1
|
Li M, Sun X, Zeng L, Sun A, Ge J. Metabolic Homeostasis of Immune Cells Modulates Cardiovascular Diseases. RESEARCH (WASHINGTON, D.C.) 2025; 8:0679. [PMID: 40270694 PMCID: PMC12015101 DOI: 10.34133/research.0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025]
Abstract
Recent investigations into the mechanisms underlying inflammation have highlighted the pivotal role of immune cells in regulating cardiac pathophysiology. Notably, these immune cells modulate cardiac processes through alternations in intracellular metabolism, including glycolysis and oxidative phosphorylation, whereas the extracellular metabolic environment is changed during cardiovascular disease, influencing function of immune cells. This dynamic interaction between immune cells and their metabolic environment has given rise to the novel concept of "immune metabolism". Consequently, both the extracellular and intracellular metabolic environment modulate the equilibrium between anti- and pro-inflammatory responses. This regulatory mechanism subsequently influences the processes of myocardial ischemia, cardiac fibrosis, and cardiac remodeling, ultimately leading to a series of cardiovascular events. This review examines how local microenvironmental and systemic environmental changes induce metabolic reprogramming in immune cells and explores the subsequent effects of aberrant activation or polarization of immune cells in the progression of cardiovascular disease. Finally, we discuss potential therapeutic strategies targeting metabolism to counteract abnormal immune activation.
Collapse
Affiliation(s)
- Mohan Li
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Linqi Zeng
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Institutes of Biomedical Sciences,
Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Institutes of Biomedical Sciences,
Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Kosheleva L, Koshelev D, Lagunas-Rangel FA, Levit S, Rabinovitch A, Schiöth HB. Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments. Pharmacol Rev 2025; 77:100044. [PMID: 40014914 PMCID: PMC11964952 DOI: 10.1016/j.pharmr.2025.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.
Collapse
Affiliation(s)
- Liudmila Kosheleva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniil Koshelev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Shmuel Levit
- Diabetes and Metabolism Institute, Assuta Medical Centers, Tel Aviv, Israel
| | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
3
|
Mohamed S. Metformin: Diverse molecular mechanisms, gastrointestinal effects and overcoming intolerance in type 2 Diabetes Mellitus: A review. Medicine (Baltimore) 2024; 103:e40221. [PMID: 39470509 PMCID: PMC11521032 DOI: 10.1097/md.0000000000040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Metformin, the first line treatment for patients with type 2 diabetes mellitus, has alternative novel roles, including cancer and diabetes prevention. This narrative review aims to explore its diverse mechanisms, effects and intolerance, using sources obtained by searching Scopus, PubMed and Web of Science databases, and following Scale for the Assessment of Narrative Review Articles reporting guidelines. Metformin exerts it actions through duration influenced, and organ specific, diverse mechanisms. Its use is associated with inhibition of hepatic gluconeogenesis targeted by mitochondria and lysosomes, reduction of cholesterol levels involving brown adipose tissue, weight reduction influenced by growth differentiation factor 15 and novel commensal bacteria, in addition to counteraction of meta-inflammation alongside immuno-modulation. Interactions with the gastrointestinal tract include alteration of gut microbiota, enhancement of glucose uptake and glucagon like peptide 1 and reduction of bile acid absorption. Though beneficial, they may be linked to intolerance. Metformin related gastrointestinal adverse effects are associated with dose escalation, immediate release formulations, gut microbiota alteration, epigenetic predisposition, inhibition of organic cation transporters in addition to interactions with serotonin, histamine and the enterohepatic circulation. Potentially effective measures to overcome intolerance encompasses carefully objective targeted dose escalation, prescription of fixed dose combination, microbiome modulators and prebiotics, in addition to use of extended release formulations.
Collapse
Affiliation(s)
- Sami Mohamed
- Department of Clinical Sciences, Dubai Medical University, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Qi L, Groeger M, Sharma A, Goswami I, Chen E, Zhong F, Ram A, Healy K, Hsiao EC, Willenbring H, Stahl A. Adipocyte inflammation is the primary driver of hepatic insulin resistance in a human iPSC-based microphysiological system. Nat Commun 2024; 15:7991. [PMID: 39266553 PMCID: PMC11393072 DOI: 10.1038/s41467-024-52258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
Interactions between adipose tissue, liver and immune system are at the center of metabolic dysfunction-associated steatotic liver disease and type 2 diabetes. To address the need for an accurate in vitro model, we establish an interconnected microphysiological system (MPS) containing white adipocytes, hepatocytes and proinflammatory macrophages derived from isogenic human induced pluripotent stem cells. Using this MPS, we find that increasing the adipocyte-to-hepatocyte ratio moderately affects hepatocyte function, whereas macrophage-induced adipocyte inflammation causes lipid accumulation in hepatocytes and MPS-wide insulin resistance, corresponding to initiation of metabolic dysfunction-associated steatotic liver disease. We also use our MPS to identify and characterize pharmacological intervention strategies for hepatic steatosis and systemic insulin resistance and find that the glucagon-like peptide-1 receptor agonist semaglutide improves hepatocyte function by acting specifically on adipocytes. These results establish our MPS modeling the adipose tissue-liver axis as an alternative to animal models for mechanistic studies or drug discovery in metabolic diseases.
Collapse
Affiliation(s)
- Lin Qi
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Marko Groeger
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Aditi Sharma
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ishan Goswami
- Department of Bioengineering, College of Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Erzhen Chen
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Fenmiao Zhong
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Apsara Ram
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kevin Healy
- Department of Bioengineering, College of Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, College of Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Edward C Hsiao
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Holger Willenbring
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
- Liver Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Andreas Stahl
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Parasar P, Kaur N, Singh J. Pathophysiology of X-Linked Adrenoleukodystrophy: Updates on Molecular Mechanisms. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2024; 7:277-288. [PMID: 39056013 PMCID: PMC11271253 DOI: 10.26502/jbb.2642-91280151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
X-ALD, an inherited monogenic metabolic disorder affecting the CNS and adrenal white matter, is caused by mutations in ABCD1 gene leading to defective fatty acid oxidation in the peroxisomes. This results in accumulation of very long-chain fatty acids, VLCFA, into brain, spinal cord, and body fluids. A single ABCD1mutation does not clearly explain the severity and diverse clinical spectrum of X-ALD phenotypes which suggests that not only genetic but also other modifier genes, epigenetic factors, and environmental factors play a role and contribute to neuroinflammation, mitochondrial dysfunctions, oxidative stress, and metabolic defects seen in phenotypes of ALD. In this review we discuss genotype and phenotype correlation and clinical spectra of X-ALD, previous and recent modifier genetic factors of X-ALD, including novel role of microRNAs (miRNAs) in pathology and as biomarkers. We also discuss the mechanistic interplay of miRNAs and metabolic pathways and potential of targeting miRNAs for X-ALD.
Collapse
Affiliation(s)
- Parveen Parasar
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Navtej Kaur
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
- Department of Physiology, Michigan State University, Lansing, MI 48824, USA
| |
Collapse
|
6
|
Molteni L, Marelli G, Castagna G, Brambilla L, Acerbis M, Alberghina F, Carpani A, Chiavenna E, Ferlini MG, Impellizzeri C, Paredi R, Rigamonti A, Rivolta G, Disoteo OE. Improving Type 2 Diabetes Care with Extended-Release Metformin: Real-Life Insights from a Physician Educational Program. Endocr Metab Immune Disord Drug Targets 2024; 24:1422-1430. [PMID: 38425116 PMCID: PMC11348454 DOI: 10.2174/0118715303294909240221102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Compared to Immediate-Release (IR) metformin, Extended-Release (ER) metformin reduces side effects and pill burden while improving adherence; however, there is little real-life data on patient satisfaction with this innovative formulation to guide physicians toward a more holistic approach. OBJECTIVE Our goal is to train general practitioners on holistic patient management, with the aim of increasing patient satisfaction and treatment adherence, reducing side effects, and improving quality of life in patients with poor tolerance to metformin-IR. MATERIALS AND METHODS We designed an educational program for physicians called SlowDiab, aimed at establishing a holistic patient approach. In this context, adult patients with T2DM who experienced gastrointestinal discomfort with metformin-IR were enrolled and switched to metformin- ER. Data on glycemic control were collected at baseline and 2 months after switching. A survey was carried out on patients to assess their level of satisfaction. RESULTS In 69 enrolled patients (mean (min-max) age, 68.2 (41-90)), side effects decreased after switching from 61.8% to 16.2% (p < 0.01), and the mean perceived burden of adverse events on a scale of 1 to 10 also decreased (6.17 vs. 3.82; p < 0.05). Among patients previously intolerant to metformin-IR, 74.3% reported no longer experiencing any side effects after the switch. The mean number of tablets taken daily (2.28 vs. 1.66; p < 0.01) and mean plasma glycated hemoglobin (HbA1c) values (7.0% vs. 6.7%; p < 0.05) decreased, while 93.8% of patients were satisfied with the treatment change. Moreover, 84.2% reported an improvement in glycemic control after the switch. CONCLUSION In a real-life setting, an educational program for general practitioners confirmed that metformin ER reduces side effects and improves pill burden, therapeutic adherence, and patient satisfaction compared to metformin IR.
Collapse
Affiliation(s)
- Laura Molteni
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
| | - Giuseppe Marelli
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
| | - Giona Castagna
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
- University of Milano Bicocca, Milan, Italy
| | - Luciano Brambilla
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
| | | | | | - Antonio Carpani
- General Practitioner, ATS Insubria, Erba District, Como, Italy
| | - Erika Chiavenna
- General Practitioner, ATS Insubria, Erba District, Como, Italy
| | | | | | - Roberto Paredi
- General Practitioner, ATS Insubria, Erba District, Como, Italy
| | | | | | - Olga Eugenia Disoteo
- Division of Endocrinology and Diabetology, Sant’Anna Hospital - ASST Lariana, Como, Italy
| |
Collapse
|
7
|
Pearah A, Ramatchandirin B, Liu T, Wolf RM, Ikeda A, Radovick S, Sesaki H, Wondisford FE, O'Rourke B, He L. Blocking AMPKαS496 phosphorylation improves mitochondrial dynamics and hyperglycemia in aging and obesity. Cell Chem Biol 2023; 30:1585-1600.e6. [PMID: 37890479 PMCID: PMC10841824 DOI: 10.1016/j.chembiol.2023.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Impaired mitochondrial dynamics causes aging-related or metabolic diseases. Yet, the molecular mechanism responsible for the impairment of mitochondrial dynamics is still not well understood. Here, we report that elevated blood insulin and/or glucagon levels downregulate mitochondrial fission through directly phosphorylating AMPKα at S496 by AKT or PKA, resulting in the impairment of AMPK-MFF-DRP1 signaling and mitochondrial dynamics and activity. Since there are significantly increased AMPKα1 phosphorylation at S496 in the liver of elderly mice, obese mice, and obese patients, we, therefore, designed AMPK-specific targeting peptides (Pa496m and Pa496h) to block AMPKα1S496 phosphorylation and found that these targeting peptides can increase AMPK kinase activity, augment mitochondrial fission and oxidation, and reduce ROS, leading to the rejuvenation of mitochondria. Furthermore, these AMPK targeting peptides robustly suppress liver glucose production in obese mice. Our data suggest these targeting peptides are promising therapeutic agents for improving mitochondrial dynamics and activity and alleviating hyperglycemia in elderly and obese patients.
Collapse
Affiliation(s)
- Alexia Pearah
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Ting Liu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Risa M Wolf
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Arisa Ikeda
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sally Radovick
- Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fredric E Wondisford
- Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Brian O'Rourke
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
8
|
Shi Y, Qi W. Histone Modifications in NAFLD: Mechanisms and Potential Therapy. Int J Mol Sci 2023; 24:14653. [PMID: 37834101 PMCID: PMC10572202 DOI: 10.3390/ijms241914653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive condition that encompasses a spectrum of liver disorders, beginning with the simple steatosis, progressing to nonalcoholic steatohepatitis (NASH), and possibly leading to more severe diseases, including liver cirrhosis and hepatocellular carcinoma (HCC). In recent years, the prevalence of NAFLD has increased due to a shift towards energy-dense dietary patterns and a sedentary lifestyle. NAFLD is also strongly associated with metabolic disorders such as obesity and hyperlipidemia. The progression of NAFLD could be influenced by a variety of factors, such as diet, genetic factors, and even epigenetic factors. In contrast to genetic factors, epigenetic factors, including histone modifications, exhibit dynamic and reversible features. Therefore, the epigenetic regulation of the initiation and progression of NAFLD is one of the directions under intensive investigation in terms of pathogenic mechanisms and possible therapeutic interventions. This review aims to discuss the possible mechanisms and the crucial role of histone modifications in the framework of epigenetic regulation in NAFLD, which may provide potential therapeutic targets and a scientific basis for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yulei Shi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Qi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Liu J, Zhao J, Qiao X. Research Progress of Metformin in the Treatment of Oral Squamous Cell Carcinoma. Endocrinology 2023; 164:bqad139. [PMID: 37738154 DOI: 10.1210/endocr/bqad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies and has a high mortality, posing a great threat to both human physical and mental health. With the advancement of scientific research, a variety of cancer therapies have been used for OSCC treatment. However, the prognosis of OSCC shows no significant improvement. Metformin has been recognized as the first-line drug for the treatment of diabetes, and recent studies have shown that metformin has a remarkable suppressive effect on tumor progression. Metformin can not only affect the energy metabolism of tumor cells but also play an antitumor role by modulating the tumor microenvironment and cancer stem cells. In this review, the molecular mechanism of metformin and its anticancer mechanism in OSCC are summarized. In addition, this article summarizes the side effects of metformin and the future prospects of its application in the treatment of OSCC.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Jing Zhao
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Xue Qiao
- Department of Central Laboratory, School and Hospital of Stomatology, Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, Liaoning 110002, China
- Department of Oral Biology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, Liaoning 110002, China
| |
Collapse
|
10
|
Foretz M, Guigas B, Viollet B. Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol 2023; 19:460-476. [PMID: 37130947 PMCID: PMC10153049 DOI: 10.1038/s41574-023-00833-4] [Citation(s) in RCA: 267] [Impact Index Per Article: 133.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/04/2023]
Abstract
Currently, metformin is the first-line medication to treat type 2 diabetes mellitus (T2DM) in most guidelines and is used daily by >200 million patients. Surprisingly, the mechanisms underlying its therapeutic action are complex and are still not fully understood. Early evidence highlighted the liver as the major organ involved in the effect of metformin on reducing blood levels of glucose. However, increasing evidence points towards other sites of action that might also have an important role, including the gastrointestinal tract, the gut microbial communities and the tissue-resident immune cells. At the molecular level, it seems that the mechanisms of action vary depending on the dose of metformin used and duration of treatment. Initial studies have shown that metformin targets hepatic mitochondria; however, the identification of a novel target at low concentrations of metformin at the lysosome surface might reveal a new mechanism of action. Based on the efficacy and safety records in T2DM, attention has been given to the repurposing of metformin as part of adjunct therapy for the treatment of cancer, age-related diseases, inflammatory diseases and COVID-19. In this Review, we highlight the latest advances in our understanding of the mechanisms of action of metformin and discuss potential emerging novel therapeutic uses.
Collapse
Affiliation(s)
- Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France.
| |
Collapse
|
11
|
Barroso E, Montori-Grau M, Wahli W, Palomer X, Vázquez-Carrera M. Striking a gut-liver balance for the antidiabetic effects of metformin. Trends Pharmacol Sci 2023; 44:457-473. [PMID: 37188578 DOI: 10.1016/j.tips.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Metformin is the most prescribed drug for the treatment of type 2 diabetes mellitus (T2DM), but its mechanism of action has not yet been completely elucidated. Classically, the liver has been considered the major site of action of metformin. However, over the past few years, advances have unveiled the gut as an additional important target of metformin, which contributes to its glucose-lowering effect through new mechanisms of action. A better understanding of the mechanistic details of metformin action in the gut and the liver and its relevance in patients remains the challenge of present and future research and may impact drug development for the treatment of T2DM. Here, we offer a critical analysis of the current status of metformin-driven multiorgan glucose-lowering effects.
Collapse
Affiliation(s)
- Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Marta Montori-Grau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, 31300 Toulouse Cedex, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
12
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
13
|
Siddiqa A, Wang Y, Thapa M, Martin DE, Cadar AN, Bartley JM, Li S. A pilot metabolomic study of drug interaction with the immune response to seasonal influenza vaccination. NPJ Vaccines 2023; 8:92. [PMID: 37308481 PMCID: PMC10261085 DOI: 10.1038/s41541-023-00682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Many human diseases, including metabolic diseases, are intertwined with the immune system. The understanding of how the human immune system interacts with pharmaceutical drugs is still limited, and epidemiological studies only start to emerge. As the metabolomics technology matures, both drug metabolites and biological responses can be measured in the same global profiling data. Therefore, a new opportunity presents itself to study the interactions between pharmaceutical drugs and immune system in the high-resolution mass spectrometry data. We report here a double-blinded pilot study of seasonal influenza vaccination, where half of the participants received daily metformin administration. Global metabolomics was measured in the plasma samples at six timepoints. Metformin signatures were successfully identified in the metabolomics data. Statistically significant metabolite features were found both for the vaccination effect and for the drug-vaccine interactions. This study demonstrates the concept of using metabolomics to investigate drug interaction with the immune response in human samples directly at molecular levels.
Collapse
Affiliation(s)
- Amnah Siddiqa
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Yating Wang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Maheshwor Thapa
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Dominique E Martin
- Department of Immunology and Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Andreia N Cadar
- Department of Immunology and Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Jenna M Bartley
- Department of Immunology and Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Shuzhao Li
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA.
- Department of Immunology and Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
14
|
Yu S, Song JH, Kim HS, Hong S, Park SK, Park SH, Lee J, Chae YC, Park JH, Lee YG. Patulin alleviates hepatic lipid accumulation by regulating lipogenesis and mitochondrial respiration. Life Sci 2023:121816. [PMID: 37271452 DOI: 10.1016/j.lfs.2023.121816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
AIMS The aim of this study is to evaluate the effects of patulin on hepatic lipid metabolism and mitochondrial oxidative function and elucidate the underlying molecular mechanisms. MAIN METHODS The effects of patulin on hepatic lipid accumulation were evaluated in free fatty acid-treated AML12 or HepG2 cells through oil red O staining, triglyceride assay, real-time polymerase chain reaction, and western blotting. Alteration of mitochondrial oxidative capacity by patulin treatment was determined using Seahorse analysis to measure the oxygen consumption rate. KEY FINDINGS The increased amounts of lipid droplets induced by free fatty acids were significantly reduced by patulin treatment. Patulin markedly activated the CaMKII/AMP-activated protein kinase (AMPK)/proliferator-activated receptor-γ coactivator (PGC)-1α signaling pathway in hepatocytes, reduced the expression of sterol regulatory element binding protein 1c (SREBP-1c) and lipogenic genes, and increased the expression of genes related to mitochondrial fatty acid oxidation. In addition, patulin treatment enhanced the mitochondrial consumption rate and increased the expression of mitochondrial oxidative phosphorylation proteins in HepG2 hepatocytes. The effects of patulin on anti-lipid accumulation; SREBP-1c, PGC-1α, and carnitine palmitoyltransferase 1 expression; and mitochondrial oxidative capacity were significantly prevented by compound C, an AMPK inhibitor. SIGNIFICANCE Patulin is a potent inducer of the AMPK pathway, and AMPK-mediated mitochondrial activation is required for the efficacy of patulin to inhibit hepatic lipid accumulation. This study is the first to report that patulin is a promising bioactive compound that prevents the development and worsening of fatty liver diseases, including non-alcoholic fatty liver disease, by improving mitochondrial quality and lipid metabolism.
Collapse
Affiliation(s)
- Seungmin Yu
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Ji-Hye Song
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Hee Soo Kim
- Aging and Metabolism Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Seulmin Hong
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Seon Kyeong Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Soo Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Jangho Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Ho Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Yu Geon Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| |
Collapse
|
15
|
Tong W, Hannou SA, Sargsyan A, Zhang GF, Grimsrud PA, Astapova I, Herman MA. "Metformin Impairs Intestinal Fructose Metabolism". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537251. [PMID: 37131695 PMCID: PMC10153158 DOI: 10.1101/2023.04.17.537251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Objective To investigate the effects of metformin on intestinal carbohydrate metabolism in vivo. Method Male mice preconditioned with a high-fat, high-sucrose diet were treated orally with metformin or a control solution for two weeks. Fructose metabolism, glucose production from fructose, and production of other fructose-derived metabolites were assessed using stably labeled fructose as a tracer. Results Metformin treatment decreased intestinal glucose levels and reduced incorporation of fructose-derived metabolites into glucose. This was associated with decreased intestinal fructose metabolism as indicated by decreased enterocyte F1P levels and diminished labeling of fructose-derived metabolites. Metformin also reduced fructose delivery to the liver. Proteomic analysis revealed that metformin coordinately down-regulated proteins involved carbohydrate metabolism including those involved in fructolysis and glucose production within intestinal tissue. Conclusion Metformin reduces intestinal fructose metabolism, and this is associated with broad-based changes in intestinal enzyme and protein levels involved in sugar metabolism indicating that metformin's effects on sugar metabolism are pleiotropic.
Collapse
Affiliation(s)
- Wenxin Tong
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sarah A. Hannou
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Ashot Sargsyan
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| | - Paul A. Grimsrud
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| | - Inna Astapova
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Mark A. Herman
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants (Basel) 2023; 12:antiox12051075. [PMID: 37237941 DOI: 10.3390/antiox12051075] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria play a major role in ROS production and defense during their life cycle. The transcriptional activator PGC-1α is a key player in the homeostasis of energy metabolism and is therefore closely linked to mitochondrial function. PGC-1α responds to environmental and intracellular conditions and is regulated by SIRT1/3, TFAM, and AMPK, which are also important regulators of mitochondrial biogenesis and function. In this review, we highlight the functions and regulatory mechanisms of PGC-1α within this framework, with a focus on its involvement in the mitochondrial lifecycle and ROS metabolism. As an example, we show the role of PGC-1α in ROS scavenging under inflammatory conditions. Interestingly, PGC-1α and the stress response factor NF-κB, which regulates the immune response, are reciprocally regulated. During inflammation, NF-κB reduces PGC-1α expression and activity. Low PGC-1α activity leads to the downregulation of antioxidant target genes resulting in oxidative stress. Additionally, low PGC-1α levels and concomitant oxidative stress promote NF-κB activity, which exacerbates the inflammatory response.
Collapse
Affiliation(s)
- Othman Abu Shelbayeh
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Tasnim Arroum
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
- Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Silke Morris
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| |
Collapse
|
17
|
Garg R, Katekar R, Parwez S, Agarwal A, Sahu S, Dadge S, Verma S, Goand UK, Siddiqi MI, Gayen JR. Pancreastatin inhibitor PSTi8 ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Eur J Pharmacol 2023; 944:175559. [PMID: 36764353 DOI: 10.1016/j.ejphar.2023.175559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Elevated plasma glucose concentration, as a consequence of excessive hepatic glucose production, plays a pivotal role in the development of diabetes. A chromogranin A-derived diabetogenic peptide Pancreastatin (PST) enhances hepatic glucose output leading to diabetes. Therefore, here we probed the role of PSTi8, a PST inhibitor in ameliorating diabetes by investigating the effect of high glucose (HG) or PST on glucose metabolism. Further, we also explored the action mechanism of the underlying anti-hyperglycemic effect of PSTi8. PSTi8 treatment rescue cultured L6 and HepG2 cells from HG and PST-induced insulin resistance, respectively. It also enhances insulin receptor kinase activity by interacting with the insulin receptor and enhancing GLUT4 translocation and glucose uptake. Thus, our in-silico and in-vitro data support the PST-dependent and independent activity of PSTi8. Additionally, PSTi8 treatment in streptozotocin-induced diabetic rats improved glucose tolerance by lowering blood glucose and plasma PST levels. Concomitantly, the treated animals exhibited reduced hepatic glucose production accompanied by downregulation of hepatic gluconeogenic genes PEPCK and G6Pase. PSTi8-treated rats also exhibited enhanced hepatic glycogen in line with reduced plasma glucagon concentrations. Consistently, improved plasma insulin levels in PSTi8-treated rats enhanced skeletal muscle glucose disposal via enhanced P-Akt expression. In summary, these findings suggest PSTi8 has anti-hyperglycemic properties with enhanced skeletal muscle glucose disposal and reduced hepatic gluconeogenesis both PST dependent as well as independent.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahid Parwez
- Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arun Agarwal
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | | | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, India; Pharmacology Division, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
18
|
Kiełbowski K, Bakinowska E, Ostrowski P, Pala B, Gromowska E, Gurazda K, Dec P, Modrzejewski A, Pawlik A. The Role of Adipokines in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:ijms24076390. [PMID: 37047363 PMCID: PMC10094354 DOI: 10.3390/ijms24076390] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Psoriasis is a chronic and immune-mediated skin condition characterized by pro-inflammatory cytokines and keratinocyte hyperproliferation. Dendritic cells, T lymphocytes, and keratinocytes represent the main cell subtypes involved in the pathogenesis of psoriasis, while the interleukin-23 (IL-23)/IL-17 pathway enhances the disease progression. Human adipose tissue is an endocrine organ, which secretes multiple proteins, known as adipokines, such as adiponectin, leptin, visfatin, or resistin. Current evidence highlights the immunomodulatory roles of adipokines, which may contribute to the progression or suppression of psoriasis. A better understanding of the complexity of psoriasis pathophysiology linked with adipokines could result in developing novel diagnostic or therapeutic strategies. This review aims to present the pathogenesis of psoriasis and the roles of adipokines in this process.
Collapse
|
19
|
AMPK inhibits liver gluconeogenesis: fact or fiction? Biochem J 2023; 480:105-125. [PMID: 36637190 DOI: 10.1042/bcj20220582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Is there a role for AMPK in the control of hepatic gluconeogenesis and could targeting AMPK in liver be a viable strategy for treating type 2 diabetes? These are frequently asked questions this review tries to answer. After describing properties of AMPK and different small-molecule AMPK activators, we briefly review the various mechanisms for controlling hepatic glucose production, mainly via gluconeogenesis. The different experimental and genetic models that have been used to draw conclusions about the role of AMPK in the control of liver gluconeogenesis are critically discussed. The effects of several anti-diabetic drugs, particularly metformin, on hepatic gluconeogenesis are also considered. We conclude that the main effect of AMPK activation pertinent to the control of hepatic gluconeogenesis is to antagonize glucagon signalling in the short-term and, in the long-term, to improve insulin sensitivity by reducing hepatic lipid content.
Collapse
|
20
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Peng J, Qin C, Ramatchandirin B, Pearah A, Guo S, Hussain M, Yu L, Wondisford FE, He L. Activation of the canonical ER Stress IRE1-XBP1 Pathway by Insulin Regulates Glucose and Lipid Metabolism. J Biol Chem 2022; 298:102283. [PMID: 35863429 PMCID: PMC9396404 DOI: 10.1016/j.jbc.2022.102283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Knockout of the transcription factor X-box binding protein (XBP1) is known to decrease liver glucose production and lipogenesis. However, whether insulin can regulate gluconeogenesis and lipogenesis through XBP1 and how insulin activates the inositol-requiring enzyme-XBP1 ER stress pathway remains unexplored. Here, we report that in the fed state, insulin-activated kinase AKT directly phosphorylates inositol-requiring enzyme 1 at S724, which in turn mediates the splicing of XBP1u mRNA, thus favoring the generation of the spliced form, XBP1s, in the liver of mice. Subsequently, XBP1s stimulate the expression of lipogenic genes and upregulates liver lipogenesis as previously reported. Intriguingly, we find that fasting leads to an increase in XBP1u along with a drastic decrease in XBP1s in the liver of mice, and XBP1u, not XBP1s, significantly increases PKA-stimulated CRE reporter activity in cultured hepatocytes. Furthermore, we demonstrate that overexpression of XBP1u significantly increases cAMP-stimulated expression of rate-limiting gluconeogenic genes, G6pc and Pck1, and glucose production in primary hepatocytes. Reexpression of XBP1u in the liver of mice with XBP1 depletion significantly increases fasting blood glucose levels and gluconeogenic gene expression. These data support an important role of XBP1u in upregulating gluconeogenesis in the fasted state. Taken together, we reveal that insulin signaling via AKT controls the expression of XBP1 isoforms and that XBP1u and XBP1s function in different nutritional states to regulate liver gluconeogenesis and lipogenesis, respectively.
Collapse
Affiliation(s)
- Jinghua Peng
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Caolitao Qin
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Alexia Pearah
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, TX 77843
| | - Mehboob Hussain
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Liqing Yu
- Division of Metabolism, Endocrinology and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Ling He
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
22
|
Metabolic Action of Metformin. Pharmaceuticals (Basel) 2022; 15:ph15070810. [PMID: 35890109 PMCID: PMC9317619 DOI: 10.3390/ph15070810] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin, a cheap and safe biguanide derivative, due to its ability to influence metabolism, is widely used as a first-line drug for type 2 diabetes (T2DM) treatment. Therefore, the aim of this review was to present the updated biochemical and molecular effects exerted by the drug. It has been well explored that metformin suppresses hepatic glucose production in both AMPK-independent and AMPK-dependent manners. Substantial scientific evidence also revealed that its action is related to decreased secretion of lipids from intestinal epithelial cells, as well as strengthened oxidation of fatty acids in adipose tissue and muscles. It was recognized that metformin’s supra-therapeutic doses suppress mitochondrial respiration in intestinal epithelial cells, whereas its therapeutic doses elevate cellular respiration in the liver. The drug is also suggested to improve systemic insulin sensitivity as a result of alteration in gut microbiota composition, maintenance of intestinal barrier integrity, and alleviation of low-grade inflammation.
Collapse
|
23
|
Impact of Molecular Symmetry/Asymmetry on Insulin-Sensitizing Treatments for Type 2 Diabetes. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although the advantages and disadvantages of asymmetrical thiazolidinediones as insulin-sensitizers have been well-studied, the relevance of symmetry and asymmetry for thiazolidinediones and biguanides has scarcely been explored. Regarding symmetrical molecules, only one thiazolidinedione and no biguanides have been evaluated and proposed as an antihyperglycemic agent for treating type 2 diabetes. Since molecular structure defines physicochemical, pharmacological, and toxicological properties, it is important to gain greater insights into poorly investigated patterns. For example, compounds with intrinsic antioxidant properties commonly have low toxicity. Additionally, the molecular symmetry and asymmetry of ligands are each associated with affinity for certain types of receptors. An advantageous response obtained in one therapeutic application may imply a poor or even adverse effect in another. Within the context of general patterns, each compound must be assessed individually. The current review aimed to summarize the available evidence for the advantages and disadvantages of utilizing symmetrical and asymmetrical thiazolidinediones and biguanides as insulin sensitizers in patients with type 2 diabetes. Other applications of these same compounds are also examined as well as the various uses of additional symmetrical molecules. More research is needed to exploit the potential of symmetrical molecules as insulin sensitizers.
Collapse
|
24
|
Zou H, Zou H, Li X, Qiu Q, Geng N, Zhang B, Yan G, Zhang Z, Zhang S, Yao B, Zhang G, Zou C. Metformin-induced AMPK activation suppresses larval growth and molting probably by disrupting 20E synthesis and glycometabolism in fall webworm, Hyphantria cunea Drury. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105083. [PMID: 35430073 DOI: 10.1016/j.pestbp.2022.105083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/24/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Metformin, considered to be a potent AMPK activator, is widely used for clinical therapy of cancer and diabetes due to its distinct function in regulating cell energy balance and body metabolism. However, the effect of metformin-induced AMPK activation on the growth and development of insects remains largely unknown. In the present study, we focused on the role of metformin in regulating the growth and development of Hyphantria cunea, a notorious defoliator in the forestry. Firstly, we obtained the complete coding sequences of HcAMPKα2, HcAMPKβ1, HcAMPKγ2 from H. cunea, which encoded a protein of 512, 281, and 680 amino acids respectively. Furthermore, the phylogenetic analysis revealed that these three subunits were highly homologous with the AMPK subunits from other lepidopteran species. According to the bioassay, we found metformin remarkably restrained the growth and development of H. cunea larvae, and caused molting delayed and body weight reduced. In addition, expressions of HcAMPKα2, HcAMPKβ1, and HcAMPKγ2 were upregulated 3.30-, 5.93- and 5.92-folds at 24 h after treatment, confirming that metformin activated AMPK signaling at the transcriptional level in H. cunea larvae. Conversely, the expressions of two vital Halloween genes (HcCYP306A1 and HcCYP314A1) in the 20E synthesis pathway were remarkably suppressed by metformin. Thus, we presumed that metformin delayed larval molting probably by impeding 20E synthesis in the H. cunea larvae. Finally, we found that metformin accelerated glycogen breakdown, elevated in vivo trehalose level, promoted chitin synthesis, and upregulated transcriptions of the genes in chitin synthesis pathway. Taken together, the findings provide a new insight into the molecular mechanisms by which AMPK regulates carbohydrate metabolism and chitin synthesis in insects.
Collapse
Affiliation(s)
- Haifeng Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- School of Forestry, Beihua University, Jilin 132013, PR China
| | - Qian Qiu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nannan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bihan Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Gaige Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Zhidong Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bin Yao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
25
|
Luo K, Huang W, Qiao L, Zhang X, Yan D, Ning Z, Ma C, Dang H, Wang D, Guo H, Xie L, Cheng J. Dendrocalamus latiflorus and its component rutin exhibit glucose-lowering activities by inhibiting hepatic glucose production via AKT activation. Acta Pharm Sin B 2022; 12:2239-2251. [PMID: 35646547 PMCID: PMC9136573 DOI: 10.1016/j.apsb.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The potential medicinal value of Ma bamboo (Dendrocalamus latiflorus), one of the most popular and economically important bamboo species in China, has been underestimated. In the present study, we found that D. latiflorus leaf extract (DLE) reduced fasting blood glucose levels, body weight, and low-density lipoprotein cholesterol with low liver toxicity in db/db mice. In addition, gene expression profiling was performed and pathway enrichment analysis showed that DLE affected metabolic pathways. Importantly, DLE activated the AKT signaling pathway and reduced glucose production by downregulating glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1) expression. Moreover, network pharmacology analysis identified rutin as an active component in DLE through targeting insulin growth factor 1 receptor (IGF1R), an upstream signaling transducer of AKT. Due to its hypoglycemic effects and low toxicity, DLE may be considered an adjuvant treatment option for type 2 diabetes patients.
Collapse
Affiliation(s)
- Kun Luo
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenting Huang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Liansheng Qiao
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoling Zhang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Di Yan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiyu Ning
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chengmei Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Honglei Dang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongyan Guo
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Lan Xie
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Corresponding authors. Tel.: +86 10 80726868; fax: +86 10 80726898
| | - Jing Cheng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Corresponding authors. Tel.: +86 10 80726868; fax: +86 10 80726898
| |
Collapse
|
26
|
Brosnahan GM, Wang W, Gitomer B, Struemph T, George D, You Z, Nowak KL, Klawitter J, Chonchol MB. Metformin Therapy in Autosomal Dominant Polycystic Kidney Disease: A Feasibility Study. Am J Kidney Dis 2022; 79:518-526. [PMID: 34391872 PMCID: PMC8837717 DOI: 10.1053/j.ajkd.2021.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/14/2021] [Indexed: 01/11/2023]
Abstract
RATIONALE & OBJECTIVE Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder that leads to kidney failure and has few treatment options. Metformin is well tolerated and safe in other patient populations. The primary objective of this clinical trial was to determine the safety and tolerability of metformin in patients with ADPKD and without diabetes mellitus. STUDY DESIGN Prospective randomized controlled double-blind clinical trial. SETTING & PARTICIPANTS 51 adults aged 30-60 years with ADPKD, without diabetes, and an estimated glomerular filtration rate (eGFR) 50-80 mL/min/1.73 m2. EXPOSURE Metformin (maximum dose 2,000 mg/d) or placebo for 12 months. OUTCOME Coprimary end points were the percentage of participants in each group prescribed at the end of the 12-month period: (1) the full randomized dose or (2) at least 50% of the randomized dose. Secondary and exploratory outcomes were the effect of metformin compared with placebo on (1) the percentage change in total kidney volume (TKV) referenced to height (htTKV in mL/m) and (2) the change in eGFR over a 12-month period. RESULTS The participants' mean age was 48 ± 8 (SD) years, and eGFR was 70 ± 14 mL/min/1.73 m2. The metformin group had no cases of lactic acidosis, and there was 1 episode of mild hypoglycemia in each group. Participants in the metformin group reported more adverse symptoms, mostly related to the gastrointestinal tract. Eleven of 22 metformin-treated participants (50%) completed the treatment phase on the full dose compared with 23 of 23 in the placebo group (100%). In the metformin group, 82% of participants tolerated at least 50% of the dose, compared with 100% in the placebo group. In exploratory analyses, changes in htTKV or eGFR were not significantly different between the groups. LIMITATIONS Short study duration. CONCLUSIONS We found that 50% or more of the maximal metformin dose was safe and well tolerated over 12 months in patients with ADPKD. Safety of other preparations of metformin as well as its efficacy should be tested in future clinical trials. FUNDING Government and philanthropic grants (NIDDK and the Zell Foundation). TRIAL REGISTRATION Registered at ClinicalTrials.gov with study number NCT02903511.
Collapse
Affiliation(s)
- Godela M Brosnahan
- Division of Renal Diseases and Hypertension, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado.
| | - Wei Wang
- Division of Renal Diseases and Hypertension, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Berenice Gitomer
- Division of Renal Diseases and Hypertension, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Taylor Struemph
- Division of Renal Diseases and Hypertension, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Diana George
- Division of Renal Diseases and Hypertension, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Zhiying You
- Division of Renal Diseases and Hypertension, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Kristen L Nowak
- Division of Renal Diseases and Hypertension, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Jelena Klawitter
- Division of Renal Diseases and Hypertension, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Michel B Chonchol
- Division of Renal Diseases and Hypertension, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| |
Collapse
|
27
|
Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proc Natl Acad Sci U S A 2022; 119:e2122287119. [PMID: 35238637 PMCID: PMC8916010 DOI: 10.1073/pnas.2122287119] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus, yet the mechanism by which it lowers plasma glucose concentrations has remained elusive. Most studies to date have attributed metformin’s glucose-lowering effects to inhibition of complex I activity. Contrary to this hypothesis, we show that inhibition of complex I activity in vitro and in vivo does not reduce plasma glucose concentrations or inhibit hepatic gluconeogenesis. We go on to show that metformin, and the related guanides/biguanides, phenformin and galegine, inhibit complex IV activity at clinically relevant concentrations, which, in turn, results in inhibition of glycerol-3-phosphate dehydrogenase activity, increased cytosolic redox, and selective inhibition of glycerol-derived hepatic gluconeogenesis both in vitro and in vivo. Metformin exerts its plasma glucose-lowering therapeutic effect primarily through inhibition of hepatic gluconeogenesis. However, the precise molecular mechanism by which metformin inhibits hepatic gluconeogenesis is still unclear. Although inhibition of mitochondrial complex I is frequently invoked as metformin’s primary mechanism of action, the metabolic effects of complex I inhibition have not been thoroughly evaluated in vivo. Here, we show that acute portal infusion of piericidin A, a potent and specific complex I inhibitor, does not reduce hepatic gluconeogenesis in vivo. In contrast, we show that metformin, phenformin, and galegine selectively inhibit hepatic gluconeogenesis from glycerol. Specifically, we show that guanides/biguanides interact with complex IV to reduce its enzymatic activity, leading to indirect inhibition of glycerol-3-phosphate (G3P) dehydrogenase (GPD2), increased cytosolic redox, and reduced glycerol-derived gluconeogenesis. We report that inhibition of complex IV with potassium cyanide replicates the effects of the guanides/biguanides in vitro by selectively reducing glycerol-derived gluconeogenesis via increased cytosolic redox. Finally, we show that complex IV inhibition is sufficient to inhibit G3P-mediated respiration and gluconeogenesis from glycerol. Taken together, we propose a mechanism of metformin action in which complex IV–mediated inhibition of GPD2 reduces glycerol-derived hepatic gluconeogenesis.
Collapse
|
28
|
Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 2022; 603:159-165. [PMID: 35197629 PMCID: PMC8891018 DOI: 10.1038/s41586-022-04431-8] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Metformin, the most prescribed antidiabetic medicine, has shown other benefits such as anti-ageing and anticancer effects1-4. For clinical doses of metformin, AMP-activated protein kinase (AMPK) has a major role in its mechanism of action4,5; however, the direct molecular target of metformin remains unknown. Here we show that clinically relevant concentrations of metformin inhibit the lysosomal proton pump v-ATPase, which is a central node for AMPK activation following glucose starvation6. We synthesize a photoactive metformin probe and identify PEN2, a subunit of γ-secretase7, as a binding partner of metformin with a dissociation constant at micromolar levels. Metformin-bound PEN2 forms a complex with ATP6AP1, a subunit of the v-ATPase8, which leads to the inhibition of v-ATPase and the activation of AMPK without effects on cellular AMP levels. Knockout of PEN2 or re-introduction of a PEN2 mutant that does not bind ATP6AP1 blunts AMPK activation. In vivo, liver-specific knockout of Pen2 abolishes metformin-mediated reduction of hepatic fat content, whereas intestine-specific knockout of Pen2 impairs its glucose-lowering effects. Furthermore, knockdown of pen-2 in Caenorhabditis elegans abrogates metformin-induced extension of lifespan. Together, these findings reveal that metformin binds PEN2 and initiates a signalling route that intersects, through ATP6AP1, the lysosomal glucose-sensing pathway for AMPK activation. This ensures that metformin exerts its therapeutic benefits in patients without substantial adverse effects.
Collapse
|
29
|
Zhang X, Ogihara T, Zhu M, Gantumur D, Li Y, Mizoi K, Kamioka H, Tsushima Y. Effect of metformin on 18F-fluorodeoxyglucose uptake and positron emission tomographic imaging. Br J Radiol 2022; 95:20200810. [PMID: 34705528 PMCID: PMC8822544 DOI: 10.1259/bjr.20200810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Metformin is widely used to treat diabetes, but induces changes in glucose uptake in both normal organs and tumors. Here, we review the effects of metformin on the uptake of 18F-fludeoxyglucose (18F-FDG) in tissues and tumors, and its influence on 18F-FDG positron emission tomographic imaging (18F-FDG PET), as well as the mechanisms involved. This is an important issue, because metformin has diverse effects on tissue uptake of 18F-FDG, and this can affect the quality and interpretation of PET images. Metformin increases glucose uptake in the gastrointestinal tract, cerebral white matter, and the kidney, while regions of the cerebrum associated with memory show decreased glucose uptake, and the myocardium shows no change. Hepatocellular carcinoma and breast cancer show increased glucose uptake after metformin administration, while thyroid cancer shows decreased uptake, and colon and pancreatic cancers show no change. A high-energy diet increases 18F-FDG uptake, but this effect is blocked by metformin. Withdrawal of metformin 48 h before PET image acquisition is widely recommended. However, based on our review of the literature, we propose that the differentiation of metformin discontinuation could be reasonable. But future clinical trials are still needed to support our viewpoint.
Collapse
Affiliation(s)
| | | | - Min Zhu
- Weifang Community Health Service Center, Pudong New District, Shanghai, China
| | - Dolgormaa Gantumur
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yang Li
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Kenta Mizoi
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | | | | |
Collapse
|
30
|
Khodadadi M, Jafari-Gharabaghlou D, Zarghami N. An update on mode of action of metformin in modulation of meta-inflammation and inflammaging. Pharmacol Rep 2022; 74:310-322. [PMID: 35067907 DOI: 10.1007/s43440-021-00334-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common chronic metabolic condition. Several genetic and environmental factors are involved in developing T2DM. Aging, inflammation, and obesity are the main contributors to the initiation of T2DM. They cause chronic sterile meta-inflammation and insulin resistance, thereby making a person more susceptible to developing T2DM. Metformin, a natural cationic biguanide, is widely used as the first-line treatment of T2DM. The exact action mechanism behind the glucose-lowering effect of metformin is not clear, but, presumably, metformin utilizes a broad spectrum of molecular mechanisms to control blood glucose including decreasing intestinal glucose absorption, inhibition of the hepatic gluconeogenesis, decreasing insulin resistance, etc. Recent studies have shown that metformin exerts its effects through the inhibition of mitochondrial respiratory chain complex 1 and the AMP-activated protein kinase (AMPK) activation, but it has been identified in the other studies that AMPK is not the sole hub in metformin mode of action or there are other unknown mechanisms which are involved and yet to be explored. Therefore, here, we discuss the updated findings of the mechanism of action of metformin that contributes to the meta-inflammation and inflammaging action. It is proposed that figuring out the precise mechanism of action of metformin could improve its application in the fields of obesity, inflammation, aging, and inflammaging.
Collapse
Affiliation(s)
- Meysam Khodadadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey. .,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport. Int J Mol Sci 2022; 23:ijms23031264. [PMID: 35163187 PMCID: PMC8836112 DOI: 10.3390/ijms23031264] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Metformin is the most commonly used treatment to increase insulin sensitivity in insulin-resistant (IR) conditions such as diabetes, prediabetes, polycystic ovary syndrome, and obesity. There is a well-documented correlation between glucose transporter 4 (GLUT4) expression and the level of IR. Therefore, the observed increase in peripheral glucose utilization after metformin treatment most likely comes from the induction of GLUT4 expression and its increased translocation to the plasma membrane. However, the mechanisms behind this effect and the critical metformin targets are still largely undefined. The present review explores the evidence for the crucial role of changes in the expression and activation of insulin signaling pathway mediators, AMPK, several GLUT4 translocation mediators, and the effect of posttranscriptional modifications based on previously published preclinical and clinical models of metformin’s mode of action in animal and human studies. Our aim is to provide a comprehensive review of the studies in this field in order to shed some light on the complex interactions between metformin action, GLUT4 expression, GLUT4 translocation, and the observed increase in peripheral insulin sensitivity.
Collapse
|
32
|
Peng J, Ramatchandirin B, Wang Y, Pearah A, Namachivayam K, Wolf RM, Steele K, MohanKumar K, Yu L, Guo S, White MF, Maheshwari A, He L. The P300 acetyltransferase inhibitor C646 promotes membrane translocation of insulin receptor protein substrate and interaction with the insulin receptor. J Biol Chem 2022; 298:101621. [PMID: 35074429 PMCID: PMC8850660 DOI: 10.1016/j.jbc.2022.101621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Inhibition of P300 acetyltransferase activity by specific inhibitor C646 has been shown to improve insulin signaling. However, the underlying molecular mechanism of this improvement remains unclear. In this study, we analyzed P300 levels of obese patients and found that they were significantly increased in liver hepatocytes. In addition, large amounts of P300 appeared in the cytoplasm. Inhibition of P300 acetyltransferase activity by C646 drastically increased tyrosine phosphorylation of the insulin receptor protein substrates (IRS1/2) without affecting the tyrosine phosphorylation of the beta subunit of the insulin receptor (IRβ) in hepatocytes in the absence of insulin. Since IRS1/2 requires membrane translocation and binding to inositol compounds for normal functions, we also examined the role of acetylation on binding to phosphatidylinositol(4,5)P2, and found that IRS1/2 acetylation by P300 reduced this binding. In contrast, we show that inhibition of IRS1/2 acetylation by C646 facilitates IRS1/2 membrane translocation. Intriguingly, we demonstrate that C646 activates IRβ's tyrosine kinase activity and directly promotes IRβ interaction with IRS1/2, leading to the tyrosine phosphorylation of IRS1/2 and subsequent activation of insulin signaling even in the absence of insulin. In conclusion, these data reveal the unique effects of C646 in activating insulin signaling in patients with obesity and diabetes.
Collapse
Affiliation(s)
- Jinghua Peng
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Yu Wang
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexia Pearah
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Risa M Wolf
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kimberley Steele
- Departments of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Krishnan MohanKumar
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Liqing Yu
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shaodong Guo
- Department of Nutrition and Food Science, Texas A&M University, TX 77843
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, MA 02115
| | - Akhil Maheshwari
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
33
|
Pancreastatin inhibitor PSTi8 prevents free fatty acid-induced oxidative stress and insulin resistance by modulating JNK pathway: In vitro and in vivo findings. Life Sci 2022; 289:120221. [PMID: 34902437 DOI: 10.1016/j.lfs.2021.120221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/17/2022]
Abstract
AIM Free fatty acid-mediated obesity plays a crucial role in the pathogenesis of Type 2 Diabetes. FFA induced JNK activation acts as a central regulator in causing hepatic insulin resistance. Similarly, Pancreastatin, a chromogranin A peptide, serves as a crucial link between FFA-induced insulin resistance. Therefore, in the present work, we sought to test Pancreastatin inhibitor PSTi8 to ameliorate FFA-induced hepatic insulin resistance in in vitro and in vivo models. MATERIAL AND METHODS To verify our objective, we exposed hepatocytes (HepG2 cells) with palmitate (0.3 mM) or palmitate + PSTi8 (200 nM). Parallelly mice were fed either HFD or HFD + PSTi8 (1 mg/kg). After 21 days animals were scanned for increased fat mass, along with GTT, ITT and PTT experiment to check glucose, and insulin tolerance. Furthermore, ROS generation and hepatic glycogen content was measured in FFA exposed hepatocytes. Gene expression and protein expression studies were further conducted to delineate the action mechanism of PSTi8. KEY FINDINGS PSTi8 exposure decreased ROS accumulation, lipid accumulation, and reduced glycogen content in FFA-induced groups. It also enhances glucose uptake and reduces gluconeogenesis to combat the FFA effect. Furthermore, gene expression studies indicate that PSTi8 treatment reduces NADPH oxidase3 (NOX3) expression and inhibits JNK signaling, a predominant source of ROS-induced insulin resistance. SIGNIFICANCE To summarize, the protective effect of PSTi8 on FFA-induced insulin resistance is mediated via inhibition of JNK signaling, which leads to decreased ROS generation and enhanced insulin sensitivity. Hence PSTi8 could be a therapeutic molecule to prevent western diet-induced insulin resistance.
Collapse
|
34
|
Tulipano G. Integrated or Independent Actions of Metformin in Target Tissues Underlying Its Current Use and New Possible Applications in the Endocrine and Metabolic Disorder Area. Int J Mol Sci 2021; 22:13068. [PMID: 34884872 PMCID: PMC8658259 DOI: 10.3390/ijms222313068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is considered the first-choice drug for type 2 diabetes treatment. Actually, pleiotropic effects of metformin have been recognized, and there is evidence that this drug may have a favorable impact on health beyond its glucose-lowering activity. In summary, despite its long history, metformin is still an attractive research opportunity in the field of endocrine and metabolic diseases, age-related diseases, and cancer. To this end, its mode of action in distinct cell types is still in dispute. The aim of this work was to review the current knowledge and recent findings on the molecular mechanisms underlying the pharmacological effects of metformin in the field of metabolic and endocrine pathologies, including some endocrine tumors. Metformin is believed to act through multiple pathways that can be interconnected or work independently. Moreover, metformin effects on target tissues may be either direct or indirect, which means secondary to the actions on other tissues and consequent alterations at systemic level. Finally, as to the direct actions of metformin at cellular level, the intracellular milieu cooperates to cause differential responses to the drug between distinct cell types, despite the primary molecular targets may be the same within cells. Cellular bioenergetics can be regarded as the primary target of metformin action. Metformin can perturb the cytosolic and mitochondrial NAD/NADH ratio and the ATP/AMP ratio within cells, thus affecting enzymatic activities and metabolic and signaling pathways which depend on redox- and energy balance. In this context, the possible link between pyruvate metabolism and metformin actions is extensively discussed.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
35
|
Camacho-Castillo L, Phillips-Farfán BV, Rosas-Mendoza G, Baires-López A, Toral-Ríos D, Campos-Peña V, Carvajal K. Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation. Sci Rep 2021; 11:19547. [PMID: 34599229 PMCID: PMC8486781 DOI: 10.1038/s41598-021-98983-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
Metabolic disturbances are linked to neurodegenerative diseases such as Alzheimer disease (AD). However, the cellular mechanisms underlying this connection are unclear. We evaluated the role of oxidative stress (OS), during early metabolic syndrome (MetS), on amyloidogenic processes in a MetS rat model induced by sucrose. MetS caused OS damage as indicated by serum and hypothalamus lipid peroxidation and elevated serum catalase activity. Tissue catalase and superoxide dismutase activity were unchanged by MetS, but gene expression of nuclear factor erythroid-derived 2-like 2 (NFE2L2), which up-regulates expression of antioxidant enzymes, was higher. Expression of amyloid-β cleaving enzyme 1 (BACE-1) and amyloid precursor protein (APP), key proteins in the amyloidogenesis pathway, were slightly increased by sucrose-intake in the hippocampus and hypothalamus. Activation and expression of protein kinase B (PKB) and AMP-dependent protein kinase (AMPK), pivotal proteins in metabolism and energy signaling, were similarly affected in the hippocampus and hypothalamus of MetS rats. Brain creatine kinase activity decreased in brain tissues from rats with MetS, mainly due to irreversible oxidation. Chronic metformin administration partially reversed oxidative damage in sucrose-fed animals, together with increased AMPK activation; probably by modulating BACE-1 and NFE2L2. AMPK activation may be considered as a preventive therapy for early MetS and associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Luz Camacho-Castillo
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700 C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, CD Mexico, Mexico
| | - Bryan V Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700 C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, CD Mexico, Mexico
| | - Gabriela Rosas-Mendoza
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700 C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, CD Mexico, Mexico
| | - Aidee Baires-López
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700 C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, CD Mexico, Mexico
| | - Danira Toral-Ríos
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco", CD México, México
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco", CD México, México
| | - Karla Carvajal
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700 C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, CD Mexico, Mexico.
| |
Collapse
|
36
|
Ong ACM, Gansevoort RT. TAMEing ADPKD with metformin: safe and effective? Kidney Int 2021; 100:513-515. [PMID: 34420660 DOI: 10.1016/j.kint.2021.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The biguanide metformin has been safely and widely used in the treatment of type 2 diabetes mellitus for decades. Preclinical studies have suggested that it may have a role in slowing disease progression in autosomal dominant polycystic kidney disease. In this issue, Perrone et al. report results from the Trial of Administration of Metformin in PKD (TAME PKD) study, a phase 2 randomized controlled trial investigating the safety and tolerability of metformin in patients in the early stages of autosomal dominant polycystic kidney disease. We discuss the implications of these findings and how they relate to a major phase 3 trial in autosomal dominant polycystic kidney disease that will start later in 2021.
Collapse
Affiliation(s)
- Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, UK.
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
37
|
Salter DM, Wei W, Nahar PP, Marques E, Slitt AL. Perfluorooctanesulfonic Acid (PFOS) Thwarts the Beneficial Effects of Calorie Restriction and Metformin. Toxicol Sci 2021; 182:82-95. [PMID: 33844015 DOI: 10.1093/toxsci/kfab043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A combination of calorie restriction (CR), dietary modification, and exercise is the recommended therapy to reverse obesity and nonalcoholic fatty liver disease. In the liver, CR shifts hepatic metabolism from lipid storage to lipid utilization pathways, such as AMP-activated protein kinase (AMPK). Perfluorooctanesulfonic acid (PFOS), a fluorosurfactant previously used in stain repellents and anti-stick materials, can increase hepatic lipids in mice following relatively low-dose exposures. To test the hypothesis that PFOS administration interferes with CR, adult male C57BL/6N mice were fed ad libitum or a 25% reduced calorie diet concomitant with either vehicle (water) or 100 μg PFOS/kg/day via oral gavage for 6 weeks. CR alone improved hepatic lipids and glucose tolerance. PFOS did not significantly alter CR-induced weight loss, white adipose tissue mass, or liver weight over 6 weeks. However, PFOS increased hepatic triglyceride accumulation, in both mice fed ad libitum and subjected to CR. This was associated with decreased phosphorylated AMPK expression in liver. Glucagon (100 nM) treatment induced glucose production in hepatocytes, which was further upregulated with PFOS (2.5 μM) co-treatment. Next, to explore whether the observed changes were related to AMPK signaling, HepG2 cells were treated with metformin or AICAR alone or in combination with PFOS (25 μM). PFOS interfered with glucose-lowering effects of metformin, and AICAR treatment partially impaired PFOS-induced increase in glucose production. In 3T3-L1 adipocytes, metformin was less effective with PFOS co-treatment. Overall, PFOS administration disrupted hepatic lipid and glucose homeostasis and interfered with beneficial glucose-lowering effects of CR and metformin.
Collapse
Affiliation(s)
- Deanna M Salter
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Pragati P Nahar
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
38
|
Miller BF, Thyfault JP. Exercise-Pharmacology Interactions: Metformin, Statins, and Healthspan. Physiology (Bethesda) 2021; 35:338-347. [PMID: 32783612 DOI: 10.1152/physiol.00013.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is an increased focus on treatments to extend the healthspan. There is solid evidence that exercise extends the healthspan, but other treatments, such as metformin and statins, are also gaining traction. If metformin and statins will be used to prolong healthspan, we must understand their effects in those free of disease and in combination with exercise.
Collapse
Affiliation(s)
- Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.,Oklahoma Nathan Shock Center for Aging, Oklahoma City, Oklahoma.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.,Research Service, Kansas City VA Medical Center, Kansas City, Missouri.,Center for Children's Healthy Lifestyle and Nutrition, Children's Mercy Hospital, Kansas City, Missouri
| |
Collapse
|
39
|
Guo X, Li X, Yang W, Liao W, Shen JZ, Ai W, Pan Q, Sun Y, Zhang K, Zhang R, Qiu Y, Dai Q, Zheng H, Guo S. Metformin Targets Foxo1 to Control Glucose Homeostasis. Biomolecules 2021; 11:biom11060873. [PMID: 34208360 PMCID: PMC8231152 DOI: 10.3390/biom11060873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/28/2022] Open
Abstract
Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus (T2D). Metformin exerts its glucose-lowering effect primarily through decreasing hepatic glucose production (HGP). However, the precise molecular mechanisms of metformin remain unclear due to supra-pharmacological concentration of metformin used in the study. Here, we investigated the role of Foxo1 in metformin action in control of glucose homeostasis and its mechanism via the transcription factor Foxo1 in mice, as well as the clinical relevance with co-treatment of aspirin. We showed that metformin inhibits HGP and blood glucose in a Foxo1-dependent manner. Furthermore, we identified that metformin suppresses glucagon-induced HGP through inhibiting the PKA→Foxo1 signaling pathway. In both cells and mice, Foxo1-S273D or A mutation abolished the suppressive effect of metformin on glucagon or fasting-induced HGP. We further showed that metformin attenuates PKA activity, decreases Foxo1-S273 phosphorylation, and improves glucose homeostasis in diet-induced obese mice. We also provided evidence that salicylate suppresses HGP and blood glucose through the PKA→Foxo1 signaling pathway, but it has no further additive improvement with metformin in control of glucose homeostasis. Our study demonstrates that metformin inhibits HGP through PKA-regulated transcription factor Foxo1 and its S273 phosphorylation.
Collapse
Affiliation(s)
- Xiaoqin Guo
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
| | - Xiaopeng Li
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Wang Liao
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - James Zheng Shen
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Quan Pan
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Kebin Zhang
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
| | - Rui Zhang
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
| | - Yuyang Qiu
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
| | - Qian Dai
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
| | - Hongting Zheng
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
- Correspondence: (H.Z.); (S.G.)
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
- Correspondence: (H.Z.); (S.G.)
| |
Collapse
|
40
|
Singh P, Reza MI, Syed AA, Husain A, Katekar R, Gayen JR. Pancreastatin mediated regulation of UCP-1 and energy expenditure in high fructose fed perimenopausal rats. Life Sci 2021; 279:119677. [PMID: 34081990 DOI: 10.1016/j.lfs.2021.119677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
AIMS Pancreastatin (PST) is a crucial bioactive peptide derived from chromogranin A (CHGA) proprotein that exhibits an anti-insulin effect on adipocytes. Herein, we investigated the effects of PST on brown adipose tissues (BAT) and white adipose tissue (WAT) in connection with uncoupling protein-1 (UCP-1) regulated energy expenditure in high fructose diet (HFrD) fed and vinylcyclohexenediepoxide (VCD) induced perimenopausal rats. MATERIAL AND METHODS We administered VCD in rats for 17 consecutive days and fed HFrd for 12 weeks. After 12 weeks estradiol and progesterone levels were detected. Furthermore, detection of glucose tolerance, insulin sensitivity, and body composition revealed impaired glucose homeostasis and enhanced PST levels. Effects of enhanced PST on UCP-1 level in BAT and WAT of perimenopausal rats were further investigated. KEY FINDINGS Reduced serum estradiol, progesterone, and attenuated insulin response confirmed perimenopausal model development. Furthermore, enhanced PST serum level and its increased expression in BAT and WAT downregulated the UCP-1 expression. Subsequently, impaired ATP level, NADP/NADPH ratio, citrate synthase activity, enhanced mitochondrial reactive oxygen species (ROS) generation and perturbed mitochondrial membrane potential, further exacerbated mitochondrial dysfunction, cellular ROS production, and promoted apoptosis. Interestingly, PST inhibition by PST inhibitor peptide-8 (PSTi8) displayed a favorable impact on UCP-1 and energy expenditure. SIGNIFICANCE The aforementioned outcomes indicated the substantial role of PST in altering the UCP-1 expression and associated energy homeostasis. Hence our results corroborate novel avenues to unravel the quest deciphering PST's role in energy homeostasis and its association with perimenopause.
Collapse
Affiliation(s)
- Pragati Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohammad Irshad Reza
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anees A Syed
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athar Husain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
41
|
Shabir K, Brown JE, Afzal I, Gharanei S, Weickert MO, Barber TM, Kyrou I, Randeva HS. Asprosin, a novel pleiotropic adipokine implicated in fasting and obesity-related cardio-metabolic disease: Comprehensive review of preclinical and clinical evidence. Cytokine Growth Factor Rev 2021; 60:120-132. [PMID: 34108103 DOI: 10.1016/j.cytogfr.2021.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
White adipose tissue is a dynamic endocrine organ that releases an array of adipokines, which play a key role in regulating metabolic homeostasis and multiple other physiological processes. An altered adipokine secretion profile from adipose tissue depots frequently characterizes obesity and related cardio-metabolic diseases. Asprosin is a recently discovered adipokine that is released in response to fasting. Following secretion, asprosin acts - via an olfactory G-protein coupled receptor and potentially via other unknown receptor(s) - on hepatocytes and agouti-related peptide-expressing neurons in the central nervous system to stimulate glucose secretion and promote appetite, respectively. A growing body of both in vitro and in vivo studies have shown asprosin to exert a number of effects on different metabolic tissues. Indeed, asprosin can attenuate insulin signalling and promote insulin resistance in skeletal muscle by increasing inflammation and endoplasmic reticulum stress. Interestingly, asprosin may also play a protective role in cardiomyocytes that are exposed to hypoxic conditions. Moreover, clinical studies have reported elevated circulating asprosin levels in obesity, type 2 diabetes and other obesity-related cardio-metabolic diseases, with significant associations to clinically relevant parameters. Understanding the spectrum of the effects of this novel adipokine is essential in order to determine its physiologic role and its significance as a potential therapeutic target and/or a biomarker of cardio-metabolic disease. The present review offers a comprehensive overview of the published literature on asprosin, including both clinical and preclinical studies, focusing on its role in metabolism and cardio-metabolic disease.
Collapse
Affiliation(s)
- Kiran Shabir
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom; Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - James E Brown
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, United Kingdom; School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Islam Afzal
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Seley Gharanei
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom; Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, CV1 5FB, United Kingdom
| | - Thomas M Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom; Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, United Kingdom; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom; Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, CV1 5FB, United Kingdom.
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom; Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, United Kingdom; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
42
|
High-Efficacy α,β-Dehydromonacolin S Improves Hepatic Steatosis and Suppresses Gluconeogenesis Pathway in High-Fat Diet-Induced Obese Rats. Pharmaceuticals (Basel) 2021; 14:ph14040375. [PMID: 33920678 PMCID: PMC8073358 DOI: 10.3390/ph14040375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Isolated α,β-dehydromonacolin S (C5) from soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178 was recently shown to exhibit an inhibitory effect against 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity in vitro. In this study, we investigated the effects of C5 on lipid-lowering, hepatic steatosis, and hepatic gluconeogenesis in vivo. The control rats received a daily dose of either vehicle or C5 at 10 mg/kg, while the high-fat diet-induced obese (HFD) rats were administered vehicle; 1, 3, or 10 mg/kg C5; or 10 mg/kg lovastatin (LO) for 6 weeks. C5 significantly improved dyslipidemia and diminished liver enzymes, HMGR activity, insulin resistance, and hepatic steatosis, comparable to LO without any hepatotoxicity and nephrotoxicity in HFD rats. A higher efficacy of C5 in lipid-lowering activity and anti-hepatic steatosis was associated with a significant decrease in genes involved in lipid metabolism including sterol regulatory element binding protein (SREBP) 1c, SREBP2, liver X receptor alpha (LXRα), and peroxisome proliferator-activated receptor (PPAR) gamma (PPARγ) together with an increase in the PPAR alpha (PPARα). Correspondingly, C5 was able to down-regulate the lipid transporters cluster of differentiation 36 (CD36) and Niemann-Pick C1 Like 1 (NPC1L1), increase the antioxidant superoxide dismutase gene expression, and decrease the proinflammatory cytokines, tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL-1β). Impairment of hepatic gluconeogenesis and insulin resistance in HFD rats was restored by C5 through down-regulation of the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), and the activation of AMP-dependent kinase serine (AMPK) and serine/threonine protein kinase B (Akt). Collectively, this novel C5 may be a therapeutic option for treating dyslipidemia, hepatic steatosis, and reducing potential risk for diabetes mellitus.
Collapse
|
43
|
Drzewoski J, Hanefeld M. The Current and Potential Therapeutic Use of Metformin-The Good Old Drug. Pharmaceuticals (Basel) 2021; 14:122. [PMID: 33562458 PMCID: PMC7915435 DOI: 10.3390/ph14020122] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin, one of the oldest oral antidiabetic agents and still recommended by almost all current guidelines as the first-line treatment for type 2 diabetes mellitus (T2DM), has become the medication with steadily increasing potential therapeutic indications. A broad spectrum of experimental and clinical studies showed that metformin has a pleiotropic activity and favorable effect in different pathological conditions, including prediabetes, type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus (GDM). Moreover, there are numerous studies, meta-analyses and population studies indicating that metformin is safe and well tolerated and may be associated with cardioprotective and nephroprotective effect. Recently, it has also been reported in some studies, but not all, that metformin, besides improvement of glucose homeostasis, may possibly reduce the risk of cancer development, inhibit the incidence of neurodegenerative disease and prolong the lifespan. This paper presents some arguments supporting the initiation of metformin in patients with newly diagnosed T2DM, especially those without cardiovascular risk factors or without established cardiovascular disease or advanced kidney insufficiency at the time of new guidelines favoring new drugs with pleotropic effects complimentary to glucose control. Moreover, it focuses on the potential beneficial effects of metformin in patients with T2DM and coexisting chronic diseases.
Collapse
Affiliation(s)
- Józef Drzewoski
- Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Markolf Hanefeld
- Medical Clinic III, Department of Medicine Technical University Dresden, 01307 Dresden, Germany;
| |
Collapse
|
44
|
LaMoia TE, Shulman GI. Cellular and Molecular Mechanisms of Metformin Action. Endocr Rev 2021; 42:77-96. [PMID: 32897388 PMCID: PMC7846086 DOI: 10.1210/endrev/bnaa023] [Citation(s) in RCA: 412] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Metformin is a first-line therapy for the treatment of type 2 diabetes, due to its robust glucose-lowering effects, well-established safety profile, and relatively low cost. While metformin has been shown to have pleotropic effects on glucose metabolism, there is a general consensus that the major glucose-lowering effect in patients with type 2 diabetes is mostly mediated through inhibition of hepatic gluconeogenesis. However, despite decades of research, the mechanism by which metformin inhibits this process is still highly debated. A key reason for these discrepant effects is likely due to the inconsistency in dosage of metformin across studies. Widely studied mechanisms of action, such as complex I inhibition leading to AMPK activation, have only been observed in the context of supra-pharmacological (>1 mM) metformin concentrations, which do not occur in the clinical setting. Thus, these mechanisms have been challenged in recent years and new mechanisms have been proposed. Based on the observation that metformin alters cellular redox balance, a redox-dependent mechanism of action has been described by several groups. Recent studies have shown that clinically relevant (50-100 μM) concentrations of metformin inhibit hepatic gluconeogenesis in a substrate-selective manner both in vitro and in vivo, supporting a redox-dependent mechanism of metformin action. Here, we review the current literature regarding metformin's cellular and molecular mechanisms of action.
Collapse
Affiliation(s)
- Traci E LaMoia
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
45
|
Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells. Sci Rep 2021; 11:2557. [PMID: 33510179 PMCID: PMC7844056 DOI: 10.1038/s41598-021-81172-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer with marked resistance to chemotherapeutics without therapies. The tumour microenvironment of iCCA is enriched of Cancer-Stem-Cells expressing Epithelial-to-Mesenchymal Transition (EMT) traits, being these features associated with aggressiveness and drug resistance. Treatment with the anti-diabetic drug Metformin, has been recently associated with reduced incidence of iCCA. We aimed to evaluate the anti-cancerogenic effects of Metformin in vitro and in vivo on primary cultures of human iCCA. Our results showed that Metformin inhibited cell proliferation and induced dose- and time-dependent apoptosis of iCCA. The migration and invasion of iCCA cells in an extracellular bio-matrix was also significantly reduced upon treatments. Metformin increased the AMPK and FOXO3 and induced phosphorylation of activating FOXO3 in iCCA cells. After 12 days of treatment, a marked decrease of mesenchymal and EMT genes and an increase of epithelial genes were observed. After 2 months of treatment, in order to simulate chronic administration, Cytokeratin-19 positive cells constituted the majority of cell cultures paralleled by decreased Vimentin protein expression. Subcutaneous injection of iCCA cells previously treated with Metformin, in Balb/c-nude mice failed to induce tumour development. In conclusion, Metformin reverts the mesenchymal and EMT traits in iCCA by activating AMPK-FOXO3 related pathways suggesting it might have therapeutic implications.
Collapse
|
46
|
Shpakov AO. Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals (Basel) 2021; 14:ph14010042. [PMID: 33429918 PMCID: PMC7826885 DOI: 10.3390/ph14010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin (MF), a first-line drug to treat type 2 diabetes mellitus (T2DM), alone and in combination with other drugs, restores the ovarian function in women with polycystic ovary syndrome (PCOS) and improves fetal development, pregnancy outcomes and offspring health in gestational diabetes mellitus (GDM) and T2DM. MF treatment is demonstrated to improve the efficiency of in vitro fertilization and is considered a supplementary drug in assisted reproductive technologies. MF administration shows positive effect on steroidogenesis and spermatogenesis in men with metabolic disorders, thus MF treatment indicates prospective use for improvement of male reproductive functions and fertility. MF lacks teratogenic effects and has positive health effect in newborns. The review is focused on use of MF therapy for restoration of female and male reproductive functions and improvement of pregnancy outcomes in metabolic and endocrine disorders. The mechanisms of MF action are discussed, including normalization of metabolic and hormonal status in PCOS, GDM, T2DM and metabolic syndrome and restoration of functional activity and hormonal regulation of the gonadal axis.
Collapse
Affiliation(s)
- Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| |
Collapse
|
47
|
miR-378a-3p Participates in Metformin's Mechanism of Action on C2C12 Cells under Hyperglycemia. Int J Mol Sci 2021; 22:ijms22020541. [PMID: 33430391 PMCID: PMC7827403 DOI: 10.3390/ijms22020541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
Metformin is the most used biguanide drug for the treatment of type 2 diabetes mellitus. Despite being mostly known for its hepatic anti-gluconeogenic effect, it is also known to modulate microRNAs (miRNAs, miRs) associated with metabolic diseases. The latter mechanism could be relevant for better understanding metformin’s mechanisms underlying its biological effects. In the current work, we found that metformin increases miR-378a-3p expression (p < 0.002) in C2C12 myoblasts previously exposed to hyperglycemic conditions. While the inhibition of miR-378a-3p was shown to impair metformin’s effect in ATP production, PEPCK activity and the expression of Tfam. Finally, mitophagy, an autophagic process responsible for the selective degradation of mitochondria, was found to be induced by miR-378a-3p (p < 0.04). miR-378a-3p stimulated mitophagy through a process independent of sestrin-2 (SESN2), a stress-responsible protein that has been recently demonstrated to positively modulate mitophagy. Our findings provide novel insights into an alternative mechanism of action of metformin involving miR-378a-3, which can be used in the future for the development of improved therapeutic strategies against metabolic diseases.
Collapse
|
48
|
Zamani-Garmsiri F, Hashemnia SMR, Shabani M, Bagherieh M, Emamgholipour S, Meshkani R. Combination of metformin and genistein alleviates non-alcoholic fatty liver disease in high-fat diet-fed mice. J Nutr Biochem 2021; 87:108505. [DOI: 10.1016/j.jnutbio.2020.108505] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/16/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
|
49
|
Carroll DT, Sassin AM, Aagaard KM, Gannon M. Developmental effects of in utero metformin exposure. TRENDS IN DEVELOPMENTAL BIOLOGY 2021; 14:1-17. [PMID: 36589485 PMCID: PMC9802655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, the intrauterine environment influences fetal programming and development, affecting offspring disease susceptibility in adulthood. In recent years, therapeutic use of the Type 2 diabetes drug metformin has expanded to the treatment of pre-diabetes, polycystic ovarian syndrome, and gestational diabetes. Because metformin both undergoes renal excretion and binds to receptors on the placenta, the fetus receives equivalent maternal dosing. Although no teratogenic nor short-term harmful fetal impact of metformin is known to occur, the effects of metformin exposure on longer-range offspring development have not yet been fully elucidated. This review encapsulates the (albeit limited) existing knowledge regarding the potential longer-term impact of intrauterine metformin exposure on the development of key organs including the liver, central nervous system, heart, gut, and endocrine pancreas in animal models and humans. We discuss molecular and cellular mechanisms that would be altered in response to treatment and describe the potential consequences of these developmental changes on postnatal health. Further studies regarding the influence of metformin exposure on fetal programming and adult metabolic health will provide necessary insight to its long-term risks, benefits, and limitations in order to guide decisions for use of metformin during pregnancy.
Collapse
Affiliation(s)
- Darian T. Carroll
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Alexa M. Sassin
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Departments of Molecular and Human Genetics, and Molecular and Cell Biology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Departments of Molecular and Human Genetics, and Molecular and Cell Biology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Department of Veterans Affairs Tennessee Valley, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
50
|
Zamani-Garmsiri F, Ghasempour G, Aliabadi M, Hashemnia SMR, Emamgholipour S, Meshkani R. Combination of metformin and chlorogenic acid attenuates hepatic steatosis and inflammation in high-fat diet fed mice. IUBMB Life 2020; 73:252-263. [PMID: 33326684 DOI: 10.1002/iub.2424] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become an important health problem in the world. Natural products, with anti-inflammatory properties, are potential candidates for alleviating NAFLD. Metformin (MET) and chlorogenic acid (CGA) have been reported to be effective in the improvement of NAFLD. Here, we aimed to evaluate the efficacy of MET and CGA combination in ameliorating NAFLD in high-fat diet (HFD) fed mice. Fifty C57BL/6 male mice were divided into two groups, one fed a standard chow diet (n = 10) and the other was fed an HFD (n = 40) for 10 weeks. Animals in the HFD group were then randomly divided into a four groups (HFD, HFD + MET (0.25%), HFD + CGA (0.02%) and HFD + MET + CGA (0.25 + 0.02%). MET and CGA combination decreases fasting blood glucose and improves glucose intolerance. Decreased hepatic triglyceride level was associated with lower expression levels of fatty acid synthase and sterol regulatory element-binding protein-1c in MET+CGA treated mice. MET and CGA combination treatment resulted in the polarization of macrophages to the M2 phenotype, reduction of the expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), and decreasing protein level of NF-kB p65. It was found that the lowering effect of combined MET and CGA on the expression of gluconeogenic genes was accompanied by increasing phosphorylation of glycogen synthase kinase 3β. Treatment of HFD mice with the combination of MET and CGA was found to be more effective at alleviating inflammation and lipid accumulation by increasing phosphorylation of AMP-activated protein kinase. In conclusion, these findings suggest that the MET + CGA combination might exert therapeutic effects against NAFLD.
Collapse
Affiliation(s)
- Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoume Aliabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|