1
|
Zhang H, Zhai X, Zhang W, He Y, Yu B, Liu H, Meng X, Ji F. Unraveling the role of SSH1 in chronic neuropathic pain: A focus on LIMK1 and Cofilin Dephosphorylation in the prefrontal cortex. Exp Cell Res 2025; 445:114383. [PMID: 39701356 DOI: 10.1016/j.yexcr.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND OBJECTIVE Neuropathic pain, a debilitating condition stemming from nervous system injuries, has profound impacts on quality of life. The medial prefrontal cortex (mPFC) plays a crucial role in the modulation of pain perception and emotional response. This study explores the involvement of Slingshot Homolog 1 (SSH1) protein in neuropathic pain and related emotional and cognitive dysfunctions in a mouse model of spared nerve injury (SNI). METHODS SNI was induced in C57BL/6J mice. SSH1's role was investigated via its overexpression and knockdown using lentiviral vectors in the mPFC. Behavioral assays (thermal and mechanical allodynia, open field test, elevated plus maze, tail suspension test, Y-maze, and novel object recognition were conducted to assess pain sensitivity, anxiety, depression, and cognitive function. Tissue samples underwent Hematoxylin and Eosin staining, Western blotting, immunofluorescence, co-immunoprecipitation, and enzyme-linked immunosorbent assay for inflammatory markers. RESULTS SNI mice displayed significant reductions in neuronal density and dendritic integrity in the mPFC, alongside heightened pain perception and emotional disturbances, as compared to sham controls. Overexpression of SSH1 ameliorated these alterations, improving mechanical and thermal thresholds, reducing anxiety and depressive behaviors, and enhancing cognitive performance. Conversely, SSH1 knockdown exacerbated these phenotypes. Molecular investigations revealed that SSH1 modulates pain processing and neuronal health in the mPFC partially through the dephosphorylation of Cofilin and LIM domain kinase 1 (LIMK1), as evidenced by changes in their phosphorylation states and interaction patterns. CONCLUSION SSH1 plays a pivotal role in the modulation of neuropathic pain and associated neuropsychological disturbances in the mPFC of mice. Manipulating SSH1 expression can potentially reverse the neurophysiological and behavioral abnormalities induced by SNI, highlighting a promising therapeutic target for treating neuropathic pain and its complex comorbidities.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China; Institute of Anesthesiology, Soochow University, Suzhou City, Jiangsu Province, 215006, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221002, China
| | - XiaoJing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, China; Department of Pain, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221002, China
| | - WenWen Zhang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221002, China; Jiangsu Province Key Laboratory of Anesthesiology Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, China
| | - Yu He
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221002, China; Jiangsu Province Key Laboratory of Anesthesiology Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, China
| | - BeiBei Yu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221002, China; Jiangsu Province Key Laboratory of Anesthesiology Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, China
| | - He Liu
- Department of Anesthesiology, Clinical Research Center of Anesthesia and Perioperative Medicine, Huzhou Central Hospital, Huzhou City, Zhejiang Province, 313003, China; Huzhou Hospital, Zhejiang University School of Medicine, Huzhou City, Zhejiang Province, 313003, China
| | - XiaoWen Meng
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China; Institute of Anesthesiology, Soochow University, Suzhou City, Jiangsu Province, 215006, China
| | - FuHai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China; Institute of Anesthesiology, Soochow University, Suzhou City, Jiangsu Province, 215006, China.
| |
Collapse
|
2
|
Brûlé E, Zhou X, Wang Y, Buddle ERS, Ongaro L, Loka M, Boelen A, Bernard DJ. The hypothalamic-pituitary-thyroid axis is intact in male insulin receptor substrate 4 knockout mice. Eur Thyroid J 2024; 13:ETJ-23-0054. [PMID: 38271814 PMCID: PMC10895334 DOI: 10.1530/etj-23-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE Loss of function mutations in the insulin receptor substrate 4 (IRS4) gene cause a rare form of X-linked congenital central hypothyroidism in boys and men. Affected individuals show decreased thyroid-stimulation hormone (TSH) secretion. Members of the IRS family canonically act as scaffold proteins between tyrosine kinase receptors and downstream effectors. How loss of IRS4 affects TSH synthesis or secretion is unresolved. We therefore assessed IRS4's role in the hypothalamic-pituitary-thyroid axis of Irs4 knockout mice. METHODS We generated two global Irs4 knockout mouse lines harboring either two or four base-pair deletions that result in frameshifts and loss of most of the IRS4 protein. RESULTS Under normal laboratory conditions, Irs4 knockout males did not exhibit impairments in pituitary expression of TSH subunit genes (Tshb or Cga) or in the thyrotropin-releasing hormone (TRH) receptor. Additionally, their serum thyroid hormone, T3 (triiodothyronine) and T4 (thyroxine), and hypothalamic Trh expression levels were normal. When Irs4 knockouts were rendered hypothyroid with a low-iodine diet supplemented with propylthiouracil (PTU) for 3 weeks, their serum TSH increased similarly to wild-type males. CONCLUSIONS Overall, Irs4 knockout mice do not exhibit central hypothyroidism or otherwise appear to phenocopy IRS4 deficient patients. Compensation by another IRS protein may explain euthyroidism in these animals.
Collapse
Affiliation(s)
- Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Evan R S Buddle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Mary Loka
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Anita Boelen
- Endocrine Laboratory, Department of Laboratory Medicine, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology & Metabolism Research Institute, Amsterdam, The Netherlands
| | - Daniel J Bernard
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Guijarro LG, Justo Bermejo FJ, Boaru DL, De Castro-Martinez P, De Leon-Oliva D, Fraile-Martínez O, Garcia-Montero C, Alvarez-Mon M, Toledo-Lobo MDV, Ortega MA. Is Insulin Receptor Substrate4 (IRS4) a Platform Involved in the Activation of Several Oncogenes? Cancers (Basel) 2023; 15:4651. [PMID: 37760618 PMCID: PMC10526421 DOI: 10.3390/cancers15184651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The IRS (insulin receptor substrate) family of scaffold proteins includes insulin receptor substrate-4 (IRS4), which is expressed only in a few cell lines, including human kidney, brain, liver, and thymus and some cell lines. Its N-terminus carries a phosphotyrosine-binding (PTB) domain and a pleckstrin homology domain (PH), which distinguishes it as a member of this family. In this paper, we collected data about the molecular mechanisms that explain the relevance of IRS4 in the development of cancer and identify IRS4 differences that distinguish it from IRS1 and IRS2. Search engines and different databases, such as PubMed, UniProt, ENSEMBL and SCANSITE 4.0, were used. We used the name of the protein that it encodes "(IRS-4 or IRS4)", or the combination of these terms with the word "(cancer)" or "(human)", for searches. Terms related to specific tumor pathologies ("breast", "ovary", "colon", "lung", "lymphoma", etc.) were also used. Despite the lack of knowledge on IRS4, it has been reported that some cancers and benign tumors are characterized by high levels of IRS-4 expression. Specifically, the role of IRS-4 in different types of digestive tract neoplasms, gynecological tumors, lung cancers, melanomas, hematological tumors, and other less common types of cancers has been shown. IRS4 differs from IRS1 and IRS2 in that can activate several oncogenes that regulate the PI3K/Akt cascade, such as BRK and FER, which are characterized by tyrosine kinase-like activity without regulation via extracellular ligands. In addition, IRS4 can activate the CRKL oncogene, which is an adapter protein that regulates the MAP kinase cascade. Knowledge of the role played by IRS4 in cancers at the molecular level, specifically as a platform for oncogenes, may enable the identification and validation of new therapeutic targets.
Collapse
Affiliation(s)
- Luis G. Guijarro
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
| | | | - Diego Liviu Boaru
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Diego De Leon-Oliva
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Oscar Fraile-Martínez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Cielo Garcia-Montero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Melchor Alvarez-Mon
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - María del Val Toledo-Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Miguel A. Ortega
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
4
|
Rademaker G, Costanza B, Pyr Dit Ruys S, Peiffer R, Agirman F, Maloujahmoum N, Vertommen D, Turtoi A, Bellahcène A, Castronovo V, Peulen O. Paladin, overexpressed in colon cancer, is required for actin polymerisation and liver metastasis dissemination. Oncogenesis 2022; 11:42. [PMID: 35882839 PMCID: PMC9325978 DOI: 10.1038/s41389-022-00416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Colorectal cancer remains a public health issue and most colon cancer patients succumb to the development of metastases. Using a specific protocol of pressure-assisted interstitial fluid extrusion to recover soluble biomarkers, we identified paladin as a potential colon cancer liver metastases biomarker. Methods Using shRNA gene knockdown, we explored the biological function of paladin in colon cancer cells and investigated the phospho-proteome within colon cancer cells. We successively applied in vitro migration assays, in vivo metastasis models and co-immunoprecipitation experiments. Results We discovered that paladin is required for colon cancer cell migration and metastasis, and that paladin depletion altered the phospho-proteome within colon cancer cells. Data are available via ProteomeXchange with identifier PXD030803. Thanks to immunoprecipitation experiments, we demonstrated that paladin, was interacting with SSH1, a phosphatase involved in colon cancer metastasis. Finally, we showed that paladin depletion in cancer cells results in a less dynamic actin cytoskeleton. Conclusions Paladin is an undervalued protein in oncology. This study highlights for the first time that, paladin is participating in actin cytoskeleton remodelling and is required for efficient cancer cell migration. ![]()
Collapse
Affiliation(s)
- Gilles Rademaker
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium.,Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Brunella Costanza
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, 20139, Italy
| | - Sébastien Pyr Dit Ruys
- MassProt platform, de Duve Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Didier Vertommen
- MassProt platform, de Duve Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Andrei Turtoi
- Tumor microenvironment and resistance to treatment Laboratory, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Akeila Bellahcène
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium.
| |
Collapse
|
5
|
Nishimura T, Oyama T, Hu HT, Fujioka T, Hanawa-Suetsugu K, Ikeda K, Yamada S, Kawana H, Saigusa D, Ikeda H, Kurata R, Oono-Yakura K, Kitamata M, Kida K, Hikita T, Mizutani K, Yasuhara K, Mimori-Kiyosue Y, Oneyama C, Kurimoto K, Hosokawa Y, Aoki J, Takai Y, Arita M, Suetsugu S. Filopodium-derived vesicles produced by MIM enhance the migration of recipient cells. Dev Cell 2021; 56:842-859.e8. [PMID: 33756122 DOI: 10.1016/j.devcel.2021.02.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are classified as large EVs (l-EVs, or microvesicles) and small EVs (s-EVs, or exosomes). S-EVs are thought to be generated from endosomes through a process that mainly depends on the ESCRT protein complex, including ALG-2 interacting protein X (ALIX). However, the mechanisms of l-EV generation from the plasma membrane have not been identified. Membrane curvatures are generated by the bin-amphiphysin-rvs (BAR) family proteins, among which the inverse BAR (I-BAR) proteins are involved in filopodial protrusions. Here, we show that the I-BAR proteins, including missing in metastasis (MIM), generate l-EVs by scission of filopodia. Interestingly, MIM-containing l-EV production was promoted by in vivo equivalent external forces and by the suppression of ALIX, suggesting an alternative mechanism of vesicle formation to s-EVs. The MIM-dependent l-EVs contained lysophospholipids and proteins, including IRS4 and Rac1, which stimulated the migration of recipient cells through lamellipodia formation. Thus, these filopodia-dependent l-EVs, which we named as filopodia-derived vesicles (FDVs), modify cellular behavior.
Collapse
Affiliation(s)
- Tamako Nishimura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takuya Oyama
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hooi Ting Hu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Toshifumi Fujioka
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kyoko Hanawa-Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; Kazusa DNA Research Institute, 2-6-7 Kazusa, kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Sohei Yamada
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hiroki Kawana
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Daisuke Saigusa
- Tohoku University Tohoku Medical Megabank Organization, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Hiroki Ikeda
- Department of Embryology, Nara Medical University, Kashihara 634-0813, Nara, Japan
| | - Rie Kurata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kayoko Oono-Yakura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Manabu Kitamata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kazuki Kida
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Tomoya Hikita
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Kiyohito Mizutani
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Minatojima-minaminachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Kashihara 634-0813, Nara, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Junken Aoki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yoshimi Takai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-0011, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| |
Collapse
|
6
|
Possible Role of IRS-4 in the Origin of Multifocal Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13112560. [PMID: 34071030 PMCID: PMC8197110 DOI: 10.3390/cancers13112560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a potentially deadly liver cancer with a high prevalence worldwide. Despite the very efforts placed on this cancer, most cases are associated with poor prognosis and the understanding of the molecular mechanisms implicated in the development of HCC are arising as a potential therapeutic approach of this cancer. In this sense, we aimed to evaluate the established role of insulin receptor substrate 4 (IRS-4) in the tumorigenesis and progression of HCC. Thus, we leaded a histopathological study of this component, along with additional cancer biomarkers such as PCNA, Ki67, and pH3. In addition, in vitro models of different cell lines were used to describe the effects of IRS-4 overexpression/silencing. Finally, immunoblot analysis and transfection experiments were also conducted. Our research demonstrates that IRS-4 is involved in multiple tumoral effects such as proliferation, cell migration, and cell-collagen adhesion as well as the appearance of multifocal HCC. Abstract New evidence suggests that insulin receptor substrate 4 (IRS-4) may play an important role in the promotion of tumoral growth. In this investigation, we have evaluated the role of IRS-4 in a pilot study performed on patients with liver cancer. We used immunohistochemistry to examine IRS-4 expression in biopsies of tumoral tissue from a cohort of 31 patient suffering of hepatocellular carcinoma (HCC). We simultaneously analyzed the expression of the cancer biomarkers PCNA, Ki-67, and pH3 in the same tissue samples. The in vitro analysis was conducted by studying the behavior of HepG2 cells following IRS-4 overexpression/silencing. IRS-4 was expressed mainly in the nuclei of tumoral cells from HCC patients. In contrast, in healthy cells involved in portal triads, canaliculi, and parenchymal tissue, IRS-4 was observed in the cytosol and the membrane. Nuclear IRS-4 in the tumoral region was found in 69.9 ± 3.2%, whereas in the surrounding healthy hepatocytes, nuclear IRS-4 was rarely observed. The percentage of tumoral cells that exhibited nuclear PCNA and Ki-67 were 52.1 ± 7%, 6.1 ± 1.1% and 1.3 ± 0.2%, respectively. Furthermore, we observed a significant positive linear correlation between nuclear IRS-4 and PCNA (r = 0.989; p < 0.001). However, when we correlated the nuclear expression of IRS-4 and Ki-67, we observed a significant positive curvilinear correlation (r = 0.758; p < 0.010). This allowed us to define two populations, (IRS-4 + Ki-67 ≤ 69%) and (IRS-4 + Ki-67 > 70%). The population with lower levels of IRS-4 and Ki-67 had a higher risk of suffering from multifocal liver cancer (OR = 16.66; CI = 1.68–164.8 (95%); p < 0.05). Immunoblot analyses showed that IRS-4 in normal human liver biopsies was lower than in HepG2, Huh7, and Chang cells. Treatment of HepG2 with IGF-1 and EGF induced IRS-4 translocation to the nucleus. Regulation of IRS-4 levels via HepG2 transfection experiments revealed the protein’s role in proliferation, cell migration, and cell-collagen adhesion. Nuclear IRS-4 is increased in the tumoral region of HCC. IRS-4 and Ki-67 levels are significantly correlated with the presence of multifocal HCC. Moreover, upregulation of IRS-4 in HepG2 cells induced proliferation by a β-catenin/Rb/cyclin D mechanism, whereas downregulation of IRS-4 caused a loss in cellular polarity and in its adherence to collagen as well as a gain in migratory and invasive capacities, probably via an integrin α2 and focal adhesion cascade (FAK) mechanism.
Collapse
|
7
|
Kagawa Y, Umaru BA, Shima H, Ito R, Zama R, Islam A, Kanno SI, Yasui A, Sato S, Jozaki K, Shil SK, Miyazaki H, Kobayashi S, Yamamoto Y, Kogo H, Shimamoto-Mitsuyama C, Sugawara A, Sugino N, Kanamori M, Tominaga T, Yoshikawa T, Fukunaga K, Igarashi K, Owada Y. FABP7 Regulates Acetyl-CoA Metabolism Through the Interaction with ACLY in the Nucleus of Astrocytes. Mol Neurobiol 2020; 57:4891-4910. [PMID: 32812201 PMCID: PMC7541391 DOI: 10.1007/s12035-020-02057-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/07/2020] [Indexed: 01/17/2023]
Abstract
Fatty acid binding protein 7 (FABP7) is an intracellular fatty acid chaperon that is highly expressed in astrocytes, oligodendrocyte-precursor cells, and malignant glioma. Previously, we reported that FABP7 regulates the response to extracellular stimuli by controlling the expression of caveolin-1, an important component of lipid raft. Here, we explored the detailed mechanisms underlying FABP7 regulation of caveolin-1 expression using primary cultured FABP7-KO astrocytes as a model of loss of function and NIH-3T3 cells as a model of gain of function. We discovered that FABP7 interacts with ATP-citrate lyase (ACLY) and is important for acetyl-CoA metabolism in the nucleus. This interaction leads to epigenetic regulation of several genes, including caveolin-1. Our novel findings suggest that FABP7-ACLY modulation of nuclear acetyl-CoA has more influence on histone acetylation than cytoplasmic acetyl-CoA. The changes to histone structure may modify caveolae-related cell activity in astrocytes and tumors, including malignant glioma.
Collapse
Affiliation(s)
- Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Banlanjo Abdulaziz Umaru
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryo Ito
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryo Zama
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ariful Islam
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shin-Ichiro Kanno
- Division of Dynamic Proteome in Aging and Cancer, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Aging and Cancer, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-0046, Japan
| | - Kosuke Jozaki
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-0046, Japan
| | - Subrata Kumar Shil
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroshi Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | | | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-0046, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, 351-0198, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
8
|
Song X, Xie D, Xia X, Tan F, Pei Q, Li Y, Zhou Z, Zhou Y, Li C, Wang K, Pei H. Role of SSH1 in colorectal cancer prognosis and tumor progression. J Gastroenterol Hepatol 2020; 35:1180-1188. [PMID: 32020663 DOI: 10.1111/jgh.15001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/31/2019] [Accepted: 01/30/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIM Slingshot 1 protein (SSH1) plays a critical role in cytoskeleton dynamic regulation. Increasing evidence suggest that SSH1 expression is upregulated in several cancers and relates to tumor progression and drug resistance. Here, we evaluated the role of SSH1 in colorectal cancer (CRC) development and its prognostic value in patients with CRC. METHODS SSH1 expression was examined by quantitative real-time polymerase chain reaction, western blot analysis, or immunohistochemistry. The association between SSH1 expression and clinical characteristics and prognosis was evaluated. Stable SSH1 knockdown cells were used for in vitro assays and xenograft models. Correlation between SSH1 expression and epithelial-mesenchymal transition (EMT) was analyzed by western blot and online data analysis. RESULTS SSH1 expression was upregulated in cancer tissue compared with paired non-cancerous tissue in patients with CRC. SSH1 expression level in CRC tissue was associated with tumor stage, lymph node metastasis, and correlated with poor prognosis as indicated by univariate and multivariate analyses. In vitro, loss of SSH1 impaired colony formation, migration, and invasion of CRC cells. In vivo data suggest that SSH1 could promote the progression and metastasis of CRC. Interestingly, E-cadherin, ZEB1, and Snail, which are markers of EMT, had a significant expression correlation with SSH1. CONCLUSIONS SSH1 expression is associated with CRC progression and predicts poor prognosis. SSH1 may promote CRC tumor progression by regulating EMT.
Collapse
Affiliation(s)
- Xiangping Song
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Di Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Xia
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqiang Li
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyi Zhou
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhou
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chenglong Li
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Kangtao Wang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Matsui A, Kobayashi J, Kanno SI, Hashiguchi K, Miyaji M, Yoshikawa Y, Yasui A, Zhang-Akiyama QM. Oxidation resistance 1 prevents genome instability through maintenance of G2/M arrest in gamma-ray-irradiated cells. JOURNAL OF RADIATION RESEARCH 2020; 61:1-13. [PMID: 31845986 PMCID: PMC6976731 DOI: 10.1093/jrr/rrz080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Human oxidation resistance 1 (OXR1) was identified as a protein that decreases genomic mutations in Escherichia coli caused by oxidative DNA damage. However, the mechanism by which OXR1 defends against genome instability has not been elucidated. To clarify how OXR1 maintains genome stability, the effects of OXR1-depletion on genome stability were investigated in OXR1-depleted HeLa cells using gamma-rays (γ-rays). The OXR1-depleted cells had higher levels of superoxide and micronucleus (MN) formation than control cells after irradiation. OXR1-overexpression alleviated the increases in reactive oxygen species (ROS) level and MN formation after irradiation. The increased MN formation in irradiated OXR1-depleted cells was partially attenuated by the ROS inhibitor N-acetyl-L-cysteine, suggesting that OXR1-depeletion increases ROS-dependent genome instability. We also found that OXR1-depletion shortened the duration of γ-ray-induced G2/M arrest. In the presence of the cell cycle checkpoint inhibitor caffeine, the level of MN formed after irradiation was similar between control and OXR1-depleted cells, demonstrating that OXR1-depletion accelerates MN formation through abrogation of G2/M arrest. In OXR1-depleted cells, the level of cyclin D1 protein expression was increased. Here we report that OXR1 prevents genome instability by cell cycle regulation as well as oxidative stress defense.
Collapse
Affiliation(s)
- Ako Matsui
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junya Kobayashi
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shin-ichiro Kanno
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryocho, Aobaku, Sendai 980-8575, Japan
| | - Kazunari Hashiguchi
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Biochemistry, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Masahiro Miyaji
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukihiro Yoshikawa
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryocho, Aobaku, Sendai 980-8575, Japan
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Singla B, Lin HP, Ghoshal P, Cherian-Shaw M, Csányi G. PKCδ stimulates macropinocytosis via activation of SSH1-cofilin pathway. Cell Signal 2018; 53:111-121. [PMID: 30261270 DOI: 10.1016/j.cellsig.2018.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
Macropinocytosis is an actin-dependent endocytic mechanism mediating internalization of extracellular fluid and associated solutes into cells. The present study was designed to identify the specific protein kinase C (PKC) isoform(s) and downstream effectors regulating actin dynamics during macropinocytosis. We utilized various cellular and molecular biology techniques, pharmacological inhibitors and genetically modified mice to study the signaling mechanisms mediating macropinocytosis in macrophages. The qRT-PCR experiments identified PKCδ as the predominant PKC isoform in macrophages. Scanning electron microscopy and flow cytometry analysis of FITC-dextran internalization demonstrated the functional role of PKCδ in phorbol ester- and hepatocyte growth factor (HGF)-induced macropinocytosis. Western blot analysis demonstrated that phorbol ester and HGF stimulate activation of slingshot phosphatase homolog 1 (SSH1) and induce cofilin Ser-3 dephosphorylation via PKCδ in macrophages. Silencing of SSH1 inhibited cofilin dephosphorylation and macropinocytosis stimulation. Interestingly, we also found that incubation of macrophages with BMS-5, a potent inhibitor of LIM kinase, does not stimulate macropinocytosis. In conclusion, the findings of the present study demonstrate a previously unidentified mechanism by which PKCδ via activation of SSH1 and cofilin dephosphorylation stimulates membrane ruffle formation and macropinocytosis. The results of the present study may contribute to a better understanding of the regulatory mechanisms during macrophage macropinocytosis.
Collapse
Affiliation(s)
- Bhupesh Singla
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Hui-Ping Lin
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Pushpankur Ghoshal
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Mary Cherian-Shaw
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Gábor Csányi
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
11
|
Coumans JVF, Davey RJ, Moens PDJ. Cofilin and profilin: partners in cancer aggressiveness. Biophys Rev 2018; 10:1323-1335. [PMID: 30027463 DOI: 10.1007/s12551-018-0445-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/08/2018] [Indexed: 02/07/2023] Open
Abstract
This review covers aspects of cofilin and profilin regulations and their influence on actin polymerisation responsible for cell motility and metastasis. The regulation of their activity by phosphorylation and nitration, miRs, PI(4,5)P2 binding, pH, oxidative stress and post-translational modification is described. In this review, we have highlighted selected similarities, complementarities and differences between the two proteins and how their interplay affects actin filament dynamics.
Collapse
Affiliation(s)
- Joelle V F Coumans
- School of Rural Medicine, University of New England, Armidale, Australia
| | - Rhonda J Davey
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
| | - Pierre D J Moens
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia.
| |
Collapse
|
12
|
Li X, Zhong L, Wang Z, Chen H, Liao D, Zhang R, Zhang H, Kang T. Phosphorylation of IRS4 by CK1γ2 promotes its degradation by CHIP through the ubiquitin/lysosome pathway. Am J Cancer Res 2018; 8:3643-3653. [PMID: 30026872 PMCID: PMC6037025 DOI: 10.7150/thno.26021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023] Open
Abstract
IRS4, a member of the insulin receptor substrate protein family, can induce constitutive PI3K/AKT hyperactivation and cell proliferation even in the absence of insulin or growth factors and promote tumorigenesis, but its regulation has only been explored at the transcriptional level. Methods: Scansite was used to predict the potential protein kinases that may regulate the functions of IRS4, and mass spectrometry was used to identify the E3 ligase for IRS4. The protein interaction was carried out by immunoprecipitation, and protein stability was measured by cycloheximide treatment. In vitro kinase assay was used to determine the phosphorylation of IRS4 by casein kinase 1γ2 (CK1γ2). Colony formation assay and xenograft-bearing mice were employed to assess the cancer cell growth in vitro and in vivo, respectively. Immunohistochemistry was performed to examine protein levels of both IRS4 and CK1γ2 in osteosarcoma specimens and their relationship was evaluated by χ2 test. Two-tailed Student's t-test or the Mann-Whitney U test were used to compare the differences between subgroups. Results: IRS4 was phosphorylated at Ser859 by CK1γ2 in vitro and in vivo, which promoted the polyubiquitination and degradation of IRS4 through the ubiquitin/lysosome pathway by the carboxyl terminus of Hsc70-interacting protein(CHIP). Using osteosarcoma cell lines, the ectopic nonphosphorylated mutant of IRS4 by CK1γ2 triggered higher level of p-Akt and displayed faster cell proliferation and cancer growth in vitro and in nude mice. In addition, a negative correlation in protein levels between CK1γ2 and IRS4 was observed in osteosarcoma cell lines and tissue samples. Conclusions: IRS4, as a new substrate of CHIP, is negatively regulated by CK1γ2 at the posttranslational level, and specific CK1γ2 agonists may be a potentially effective strategy for treating patients with osteosarcoma.
Collapse
|
13
|
Jiao B, Shi X, Chen Y, Ye H, Yao M, Hong W, Li S, Duan X, Li Y, Wang Y, Chen L. Insulin receptor substrate-4 interacts with ubiquitin-specific protease 18 to activate the Jak/STAT signaling pathway. Oncotarget 2017; 8:105923-105935. [PMID: 29285303 PMCID: PMC5739690 DOI: 10.18632/oncotarget.22510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-specific protease 18 (USP18) as a negative regulator of the Jak/STAT signaling pathway plays an important role in the host innate immune response. USP18 has been shown to bind to the type I interferon receptor subunit 2 (IFNAR2) to down-regulate the Jak/STAT signaling. In this study, we showed that insulin receptor substrate (IRS)-4 functioned as a novel USP18-binding protein. Co-precipitation assays revealed that two regions (amino acids 335–400 and 1094-1257) of IRS4 were related to bind to the C- terminal region of USP18. IRS4 binding to USP18 diminished the inhibitory effect of USP18 on Jak/STAT signaling. IRS4 over-expression enhanced while IRS4 knock-down suppressed the Jak/STAT signaling in the presence of IFN-a stimulation. As such, IRS4 increased IFN-a-mediated anti-HCV activity. Mechanistically, IRS4 promoted the IFN-a-induced Jak/STAT signaling by interact with USP18. These results suggested that IRS4 binds to USP18 to diminish the blunting effect of USP18 on IFN-a-induced Jak/STAT signaling. Our findings indicated that IRS4 is a novel USP18-binding protein that can be used to boost the host innate immunity to control HCV, and potentially other viruses that are sensitive to IFN-a.
Collapse
Affiliation(s)
- Baihai Jiao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases of Sichuan Province, Chengdu 610052, China
| | - Xuezhen Shi
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases of Sichuan Province, Chengdu 610052, China
| | - Yanzhao Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases of Sichuan Province, Chengdu 610052, China
| | - Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases of Sichuan Province, Chengdu 610052, China
| | - Min Yao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases of Sichuan Province, Chengdu 610052, China
| | - Wenxu Hong
- Key Laboratory of Shenzhen for Histocompatibility and Immunogenetics, Shenzhen Blood Center, Shenzhen 518000, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases of Sichuan Province, Chengdu 610052, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases of Sichuan Province, Chengdu 610052, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases of Sichuan Province, Chengdu 610052, China
| | - Yancui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases of Sichuan Province, Chengdu 610052, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases of Sichuan Province, Chengdu 610052, China.,Toronto General Research Institute, University Network and University of Toronto, Toronto M5G 1L6, Canada
| |
Collapse
|
14
|
IRS4, a novel modulator of BMP/Smad and Akt signalling during early muscle differentiation. Sci Rep 2017; 7:8778. [PMID: 28821740 PMCID: PMC5562708 DOI: 10.1038/s41598-017-08676-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
Elaborate regulatory networks of the Bone Morphogenetic Protein (BMP) pathways ensure precise signalling outcome during cell differentiation and tissue homeostasis. Here, we identified IRS4 as a novel regulator of BMP signal transduction and provide molecular insights how it integrates into the signalling pathway. We found that IRS4 interacts with the BMP receptor BMPRII and specifically targets Smad1 for proteasomal degradation consequently leading to repressed BMP/Smad signalling in C2C12 myoblasts while concomitantly activating the PI3K/Akt axis. IRS4 is present in human and primary mouse myoblasts, the expression increases during myogenic differentiation but is downregulated upon final commitment coinciding with Myogenin expression. Functionally, IRS4 promotes myogenesis in C2C12 cells, while IRS4 knockdown inhibits differentiation of myoblasts. We propose that IRS4 is particularly critical in the myoblast stage to serve as a molecular switch between BMP/Smad and Akt signalling and to thereby control cell commitment. These findings provide profound understanding of the role of BMP signalling in early myogenic differentiation and open new ways for targeting the BMP pathway in muscle regeneration.
Collapse
|
15
|
Chen C, Maimaiti Y, Zhijun S, Zeming L, Yawen G, Pan Y, Tao H. Slingshot-1L, a cofilin phosphatase, induces primary breast cancer metastasis. Oncotarget 2017; 8:66195-66203. [PMID: 29029503 PMCID: PMC5630403 DOI: 10.18632/oncotarget.19855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
Slingshot (SSH) is a member of the conserved family of cofilin phosphatases that plays a critical role in cell membrane protrusion and migration by transforming inactive phosphorylated cofilin to an active form. SSH-like protein 1 (SSH-1L) expression is detected in various types of tumors; insulin induces the phosphatases activity of SSH-1L in a phosphoinositide 3-kinase-dependent manner. However, little is known about the expression and role of SSH-1L in breast cancer. Here, we analyzed 295 human breast cancer tissue specimens for SSH-1L expression by immunohistochemistry. The correlation between SSH-1L level and patients' clinical characteristics was analyzed with Pearson's χ2 test. The function of SSH-1L was evaluated by gene knockdown and quantitative real-time polymerase chain reaction detection of cofilin expression in MDA-MB-231, MCF-7, and SK-BR-3 human breast cancer cell lines. SSH-1L expression was detected in 88.1% of tissue specimens by immunohistochemistry and was strongly associated with increased metastasis and mortality. Loss of SSH-1L expression decreased the nonphosphorylated, active form of cofilin in SK-BR-3 and MDA-MB-231 cell lines, which was associated with reduced cell motility. Accordingly, SSH-1L/cofilin signaling played a critical role in primary breast cancer metastasis and was a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Chen Chen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Yusufu Maimaiti
- Department of General Surgery (Research Institute of Minimally Invasive), People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, P.R. China
| | - Shen Zhijun
- Clinical Laboratory, The Third People's Hospital of Hubei Province, Wuhan 430000, P.R. China
| | - Liu Zeming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Guo Yawen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Yu Pan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Huang Tao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| |
Collapse
|
16
|
Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat Genet 2016; 49:65-74. [PMID: 27869826 DOI: 10.1038/ng.3722] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023]
Abstract
Extensive prior research focused on somatic copy-number alterations (SCNAs) affecting cancer genes, yet the extent to which recurrent SCNAs exert their influence through rearrangement of cis-regulatory elements (CREs) remains unclear. Here we present a framework for inferring cancer-related gene overexpression resulting from CRE reorganization (e.g., enhancer hijacking) by integrating SCNAs, gene expression data and information on topologically associating domains (TADs). Analysis of 7,416 cancer genomes uncovered several pan-cancer candidate genes, including IRS4, SMARCA1 and TERT. We demonstrate that IRS4 overexpression in lung cancer is associated with recurrent deletions in cis, and we present evidence supporting a tumor-promoting role. We additionally pursued cancer-type-specific analyses and uncovered IGF2 as a target for enhancer hijacking in colorectal cancer. Recurrent tandem duplications intersecting with a TAD boundary mediate de novo formation of a 3D contact domain comprising IGF2 and a lineage-specific super-enhancer, resulting in high-level gene activation. Our framework enables systematic inference of CRE rearrangements mediating dysregulation in cancer.
Collapse
|
17
|
Takahashi K, Okabe H, Kanno SI, Nagai T, Mizuno K. A pleckstrin homology-like domain is critical for F-actin binding and cofilin-phosphatase activity of Slingshot-1. Biochem Biophys Res Commun 2016; 482:686-692. [PMID: 27865840 DOI: 10.1016/j.bbrc.2016.11.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022]
Abstract
Slingshot-1 (SSH1) is a protein phosphatase that specifically dephosphorylates and activates cofilin, an F-actin-severing protein. SSH1 binds to and co-localizes with F-actin, and the cofilin-phosphatase activity of SSH1 is markedly increased by binding to F-actin. In this study, we performed a secondary structure analysis of SSH1, which predicted the existence of a pleckstrin homology (PH)-like domain in the N-terminal region of SSH1. SSH1 also contains a DEK-C domain in the N-terminal region. The N-terminal fragment of SSH1 bound to and co-localized with F-actin, but mutation at Arg-96 or a Leu-His-Lys (LHK) motif in the PH-like domain reduced this activity. Furthermore, mutation at Arg-96 abrogated the cofilin-phosphatase activity of SSH1 in the presence of F-actin. These results suggest that the N-terminal PH-like domain plays a critical role in F-actin binding and F-actin-mediated activation of the cofilin-phosphatase activity of SSH1.
Collapse
Affiliation(s)
- Katsunori Takahashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Haruka Okabe
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shin-Ichiro Kanno
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Tomoaki Nagai
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
18
|
Konotop G, Bausch E, Nagai T, Turchinovich A, Becker N, Benner A, Boutros M, Mizuno K, Krämer A, Raab MS. Pharmacological Inhibition of Centrosome Clustering by Slingshot-Mediated Cofilin Activation and Actin Cortex Destabilization. Cancer Res 2016; 76:6690-6700. [PMID: 27634760 DOI: 10.1158/0008-5472.can-16-1144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/15/2016] [Accepted: 08/21/2016] [Indexed: 11/16/2022]
Abstract
Centrosome amplification is a hallmark of virtually all types of cancers, including solid tumors and hematologic malignancies. Cancer cells with extra centrosomes use centrosome clustering (CC) to allow for successful division. Because normal cells do not rely on this mechanism, CC is regarded as a promising target to selectively eradicate cells harboring supernumerary centrosomes. To identify novel inhibitors of CC, we developed a cell-based high-throughput screen that reports differential drug cytotoxicity for isogenic cell populations with different centrosome contents. We identified CP-673451 and crenolanib, two chemically related compounds originally developed for the inhibition of platelet-derived growth factor receptor β (PDGFR-β), as robust inhibitors of CC with selective cytotoxicity for cells with extra centrosomes. We demonstrate that these compounds induce mitotic spindle multipolarity by activation of the actin-severing protein cofilin, leading to destabilization of the cortical actin network, and provide evidence that this activation is dependent on slingshot phosphatases 1 and 2 but unrelated to PDGFR-β inhibition. More specifically, we found that although both compounds attenuated PDGF-BB-induced signaling, they significantly enhanced the phosphorylation of PDGFR-β downstream effectors, Akt and MEK, in almost all tested cancer cell lines under physiologic conditions. In summary, our data reveal a novel mechanism of CC inhibition depending on cofilin-mediated cortical actin destabilization and identify two clinically relevant compounds interfering with this tumor cell-specific target. Cancer Res; 76(22); 6690-700. ©2016 AACR.
Collapse
Affiliation(s)
- Gleb Konotop
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Elena Bausch
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tomoaki Nagai
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Andrey Turchinovich
- Molecular Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Natalia Becker
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, Medical Faculty Mannheim, German Cancer Research Center and University of Heidelberg, Heidelberg, Germany
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
| | - Marc Steffen Raab
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Low-Dose Endothelial Monocyte-Activating Polypeptide-II Increases Blood–Tumor Barrier Permeability by Activating the RhoA/ROCK/PI3K Signaling Pathway. J Mol Neurosci 2015; 59:193-202. [DOI: 10.1007/s12031-015-0668-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
|
20
|
Yamashiro Y, Papke CL, Kim J, Ringuette LJ, Zhang QJ, Liu ZP, Mirzaei H, Wagenseil JE, Davis EC, Yanagisawa H. Abnormal mechanosensing and cofilin activation promote the progression of ascending aortic aneurysms in mice. Sci Signal 2015; 8:ra105. [PMID: 26486174 DOI: 10.1126/scisignal.aab3141] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Smooth muscle cells (SMCs) and the extracellular matrix (ECM) are intimately associated in the aortic wall. Fbln4(SMKO) mice with an SMC-specific deletion of the Fbln4 gene, which encodes the vascular ECM component fibulin-4, develop ascending aortic aneurysms that have increased abundance of angiotensin-converting enzyme (ACE); inhibiting angiotensin II signaling within the first month of life prevents aneurysm development. We used comparative proteomics analysis of Fbln4(SMKO) aortas from postnatal day (P) 1 to P30 mice to identify key molecules involved in aneurysm initiation and expansion. At P14, the actin depolymerizing factor cofilin was dephosphorylated and thus activated, and at P7, the abundance of slingshot-1 (SSH1) phosphatase, an activator of cofilin, was increased, leading to actin cytoskeletal remodeling. Also, by P7, biomechanical changes and underdeveloped elastic lamina-SMC connections were evident, and the abundance of early growth response 1 (Egr1), a mechanosensitive transcription factor that stimulates ACE expression, was increased, which was before the increases in ACE abundance and cofilin activation. Postnatal deletion of Fbln4 in SMCs at P7 prevented cofilin activation and aneurysm formation, suggesting that these processes required disruption of elastic lamina-SMC connections. Phosphoinositide 3-kinase (PI3K) is involved in the angiotensin II-mediated activation of SSH1, and administration of PI3K inhibitors from P7 to P30 decreased SSH1 abundance and prevented aneurysms. These results suggest that aneurysm formation arises from abnormal mechanosensing of SMCs resulting from the loss of elastic lamina-SMC connections and from increased SSH1 and cofilin activity, which may be potential therapeutic targets for treating ascending aortic aneurysms.
Collapse
Affiliation(s)
- Yoshito Yamashiro
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christina L Papke
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Lea-Jeanne Ringuette
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Qing-Jun Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhi-Ping Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hamid Mirzaei
- Department of Biochemistry and Proteomics Core Unit, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Elaine C Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
21
|
Takahashi K, Kanno SI, Mizuno K. Activation of cytosolic Slingshot-1 phosphatase by gelsolin-generated soluble actin filaments. Biochem Biophys Res Commun 2014; 454:471-7. [DOI: 10.1016/j.bbrc.2014.10.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022]
|