on the second messenger c-di-AMP. FEMS Microbiol Rev 2021; 44:701-724. [PMID: 32472931 DOI: 10.1093/femsre/fuaa019] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) is an emerging second messenger in bacteria and archaea that is synthesized from two molecules of ATP by diadenylate cyclases and degraded to pApA or two AMP molecules by c-di-AMP-specific phosphodiesterases. Through binding to specific protein- and riboswitch-type receptors, c-di-AMP regulates a wide variety of prokaryotic physiological functions, including maintaining the osmotic pressure, balancing central metabolism, monitoring DNA damage and controlling biofilm formation and sporulation. It mediates bacterial adaptation to a variety of environmental parameters and can also induce an immune response in host animal cells. In this review, we discuss the phylogenetic distribution of c-di-AMP-related enzymes and receptors and provide some insights into the various aspects of c-di-AMP signaling pathways based on more than a decade of research. We emphasize the key role of c-di-AMP in maintaining bacterial osmotic balance, especially in Gram-positive bacteria. In addition, we discuss the future direction and trends of c-di-AMP regulatory network, such as the likely existence of potential c-di-AMP transporter(s), the possibility of crosstalk between c-di-AMP signaling with other regulatory systems, and the effects of c-di-AMP compartmentalization. This review aims to cover the broad spectrum of research on the regulatory functions of c-di-AMP and c-di-AMP signaling pathways.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xia Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hongdan Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
13
|
Krüger L, Herzberg C, Rath H, Pedreira T, Ischebeck T, Poehlein A, Gundlach J, Daniel R, Völker U, Mäder U, Stülke J. Essentiality of c-di-AMP in Bacillus subtilis: Bypassing mutations converge in potassium and glutamate homeostasis. PLoS Genet 2021; 17:e1009092. [PMID: 33481774 PMCID: PMC7857571 DOI: 10.1371/journal.pgen.1009092] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/03/2021] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
In order to adjust to changing environmental conditions, bacteria use nucleotide second messengers to transduce external signals and translate them into a specific cellular response. Cyclic di-adenosine monophosphate (c-di-AMP) is the only known essential nucleotide second messenger. In addition to the well-established role of this second messenger in the control of potassium homeostasis, we observed that glutamate is as toxic as potassium for a c-di-AMP-free strain of the Gram-positive model bacterium Bacillus subtilis. In this work, we isolated suppressor mutants that allow growth of a c-di-AMP-free strain under these toxic conditions. Characterization of glutamate resistant suppressors revealed that they contain pairs of mutations, in most cases affecting glutamate and potassium homeostasis. Among these mutations, several independent mutations affected a novel glutamate transporter, AimA (Amino acid importer A, formerly YbeC). This protein is the major transporter for glutamate and serine in B. subtilis. Unexpectedly, some of the isolated suppressor mutants could suppress glutamate toxicity by a combination of mutations that affect phospholipid biosynthesis and a specific gain-of-function mutation of a mechanosensitive channel of small conductance (YfkC) resulting in the acquisition of a device for glutamate export. Cultivation of the c-di-AMP-free strain on complex medium was an even greater challenge because the amounts of potassium, glutamate, and other osmolytes are substantially higher than in minimal medium. Suppressor mutants viable on complex medium could only be isolated under anaerobic conditions if one of the two c-di-AMP receptor proteins, DarA or DarB, was absent. Also on complex medium, potassium and osmolyte toxicity are the major bottlenecks for the growth of B. subtilis in the absence of c-di-AMP. Our results indicate that the essentiality of c-di-AMP in B. subtilis is caused by the global impact of the second messenger nucleotide on different aspects of cellular physiology.
Collapse
Affiliation(s)
- Larissa Krüger
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tiago Pedreira
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan Gundlach
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
The Many Roles of the Bacterial Second Messenger Cyclic di-AMP in Adapting to Stress Cues. J Bacteriol 2020; 203:JB.00348-20. [PMID: 32839175 DOI: 10.1128/jb.00348-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria respond to changes in environmental conditions through adaptation to external cues. Frequently, bacteria employ nucleotide signaling molecules to mediate a specific, rapid response. Cyclic di-AMP (c-di-AMP) was recently discovered to be a bacterial second messenger that is essential for viability in many species. In this review, we highlight recent work that has described the roles of c-di-AMP in bacterial responses to various stress conditions. These studies show that depending on the lifestyle and environmental niche of the bacterial species, the c-di-AMP signaling network results in diverse outcomes, such as regulating osmolyte transport, controlling plant attachment, or providing a checkpoint for spore formation. c-di-AMP achieves this signaling specificity through expression of different classes of synthesis and catabolic enzymes as well as receptor proteins and RNAs, which will be summarized.
Collapse
|
15
|
Xiong ZQ, Fan YZ, Song X, Liu XX, Xia YJ, Ai LZ. The second messenger c-di-AMP mediates bacterial exopolysaccharide biosynthesis: a review. Mol Biol Rep 2020; 47:9149-9157. [PMID: 33128205 DOI: 10.1007/s11033-020-05930-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
Cyclic dimeric adenosine 3'-5'-monophosphate (c-di-AMP) is a recently discovered nucleotide messenger in bacteria. It plays an important role in signaling, transcription, and cell physiology, such as in bacterial growth, potassium transport, fatty acid synthesis, the metabolic balance of cell wall components, and biofilm formation. Exopolysaccharides (EPSs) have distinct physico-chemical properties and diverse bioactivities including antibacterial, hypolipidemic, and antioxidative activities, and they are widely used in the food, pharmaceutical, and cosmetic industries. Although c-di-AMP has been demonstrated to regulate the biosynthesis of bacterial EPSs, only a single c-di-AMP receptor, CabpA, has been identified in EPS synthesis. With the aim of describing current understanding of the regulation of microbial EPSs, this review summarizes c-di-AMP biosynthesis and degradation as well as the mechanism through which c-di-AMP regulates bacterial EPSs.
Collapse
Affiliation(s)
- Zhi-Qiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yi-Zhou Fan
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin-Xin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yong-Jun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lian-Zhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
16
|
Abstract
The second messenger molecule cyclic di-AMP (c-di-AMP) is formed by many bacteria and archaea. In many species that produce c-di-AMP, this second messenger is essential for viability on rich medium. Recent research has demonstrated that c-di-AMP binds to a large number of proteins and riboswitches, which are often involved in potassium and osmotic homeostasis. c-di-AMP becomes dispensable if the bacteria are cultivated on minimal media with low concentrations of osmotically active compounds. Thus, the essentiality of c-di-AMP does not result from an interaction with a single essential target but rather from the multilevel control of complex homeostatic processes. This review summarizes current knowledge on the homeostasis of c-di-AMP and its function(s) in the control of cellular processes.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany;
| | - Larissa Krüger
- Department of General Microbiology, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
17
|
Aline Dias da P, Nathalia Marins de A, Gabriel Guarany de A, Robson Francisco de S, Cristiane Rodrigues G. The World of Cyclic Dinucleotides in Bacterial Behavior. Molecules 2020; 25:molecules25102462. [PMID: 32466317 PMCID: PMC7288161 DOI: 10.3390/molecules25102462] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The regulation of multiple bacterial phenotypes was found to depend on different cyclic dinucleotides (CDNs) that constitute intracellular signaling second messenger systems. Most notably, c-di-GMP, along with proteins related to its synthesis, sensing, and degradation, was identified as playing a central role in the switching from biofilm to planktonic modes of growth. Recently, this research topic has been under expansion, with the discoveries of new CDNs, novel classes of CDN receptors, and the numerous functions regulated by these molecules. In this review, we comprehensively describe the three main bacterial enzymes involved in the synthesis of c-di-GMP, c-di-AMP, and cGAMP focusing on description of their three-dimensional structures and their structural similarities with other protein families, as well as the essential residues for catalysis. The diversity of CDN receptors is described in detail along with the residues important for the interaction with the ligand. Interestingly, genomic data strongly suggest that there is a tendency for bacterial cells to use both c-di-AMP and c-di-GMP signaling networks simultaneously, raising the question of whether there is crosstalk between different signaling systems. In summary, the large amount of sequence and structural data available allows a broad view of the complexity and the importance of these CDNs in the regulation of different bacterial behaviors. Nevertheless, how cells coordinate the different CDN signaling networks to ensure adaptation to changing environmental conditions is still open for much further exploration.
Collapse
|
18
|
He J, Yin W, Galperin MY, Chou SH. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res 2020; 48:2807-2829. [PMID: 32095817 DOI: 10.1093/nar/gkaa112] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclic diadenylate (c-di-AMP) is a widespread second messenger in bacteria and archaea that is involved in the maintenance of osmotic pressure, response to DNA damage, and control of central metabolism, biofilm formation, acid stress resistance, and other functions. The primary importance of c-di AMP stems from its essentiality for many bacteria under standard growth conditions and the ability of several eukaryotic proteins to sense its presence in the cell cytoplasm and trigger an immune response by the host cells. We review here the tertiary structures of the domains that regulate c-di-AMP synthesis and signaling, and the mechanisms of c-di-AMP binding, including the principal conformations of c-di-AMP, observed in various crystal structures. We discuss how these c-di-AMP molecules are bound to the protein and riboswitch receptors and what kinds of interactions account for the specific high-affinity binding of the c-di-AMP ligand. We describe seven kinds of non-covalent-π interactions between c-di-AMP and its receptor proteins, including π-π, C-H-π, cation-π, polar-π, hydrophobic-π, anion-π and the lone pair-π interactions. We also compare the mechanisms of c-di-AMP and c-di-GMP binding by the respective receptors that allow these two cyclic dinucleotides to control very different biological functions.
Collapse
Affiliation(s)
- Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China.,Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
19
|
Gibhardt J, Heidemann JL, Bremenkamp R, Rosenberg J, Seifert R, Kaever V, Ficner R, Commichau FM. An extracytoplasmic protein and a moonlighting enzyme modulate synthesis of c-di-AMP in Listeria monocytogenes. Environ Microbiol 2020; 22:2771-2791. [PMID: 32250026 DOI: 10.1111/1462-2920.15008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023]
Abstract
The second messenger cyclic di-AMP (c-di-AMP) is essential for growth of many bacteria because it controls osmolyte homeostasis. c-di-AMP can regulate the synthesis of potassium uptake systems in some bacteria and it also directly inhibits and activates potassium import and export systems, respectively. Therefore, c-di-AMP production and degradation have to be tightly regulated depending on the environmental osmolarity. The Gram-positive pathogen Listeria monocytogenes relies on the membrane-bound diadenylate cyclase CdaA for c-di-AMP production and degrades the nucleotide with two phosphodiesterases. While the enzymes producing and degrading the dinucleotide have been reasonably well examined, the regulation of c-di-AMP production is not well understood yet. Here we demonstrate that the extracytoplasmic regulator CdaR interacts with CdaA via its transmembrane helix to modulate c-di-AMP production. Moreover, we show that the phosphoglucosamine mutase GlmM forms a complex with CdaA and inhibits the diadenylate cyclase activity in vitro. We also found that GlmM inhibits c-di-AMP production in L. monocytogenes when the bacteria encounter osmotic stress. Thus, GlmM is the major factor controlling the activity of CdaA in vivo. GlmM can be assigned to the class of moonlighting proteins because it is active in metabolism and adjusts the cellular turgor depending on environmental osmolarity.
Collapse
Affiliation(s)
- Johannes Gibhardt
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Jana L Heidemann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, University of Goettingen, 37077, Göttingen, Germany
| | - Rica Bremenkamp
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Roland Seifert
- Institute of Pharmacology & Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Volkhard Kaever
- Institute of Pharmacology & Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, University of Goettingen, 37077, Göttingen, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| |
Collapse
|
20
|
He J, Yin W, Galperin MY, Chou SH. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res 2020. [PMID: 32095817 DOI: 10.1093/nar/gkaa112"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclic diadenylate (c-di-AMP) is a widespread second messenger in bacteria and archaea that is involved in the maintenance of osmotic pressure, response to DNA damage, and control of central metabolism, biofilm formation, acid stress resistance, and other functions. The primary importance of c-di AMP stems from its essentiality for many bacteria under standard growth conditions and the ability of several eukaryotic proteins to sense its presence in the cell cytoplasm and trigger an immune response by the host cells. We review here the tertiary structures of the domains that regulate c-di-AMP synthesis and signaling, and the mechanisms of c-di-AMP binding, including the principal conformations of c-di-AMP, observed in various crystal structures. We discuss how these c-di-AMP molecules are bound to the protein and riboswitch receptors and what kinds of interactions account for the specific high-affinity binding of the c-di-AMP ligand. We describe seven kinds of non-covalent-π interactions between c-di-AMP and its receptor proteins, including π-π, C-H-π, cation-π, polar-π, hydrophobic-π, anion-π and the lone pair-π interactions. We also compare the mechanisms of c-di-AMP and c-di-GMP binding by the respective receptors that allow these two cyclic dinucleotides to control very different biological functions.
Collapse
Affiliation(s)
- Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China.,Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
21
|
Ning H, Wang L, Zhou J, Lu Y, Kang J, Ding T, Shen L, Xu Z, Bai Y. Recombinant BCG With Bacterial Signaling Molecule Cyclic di-AMP as Endogenous Adjuvant Induces Elevated Immune Responses After Mycobacterium tuberculosis Infection. Front Immunol 2019; 10:1519. [PMID: 31333655 PMCID: PMC6618344 DOI: 10.3389/fimmu.2019.01519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) is a live attenuated vaccine against tuberculosis (TB) and remains the most commonly used vaccine worldwide. However, BCG has varied protective efficiency in adults and has safety concerns in immunocompromised population. Thus, effective vaccines are necessary for preventing the prevalence of TB. Cyclic di-AMP (c-di-AMP) is a bacterial second messenger which regulates various cellular processes and host immune response. Previous work found that c-di-AMP regulates bacterial physiological function, pathogenicity and host type I IFN response. In this study, we constructed a recombinant BCG (rBCG) by overexpressing DisA, the diadenylate cyclase of Mycobacterium tuberculosis (Mtb), and observed the physiological changes of rBCG-DisA. The immunological characteristics of rBCG-DisA were investigated on humoral and cellar immune responses in a mice infection model. Our study demonstrated that overexpression of DisA in BCG does not affect the growth but reduces the length of BCG. rBCG-DisA-immunized mice show similar humoral and cellar immune responses in BCG-immunized mice. After Mtb infection, the splenic lymphocytes from both BCG and rBCG-DisA-immunized mice produced more IFN-γ, IL-2, and IL-10 than the un-immunized (UN) mice, while the cytokine levels of the rBCG-DisA group increased significantly than those of the BCG group. The transcription of IFN-β, IL-1β and autophagy related genes (Atgs) were up-regulated in macrophages after treated with c-di-AMP or bacterial infection. The productions of IL-6 were increased after Mtb challenge, especially in the rBCG-DisA-immunized mice. Strikingly, H3K4me3, the epigenetic marker of innate immune memory, was found in both two immunized groups, and the rBCG-DisA group showed stronger expression of H3K4me3 than that of BCG. In addition, the pathological changes of rBCG-DisA immunized mice were similar to that of BCG-immunized mice. The bacterial burdens in the lungs and spleens of BCG- and rBCG-DisA-immunized mice were significantly decreased, but there was no significant difference between the two immunized groups. Together, these results suggested that compared to BCG, rBCG-DisA vaccination, induces stronger immune responses but did not provided additional protection against Mtb infection in this study, which may be related to the innate immunity memory. Hence, c-di-AMP is a promising immunomodulator for a further developed BCG as a better vaccine.
Collapse
Affiliation(s)
- Huanhuan Ning
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Lifei Wang
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi'an, China
| | - Jie Zhou
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yanzhi Lu
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi'an, China
| | - Jian Kang
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi'an, China
| | - Tianbing Ding
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi'an, China.,College of Medicine, Xijing University, Xi'an, China
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhikai Xu
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi'an, China
| | - Yinlan Bai
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi'an, China
| |
Collapse
|
22
|
Gundlach J, Krüger L, Herzberg C, Turdiev A, Poehlein A, Tascón I, Weiss M, Hertel D, Daniel R, Hänelt I, Lee VT, Stülke J. Sustained sensing in potassium homeostasis: Cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity. J Biol Chem 2019; 294:9605-9614. [PMID: 31061098 DOI: 10.1074/jbc.ra119.008774] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Indexed: 12/29/2022] Open
Abstract
The signaling nucleotide cyclic di-AMP (c-di-AMP) is the only known essential second messenger in bacteria. Recently, c-di-AMP has been identified as being essential for controlling potassium uptake in the model organism Bacillus subtilis and several other bacteria. A B. subtilis strain lacking c-di-AMP is not viable at high potassium concentrations, unless the bacteria acquire suppressor mutations. In this study, we isolated such suppressor mutants and found mutations that reduced the activities of the potassium transporters KtrCD and KimA. Although c-di-AMP-mediated control of KtrCD has previously been demonstrated, it is unknown how c-di-AMP affects KimA activity. Using the DRaCALA screening assay, we tested for any interactions of KimA and other potential target proteins in B. subtilis with c-di-AMP. This assay identified KimA, as well as the K+/H+ antiporter KhtT, the potassium exporter CpaA (YjbQ), the osmoprotectant transporter subunit OpuCA, the primary Mg2+ importer MgtE, and DarB (YkuL), a protein of unknown function, as bona fide c-di-AMP-binding proteins. Further, binding of c-di-AMP to KimA inhibited potassium uptake. Our results indicate that c-di-AMP controls KimA-mediated potassium transport at both kimA gene expression and KimA activity levels. Moreover, the discovery that potassium exporters are c-di-AMP targets indicates that this second messenger controls potassium homeostasis in B. subtilis at a global level by binding to riboswitches and to different classes of transport proteins involved in potassium uptake and export.
Collapse
Affiliation(s)
- Jan Gundlach
- From the Departments of General Microbiology and
| | | | | | - Asan Turdiev
- the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Anja Poehlein
- Genomic and Applied Microbiology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany, and
| | - Igor Tascón
- the Institute of Biochemistry, Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Martin Weiss
- From the Departments of General Microbiology and
| | - Dietrich Hertel
- the Department of Plant Ecology and Ecosystems Research, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany, and
| | - Inga Hänelt
- the Institute of Biochemistry, Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Vincent T Lee
- the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Jörg Stülke
- From the Departments of General Microbiology and
| |
Collapse
|
23
|
Braun F, Thomalla L, van der Does C, Quax TEF, Allers T, Kaever V, Albers SV. Cyclic nucleotides in archaea: Cyclic di-AMP in the archaeon Haloferax volcanii and its putative role. Microbiologyopen 2019; 8:e00829. [PMID: 30884174 PMCID: PMC6741144 DOI: 10.1002/mbo3.829] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/27/2022] Open
Abstract
The role of cyclic nucleotides as second messengers for intracellular signal transduction has been well described in bacteria. One recently discovered bacterial second messenger is cyclic di‐adenylate monophosphate (c‐di‐AMP), which has been demonstrated to be essential in bacteria. Compared to bacteria, significantly less is known about second messengers in archaea. This study presents the first evidence of in vivo presence of c‐di‐AMP in an archaeon. The model organism Haloferax volcanii was demonstrated to produce c‐di‐AMP. Its genome encodes one diadenylate cyclase (DacZ) which was shown to produce c‐di‐AMP in vitro. Similar to bacteria, the dacZ gene is essential and homologous overexpression of DacZ leads to cell death, suggesting the need for tight regulation of c‐di‐AMP levels. Such tight regulation often indicates the control of important regulatory processes. A central target of c‐di‐AMP signaling in bacteria is cellular osmohomeostasis. The results presented here suggest a comparable function in H. volcanii. A strain with decreased c‐di‐AMP levels exhibited an increased cell area in hypo‐salt medium, implying impaired osmoregulation. In summary, this study expands the field of research on c‐di‐AMP and its physiological function to archaea and indicates that osmoregulation is likely to be a common function of c‐di‐AMP in bacteria and archaea.
Collapse
Affiliation(s)
- Frank Braun
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Laura Thomalla
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Tessa E F Quax
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Thorsten Allers
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Tosi T, Hoshiga F, Millership C, Singh R, Eldrid C, Patin D, Mengin-Lecreulx D, Thalassinos K, Freemont P, Gründling A. Inhibition of the Staphylococcus aureus c-di-AMP cyclase DacA by direct interaction with the phosphoglucosamine mutase GlmM. PLoS Pathog 2019; 15:e1007537. [PMID: 30668586 PMCID: PMC6368335 DOI: 10.1371/journal.ppat.1007537] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/08/2019] [Accepted: 12/18/2018] [Indexed: 02/05/2023] Open
Abstract
c-di-AMP is an important second messenger molecule that plays a pivotal role in regulating fundamental cellular processes, including osmotic and cell wall homeostasis in many Gram-positive organisms. In the opportunistic human pathogen Staphylococcus aureus, c-di-AMP is produced by the membrane-anchored DacA enzyme. Inactivation of this enzyme leads to a growth arrest under standard laboratory growth conditions and a re-sensitization of methicillin-resistant S. aureus (MRSA) strains to ß-lactam antibiotics. The gene coding for DacA is part of the conserved three-gene dacA/ybbR/glmM operon that also encodes the proposed DacA regulator YbbR and the essential phosphoglucosamine mutase GlmM, which is required for the production of glucosamine-1-phosphate, an early intermediate of peptidoglycan synthesis. These three proteins are thought to form a complex in vivo and, in this manner, help to fine-tune the cellular c-di-AMP levels. To further characterize this important regulatory complex, we conducted a comprehensive structural and functional analysis of the S. aureus DacA and GlmM enzymes by determining the structures of the S. aureus GlmM enzyme and the catalytic domain of DacA. Both proteins were found to be dimers in solution as well as in the crystal structures. Further site-directed mutagenesis, structural and enzymatic studies showed that multiple DacA dimers need to interact for enzymatic activity. We also show that DacA and GlmM form a stable complex in vitro and that S. aureus GlmM, but not Escherichia coli or Pseudomonas aeruginosa GlmM, acts as a strong inhibitor of DacA function without the requirement of any additional cellular factor. Based on Small Angle X-ray Scattering (SAXS) data, a model of the complex revealed that GlmM likely inhibits DacA by masking the active site of the cyclase and preventing higher oligomer formation. Together these results provide an important mechanistic insight into how c-di-AMP production can be regulated in the cell.
Collapse
Affiliation(s)
- Tommaso Tosi
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Fumiya Hoshiga
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Charlotte Millership
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rahul Singh
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Charles Eldrid
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, United Kingdom
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Delphine Patin
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ Paris-Sud and Université Paris-Saclay, Gif-sur-Yvette, France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ Paris-Sud and Université Paris-Saclay, Gif-sur-Yvette, France
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, United Kingdom
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Paul Freemont
- Section of Structural Biology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Making and Breaking of an Essential Poison: the Cyclases and Phosphodiesterases That Produce and Degrade the Essential Second Messenger Cyclic di-AMP in Bacteria. J Bacteriol 2018; 201:JB.00462-18. [PMID: 30224435 DOI: 10.1128/jb.00462-18] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cyclic di-AMP is a second-messenger nucleotide that is produced by many bacteria and some archaea. Recent work has shown that c-di-AMP is unique among the signaling nucleotides, as this molecule is in many bacteria both essential on one hand and toxic upon accumulation on the other. Moreover, in bacteria, like Bacillus subtilis, c-di-AMP controls a biological process, potassium homeostasis, by binding both potassium transporters and riboswitch molecules in the mRNAs that encode the potassium transporters. In addition to the control of potassium homeostasis, c-di-AMP has been implicated in many cellular activities, including DNA repair, cell wall homeostasis, osmotic adaptation, biofilm formation, central metabolism, and virulence. c-di-AMP is synthesized and degraded by diadenylate cyclases and phosphodiesterases, respectively. In the diadenylate cyclases, one type of catalytic domain, the diadenylate cyclase (DAC) domain, is coupled to various other domains that control the localization, the protein-protein interactions, and the regulation of the enzymes. The phosphodiesterases have a catalytic core that consists either of a DHH/DHHA1 or of an HD domain. Recent findings on the occurrence, domain organization, activity control, and structural features of diadenylate cyclases and phosphodiesterases are discussed in this review.
Collapse
|
26
|
Manikandan K, Prasad D, Srivastava A, Singh N, Dabeer S, Krishnan A, Muniyappa K, Sinha KM. The second messenger cyclic di-AMP negatively regulates the expression of Mycobacterium smegmatis recA and attenuates DNA strand exchange through binding to the C-terminal motif of mycobacterial RecA proteins. Mol Microbiol 2018; 109:600-614. [PMID: 29873124 DOI: 10.1111/mmi.13991] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
Cyclic di-GMP and cyclic di-AMP are second messengers produced by a wide variety of bacteria. They influence bacterial cell survival, biofilm formation, virulence and bacteria-host interactions. However, many of their cellular targets and biological effects are yet to be determined. A chemical proteomics approach revealed that Mycobacterium smegmatis RecA (MsRecA) possesses a high-affinity cyclic di-AMP binding activity. We further demonstrate that both cyclic di-AMP and cyclic di-GMP bind specifically to the C-terminal motif of MsRecA and Mycobacterium tuberculosis RecA (MtRecA). Escherichia coli RecA (EcRecA) was devoid of cyclic di-AMP binding but have cyclic di-GMP binding activity. Notably, cyclic di-AMP attenuates the DNA strand exchange promoted by MsRecA as well as MtRecA through the disassembly of RecA nucleoprotein filaments. However, the structure and DNA strand exchange activity of EcRecA nucleoprotein filaments remain largely unaffected. Furthermore, M. smegmatis ΔdisA cells were found to have undetectable RecA levels due to the translational repression of recA mRNA. Consequently, the ΔdisA mutant exhibited enhanced sensitivity to DNA-damaging agents. Altogether, this study points out the importance of sequence diversity among recA genes, the role(s) of cyclic di-AMP and reveals a new mode of negative regulation of recA gene expression, DNA repair and homologous recombination in mycobacteria.
Collapse
Affiliation(s)
- Kasi Manikandan
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Ankita Srivastava
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Nirpendra Singh
- Central Instrument Facility, University of Delhi South Campus, New Delhi, India
| | - Sadaf Dabeer
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Anuja Krishnan
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Krishna Murari Sinha
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| |
Collapse
|
27
|
Agostoni M, Logan-Jackson AR, Heinz ER, Severin GB, Bruger EL, Waters CM, Montgomery BL. Homeostasis of Second Messenger Cyclic-di-AMP Is Critical for Cyanobacterial Fitness and Acclimation to Abiotic Stress. Front Microbiol 2018; 9:1121. [PMID: 29896182 PMCID: PMC5986932 DOI: 10.3389/fmicb.2018.01121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
Second messengers are intracellular molecules regulated by external stimuli known as first messengers that are used for rapid organismal responses to dynamic environmental changes. Cyclic di-AMP (c-di-AMP) is a relatively newly discovered second messenger implicated in cell wall homeostasis in many pathogenic bacteria. C-di-AMP is synthesized from ATP by diadenylyl cyclases (DAC) and degraded by specific c-di-AMP phosphodiesterases (PDE). C-di-AMP DACs and PDEs are present in all sequenced cyanobacteria, suggesting roles for c-di-AMP in the physiology and/or development of these organisms. Despite conservation of these genes across numerous cyanobacteria, the functional roles of c-di-AMP in cyanobacteria have not been well-investigated. In a unique feature of cyanobacteria, phylogenetic analysis indicated that the broadly conserved DAC, related to CdaA/DacA, is always co-associated in an operon with genes critical for controlling cell wall synthesis. To investigate phenotypes regulated by c-di-AMP in cyanobacteria, we overexpressed native DAC (sll0505) and c-di-AMP PDE (slr0104) genes in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) to increase and decrease intracellular c-di-AMP levels, respectively. DAC- and PDE-overexpression strains, showed abnormal aggregation phenotypes, suggesting functional roles for regulating c-di-AMP homeostasis in vivo. As c-di-AMP may be implicated in osmotic responses in cyanobacteria, we tested whether sorbitol and NaCl stresses impacted expression of sll0505 and slr0104 or intracellular c-di-AMP levels in Synechocystis. Additionally, to determine the range of cyanobacteria in which c-di-AMP may function, we assessed c-di-AMP levels in two unicellular cyanobacteria, i.e., Synechocystis and Synechococcus elongatus PCC 7942, and two filamentous cyanobacteria, i.e., Fremyella diplosiphon and Anabaena sp. PCC 7120. C-di-AMP levels responded differently to abiotic stress signals in distinct cyanobacteria strains, whereas salt stress uniformly impacted another second messenger cyclic di-GMP in cyanobacteria. Together, these results suggest regulation of c-di-AMP homeostasis in cyanobacteria and implicate a role for the second messenger in maintaining cellular fitness in response to abiotic stress.
Collapse
Affiliation(s)
- Marco Agostoni
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Alshaé R Logan-Jackson
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Emily R Heinz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Geoffrey B Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Eric L Bruger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Christopher M Waters
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Beronda L Montgomery
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
28
|
Coping with an Essential Poison: a Genetic Suppressor Analysis Corroborates a Key Function of c-di-AMP in Controlling Potassium Ion Homeostasis in Gram-Positive Bacteria. J Bacteriol 2018; 200:JB.00166-18. [PMID: 29610213 DOI: 10.1128/jb.00166-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) is an important second messenger in bacteria. In most Firmicutes, the molecule is required for growth in complex media but also toxic upon accumulation. In an article on their current study, Zarrella and coworkers present a suppressor analysis of a Streptococcus pneumoniae strain that is unable to degrade c-di-AMP (T. M. Zarrella, D. W. Metzger, and G. Bai, J Bacteriol 200:e00045-18, 2018, https://doi.org/10.1128/JB.00045-18). Their study identifies new links between c-di-AMP and potassium homeostasis and supports the hypothesis that c-di-AMP serves as a second messenger to report about the intracellular potassium concentrations.
Collapse
|
29
|
Townsley L, Yannarell SM, Huynh TN, Woodward JJ, Shank EA. Cyclic di-AMP Acts as an Extracellular Signal That Impacts Bacillus subtilis Biofilm Formation and Plant Attachment. mBio 2018; 9:e00341-18. [PMID: 29588402 PMCID: PMC5874923 DOI: 10.1128/mbio.00341-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/26/2018] [Indexed: 12/04/2022] Open
Abstract
There is a growing appreciation for the impact that bacteria have on higher organisms. Plant roots often harbor beneficial microbes, such as the Gram-positive rhizobacterium Bacillus subtilis, that influence their growth and susceptibility to disease. The ability to form surface-attached microbial communities called biofilms is crucial for the ability of B. subtilis to adhere to and protect plant roots. In this study, strains harboring deletions of the B. subtilis genes known to synthesize and degrade the second messenger cyclic di-adenylate monophosphate (c-di-AMP) were examined for their involvement in biofilm formation and plant attachment. We found that intracellular production of c-di-AMP impacts colony biofilm architecture, biofilm gene expression, and plant attachment in B. subtilis We also show that B. subtilis secretes c-di-AMP and that putative c-di-AMP transporters impact biofilm formation and plant root colonization. Taken together, our data describe a new role for c-di-AMP as a chemical signal that affects important cellular processes in the environmentally and agriculturally important soil bacterium B. subtilis These results suggest that the "intracellular" signaling molecule c-di-AMP may also play a previously unappreciated role in interbacterial cell-cell communication within plant microbiomes.IMPORTANCE Plants harbor bacterial communities on their roots that can significantly impact their growth and pathogen resistance. In most cases, however, the signals that mediate host-microbe and microbe-microbe interactions within these communities are unknown. A detailed understanding of these interaction mechanisms could facilitate the manipulation of these communities for agricultural or environmental purposes. Bacillus subtilis is a plant-growth-promoting bacterium that adheres to roots by forming biofilms. We therefore began by exploring signals that might impact its biofilm formation. We found that B. subtilis secretes c-di-AMP and that the ability to produce, degrade, or transport cyclic di-adenylate monophosphate (c-di-AMP; a common bacterial second messenger) affects B. subtilis biofilm gene expression and plant attachment. To our knowledge, this is the first demonstration of c-di-AMP impacting a mutualist host-microbe association and suggests that c-di-AMP may function as a previously unappreciated extracellular signal able to mediate interactions within plant microbiomes.
Collapse
Affiliation(s)
- Loni Townsley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah M Yannarell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tuanh Ngoc Huynh
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Elizabeth A Shank
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
30
|
Devaux L, Kaminski PA, Trieu-Cuot P, Firon A. Cyclic di-AMP in host-pathogen interactions. Curr Opin Microbiol 2017; 41:21-28. [PMID: 29169058 DOI: 10.1016/j.mib.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/24/2017] [Accepted: 11/04/2017] [Indexed: 01/09/2023]
Abstract
Cyclic di-AMP (c-di-AMP) is a bacterial signaling nucleotide synthesized by several human pathogens. This widespread and specific bacterial product is recognized by infected host cells to trigger an innate immune response. Detection of c-di-AMP in the host cytosol leads primarily to the induction of type I interferon via the STING-cGAS signaling axis, while being also entangled in the activation of the NF-κB pathway. During their long-standing interaction, host and pathogens have co-evolved to control c-di-AMP activation of innate immunity. On the bacterial side, the quantity of c-di-AMP released inside cells allows to manipulate the host response to exacerbate infection by avoiding immune recognition or, at the opposite, by overloading the STING-cGAS pathway.
Collapse
Affiliation(s)
- Laura Devaux
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS URL3526, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pierre-Alexandre Kaminski
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS URL3526, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS URL3526, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS URL3526, Paris, France.
| |
Collapse
|
31
|
A Delicate Connection: c-di-AMP Affects Cell Integrity by Controlling Osmolyte Transport. Trends Microbiol 2017; 26:175-185. [PMID: 28965724 DOI: 10.1016/j.tim.2017.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/16/2017] [Accepted: 09/08/2017] [Indexed: 12/15/2022]
Abstract
Bacteria use second-messenger molecules to adapt to their environment. Several second messengers, among them cyclic di-AMP (c-di-AMP), have been discovered and intensively studied. Interestingly, c-di-AMP is essential for growth of Gram-positive bacteria such as Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus. Many studies demonstrated that perturbation of c-di-AMP metabolism affects the integrity of the bacterial cell envelope. Therefore, it has been assumed that the nucleotide is essential for proper cell envelope synthesis. In this Opinion paper, we propose that the cell envelope phenotypes caused by perturbations of c-di-AMP metabolism can be interpreted differently: c-di-AMP might indirectly control cell envelope integrity by modulating the turgor, a physical variable that needs to be tightly adjusted. We also discuss open questions related to c-di-AMP metabolism that need to be urgently addressed by future studies.
Collapse
|
32
|
Raguse M, Torres R, Seco EM, Gándara C, Ayora S, Moeller R, Alonso JC. Bacillus subtilis DisA helps to circumvent replicative stress during spore revival. DNA Repair (Amst) 2017; 59:57-68. [PMID: 28961460 DOI: 10.1016/j.dnarep.2017.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/24/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
The mechanisms that allow to circumvent replicative stress, and to resume DNA synthesis are poorly understood in Bacillus subtilis. To study the role of the diadenylate cyclase DisA and branch migration translocase (BMT) RadA/Sms in restarting a stalled replication fork, we nicked and broke the circular chromosome of an inert mature haploid spore, damaged the bases, and measured survival of reviving spores. During undisturbed ripening, nicks and breaks should be repaired by pathways that do not invoke long-range end resection or genetic exchange by homologous recombination, after which DNA replication might be initiated. We found that DNA damage reduced the viability of spores that lacked DisA, BMT (RadA/Sms, RuvAB or RecG), the Holliday junction resolvase RecU, or the translesion synthesis DNA polymerases (PolY1 or PolY2). DisA and RadA/Sms, in concert with RuvAB, RecG, RecU, PolY1 or PolY2, are needed to bypass replication-blocking lesions. DisA, which binds to stalled or reversed forks, did not apparently affect initiation of PriA-dependent DNA replication in vitro. We propose that DisA is necessary to coordinate responses to replicative stress; it could help to circumvent damaged template bases that otherwise impede fork progression.
Collapse
Affiliation(s)
- Marina Raguse
- German Aerospace Center (DLReV), Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, Linder Hoehe, D-51147 Cologne (Köln), Germany
| | - Rubén Torres
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Elena M Seco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Carolina Gándara
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Silvia Ayora
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Ralf Moeller
- German Aerospace Center (DLReV), Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, Linder Hoehe, D-51147 Cologne (Köln), Germany.
| | - Juan C Alonso
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
33
|
Fahmi T, Port GC, Cho KH. c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria. Genes (Basel) 2017; 8:E197. [PMID: 28783096 PMCID: PMC5575661 DOI: 10.3390/genes8080197] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022] Open
Abstract
Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an attractive antimicrobial drug target and therefore has been the focus of intensive study in several important pathogens.
Collapse
Affiliation(s)
- Tazin Fahmi
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
| | - Gary C Port
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
- Elanco Animal Health, Natural Products Fermentation, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | - Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
| |
Collapse
|
34
|
Blötz C, Treffon K, Kaever V, Schwede F, Hammer E, Stülke J. Identification of the Components Involved in Cyclic Di-AMP Signaling in Mycoplasma pneumoniae. Front Microbiol 2017; 8:1328. [PMID: 28751888 PMCID: PMC5508000 DOI: 10.3389/fmicb.2017.01328] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/30/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria often use cyclic dinucleotides as second messengers for signal transduction. While the classical molecule c-di-GMP is involved in lifestyle selection, the functions of the more recently discovered signaling nucleotide cyclic di-AMP are less defined. For many Gram-positive bacteria, c-di-AMP is essential for growth suggesting its involvement in a key cellular function. We have analyzed c-di-AMP signaling in the genome-reduced pathogenic bacterium Mycoplasma pneumoniae. Our results demonstrate that these bacteria produce c-di-AMP, and we could identify the diadenylate cyclase CdaM (MPN244). This enzyme is the founding member of a novel family of diadenylate cyclases. Of two potential c-di-AMP degrading phosphodiesterases, only PdeM (MPN549) is active in c-di-AMP degradation, whereas NrnA (MPN140) was reported to degrade short oligoribonucleotides. As observed in other bacteria, both the c-di-AMP synthesizing and the degrading enzymes are essential for M. pneumoniae suggesting control of a major homeostatic process. To obtain more insights into the nature of this process, we have identified a c-di-AMP-binding protein from M. pneumoniae, KtrC. KtrC is the cytoplasmic regulatory subunit of the low affinity potassium transporter KtrCD. It is established that binding of c-di-AMP inhibits the KtrCD activity resulting in a limitation of potassium uptake. Our results suggest that the control of potassium homeostasis is the essential function of c-di-AMP in M. pneumoniae.
Collapse
Affiliation(s)
- Cedric Blötz
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| | - Katrin Treffon
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical SchoolHannover, Germany
| | | | - Elke Hammer
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine GreifswaldGreifswald, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| |
Collapse
|
35
|
Gundlach J, Herzberg C, Kaever V, Gunka K, Hoffmann T, Weiß M, Gibhardt J, Thürmer A, Hertel D, Daniel R, Bremer E, Commichau FM, Stülke J. Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci Signal 2017; 10:10/475/eaal3011. [PMID: 28420751 DOI: 10.1126/scisignal.aal3011] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The second messenger cyclic di-adenosine monophosphate (c-di-AMP) is essential in the Gram-positive model organism Bacillus subtilis and in related pathogenic bacteria. It controls the activity of the conserved ydaO riboswitch and of several proteins involved in potassium (K+) uptake. We found that the YdaO protein was conserved among several different bacteria and provide evidence that YdaO functions as a K+ transporter. Thus, we renamed the gene and protein KimA (K+ importer A). Reporter activity assays indicated that expression beyond the c-di-AMP-responsive riboswitch of the kimA upstream regulatory region occurred only in bacteria grown in medium containing low K+ concentrations. Furthermore, mass spectrometry analysis indicated that c-di-AMP accumulated in bacteria grown in the presence of high K+ concentrations but not in low concentrations. A bacterial strain lacking all genes encoding c-di-AMP-synthesizing enzymes was viable when grown in medium containing low K+ concentrations, but not at higher K+ concentrations unless it acquired suppressor mutations in the gene encoding the cation exporter NhaK. Thus, our results indicated that the control of potassium homeostasis is an essential function of c-di-AMP.
Collapse
Affiliation(s)
- Jan Gundlach
- Department of General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, 30625 Hannover, Germany
| | - Katrin Gunka
- Department of General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Tamara Hoffmann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Martin Weiß
- Department of General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Johannes Gibhardt
- Department of General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Dietrich Hertel
- Department of Plant Ecology and Ecosystems Research, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, 35043 Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany. .,Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
36
|
Abstract
Cyclic dinucleotides (CDNs) are highly versatile signalling molecules that control various important biological processes in bacteria. The best-studied example is cyclic di-GMP (c-di-GMP). Known since the late 1980s, it is now recognized as a near-ubiquitous second messenger that coordinates diverse aspects of bacterial growth and behaviour, including motility, virulence, biofilm formation and cell cycle progression. In this Review, we discuss important new insights that have been gained into the molecular principles of c-di-GMP synthesis and degradation, which are mediated by diguanylate cyclases and c-di-GMP-specific phosphodiesterases, respectively, and the cellular functions that are exerted by c-di-GMP-binding effectors and their diverse targets. Finally, we provide a short overview of the signalling versatility of other CDNs, including c-di-AMP and cGMP-AMP (cGAMP).
Collapse
|
37
|
Pham TH, Liang ZX, Marcellin E, Turner MS. Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria. Curr Genet 2016; 62:731-738. [PMID: 27074767 DOI: 10.1007/s00294-016-0600-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/08/2023]
Abstract
Bacteria can sense environmental cues and alter their physiology accordingly through the use of signal transduction pathways involving second messenger nucleotides. One broadly conserved second messenger is cyclic-di-AMP (c-di-AMP) which regulates a range of processes including cell wall homeostasis, potassium uptake, DNA repair, fatty acid synthesis, biofilm formation and central metabolism in bacteria. The intracellular pool of c-di-AMP is maintained by the activities of diadenylate cyclase (DAC) and phosphodiesterase (PDE) enzymes, as well as possibly via c-di-AMP export. Whilst extracellular stimuli regulating c-di-AMP levels in bacteria are poorly understood, recent work has identified effector proteins which directly interact and alter the activity of DACs. These include the membrane bound CdaR and the phosphoglucosamine mutase GlmM which both bind directly to the membrane bound CdaA DAC and the recombination protein RadA which binds directly to the DNA binding DisA DAC. The genes encoding these multiprotein complexes are co-localised in many bacteria providing further support for their functional connection. The roles of GlmM in peptidoglycan synthesis and RadA in Holliday junction intermediate processing suggest that c-di-AMP synthesis by DACs will be responsive to these cellular activities. In addition to these modulatory interactions, permanent dysregulation of DAC activity due to suppressor mutations can occur during selection to overcome growth defects, rapid cell lysis and osmosensitivity. DACs have also been investigated as targets for the development of new antibiotics and several small compound inhibitors have recently been identified. This review aims to provide an overview of how c-di-AMP synthesis by DACs can be regulated.
Collapse
Affiliation(s)
- Thi Huong Pham
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Mark S Turner
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
38
|
Eijlander RT, Holsappel S, de Jong A, Ghosh A, Christie G, Kuipers OP. SpoVT: From Fine-Tuning Regulator in Bacillus subtilis to Essential Sporulation Protein in Bacillus cereus. Front Microbiol 2016; 7:1607. [PMID: 27790204 PMCID: PMC5061766 DOI: 10.3389/fmicb.2016.01607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
Sporulation is a highly sophisticated developmental process adopted by most Bacilli as a survival strategy to withstand extreme conditions that normally do not support microbial growth. A complicated regulatory cascade, divided into various stages and taking place in two different compartments of the cell, involves a number of primary and secondary regulator proteins that drive gene expression directed toward the formation and maturation of an endospore. Such regulator proteins are highly conserved among various spore formers. Despite this conservation, both regulatory and phenotypic differences are observed between different species of spore forming bacteria. In this study, we demonstrate that deletion of the regulatory sporulation protein SpoVT results in a severe sporulation defect in Bacillus cereus, whereas this is not observed in Bacillus subtilis. Although spores are initially formed, the process is stalled at a later stage in development, followed by lysis of the forespore and the mother cell. A transcriptomic investigation of B. cereus ΔspoVT shows upregulation of genes involved in germination, potentially leading to premature lysis of prespores formed. Additionally, extreme variation in the expression of species-specific genes of unknown function was observed. Introduction of the B. subtilis SpoVT protein could partly restore the sporulation defect in the B. cereus spoVT mutant strain. The difference in phenotype is thus more than likely explained by differences in promoter targets rather than differences in mode of action of the conserved SpoVT regulator protein. This study stresses that evolutionary variances in regulon members of sporulation regulators can have profound effects on the spore developmental process and that mere protein homology is not a foolproof predictor of similar phenotypes.
Collapse
Affiliation(s)
- Robyn T Eijlander
- Top Institute Food and NutritionWageningen, Netherlands; Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Siger Holsappel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Anne de Jong
- Top Institute Food and NutritionWageningen, Netherlands; Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Abhinaba Ghosh
- Department of Chemical Engineering and Biotechnology, Institute of Biotechnology, University of Cambridge Cambridge, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, Institute of Biotechnology, University of Cambridge Cambridge, UK
| | - Oscar P Kuipers
- Top Institute Food and NutritionWageningen, Netherlands; Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| |
Collapse
|
39
|
Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chem Commun (Camb) 2016; 52:9327-42. [PMID: 27339003 DOI: 10.1039/c6cc03439j] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria utilize nucleotide-based second messengers to regulate a myriad of physiological processes. Cyclic dinucleotides have emerged as central regulators of bacterial physiology, controlling processes ranging from cell wall homeostasis to virulence production, and so far over thousands of manuscripts have provided biological insights into c-di-NMP signaling. The development of small molecule inhibitors of c-di-NMP signaling has significantly lagged behind. Recent developments in assays that allow for high-throughput screening of inhibitors suggest that the time is right for a concerted effort to identify inhibitors of these fascinating second messengers. Herein, we review c-di-NMP signaling and small molecules that have been developed to inhibit cyclic dinucleotide-related enzymes.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Department of Chemistry, Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
40
|
Gundlach J, Rath H, Herzberg C, Mäder U, Stülke J. Second Messenger Signaling in Bacillus subtilis: Accumulation of Cyclic di-AMP Inhibits Biofilm Formation. Front Microbiol 2016; 7:804. [PMID: 27252699 PMCID: PMC4879592 DOI: 10.3389/fmicb.2016.00804] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/11/2016] [Indexed: 12/04/2022] Open
Abstract
The Gram-positive model organism Bacillus subtilis produces the essential second messenger signaling nucleotide cyclic di-AMP. In B. subtilis and other bacteria, c-di-AMP has been implicated in diverse functions such as control of metabolism, cell division and cell wall synthesis, and potassium transport. To enhance our understanding of the multiple functions of this second messenger, we have studied the consequences of c-di-AMP accumulation at a global level by a transcriptome analysis. C-di-AMP accumulation affected the expression of about 700 genes, among them the two major operons required for biofilm formation. The expression of both operons was severely reduced both in the laboratory and a non-domesticated strain upon accumulation of c-di-AMP. In excellent agreement, the corresponding strain was unable to form complex colonies. In B. subtilis, the transcription factor SinR controls the expression of biofilm genes by binding to their promoter regions resulting in transcription repression. Inactivation of the sinR gene restored biofilm formation even at high intracellular c-di-AMP concentrations suggesting that the second messenger acts upstream of SinR in the signal transduction pathway. As c-di-AMP accumulation did not affect the intracellular levels of SinR, we conclude that the nucleotide affects the activity of SinR.
Collapse
Affiliation(s)
- Jan Gundlach
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen Göttingen, Germany
| | - Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Christina Herzberg
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen Göttingen, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen Göttingen, Germany
| |
Collapse
|
41
|
Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers. J Bacteriol 2016; 198:15-26. [PMID: 26055111 DOI: 10.1128/jb.00331-15] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The first International Symposium on c-Di-GMP Signaling in Bacteria (22 to 25 March 2015, Harnack-Haus, Berlin, Germany)brought together 131 molecular microbiologists from 17 countries to discuss recent progress in our knowledge of bacterial nucleotide second messenger signaling. While the focus was on signal input, synthesis, degradation, and the striking diversity of the modes of action of the current second messenger paradigm, i.e., cyclic di-GMP (c-di-GMP), “classics” like cAMP and (p)ppGpp were also presented, in novel facets, and more recent “newcomers,” such as c-di-AMP and c-AMP-GMP, made an impressive appearance. A number of clear trends emerged during the 30 talks, on the 71 posters, and in the lively discussions, including (i)c-di-GMP control of the activities of various ATPases and phosphorylation cascades, (ii) extensive cross talk between c-di-GMP and other nucleotide second messenger signaling pathways, and (iii) a stunning number of novel effectors for nucleotide second messengers that surprisingly include some long-known master regulators of developmental pathways. Overall, the conference made it amply clear that second messenger signaling is currently one of the most dynamic fields within molecular microbiology,with major impacts in research fields ranging from human health to microbial ecology.
Collapse
|
42
|
Zhu Y, Pham TH, Nhiep THN, Vu NMT, Marcellin E, Chakrabortti A, Wang Y, Waanders J, Lo R, Huston WM, Bansal N, Nielsen LK, Liang ZX, Turner MS. Cyclic-di-AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in Lactococcus lactis. Mol Microbiol 2015; 99:1015-27. [PMID: 26585449 DOI: 10.1111/mmi.13281] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Abstract
The second messenger cyclic-di-adenosine monophosphate (c-di-AMP) plays important roles in growth, virulence, cell wall homeostasis, potassium transport and affects resistance to antibiotics, heat and osmotic stress. Most Firmicutes contain only one c-di-AMP synthesizing diadenylate cyclase (CdaA); however, little is known about signals and effectors controlling CdaA activity and c-di-AMP levels. In this study, a genetic screen was employed to identify components which affect the c-di-AMP level in Lactococcus. We characterized suppressor mutations that restored osmoresistance to spontaneous c-di-AMP phosphodiesterase gdpP mutants, which contain high c-di-AMP levels. Loss-of-function and gain-of-function mutations were identified in the cdaA and gdpP genes, respectively, which led to lower c-di-AMP levels. A mutation was also identified in the phosphoglucosamine mutase gene glmM, which is commonly located within the cdaA operon in bacteria. The glmM I154F mutation resulted in a lowering of the c-di-AMP level and a reduction in the key peptidoglycan precursor UDP-N-acetylglucosamine in L. lactis. C-di-AMP synthesis by CdaA was shown to be inhibited by GlmM(I154F) more than GlmM and GlmM(I154F) was found to bind more strongly to CdaA than GlmM. These findings identify GlmM as a c-di-AMP level modulating protein and provide a direct connection between c-di-AMP synthesis and peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Yan Zhu
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Thi Huong Pham
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.,University of Science and Technology, The University of Danang, Da Nang, Vietnam
| | - Thi Hanh Nguyen Nhiep
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ngoc Minh Thu Vu
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Alolika Chakrabortti
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Jennifer Waanders
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Raquel Lo
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mark S Turner
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.,Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
43
|
Cheng X, Zheng X, Zhou X, Zeng J, Ren Z, Xu X, Cheng L, Li M, Li J, Li Y. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ Microbiol 2015; 18:904-22. [PMID: 26548332 DOI: 10.1111/1462-2920.13123] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 02/05/2023]
Abstract
Cyclic diadenosine monophosphate (c-di-AMP) has been implicated in the control of many important bacterial activities. However, the function of this molecule in Streptococcus mutans, the primary aetiological agent of human dental caries, is unknown. In this study, we identified and characterized a diadenylate cyclase, named CdaA, in S. mutans. Furthermore, we showed that in-frame deletion of the cdaA gene in S. mutans causes decreased c-di-AMP levels, increased sensitivity to hydrogen peroxide and increased production of extracellular polysaccharides. Global gene expression profiling revealed that more than 200 genes were significantly upregulated or downregulated (> 2.0-fold) in the cdaA mutant. Interestingly, genes with increased or decreased expression were clustered in cellular polysaccharide biosynthetic processes and oxidoreductase activity respectively. Notably, the expression of several genomic islands, such as GTF-B/C, TnSmu, CRISPR1-Cas and CRISPR2-Cas, was found to be altered in the cdaA mutant, indicating a possible link between these genomic islands and c-di-AMP signalling. Collectively, the results reported here show that CdaA is an important global modulator in S. mutans and is required for optimal growth and environmental adaption. This report also paves the way to unveil further the roles of c-di-AMP signalling networks in the biology and pathogenicity of S. mutans.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- Department of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhi Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Phenotypes Associated with the Essential Diadenylate Cyclase CdaA and Its Potential Regulator CdaR in the Human Pathogen Listeria monocytogenes. J Bacteriol 2015; 198:416-26. [PMID: 26527648 DOI: 10.1128/jb.00845-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Cyclic diadenylate monophosphate (c-di-AMP) is a second messenger utilized by diverse bacteria. In many species, including the Gram-positive human pathogen Listeria monocytogenes, c-di-AMP is essential for growth. Here we show that the single diadenylate cyclase of L. monocytogenes, CdaA, is an integral membrane protein that interacts with its potential regulatory protein, CdaR, via the transmembrane protein domain. The presence of the CdaR protein is not required for the membrane localization and abundance of CdaA. We have also found that CdaR negatively influences CdaA activity in L. monocytogenes and that the role of CdaR is most evident at a high growth temperature. Interestingly, a cdaR mutant strain is less susceptible to lysozyme. Moreover, CdaA contributes to cell division, and cells depleted of CdaA are prone to lysis. The observation that the growth defect of a CdaA depletion strain can be partially restored by increasing the osmolarity of the growth medium suggests that c-di-AMP is important for maintaining the integrity of the protective cell envelope. Overall, this work provides new insights into the relationship between CdaA and CdaR. IMPORTANCE Cyclic diadenylate monophosphate (c-di-AMP) is a recently identified second messenger that is utilized by the Gram-positive human pathogen Listeria monocytogenes. Here we show that the single diadenylate cyclase of L. monocytogenes, CdaA, is an integral membrane protein that interacts with CdaR, its potential regulatory protein. We show that CdaR is not required for membrane localization or abundance of the diadenylate cyclase, but modulates its activity. Moreover, CdaA seems to contribute to cell division. Overall, this work provides new insights into the relationship between CdaA and CdaR and their involvement in cell growth.
Collapse
|
45
|
Rosenberg A, Soufi B, Ravikumar V, Soares NC, Krug K, Smith Y, Macek B, Ben-Yehuda S. Phosphoproteome dynamics mediate revival of bacterial spores. BMC Biol 2015; 13:76. [PMID: 26381121 PMCID: PMC4574613 DOI: 10.1186/s12915-015-0184-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022] Open
Abstract
Background Bacterial spores can remain dormant for decades, yet harbor the exceptional capacity to rapidly resume metabolic activity and recommence life. Although germinants and their corresponding receptors have been known for more than 30 years, the molecular events underlying this remarkable cellular transition from dormancy to full metabolic activity are only partially defined. Results Here, we examined whether protein phospho-modifications occur during germination, the first step of exiting dormancy, thereby facilitating spore revival. Utilizing Bacillus subtilis as a model organism, we performed phosphoproteomic analysis to define the Ser/Thr/Tyr phosphoproteome of a reviving spore. The phosphoproteome was found to chiefly comprise newly identified phosphorylation sites located within proteins involved in basic biological functions, such as transcription, translation, carbon metabolism, and spore-specific determinants. Quantitative comparison of dormant and germinating spore phosphoproteomes revealed phosphorylation dynamics, indicating that phospho-modifications could modulate protein activity during this cellular transition. Furthermore, by mutating select phosphorylation sites located within proteins representative of key biological processes, we established a functional connection between phosphorylation and the progression of spore revival. Conclusions Herein, we provide, for the first time, a phosphoproteomic view of a germinating bacterial spore. We further show that the spore phosphoproteome is dynamic and present evidence that phosphorylation events play an integral role in facilitating spore revival. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0184-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex Rosenberg
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120, Jerusalem, Israel
| | - Boumediene Soufi
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076, Tuebingen, Germany
| | - Vaishnavi Ravikumar
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076, Tuebingen, Germany
| | - Nelson C Soares
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076, Tuebingen, Germany
| | - Karsten Krug
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076, Tuebingen, Germany
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University - Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076, Tuebingen, Germany.
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
46
|
Zheng C, Ma Y, Wang X, Xie Y, Ali MK, He J. Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis. Front Microbiol 2015; 6:908. [PMID: 26441857 PMCID: PMC4568413 DOI: 10.3389/fmicb.2015.00908] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/19/2015] [Indexed: 01/03/2023] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a recently discovered bacterial secondary messenger molecule, which is associated with various physiological functions. In the genus Bacillus, the intracellular level and turnover of c-di-AMP are mainly regulated by three diadenylate cyclases (DACs), including DisA, CdaA and CdaS, and two c-di-AMP-specific phosphodiesterases (GdpP and PgpH). In this study, we demonstrated that CdaS protein from B. thuringiensis is a hexameric DAC protein that can convert ATP or ADP to c-di-AMP in vitro and the N-terminal YojJ domain is essential for the DAC activity. Based on the markerless gene knock-out method, we demonstrated that the transcription of cdaS was initiated by the sporulation-specific sigma factor σ(H) and the deletion of cdaS significantly delayed sporulation and parasporal crystal formation. These findings contrast with similar experiments conducted using B. subtilis, wherein transcription of its cdaS was initiated by the sigma factor σ(G). Deletion of all the three DAC genes from a single strain was unsuccessful, suggesting that c-di-AMP is an indispensable molecule in B. thuringiensis. Phylogenetic analysis indicated increased diversity of CdaS in the B. cereus and B. subtilis Bacillus subgroups. In summary, this study identifies important aspects in the regulation of c-di-AMP in the genus Bacillus.
Collapse
Affiliation(s)
- Cao Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Yang Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Yuqun Xie
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology Wuhan, China
| | - Maria K Ali
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
47
|
An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis. J Bacteriol 2015; 197:3265-74. [PMID: 26240071 DOI: 10.1128/jb.00564-15] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Gram-positive bacteria synthesize the second messenger cyclic di-AMP (c-di-AMP) to control cell wall and potassium homeostasis and to secure the integrity of their DNA. In the firmicutes, c-di-AMP is essential for growth. The model organism Bacillus subtilis encodes three diadenylate cyclases and two potential phosphodiesterases to produce and degrade c-di-AMP, respectively. Among the three cyclases, CdaA is conserved in nearly all firmicutes, and this enzyme seems to be responsible for the c-di-AMP that is required for cell wall homeostasis. Here, we demonstrate that CdaA localizes to the membrane and forms a complex with the regulatory protein CdaR and the glucosamine-6-phosphate mutase GlmM. Interestingly, cdaA, cdaR, and glmM form a gene cluster that is conserved throughout the firmicutes. This conserved arrangement and the observed interaction between the three proteins suggest a functional relationship. Our data suggest that GlmM and GlmS are involved in the control of c-di-AMP synthesis. These enzymes convert glutamine and fructose-6-phosphate to glutamate and glucosamine-1-phosphate. c-di-AMP synthesis is enhanced if the cells are grown in the presence of glutamate compared to that in glutamine-grown cells. Thus, the quality of the nitrogen source is an important signal for c-di-AMP production. In the analysis of c-di-AMP-degrading phosphodiesterases, we observed that both phosphodiesterases, GdpP and PgpH (previously known as YqfF), contribute to the degradation of the second messenger. Accumulation of c-di-AMP in a gdpP pgpH double mutant is toxic for the cells, and the cells respond to this accumulation by inactivation of the diadenylate cyclase CdaA. IMPORTANCE Bacteria use second messengers for signal transduction. Cyclic di-AMP (c-di-AMP) is the only second messenger known so far that is essential for a large group of bacteria. We have studied the regulation of c-di-AMP synthesis and the role of the phosphodiesterases that degrade this second messenger. c-di-AMP synthesis strongly depends on the nitrogen source: glutamate-grown cells produce more c-di-AMP than glutamine-grown cells. The accumulation of c-di-AMP in a strain lacking both phosphodiesterases is toxic and results in inactivation of the diadenylate cyclase CdaA. Our results suggest that CdaA is the critical diadenylate cyclase that produces the c-di-AMP that is both essential and toxic upon accumulation.
Collapse
|
48
|
Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stülke J. A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 2015; 97:189-204. [PMID: 25869574 DOI: 10.1111/mmi.13026] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2015] [Indexed: 12/28/2022]
Abstract
Second messengers are key components of many signal transduction pathways. In addition to cyclic AMP, ppGpp and cyclic di-GMP, many bacteria use also cyclic di-AMP as a second messenger. This molecule is synthesized by distinct classes of diadenylate cyclases and degraded by phosphodiesterases. The control of the intracellular c-di-AMP pool is very important since both a lack of this molecule and its accumulation can inhibit growth of the bacteria. In many firmicutes, c-di-AMP is essential, making it the only known essential second messenger. Cyclic di-AMP is implicated in a variety of functions in the cell, including cell wall metabolism, potassium homeostasis, DNA repair and the control of gene expression. To understand the molecular mechanisms behind these functions, targets of c-di-AMP have been identified and characterized. Interestingly, c-di-AMP can bind both proteins and RNA molecules. Several proteins that interact with c-di-AMP are required to control the intracellular potassium concentration. In Bacillus subtilis, c-di-AMP also binds a riboswitch that controls the expression of a potassium transporter. Thus, c-di-AMP is the only known second messenger that controls a biological process by interacting with both a protein and the riboswitch that regulates its expression. Moreover, in Listeria monocytogenes c-di-AMP controls the activity of pyruvate carboxylase, an enzyme that is required to replenish the citric acid cycle. Here, we review the components of the c-di-AMP signaling system.
Collapse
Affiliation(s)
- Fabian M Commichau
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| | - Jan Gundlach
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| |
Collapse
|
49
|
Rosenberg J, Dickmanns A, Neumann P, Gunka K, Arens J, Kaever V, Stülke J, Ficner R, Commichau FM. Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes. J Biol Chem 2015; 290:6596-606. [PMID: 25605729 DOI: 10.1074/jbc.m114.630418] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The recently identified second messenger cyclic di-AMP (c-di-AMP) is involved in several important cellular processes, such as cell wall metabolism, maintenance of DNA integrity, ion transport, transcription regulation, and allosteric regulation of enzyme function. Interestingly, c-di-AMP is essential for growth of the Gram-positive model bacterium Bacillus subtilis. Although the genome of B. subtilis encodes three c-di-AMP-producing diadenlyate cyclases that can functionally replace each other, the phylogenetically related human pathogens like Listeria monocytogenes and Staphylococcus aureus possess only one enzyme, the diadenlyate cyclase CdaA. Because CdaA is also essential for growth of these bacteria, the enzyme is a promising target for the development of novel antibiotics. Here we present the first crystal structure of the L. monocytogenes CdaA diadenylate cyclase domain that is conserved in many human pathogens. Moreover, biochemical characterization of the cyclase revealed an unusual metal cofactor requirement.
Collapse
Affiliation(s)
| | - Achim Dickmanns
- Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany and
| | - Piotr Neumann
- Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany and
| | - Katrin Gunka
- From the Departments of General Microbiology and
| | - Johannes Arens
- Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany and
| | - Volkhard Kaever
- the Research Core Unit Metabolomics, Hannover Medical School, D-30625 Hannover, Germany
| | - Jörg Stülke
- From the Departments of General Microbiology and
| | - Ralf Ficner
- Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany and
| | | |
Collapse
|
50
|
Gándara C, Alonso JC. DisA and c-di-AMP act at the intersection between DNA-damage response and stress homeostasis in exponentially growing Bacillus subtilis cells. DNA Repair (Amst) 2015; 27:1-8. [PMID: 25616256 DOI: 10.1016/j.dnarep.2014.12.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/24/2014] [Accepted: 12/27/2014] [Indexed: 12/18/2022]
Abstract
Bacillus subtilis contains two vegetative diadenylate cyclases, DisA and CdaA, which produce cyclic di-AMP (c-di-AMP), and one phosphodiesterase, GdpP, that degrades it into a linear di-AMP. We report here that DisA and CdaA contribute to elicit repair of DNA damage generated by alkyl groups and H2O2, respectively, during vegetative growth. disA forms an operon with radA (also termed sms) that encodes a protein distantly related to RecA. Among different DNA damage agents tested, only methyl methane sulfonate (MMS) affected disA null strain viability, while radA showed sensitivity to all of them. A strain lacking both disA and radA was as sensitive to MMS as the most sensitive single parent (epistasis). Low c-di-AMP levels (e.g. by over-expressing GdpP) decreased the ability of cells to repair DNA damage caused by MMS and in less extent by H2O2, while high levels of c-di-AMP (absence of GdpP or expression of sporulation-specific diadenylate cyclase, CdaS) increased cell survival. Taken together, our results support the idea that c-di-AMP is a crucial signalling molecule involved in DNA repair with DisA and CdaA contributing to modulate different DNA damage responses during exponential growth.
Collapse
Affiliation(s)
- Carolina Gándara
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Juan C Alonso
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| |
Collapse
|