1
|
Qi Q, Bian J, Li J, Liu K, Yan F, Hou J. Whole-genome transcriptome and DNA methylome analyses reveal molecular abnormalities during the oocyte-to-embryo transition in preimplantation embryos derived from prepubertal lamb oocytes†. Biol Reprod 2025; 112:824-839. [PMID: 40057970 DOI: 10.1093/biolre/ioaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/26/2025] [Accepted: 03/04/2025] [Indexed: 05/16/2025] Open
Abstract
The juvenile in vitro embryo transfer technology holds the potential to accelerate livestock breeding. However, its application is limited due to the weak in vitro development of oocytes and embryos from prepubertal lambs. To dissect the regulatory networks of gene expression of sheep embryos and identify the defects in gene expression in prepubertal lamb embryos during the oocyte-to-embryo transition, full-length RNA sequencing and whole-genome bisulfite sequencing based on trace cells were conducted on in vitro-derived embryos generated from adult sheep and prepubertal lamb oocytes. We found that the maternal transcript degradation occurred selectively in adult sheep embryos in multiple waves and was most completed until the morula stage. Major embryonic genome activation was found to occur at the morula stage. By comparing with the patterns of adult embryos, we observed incomplete maternal transcript degradation and abnormal embryonic genome activation in lamb embryos and analyzed their potential molecular mechanisms. Furthermore, we explored dynamic DNA methylation concerning the paternal and maternal genomes during the preimplantation development of sheep embryos, revealing the negative regulatory role of promoter DNA methylation on embryonic genome activation process. Lamb embryos generally displayed higher DNA methylation levels than adults, potentially repressing the embryonic genome activation gene expression, especially the genes associated with ribosomal and mitochondrial organization. We also found abnormalities in the methylation status of imprinted genes in lamb embryos. Our findings advance the understanding of sheep in vitro embryo development and offer insights for improving the juvenile in vitro embryo transfer technology in livestock.
Collapse
Affiliation(s)
- Qi Qi
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangyue Bian
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junjin Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kexiong Liu
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengxiang Yan
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jian Hou
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Khan Y, Rizvi S, Raza A, Khan A, Hussain S, Khan NU, Alshammari SO, Alshammari QA, Alshammari A, Ellakwa DES. Tailored therapies for triple-negative breast cancer: current landscape and future perceptions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03896-4. [PMID: 40029385 DOI: 10.1007/s00210-025-03896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
Triple-negative breast cancer (TNBC) has become one of the most challenging cancers to date due to its great variability in biological features, high growth rate, and rare options for treatment. This review examines several innovative strategies for tailored treatment of TNBC, focusing mainly on the most recent developments and potential directions. The molecular landscape of TNBC is covered in the first section, which keeps the focus on transcriptome and genomic profiling while highlighting key molecular targets like mutations in the BRCA1/2, PIK3CA, androgen receptors (AR), epidermal growth factor receptors (EGFR), and immunological checkpoint molecules. This review also covers novel therapies that aim to block well-defined pathways, including immune checkpoint inhibitors (ICI), EGFR inhibitors, drugs that target AR, poly ADP ribose polymerase (PARP) inhibitors, and drugs that disrupt the PI3K/AKT/mTOR pathway. Additionally, it covers novel strategies focusing on combination therapy, targeting the DNA damage response pathway, and epigenetic modulators. Conclusively, it emphasizes perspectives and directions on topics such as personalized medicine, artificial intelligence (AI), predictive biomarkers, and treatment planning with the inclusion of machine learning (ML).
Collapse
Affiliation(s)
- Yumna Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Sana Rizvi
- Bakhtawar Amin Medical and Dental College, Bakhtawar Amin Trust Teaching Hospital, Multan, Pakistan
| | - Ali Raza
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Amna Khan
- Abbottabad International Medical Institute, Abbottabad, 22020, Pakistan
| | - Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, College of Pharmacy, Northern Border University, 76321, Rafha, Saudi Arabia
| | - Qamar A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Abdulkarim Alshammari
- Department of Clinical Practice, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt.
| |
Collapse
|
3
|
Kawaf RR, Ramadan WS, El-Awady R. Deciphering the interplay of histone post-translational modifications in cancer: Co-targeting histone modulators for precision therapy. Life Sci 2024; 346:122639. [PMID: 38615747 DOI: 10.1016/j.lfs.2024.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Chromatin undergoes dynamic regulation through reversible histone post-translational modifications (PTMs), orchestrated by "writers," "erasers," and "readers" enzymes. Dysregulation of these histone modulators is well implicated in shaping the cancer epigenome and providing avenues for precision therapies. The approval of six drugs for cancer therapy targeting histone modulators, along with the ongoing clinical trials of numerous candidates, represents a significant advancement in the field of precision medicine. Recently, it became apparent that histone PTMs act together in a coordinated manner to control gene expression. The intricate crosstalk of histone PTMs has been reported to be dysregulated in cancer, thus emerging as a critical factor in the complex landscape of cancer development. This formed the foundation of the swift emergence of co-targeting different histone modulators as a new strategy in cancer therapy. This review dissects how histone PTMs, encompassing acetylation, phosphorylation, methylation, SUMOylation and ubiquitination, collaboratively influence the chromatin states and impact cellular processes. Furthermore, we explore the significance of histone modification crosstalk in cancer and discuss the potential of targeting histone modification crosstalk in cancer management. Moreover, we underscore the significant strides made in developing dual epigenetic inhibitors, which hold promise as emerging candidates for effective cancer therapy.
Collapse
Affiliation(s)
- Rawan R Kawaf
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
4
|
Franco-García A, Gómez-Murcia V, Fernández-Gómez FJ, González-Andreu R, Hidalgo JM, Victoria Milanés M, Núñez C. Morphine-withdrawal aversive memories and their extinction modulate H4K5 acetylation and Brd4 activation in the rat hippocampus and basolateral amygdala. Biomed Pharmacother 2023; 165:115055. [PMID: 37356373 DOI: 10.1016/j.biopha.2023.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023] Open
Abstract
Chromatin modification is a crucial mechanism in several important phenomena in the brain, including drug addiction. Persistence of drug craving and risk of relapse could be attributed to drug-induced epigenetic mechanisms that seem to be candidates explaining long-lasting drug-induced behaviour and molecular alterations. Histone acetylation has been proposed to regulate drug-seeking behaviours and the extinction of rewarding memory of drug taking. In this work, we studied the epigenetic regulation during conditioned place aversion and after extinction of aversive memory of opiate withdrawal. Through immunofluorescence assays, we assessed some epigenetic marks (H4K5ac and p-Brd4) in crucial areas related to memory retrieval -basolateral amygdala (BLA) and hippocampus-. Additionally, to test the degree of transcriptional activation, we evaluated the immediate early genes (IEGs) response (Arc, Bdnf, Creb, Egr-1, Fos and Nfkb) and Smarcc1 (chromatin remodeler) through RT-qPCR in these nuclei. Our results showed increased p-Brd4 and H4K5ac levels during aversive memory retrieval, suggesting a more open chromatin state. However, transcriptional activation of these IEGs was not found, therefore suggesting that other secondary response may already be happening. Additionally, Smarcc1 levels were reduced due to morphine chronic administration in BLA and dentate gyrus. The activation markers returned to control levels after the retrieval of aversive memories, revealing a more repressed chromatin state. Taken together, our results show a major role of the tandem H4K5ac/p-Brd4 during the retrieval of aversive memories. These results might be useful to elucidate new molecular targets to improve and develop pharmacological treatments to address addiction and to avoid drug relapse.
Collapse
Affiliation(s)
- Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Victoria Gómez-Murcia
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Francisco José Fernández-Gómez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Raúl González-Andreu
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain
| | - Juana M Hidalgo
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - M Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain.
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain.
| |
Collapse
|
5
|
Li F, Liang H, You H, Xiao J, Xia H, Chen X, Huang M, Cheng Z, Yang C, Liu W, Zhang H, Zeng L, Wu Y, Ge F, Li Z, Zhou W, Wen Y, Zhou Z, Liu R, Jiang D, Xie N, Liang B, Liu Z, Kong Y, Chen C. Targeting HECTD3-IKKα axis inhibits inflammation-related metastasis. Signal Transduct Target Ther 2022; 7:264. [PMID: 35918322 PMCID: PMC9345961 DOI: 10.1038/s41392-022-01057-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death. The interactions between circulating tumor cells and endothelial adhesion molecules in distant organs is a key step during extravasation in hematogenous metastasis. Surgery is a common intervention for most primary solid tumors. However, surgical trauma-related systemic inflammation facilitates distant tumor metastasis by increasing the spread and adhesion of tumor cells to vascular endothelial cells (ECs). Currently, there are no effective interventions to prevent distant metastasis. Here, we show that HECTD3 deficiency in ECs significantly reduces tumor metastasis in multiple mouse models. HECTD3 depletion downregulates expression of adhesion molecules, such as VCAM-1, ICAM-1 and E-selectin, in mouse primary ECs and HUVECs stimulated by inflammatory factors and inhibits adhesion of tumor cells to ECs both in vitro and in vivo. We demonstrate that HECTD3 promotes stabilization, nuclear localization and kinase activity of IKKα by ubiquitinating IKKα with K27- and K63-linked polyubiquitin chains at K296, increasing phosphorylation of histone H3 to promote NF-κB target gene transcription. Knockout of HECTD3 in endothelium significantly inhibits tumor cells lung colonization, while conditional knockin promotes that. IKKα kinase inhibitors prevented LPS-induced pulmonary metastasis. These findings reveal the promotional role of the HECTD3-IKKα axis in tumor hematogenous metastasis and provide a potential strategy for tumor metastasis prevention.
Collapse
Affiliation(s)
- Fubing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Huichun Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Department of Pathology, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Ji Xiao
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, 510632, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Maobo Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Wenjing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Li Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yingying Wu
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Fei Ge
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhen Li
- Department of the Third Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Wenhui Zhou
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Yi Wen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Zhenzhen Liu
- Department of Breast disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Yanjie Kong
- Biobank, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
6
|
Tan SYX, Zhang J, Tee WW. Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Front Cell Dev Biol 2022; 10:931493. [PMID: 35757000 PMCID: PMC9213816 DOI: 10.3389/fcell.2022.931493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Epigenetics comprise a diverse array of reversible and dynamic modifications to the cell’s genome without implicating any DNA sequence alterations. Both the external environment surrounding the organism, as well as the internal microenvironment of cells and tissues, contribute to these epigenetic processes that play critical roles in cell fate specification and organismal development. On the other hand, dysregulation of epigenetic activities can initiate and sustain carcinogenesis, which is often augmented by inflammation. Chronic inflammation, one of the major hallmarks of cancer, stems from proinflammatory cytokines that are secreted by tumor and tumor-associated cells in the tumor microenvironment. At the same time, inflammatory signaling can establish positive and negative feedback circuits with chromatin to modulate changes in the global epigenetic landscape. In this review, we provide an in-depth discussion of the interconnected crosstalk between epigenetics and inflammation, specifically how epigenetic mechanisms at different hierarchical levels of the genome control inflammatory gene transcription, which in turn enact changes within the cell’s epigenomic profile, especially in the context of inflammation-induced cancer.
Collapse
Affiliation(s)
- Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Wu Q, Liu F, Ge M, Laster KV, Wei L, Du R, Jiang M, Zhang J, Zhi Y, Jin G, Zhao S, Kim DJ, Dong Z, Liu K. BRD4 drives esophageal squamous cell carcinoma growth by promoting RCC2 expression. Oncogene 2022; 41:347-360. [PMID: 34750516 DOI: 10.1038/s41388-021-02099-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The low survival rate of esophageal squamous cell carcinoma patients is primarily attributed to technical limitations and a lack of insight regarding the molecular mechanisms contributing to its progression. Alterations in epigenetic modulators are critical to cancer development and prognosis. BRD4, a chromatin reader protein, plays an essential role in regulating oncogene expression. Here, we investigated the contributing role of BRD4 and its related mechanisms in the context of ESCC tumor progression. Our observations showed that BRD4 transcript and protein expression levels are significantly increased in ESCC patient tissues. Genetic or pharmacological inhibition of BRD4 suppressed ESCC cell proliferation in vitro and in vivo. Proteomic and transcriptomic analyses were subsequently used to deduce the potential targets of BRD4. Mechanistic studies showed that RCC2 is a downstream target of BRD4. Inhibition of either BRD4 or RCC2 resulted in decreased ESCC cell proliferation. The BRD4-TP73 interaction facilitated the binding of BRD4 complex to the promoter region of RCC2, and subsequently modulated RCC2 transcription. Furthermore, targeting BRD4 with inhibitors significantly decreased tumor volume in ESCC PDX models, indicating that BRD4 expression may contribute to tumor progression. Collectively, these findings suggest that BRD4 inhibition could be a promising strategy to treat ESCC by downregulating RCC2.
Collapse
Affiliation(s)
- Qiong Wu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Fangfang Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Mengmeng Ge
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | | | - Lixiao Wei
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Ruijuan Du
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Ming Jiang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Jing Zhang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Yafei Zhi
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Guoguo Jin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.,The Henan Luoyang Orthopedic Hospital, Zhengzhou, 450000, Henan, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.,Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dong Joon Kim
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
| | - Zigang Dong
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450000, Henan, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450000, Henan, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China. .,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
8
|
Zhou K, Zhuang S, Liu F, Chen Y, Li Y, Wang S, Li Y, Wen H, Lin X, Wang J, Huang Y, He C, Xu N, Li Z, Xu L, Zhang Z, Chen LF, Chen R, Liu M. Disrupting the Cdk9/Cyclin T1 heterodimer of 7SK snRNP for the Brd4 and AFF1/4 guided reconstitution of active P-TEFb. Nucleic Acids Res 2021; 50:750-762. [PMID: 34935961 PMCID: PMC8789079 DOI: 10.1093/nar/gkab1228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023] Open
Abstract
P-TEFb modulates RNA polymerase II elongation through alternative interaction with negative and positive regulation factors. While inactive P-TEFbs are mainly sequestered in the 7SK snRNP complex in a chromatin-free state, most of its active forms are in complex with its recruitment factors, Brd4 and SEC, in a chromatin-associated state. Thus, switching from inactive 7SK snRNP to active P-TEFb (Brd4/P-TEFb or SEC/P-TEFb) is essential for global gene expression. Although it has been shown that cellular signaling stimulates the disruption of 7SK snRNP, releasing dephosphorylated and catalytically inactive P-TEFb, little is known about how the inactive released P-TEFb is reactivated. Here, we show that the Cdk9/CycT1 heterodimer released from 7SK snRNP is completely dissociated into monomers in response to stress. Brd4 or SEC then recruits monomerized Cdk9 and CycT1 to reassemble the core P-TEFb. Meanwhile, the binding of monomeric dephosphorylated Cdk9 to either Brd4 or SEC induces the autophosphorylation of T186 of Cdk9. Finally, the same mechanism is employed during nocodazole released entry into early G1 phase of cell cycle. Therefore, our studies demonstrate a novel mechanism by which Cdk9 and CycT1 monomers are reassembled on chromatin to form active P-TEFb by its interaction with Brd4 or SEC to regulate transcription.
Collapse
Affiliation(s)
- Kai Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Songkuan Zhuang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Fulong Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yanheng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - You Li
- Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| | - Shihui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuxuan Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Huixin Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Xiaohua Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Jie Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yue Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Cailing He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Nan Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Zongshu Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Lang Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Zixuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruichuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
9
|
Drumond-Bock AL, Bieniasz M. The role of distinct BRD4 isoforms and their contribution to high-grade serous ovarian carcinoma pathogenesis. Mol Cancer 2021; 20:145. [PMID: 34758842 PMCID: PMC8579545 DOI: 10.1186/s12943-021-01424-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive type of ovarian cancer, often diagnosed at advanced stages. Molecularly, HGSOC shows high degree of genomic instability associated with large number of genetic alterations. BRD4 is the 4th most amplified gene in HGSOC, which correlates with poor patients' prognosis. BRD4 is constitutively expressed and generates two proteins, BRD4 long (BRD4-L) and BRD4 short (BRD4-S). Both isoforms contain bromodomains that bind to lysine-acetylated histones. Amongst other functions, BRD4 participates in chromatin organization, acetylation of histones, transcriptional control and DNA damage repair. In cancer patients with amplified BRD4, the increased activity of BRD4 is associated with higher expression of oncogenes, such as MYC, NOTCH3 and NRG1. BRD4-driven oncogenes promote increased tumor cells proliferation, genetic instability, epithelial-mesenchymal transition, metastasis and chemoresistance. Ablation of BRD4 activity can be successfully achieved with bromodomain inhibitors (BETi) and degraders, and it has been applied in pre-clinical and clinical settings. Inhibition of BRD4 function has an effective anti-cancer effect, reducing tumor growth whether ablated by single agents or in combination with other drugs. When combined with standard chemotherapy, BETi are capable of sensitizing highly resistant ovarian cancer cell lines to platinum drugs. Despite the evidence that BRD4 amplification in ovarian cancer contributes to poor patient prognosis, little is known about the specific mechanisms by which BRD4 drives tumor progression. In addition, newly emerging data revealed that BRD4 isoforms exhibit contradicting functions in cancer. Therefore, it is paramount to expand studies elucidating distinct roles of BRD4-L and BRD4-S in HGSOC, which has important implications on development of therapeutic approaches targeting BRD4.
Collapse
Affiliation(s)
- Ana Luiza Drumond-Bock
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Magdalena Bieniasz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
10
|
Duan YC, Zhang SJ, Shi XJ, Jin LF, Yu T, Song Y, Guan YY. Research progress of dual inhibitors targeting crosstalk between histone epigenetic modulators for cancer therapy. Eur J Med Chem 2021; 222:113588. [PMID: 34107385 DOI: 10.1016/j.ejmech.2021.113588] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Abnormal epigenetics is a critical hallmark of human cancers. Anticancer drug discovery directed at histone epigenetic modulators has gained impressive advances with six drugs available for cancer therapy and numerous other candidates undergoing clinical trials. However, limited therapeutic profile, drug resistance, narrow safety margin, and dose-limiting toxicities pose intractable challenges for their clinical utility. Because histone epigenetic modulators undergo intricate crosstalk and act cooperatively to shape an aberrant epigenetic profile, co-targeting histone epigenetic modulators with a different mechanism of action has rapidly emerged as an attractive strategy to overcome the limitations faced by the single-target epigenetic inhibitors. In this review, we summarize in detail the crosstalk of histone epigenetic modulators in regulating gene transcription and the progress of dual epigenetic inhibitors targeting this crosstalk.
Collapse
Affiliation(s)
- Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Shao-Jie Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, Henan Province, PR China
| | - Lin-Feng Jin
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Tong Yu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yu Song
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yuan-Yuan Guan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| |
Collapse
|
11
|
Krischuns T, Lukarska M, Naffakh N, Cusack S. Influenza Virus RNA-Dependent RNA Polymerase and the Host Transcriptional Apparatus. Annu Rev Biochem 2021; 90:321-348. [PMID: 33770447 DOI: 10.1146/annurev-biochem-072820-100645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza virus RNA-dependent RNA polymerase (FluPol) transcribes the viral RNA genome in the infected cell nucleus. In the 1970s, researchers showed that viral transcription depends on host RNA polymerase II (RNAP II) activity and subsequently that FluPol snatches capped oligomers from nascent RNAP II transcripts to prime its own transcription. Exactly how this occurs remains elusive. Here, we review recent advances in the mechanistic understanding of FluPol transcription and early events in RNAP II transcription that are relevant to cap-snatching. We describe the known direct interactions between FluPol and the RNAP II C-terminal domain and summarize the transcription-related host factors that have been found to interact with FluPol. We also discuss open questions regarding how FluPol may be targeted to actively transcribing RNAP II and the exact context and timing of cap-snatching, which is presumed to occur after cap completion but before the cap is sequestered by the nuclear cap-binding complex.
Collapse
Affiliation(s)
- Tim Krischuns
- Unité Biologie des ARN et Virus Influenza, Département de Virologie, Institut Pasteur, CNRS UMR 3569, F-75015 Paris, France; ,
| | - Maria Lukarska
- European Molecular Biology Laboratory, 38042 Grenoble CEDEX 9, France; .,Current affiliation: Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA;
| | - Nadia Naffakh
- Unité Biologie des ARN et Virus Influenza, Département de Virologie, Institut Pasteur, CNRS UMR 3569, F-75015 Paris, France; ,
| | - Stephen Cusack
- European Molecular Biology Laboratory, 38042 Grenoble CEDEX 9, France;
| |
Collapse
|
12
|
Qi Z, Yalikong A, Zhang J, Cai S, Li B, Di S, Lv Z, Xu E, Zhong Y, Zhou P. HDAC2 promotes the EMT of colorectal cancer cells and via the modular scaffold function of ENSG00000274093.1. J Cell Mol Med 2021; 25:1190-1197. [PMID: 33325150 PMCID: PMC7812252 DOI: 10.1111/jcmm.16186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/26/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase 2 (HDAC2), a member of the Histone deacetylase family, plays a vital role in various carcinomas. In this study, we identified that HDAC2 expression levels are associated with liver metastasis, higher T stages and poor prognosis in colorectal cancer. HDAC2 down-regulation via lentivirus-mediated expression of HDAC2-targeting shRNA reduced the in vitro migration and invasion ability of HCT116 cell as well as their liver metastasis in nude mouse xenografts. Mechanistically, HDAC2 promotes epithelial-mesenchymal transition (EMT) in colorectal cancer cells by combining HDAC1 with EZH2 (a key histone methyltransferase), possibly through the modular scaffold function of a new lncRNA, ENSG00000274093.1. HDAC2 thus appears to promote CRC cell migration and invasion through binding HDAC1 and EZH2 via ENSG00000274093.1.
Collapse
Affiliation(s)
- Zhi‐Peng Qi
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Ayimukedisi Yalikong
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Jia‐Wei Zhang
- Department of internal medicine of Xuhui HospitalAffiliated Zhongshan HospitalFudan UniversityShanghaiChina
| | - Shi‐Lun Cai
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Bing Li
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Sun Di
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Zhen‑Tao Lv
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - En‐Pan Xu
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Yun‐Shi Zhong
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Ping‐Hong Zhou
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| |
Collapse
|
13
|
Komar D, Juszczynski P. Rebelled epigenome: histone H3S10 phosphorylation and H3S10 kinases in cancer biology and therapy. Clin Epigenetics 2020; 12:147. [PMID: 33054831 PMCID: PMC7556946 DOI: 10.1186/s13148-020-00941-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background With the discovery that more than half of human cancers harbor mutations in chromatin proteins, deregulation of epigenetic mechanisms has been recognized a hallmark of malignant transformation. Post-translational modifications (PTMs) of histone proteins, as main components of epigenetic regulatory machinery, are also broadly accepted as therapeutic target. Current “epigenetic” therapies target predominantly writers, erasers and readers of histone acetylation and (to a lesser extent) methylation, leaving other types of PTMs largely unexplored. One of them is the phosphorylation of serine 10 on histone H3 (H3S10ph). Main body H3S10ph is emerging as an important player in the initiation and propagation of cancer, as it facilitates cellular malignant transformation and participates in fundamental cellular functions. In normal cells this histone mark dictates the hierarchy of additional histone modifications involved in the formation of protein binding scaffolds, transcriptional regulation, blocking repressive epigenetic information and shielding gene regions from heterochromatin spreading. During cell division, this mark is essential for chromosome condensation and segregation. It is also involved in the function of specific DNA–RNA hybrids, called R-loops, which modulate transcription and facilitate chromosomal instability. Increase in H3S10ph is observed in numerous cancer types and its abundance has been associated with inferior prognosis. Many H3S10-kinases, including MSK1/2, PIM1, CDK8 and AURORA kinases, have been long considered targets in cancer therapy. However, since these proteins also participate in other critical processes, including signal transduction, apoptotic signaling, metabolic fitness and transcription, their chromatin functions are often neglected. Conclusions H3S10ph and enzymes responsible for deposition of this histone modification are important for chromatin activity and oncogenesis. Epigenetic-drugs targeting this axis of modifications, potentially in combination with conventional or targeted therapy, provide a promising angle in search for knowledge-driven therapeutic strategies in oncology.
Collapse
Affiliation(s)
- Dorota Komar
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Gandhi 14 Str, 02-776, Warsaw, Poland.
| | - Przemyslaw Juszczynski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Gandhi 14 Str, 02-776, Warsaw, Poland
| |
Collapse
|
14
|
Romidepsin (FK228) regulates the expression of the immune checkpoint ligand PD-L1 and suppresses cellular immune functions in colon cancer. Cancer Immunol Immunother 2020; 70:61-73. [PMID: 32632663 PMCID: PMC7838139 DOI: 10.1007/s00262-020-02653-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Romidepsin (FK228), a histone deacetylase inhibitor (HDACi), has anti-tumor effects against several types of solid tumors. Studies have suggested that HDACi could upregulate PD-L1 expression in tumor cells and change the state of anti-tumor immune responses in vivo. However, the influence of enhanced PD-L1 expression in tumor cells induced by romidepsin on anti-tumor immune responses is still under debate. So, the purpose of this study was to explore the anti-tumor effects and influence on immune responses of romidepsin in colon cancer. The results indicated that romidepsin inhibited proliferation, induced G0/G1 cell cycle arrest and increased apoptosis in CT26 and MC38 cells. Romidepsin treatment increased PD-L1 expression in vivo and in vitro via increasing the acetylation levels of histones H3 and H4 and regulating the transcription factor BRD4. In subcutaneous transplant tumor mice and colitis-associated cancer (CAC) mice, romidepsin increased the percentage of FOXP3+ regulatory T cells (Tregs), decreased the ratio of Th1/Th2 cells and the percentage of IFN-γ+ CD8+ T cells in the peripheral blood and the tumor microenvironment. Upon combination with an anti-PD-1 antibody, the anti-tumor effects of romidepsin were enhanced and the influence on CD4+ and CD8+ T cells was partially reversed. Therefore, the combination of romidepsin and anti-PD-1 immunotherapy provides a more potential treatment for colon cancer.
Collapse
|
15
|
Wimalasena VK, Wang T, Sigua LH, Durbin AD, Qi J. Using Chemical Epigenetics to Target Cancer. Mol Cell 2020; 78:1086-1095. [PMID: 32407673 PMCID: PMC8033568 DOI: 10.1016/j.molcel.2020.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Transcription is epigenetically regulated by the orchestrated function of chromatin-binding proteins that tightly control the expression of master transcription factors, effectors, and supportive housekeeping genes required for establishing and propagating the normal and malignant cell state. Rapid advances in chemical biology and functional genomics have facilitated exploration of targeting epigenetic proteins, yielding effective strategies to target transcription while reducing toxicities to untransformed cells. Here, we review recent developments in conventional active site and allosteric inhibitors, peptidomimetics, and novel proteolysis-targeted chimera (PROTAC) technology that have deepened our understanding of transcriptional processes and led to promising preclinical compounds for therapeutic translation, particularly in cancer.
Collapse
Affiliation(s)
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Logan H Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Liu T, Wan Y, Xiao Y, Xia C, Duan G. Dual-Target Inhibitors Based on HDACs: Novel Antitumor Agents for Cancer Therapy. J Med Chem 2020; 63:8977-9002. [PMID: 32320239 DOI: 10.1021/acs.jmedchem.0c00491] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating target gene expression. They have been highlighted as a novel category of anticancer targets, and their inhibition can induce apoptosis, differentiation, and growth arrest in cancer cells. In view of the fact that HDAC inhibitors and other antitumor agents, such as BET inhibitors, topoisomerase inhibitors, and RTK pathway inhibitors, exert a synergistic effect on cellular processes in cancer cells, the combined inhibition of two targets is regarded as a rational strategy to improve the effectiveness of these single-target drugs for cancer treatment. In this review, we discuss the theoretical basis for designing HDAC-involved dual-target drugs and provide insight into the structure-activity relationships of these dual-target agents.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Yuliang Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Guiyun Duan
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| |
Collapse
|
17
|
Pan Z, Li X, Wang Y, Jiang Q, Jiang L, Zhang M, Zhang N, Wu F, Liu B, He G. Discovery of Thieno[2,3-d]pyrimidine-Based Hydroxamic Acid Derivatives as Bromodomain-Containing Protein 4/Histone Deacetylase Dual Inhibitors Induce Autophagic Cell Death in Colorectal Carcinoma Cells. J Med Chem 2020; 63:3678-3700. [PMID: 32153186 DOI: 10.1021/acs.jmedchem.9b02178] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhaoping Pan
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Xiang Li
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Yujia Wang
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Qinglin Jiang
- School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu 610500, PR China
| | - Li Jiang
- School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu 610500, PR China
| | - Min Zhang
- School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu 610500, PR China
| | - Nan Zhang
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Fengbo Wu
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
18
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
19
|
Manzotti G, Ciarrocchi A, Sancisi V. Inhibition of BET Proteins and Histone Deacetylase (HDACs): Crossing Roads in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11030304. [PMID: 30841549 PMCID: PMC6468908 DOI: 10.3390/cancers11030304] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Histone DeACetylases (HDACs) are enzymes that remove acetyl groups from histones and other proteins, regulating the expression of target genes. Pharmacological inhibition of these enzymes re-shapes chromatin acetylation status, confusing boundaries between transcriptionally active and quiescent chromatin. This results in reinducing expression of silent genes while repressing highly transcribed genes. Bromodomain and Extraterminal domain (BET) proteins are readers of acetylated chromatin status and accumulate on transcriptionally active regulatory elements where they serve as scaffold for the building of transcription-promoting complexes. The expression of many well-known oncogenes relies on BET proteins function, indicating BET inhibition as a strategy to counteract their activity. BETi and HDACi share many common targets and affect similar cellular processes to the point that combined inhibition of both these classes of proteins is regarded as a strategy to improve the effectiveness of these drugs in cancer. In this work, we aim to discuss the molecular basis of the interplay between HDAC and BET proteins, pointing at chromatin acetylation as a crucial node of their functional interaction. We will also describe the state of the art of their dual inhibition in cancer therapy. Finally, starting from their mechanism of action we will provide a speculative perspective on how these drugs may be employed in combination with standard therapies to improve effectiveness and/or overcome resistance.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
20
|
Wang Z, Liu S, Tao Y. Regulation of chromatin remodeling through RNA polymerase II stalling in the immune system. Mol Immunol 2019; 108:75-80. [PMID: 30784765 DOI: 10.1016/j.molimm.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
RNA polymerase II (Pol II) binds to promoter-proximal regions of inducible target genes that are controlled and not transcribed by several negative elongation factors, which is known as Pol II stalling. The occurrence of stalling is due to particular modification signatures and structural conformations of chromatin that affect Pol II elongation. The existence and physiological importance of Pol II stalling implies that there is a dynamic balance in chromatin regulation prior to endogenous or exogenous stimulation. In this review, we discuss the effects of ATP-dependent chromatin remodeling complexes and histone modification via transcriptional machinery Pol II C-terminal domain phosphorylated at serine 5 (S5P RNAPII) initiation and S2P RNAPII elongation on the expression or silence of specific genes after the production of activated or differentiated signals or cytokines. The response occurs immediately during immune cell development and function, and it also includes the generation of immunological memories. This summary suggests that the host immune response genes involve a novel mechanism of selectively regulatory chromatin remodeling, a fundamental and crucial aspect of epigenetic regulation.
Collapse
Affiliation(s)
- Zuli Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
21
|
Sartor GC, Malvezzi AM, Kumar A, Andrade NS, Wiedner HJ, Vilca SJ, Janczura KJ, Bagheri A, Al-Ali H, Powell SK, Brown PT, Volmar CH, Foster TC, Zeier Z, Wahlestedt C. Enhancement of BDNF Expression and Memory by HDAC Inhibition Requires BET Bromodomain Reader Proteins. J Neurosci 2019; 39:612-626. [PMID: 30504275 PMCID: PMC6343644 DOI: 10.1523/jneurosci.1604-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/05/2018] [Accepted: 11/11/2018] [Indexed: 02/01/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors may have therapeutic utility in multiple neurological and psychiatric disorders, but the underlying mechanisms remain unclear. Here, we identify BRD4, a BET bromodomain reader of acetyl-lysine histones, as an essential component involved in potentiated expression of brain-derived neurotrophic factor (BDNF) and memory following HDAC inhibition. In in vitro studies, we reveal that pharmacological inhibition of BRD4 reversed the increase in BDNF mRNA induced by the class I/IIb HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Knock-down of HDAC2 and HDAC3, but not other HDACs, increased BDNF mRNA expression, whereas knock-down of BRD4 blocked these effects. Using dCas9-BRD4, locus-specific targeting of BRD4 to the BDNF promoter increased BDNF mRNA. In additional studies, RGFP966, a pharmacological inhibitor of HDAC3, elevated BDNF expression and BRD4 binding to the BDNF promoter, effects that were abrogated by JQ1 (an inhibitor of BRD4). Examining known epigenetic targets of BRD4 and HDAC3, we show that H4K5ac and H4K8ac modifications and H4K5ac enrichment at the BDNF promoter were elevated following RGFP966 treatment. In electrophysiological studies, JQ1 reversed RGFP966-induced enhancement of LTP in hippocampal slice preparations. Last, in behavioral studies, RGFP966 increased subthreshold novel object recognition memory and cocaine place preference in male C57BL/6 mice, effects that were reversed by cotreatment with JQ1. Together, these data reveal that BRD4 plays a key role in HDAC3 inhibitor-induced potentiation of BDNF expression, neuroplasticity, and memory.SIGNIFICANCE STATEMENT Some histone deacetylase (HDAC) inhibitors are known to have neuroprotective and cognition-enhancing properties, but the underlying mechanisms have yet to be fully elucidated. In the current study, we reveal that BRD4, an epigenetic reader of histone acetylation marks, is necessary for enhancing brain-derived neurotrophic factor (BDNF) expression and improved memory following HDAC inhibition. Therefore, by identifying novel epigenetic regulators of BDNF expression, these data may lead to new therapeutic targets for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gregory C Sartor
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136,
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Andrea M Malvezzi
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Ashok Kumar
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, and
| | - Nadja S Andrade
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Hannah J Wiedner
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Samantha J Vilca
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Karolina J Janczura
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Amir Bagheri
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Samuel K Powell
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Peyton T Brown
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Claude H Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Thomas C Foster
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, and
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136,
| |
Collapse
|
22
|
Habibian J, Ferguson BS. The Crosstalk between Acetylation and Phosphorylation: Emerging New Roles for HDAC Inhibitors in the Heart. Int J Mol Sci 2018; 20:E102. [PMID: 30597863 PMCID: PMC6337125 DOI: 10.3390/ijms20010102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 12/22/2022] Open
Abstract
Approximately five million United States (U.S.) adults are diagnosed with heart failure (HF), with eight million U.S. adults projected to suffer from HF by 2030. With five-year mortality rates following HF diagnosis approximating 50%, novel therapeutic treatments are needed for HF patients. Pre-clinical animal models of HF have highlighted histone deacetylase (HDAC) inhibitors as efficacious therapeutics that can stop and potentially reverse cardiac remodeling and dysfunction linked with HF development. HDACs remove acetyl groups from nucleosomal histones, altering DNA-histone protein electrostatic interactions in the regulation of gene expression. However, HDACs also remove acetyl groups from non-histone proteins in various tissues. Changes in histone and non-histone protein acetylation plays a key role in protein structure and function that can alter other post translational modifications (PTMs), including protein phosphorylation. Protein phosphorylation is a well described PTM that is important for cardiac signal transduction, protein activity and gene expression, yet the functional role for acetylation-phosphorylation cross-talk in the myocardium remains less clear. This review will focus on the regulation and function for acetylation-phosphorylation cross-talk in the heart, with a focus on the role for HDACs and HDAC inhibitors as regulators of acetyl-phosphorylation cross-talk in the control of cardiac function.
Collapse
Affiliation(s)
- Justine Habibian
- Cellular and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
23
|
Marié IJ, Chang HM, Levy DE. HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 2018; 215:3194-3212. [PMID: 30463877 PMCID: PMC6279398 DOI: 10.1084/jem.20180520] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/15/2018] [Accepted: 10/19/2018] [Indexed: 01/12/2023] Open
Abstract
In contrast to the common role of histone deacetylases (HDACs) for gene repression, HDAC activity provides a required positive function for IFN-stimulated gene (ISG) expression. Here, we show that HDAC1/2 as components of the Sin3A complex are required for ISG transcriptional elongation but not for recruitment of RNA polymerase or transcriptional initiation. Transcriptional arrest by HDAC inhibition coincides with failure to recruit the epigenetic reader Brd4 and elongation factor P-TEFb due to sequestration of Brd4 on hyperacetylated chromatin. Brd4 availability is regulated by an equilibrium cycle between opposed acetyltransferase and deacetylase activities that maintains a steady-state pool of free Brd4 available for recruitment to inducible promoters. An ISG expression signature is a hallmark of interferonopathies and other autoimmune diseases. Combined inhibition of HDAC1/2 and Brd4 resolved the aberrant ISG expression detected in cells derived from patients with two inherited interferonopathies, ISG15 and USP18 deficiencies, defining a novel therapeutic approach to ISG-associated autoimmune diseases.
Collapse
Affiliation(s)
- Isabelle J Marié
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Hao-Ming Chang
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - David E Levy
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| |
Collapse
|
24
|
Zhang T, Wei G, Millard CJ, Fischer R, Konietzny R, Kessler BM, Schwabe JWR, Brockdorff N. A variant NuRD complex containing PWWP2A/B excludes MBD2/3 to regulate transcription at active genes. Nat Commun 2018; 9:3798. [PMID: 30228260 PMCID: PMC6143588 DOI: 10.1038/s41467-018-06235-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Transcriptional regulation by chromatin is a highly dynamic process directed through the recruitment and coordinated action of epigenetic modifiers and readers of these modifications. Using an unbiased proteomic approach to find interactors of H3K36me3, a modification enriched on active chromatin, here we identify PWWP2A and HDAC2 among the top interactors. PWWP2A and its paralog PWWP2B form a stable complex with NuRD subunits MTA1/2/3:HDAC1/2:RBBP4/7, but not with MBD2/3, p66α/β, and CHD3/4. PWWP2A competes with MBD3 for binding to MTA1, thus defining a new variant NuRD complex that is mutually exclusive with the MBD2/3 containing NuRD. In mESCs, PWWP2A/B is most enriched at highly transcribed genes. Loss of PWWP2A/B leads to increases in histone acetylation predominantly at highly expressed genes, accompanied by decreases in Pol II elongation. Collectively, these findings suggest a role for PWWP2A/B in regulating transcription through the fine-tuning of histone acetylation dynamics at actively transcribed genes. Transcription regulation requires recruitment of different epigenetic regulators to the chromatin. Here the authors provide evidence that an H3K36me3 reader PWWP2A forms a variant NuRD complex and plays a role in regulating transcription and histone acetylation dynamics.
Collapse
Affiliation(s)
- Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Christopher J Millard
- Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| | - Rebecca Konietzny
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Agilent Technologies, Hewlett-Packard-Str. 8, 76337, Waldbronn, Germany
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| | - John W R Schwabe
- Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
25
|
Wilson AJ, Stubbs M, Liu P, Ruggeri B, Khabele D. The BET inhibitor INCB054329 reduces homologous recombination efficiency and augments PARP inhibitor activity in ovarian cancer. Gynecol Oncol 2018; 149:575-584. [PMID: 29567272 DOI: 10.1016/j.ygyno.2018.03.049] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Homologous recombination (HR)-proficient ovarian tumors have poorer clinical outcomes and show resistance to poly ADP ribose polymerase inhibitors (PARPi). A subset of HR-proficient ovarian tumors show amplification in bromodomain and extra-terminal (BET) genes such as BRD4. We aimed to test the hypothesis that BRD4 inhibition sensitizes ovarian cancer cells to PARPi by reducing HR efficiency and increasing DNA damage. METHODS HR-proficient ovarian cancer cell lines (OVCAR-3, OVCAR-4, SKOV-3, UWB1.289+BRCA1) were treated with BRD4-targeting siRNA, novel (INB054329, INCB057643) and established (JQ1) BET inhibitors (BETi) and PARPi (olaparib, rucaparib). Cell growth and viability were assessed by sulforhodamine B assays in vitro, and in SKOV-3 and ovarian cancer patient-derived xenografts in vivo. DNA damage and repair (pH2AX, RAD51 and BRCA1 foci formation, and DRGFP HR reporter activity), apoptosis markers (cleaved PARP, cleaved caspase-3, Bax) and proliferation markers (PCNA, Ki67) were assessed by immunofluorescence and western blot. RESULTS In cultured cells, inhibition of BRD4 by siRNA or INCB054329 reduced expression and function of BRCA1 and RAD51, reduced HR reporter activity, and sensitized the cells to olaparib-induced growth inhibition, DNA damage induction and apoptosis. Synergy was observed between all BETi tested and PARPi. INCB054329 and olaparib also co-operatively inhibited xenograft tumor growth, accompanied by reduced BRCA1 expression and proliferation, and increased apoptosis and DNA damage. CONCLUSIONS These results provide strong rationale for using BETi to extend therapeutic efficacy of PARPi to HR-proficient ovarian tumors and could benefit a substantial number of women diagnosed with this devastating disease.
Collapse
Affiliation(s)
- Andrew J Wilson
- Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| | | | - Phillip Liu
- Incyte Corporation, Wilmington, DE, United States
| | | | - Dineo Khabele
- The University of Kansas Medical Center, Kansas City, KS, United States; The University of Kansas Cancer Center, Kansas City, KS, United States.
| |
Collapse
|
26
|
Zhu XX, Yan YW, Chen D, Ai CZ, Lu X, Xu SS, Jiang S, Zhong GS, Chen DB, Jiang YZ. Long non-coding RNA HoxA-AS3 interacts with EZH2 to regulate lineage commitment of mesenchymal stem cells. Oncotarget 2018; 7:63561-63570. [PMID: 27566578 PMCID: PMC5325385 DOI: 10.18632/oncotarget.11538] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/15/2016] [Indexed: 01/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important role in gene regulation and are involving in diverse cellular processes. However, their roles in reprogramming of gene expression profiles during lineage commitment and maturation of mesenchymal stem cells (MSCs) remain poorly understood. In the current study, we characterize the expression of a lncRNA, HoxA-AS3, during the differentiation of MSCs. We showed that HoxA-AS3 is increased upon adipogenic induction of MSCs, while HoxA-AS3 remains unaltered during osteogenic induction. Silencing of HoxA-AS3 in MSCs resulted in decreased adipogenesis and expression of adipogenic markers, PPARG, CEBPA, FABP4 and ADIPOQ. Conversely, knockdown of HoxA-AS3 expression in MSCs exhibited an enhanced osteogenesis and osteogenic markers expression, including RUNX2, SP7, COL1A1, IBSP, BGLAP and SPP1. Mechanistically, HoxA-AS3 interacts with Enhancer Of Zeste 2 (EZH2) and is required for H3 lysine-27 trimethylation (H3K27me3) of key osteogenic transcription factor Runx2. Our data reveal that HoxA-AS3 acts as an epigenetic switch that determines the lineage specification of MSC.
Collapse
Affiliation(s)
- Xin-Xing Zhu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Ya-Wei Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Demeng Chen
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Chun-Zhi Ai
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Xifeng Lu
- Department of Physiology, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Shan-Shan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Shan Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Gen-Shen Zhong
- Henan Key Laboratory of Neural Regeneration and Repairment, The First affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Dong-Bao Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, CA, USA
| | - Yi-Zhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
27
|
Li Y, Liu M, Chen LF, Chen R. P-TEFb: Finding its ways to release promoter-proximally paused RNA polymerase II. Transcription 2018; 9:88-94. [PMID: 28102758 PMCID: PMC5834220 DOI: 10.1080/21541264.2017.1281864] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/26/2022] Open
Abstract
The release of a paused Pol II depends on the recruitment of P-TEFb. Recent studies showed that both active P-TEFb and inactive P-TEFb (7SK snRNP) can be recruited to the promoter regions of global genes by different mechanisms. Here, we summarize the recent advances on these distinct recruitment mechanisms.
Collapse
Affiliation(s)
- You Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lin-Feng Chen
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruichuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
Saavedra F, Rivera C, Rivas E, Merino P, Garrido D, Hernández S, Forné I, Vassias I, Gurard-Levin ZA, Alfaro IE, Imhof A, Almouzni G, Loyola A. PP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4. Nucleic Acids Res 2017; 45:11700-11710. [PMID: 28977641 PMCID: PMC5714232 DOI: 10.1093/nar/gkx775] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/24/2017] [Indexed: 11/12/2022] Open
Abstract
Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iβ. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iβ protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iβ depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iβ and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4.
Collapse
Affiliation(s)
| | | | | | - Paola Merino
- Fundación Ciencia & Vida, Santiago 7780272, Chile
| | | | | | - Ignasi Forné
- Munich Center of Integrated Protein Science and Biomedical Center, Ludwig-Maximilians University of Munich, Planegg-Martinsried 80336, Germany
| | - Isabelle Vassias
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | - Zachary A Gurard-Levin
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | - Iván E Alfaro
- Fundación Ciencia & Vida, Santiago 7780272, Chile.,Departamento de Biología. Facultad de Ciencias Naturales y Exactas. Universidad de Playa Ancha, Valparaíso, Chile
| | - Axel Imhof
- Munich Center of Integrated Protein Science and Biomedical Center, Ludwig-Maximilians University of Munich, Planegg-Martinsried 80336, Germany
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | | |
Collapse
|
29
|
Xu YM, Yu FY, Lau ATY. Discovering Epimodifications of the Genome, Transcriptome, Proteome, and Metabolome: the Quest for Conquering the Uncharted Epi(c) Territories. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0103-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Woldemichael BT, Jawaid A, Kremer EA, Gaur N, Krol J, Marchais A, Mansuy IM. The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner. Nat Commun 2016; 7:12594. [PMID: 27558292 PMCID: PMC5007330 DOI: 10.1038/ncomms12594] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022] Open
Abstract
Memory formation is a complex cognitive function regulated by coordinated synaptic and nuclear processes in neurons. In mammals, it is controlled by multiple molecular activators and suppressors, including the key signalling regulator, protein phosphatase 1 (PP1). Here, we show that memory control by PP1 involves the miR-183/96/182 cluster and its selective regulation during memory formation. Inhibiting nuclear PP1 in the mouse brain, or training on an object recognition task similarly increases miR-183/96/182 expression in the hippocampus. Mimicking this increase by miR-183/96/182 overexpression enhances object memory, while knocking-down endogenous miR-183/96/182 impairs it. This effect involves the modulation of several plasticity-related genes, with HDAC9 identified as an important functional target. Further, PP1 controls miR-183/96/182 in a transcription-independent manner through the processing of their precursors. These findings provide novel evidence for a role of miRNAs in memory formation and suggest the implication of PP1 in miRNAs processing in the adult brain.
Collapse
Affiliation(s)
- Bisrat T Woldemichael
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Ali Jawaid
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Eloïse A Kremer
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Niharika Gaur
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Jacek Krol
- Friedrich Miescher Institute for Biomedical Research, Basel CH-4048, Switzerland
| | - Antonin Marchais
- Institute of Agricultural Sciences, Swiss Federal Institute of Technology, Zurich CH-8092, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| |
Collapse
|
31
|
HMBA Enhances Prostratin-Induced Activation of Latent HIV-1 via Suppressing the Expression of Negative Feedback Regulator A20/TNFAIP3 in NF-κB Signaling. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5173205. [PMID: 27529070 PMCID: PMC4978819 DOI: 10.1155/2016/5173205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/21/2016] [Indexed: 01/05/2023]
Abstract
In the past decade, much emphasis has been put on the transcriptional activation of HIV-1, which is proposed as a promised strategy for eradicating latent HIV-1 provirus. Two drugs, prostratin and hexamethylene bisacetamide (HMBA), have shown potent effects as inducers for releasing HIV-1 latency when used alone or in combination, although their cellular target(s) are currently not well understood, especially under drug combination. Here, we have shown that HMBA and prostratin synergistically release HIV-1 latency via different mechanisms. While prostratin strongly stimulates HMBA-induced HIV-1 transcription via improved P-TEFb activation, HMBA is capable of boosting NF-κB-dependent transcription initiation by suppressing prostratin-induced expression of the deubiquitinase A20, a negative feedback regulator in the NF-κB signaling pathway. In addition, HMBA was able to increase prostratin-induced phosphorylation and degradation of NF-κB inhibitor IκBα, thereby enhancing and prolonging prostratin-induced nuclear translocation of NF-κB, a prerequisite for stimulation of transcription initiation. Thus, by blocking the negative feedback circuit, HMBA functions as a signaling enhancer of the NF-κB signaling pathway.
Collapse
|
32
|
Lu X, Zhu X, Li Y, Liu M, Yu B, Wang Y, Rao M, Yang H, Zhou K, Wang Y, Chen Y, Chen M, Zhuang S, Chen LF, Liu R, Chen R. Multiple P-TEFbs cooperatively regulate the release of promoter-proximally paused RNA polymerase II. Nucleic Acids Res 2016; 44:6853-67. [PMID: 27353326 PMCID: PMC5001612 DOI: 10.1093/nar/gkw571] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/06/2016] [Indexed: 01/09/2023] Open
Abstract
The association of DSIF and NELF with initiated RNA Polymerase II (Pol II) is the general mechanism for inducing promoter-proximal pausing of Pol II. However, it remains largely unclear how the paused Pol II is released in response to stimulation. Here, we show that the release of the paused Pol II is cooperatively regulated by multiple P-TEFbs which are recruited by bromodomain-containing protein Brd4 and super elongation complex (SEC) via different recruitment mechanisms. Upon stimulation, Brd4 recruits P-TEFb to Spt5/DSIF via a recruitment pathway consisting of Med1, Med23 and Tat-SF1, whereas SEC recruits P-TEFb to NELF-A and NELF-E via Paf1c and Med26, respectively. P-TEFb-mediated phosphorylation of Spt5, NELF-A and NELF-E results in the dissociation of NELF from Pol II, thereby transiting transcription from pausing to elongation. Additionally, we demonstrate that P-TEFb-mediated Ser2 phosphorylation of Pol II is dispensable for pause release. Therefore, our studies reveal a co-regulatory mechanism of Brd4 and SEC in modulating the transcriptional pause release by recruiting multiple P-TEFbs via a Mediator- and Paf1c-coordinated recruitment network.
Collapse
Affiliation(s)
- Xiaodong Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Xinxing Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - You Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Bin Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yu Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Muhua Rao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Haiyang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Kai Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yanheng Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Meihua Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Songkuan Zhuang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Lin-Feng Chen
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Runzhong Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Ruichuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
33
|
Shi S, Liu K, Chen Y, Zhang S, Lin J, Gong C, Jin Q, Yang XJ, Chen R, Ji Z, Han A. Competitive Inhibition of Lysine Acetyltransferase 2B by a Small Motif of the Adenoviral Oncoprotein E1A. J Biol Chem 2016; 291:14363-14372. [PMID: 27143356 DOI: 10.1074/jbc.m115.697300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 12/26/2022] Open
Abstract
The adenovirus early region 1A (E1A) oncoprotein hijacks host cells via direct interactions with many key cellular proteins, such as KAT2B, also known as PCAF (p300/CBP associated factor). E1A binds the histone acetyltransferase (HAT) domain of KAT2B to repress its transcriptional activation. However, the molecular mechanism by which E1A inhibits the HAT activity is not known. Here we demonstrate that a short and relatively conserved N-terminal motif (cNM) in the intrinsically disordered E1A protein is crucial for KAT2B interaction, and inhibits its HAT activity through a direct competition with acetyl-CoA, but not its substrate histone H3. Molecular modeling together with a series of mutagenesis experiments suggests that the major helix of E1A cNM binds to a surface of the acetyl-CoA pocket of the KAT2B HAT domain. Moreover, transient expression of the cNM peptide is sufficient to inhibit KAT2B-specific H3 acetylation H3K14ac in vivo Together, our data define an essential motif cNM in N-terminal E1A as an acetyl-CoA entry blocker that directly associates with the entrance of acetyl-CoA binding pocket to block the HAT domain access to its cofactor.
Collapse
Affiliation(s)
- Shasha Shi
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Ke Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Yanheng Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Shijun Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Juanyu Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Chenfang Gong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Quanwen Jin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Xiang-Jiao Yang
- Goodman Cancer Centre, McGill University, and Department of Medicine, McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| | - Ruichuan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China.
| | - Zhiliang Ji
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China.
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China.
| |
Collapse
|
34
|
Stratton MS, McKinsey TA. Epigenetic regulation of cardiac fibrosis. J Mol Cell Cardiol 2016; 92:206-13. [PMID: 26876451 PMCID: PMC4987078 DOI: 10.1016/j.yjmcc.2016.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 01/01/2023]
Abstract
Fibrosis is defined as excess deposition of extracellular matrix (ECM), resulting in tissue scarring and organ dysfunction. In the heart, fibrosis may be reparative, replacing areas of myocyte loss with a structural scar following infarction, or reactive, which is triggered in the absence of cell death and involves interstitial ECM deposition in response to long-lasting stress. Interstitial fibrosis can increase the passive stiffness of the myocardium, resulting in impaired relaxation and diastolic dysfunction. Additionally, fibrosis can lead to disruption of electrical conduction in the heart, causing arrhythmias, and can limit myocyte oxygen availability and thus exacerbate myocardial ischemia. Here, we review recent studies that have illustrated key roles for epigenetic events in the control of pro-fibrotic gene expression, and highlight the potential of small molecules that target epigenetic regulators as a means of treating fibrotic cardiac diseases.
Collapse
Affiliation(s)
- Matthew S Stratton
- Department of Medicine, Division of Cardiology and Center for Fibrosis Research and Translation, University of Colorado Denver, 12700 E. 19th Ave, Aurora, CO 80045-0508, United States
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Center for Fibrosis Research and Translation, University of Colorado Denver, 12700 E. 19th Ave, Aurora, CO 80045-0508, United States.
| |
Collapse
|
35
|
Tyagi M, Weber J, Bukrinsky M, Simon GL. The effects of cocaine on HIV transcription. J Neurovirol 2015; 22:261-74. [PMID: 26572787 DOI: 10.1007/s13365-015-0398-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/01/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
Abstract
Illicit drug users are a high-risk population for infection with the human immunodeficiency virus (HIV). A strong correlation exists between prohibited drug use and an increased rate of HIV transmission. Cocaine stands out as one of the most frequently abused illicit drugs, and its use is correlated with HIV infection and disease progression. The central nervous system (CNS) is a common target for both drugs of abuse and HIV, and cocaine intake further accelerates neuronal injury in HIV patients. Although the high incidence of HIV infection in illicit drug abusers is primarily due to high-risk activities such as needle sharing and unprotected sex, several studies have demonstrated that cocaine enhances the rate of HIV gene expression and replication by activating various signal transduction pathways and downstream transcription factors. In order to generate mature HIV genomic transcript, HIV gene expression has to pass through both the initiation and elongation phases of transcription, which requires discrete transcription factors. In this review, we will provide a detailed analysis of the molecular mechanisms that regulate HIV transcription and discuss how cocaine modulates those mechanisms to upregulate HIV transcription and eventually HIV replication.
Collapse
Affiliation(s)
- Mudit Tyagi
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA. .,Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA.
| | - Jaime Weber
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Gary L Simon
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| |
Collapse
|
36
|
Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park IH, Kim TH. Histone Deacetylases Positively Regulate Transcription through the Elongation Machinery. Cell Rep 2015; 13:1444-1455. [PMID: 26549458 DOI: 10.1016/j.celrep.2015.10.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/26/2015] [Accepted: 10/06/2015] [Indexed: 01/10/2023] Open
Abstract
Transcription elongation regulates the expression of many genes, including oncogenes. Histone deacetylase (HDAC) inhibitors (HDACIs) block elongation, suggesting that HDACs are involved in gene activation. To understand this, we analyzed nascent transcription and elongation factor binding genome-wide after perturbation of elongation with small molecule inhibitors. We found that HDACI-mediated repression requires heat shock protein 90 (HSP90) activity. HDACIs promote the association of RNA polymerase II (RNAP2) and negative elongation factor (NELF), a complex stabilized by HSP90, at the same genomic sites. Additionally, HDACIs redistribute bromodomain-containing protein 4 (BRD4), a key elongation factor involved in enhancer activity. BRD4 binds to newly acetylated sites, and its occupancy at promoters and enhancers is reduced. Furthermore, HDACIs reduce enhancer activity, as measured by enhancer RNA production. Therefore, HDACs are required for limiting acetylation in gene bodies and intergenic regions. This facilitates the binding of elongation factors to properly acetylated promoters and enhancers for efficient elongation.
Collapse
Affiliation(s)
- Celeste B Greer
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics and Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yoon Jung Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Peng Xie
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael Q Zhang
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - In-Hyun Park
- Department of Genetics and Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
37
|
Jung M, Gelato KA, Fernández-Montalván A, Siegel S, Haendler B. Targeting BET bromodomains for cancer treatment. Epigenomics 2015; 7:487-501. [PMID: 26077433 DOI: 10.2217/epi.14.91] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The bromodomain and extraterminal (BET) subfamily of bromodomain-containing proteins has emerged in the last few years as an exciting, novel target group. BRD4, the best studied BET protein, is implicated in a number of hematological and solid tumors. This is linked to its role in modulating transcription elongation of essential genes involved in cell cycle and apoptosis such as c-Myc and BCL2. Potent BET inhibitors with promising antitumor efficacy in a number of preclinical cancer models have been identified in recent years. This led to clinical studies focusing mostly on the treatment of leukemia and lymphoma, and first encouraging signs of efficacy have already been reported. Here we discuss the biology of BRD4, its known interaction partners and implication in different tumor types. Further, we summarize the current knowledge on BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Marie Jung
- Global Drug Discovery, Bayer Pharma AG, D-13353 Berlin, Germany.,Institute of Chemistry & Biochemistry, Free University, D-14195 Berlin, Germany
| | - Kathy A Gelato
- Global Drug Discovery, Bayer Pharma AG, D-13353 Berlin, Germany
| | | | - Stephan Siegel
- Global Drug Discovery, Bayer Pharma AG, D-13353 Berlin, Germany
| | | |
Collapse
|
38
|
Jung I, Park J, Choi C, Kim D. Identification of novel trans-crosstalk between histone modifications via genome-wide analysis of maximal deletion effect. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0298-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Liu M, Li Y, Chen R. CaMKII: do not work too hard in the failing heart. J Pathol 2015; 235:669-71. [PMID: 25564824 DOI: 10.1002/path.4507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 12/17/2014] [Accepted: 01/02/2015] [Indexed: 11/05/2022]
Abstract
CaMKIIδ, a calcium/calmodulin-dependent protein kinase, plays pivotal roles in the development of heart disease. In this issue of The Journal of Pathology, Salma Awad and colleagues demonstrate that CaMKIIδ is engaged in both pathological hypertrophy and heart failure. By analysis of mouse and human heart samples, they found that the level of CaMKIIδ is increased in both pathological processes. Further studies demonstrated that CaMKIIδ mediates the phosphorylation of histone H3 at serine 10 (H3S10), which then tethers the chaperone protein 14-3-3 to promoter regions of fetal cardiac genes to activate their transcription. Combined with recent highlights on transcription regulation, this study revealed a fuzzy boundary between pathological hypertrophy and subsequent heart failure and indicates that current therapeutic strategies towards heart failure may have potential risks to patients.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361101, China
| | | | | |
Collapse
|