1
|
Identification and Functional Analysis of Two Mitoferrins, CsMIT1 and CsMIT2, Participating in Iron Homeostasis in Cucumber. Int J Mol Sci 2023; 24:ijms24055050. [PMID: 36902490 PMCID: PMC10003640 DOI: 10.3390/ijms24055050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Mitochondria are one of the major iron sinks in plant cells. Mitochondrial iron accumulation involves the action of ferric reductase oxidases (FRO) and carriers located in the inner mitochondrial membrane. It has been suggested that among these transporters, mitoferrins (mitochondrial iron transporters, MITs) belonging to the mitochondrial carrier family (MCF) function as mitochondrial iron importers. In this study, two cucumber proteins, CsMIT1 and CsMIT2, with high homology to Arabidopsis, rice and yeast MITs were identified and characterized. CsMIT1 and CsMIT2 were expressed in all organs of the two-week-old seedlings. Under Fe-limited conditions as well as Fe excess, the mRNA levels of CsMIT1 and CsMIT2 were altered, suggesting their regulation by iron availability. Analyses using Arabidopsis protoplasts confirmed the mitochondrial localization of cucumber mitoferrins. Expression of CsMIT1 and CsMIT2 restored the growth of the Δmrs3Δmrs4 mutant (defective in mitochondrial Fe transport), but not in mutants sensitive to other heavy metals. Moreover, the altered cytosolic and mitochondrial Fe concentrations, observed in the Δmrs3Δmrs4 strain, were recovered almost to the levels of WT yeast by expressing CsMIT1 or CsMIT2. These results indicate that cucumber proteins are involved in the iron transport from the cytoplasm to the mitochondria.
Collapse
|
2
|
Fungal Zinc Homeostasis and Its Potential as an Antifungal Target: A Focus on the Human Pathogen Aspergillus fumigatus. Microorganisms 2022; 10:microorganisms10122469. [PMID: 36557722 PMCID: PMC9785309 DOI: 10.3390/microorganisms10122469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic airborne fungus that causes severe invasive aspergillosis in immunocompromised patients. Zinc is an essential micronutrient for the growth of A. fumigatus and even for all microorganisms. An increasing number of studies have reported that fungal zinc acquisition ability plays a key role in fungal survival in hosts with an extremely zinc-limited microenvironment. The ability to fight scarcity and excess of zinc are tightly related to fungal virulence and may be used as new potential targets. Because the regulation of zinc homeostasis is important, a thorough understanding of the functional genes involved in the regulatory network for zinc homeostasis is required for fungal pathogens. The current mini-review summarized potential zinc homeostasis regulators in A. fumigatus and classified these regulators according to localization and function, which were identified or predicted based on A. fumigatus or deduced from homologs in model yeasts. Future perspectives for zinc homeostasis regulators as potential antifungal targets to treat invasive aspergillosis are also discussed.
Collapse
|
3
|
Sorribes-Dauden R, Jordá T, Peris D, Martínez-Pastor MT, Puig S. Adaptation of Saccharomyces Species to High-Iron Conditions. Int J Mol Sci 2022; 23:13965. [PMID: 36430442 PMCID: PMC9693265 DOI: 10.3390/ijms232213965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is an indispensable element that participates as an essential cofactor in multiple biological processes. However, when present in excess, iron can engage in redox reactions that generate reactive oxygen species that damage cells at multiple levels. In this report, we characterized the response of budding yeast species from the Saccharomyces genus to elevated environmental iron concentrations. We have observed that S. cerevisiae strains are more resistant to high-iron concentrations than Saccharomyces non-cerevisiae species. Liquid growth assays showed that species evolutionarily closer to S. cerevisiae, such as S. paradoxus, S. jurei, S. mikatae, and S. arboricola, were more resistant to high-iron levels than the more distant species S. eubayanus and S. uvarum. Remarkably, S. kudriavzevii strains were especially iron sensitive. Growth assays in solid media suggested that S. cerevisiae and S. paradoxus were more resistant to the oxidative stress caused by elevated iron concentrations. When comparing iron accumulation and sensitivity, different patterns were observed. As previously described for S. cerevisiae, S. uvarum and particular strains of S. kudriavzevii and S. paradoxus became more sensitive to iron while accumulating more intracellular iron levels. However, no remarkable changes in intracellular iron accumulation were observed for the remainder of species. These results indicate that different mechanisms of response to elevated iron concentrations exist in the different species of the genus Saccharomyces.
Collapse
Affiliation(s)
- Raquel Sorribes-Dauden
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| | - Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| | - David Peris
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
4
|
Hackett PT, Jia X, Li L, Ward DM. Posttranslational regulation of mitochondrial frataxin and identification of compounds that increase frataxin levels in Friedreich's ataxia. J Biol Chem 2022; 298:101982. [PMID: 35472330 PMCID: PMC9127368 DOI: 10.1016/j.jbc.2022.101982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a degenerative disease caused by a decrease in the mitochondrial protein frataxin (Fxn), which is involved in iron-sulfur cluster (ISC) synthesis. Diminutions in Fxn result in decreased ISC synthesis, increased mitochondrial iron accumulation, and impaired mitochondrial function. Here, we show that conditions that result in increased mitochondrial reactive oxygen species in yeast or mammalian cell culture give rise to increased turnover of Fxn but not of other ISC synthesis proteins. We demonstrate that the mitochondrial Lon protease is involved in Fxn degradation and that iron export through the mitochondrial metal transporter Mmt1 protects yeast Fxn from degradation. We also determined that when FRDA fibroblasts were grown in media containing elevated iron, mitochondrial reactive oxygen species increased and Fxn decreased compared to WT fibroblasts. Furthermore, we screened a library of FDA-approved compounds and identified 38 compounds that increased yeast Fxn levels, including the azole bifonazole, antiparasitic fipronil, antitumor compound dibenzoylmethane, antihypertensive 4-hydroxychalcone, and a nonspecific anion channel inhibitor 4,4-diisothiocyanostilbene-2,2-sulfonic acid. We show that top hits 4-hydroxychalcone and dibenzoylmethane increased mRNA levels of transcription factor nuclear factor erythroid 2-related factor 2 in FRDA patient-derived fibroblasts, as well as downstream antioxidant targets thioredoxin, glutathione reductase, and superoxide dismutase 2. Taken together, these findings reveal that FRDA progression may be in part due to oxidant-mediated decreases in Fxn and that some approved compounds may be effective in increasing mitochondrial Fxn in FRDA, delaying disease progression.
Collapse
Affiliation(s)
- Peter T Hackett
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Xuan Jia
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Liangtao Li
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Diane M Ward
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| |
Collapse
|
5
|
The putative role of zinc homeostasis in grain formation by Madurella mycetomatis during mycetoma infection. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Alamir OF, Oladele RO, Ibe C. Nutritional immunity: targeting fungal zinc homeostasis. Heliyon 2021; 7:e07805. [PMID: 34466697 PMCID: PMC8384899 DOI: 10.1016/j.heliyon.2021.e07805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Transition metals, such as Zn2+, are essential dietary constituents of all biological life, including mammalian hosts and the pathogens that infect them. Therefore, to thrive and cause infection, pathogens must successfully assimilate these elements from the host milieu. Consequently, mammalian immunity has evolved to actively restrict and/or pool metals to toxic concentrations in an effort to attenuate microbial pathogenicity - a process termed nutritional immunity. Despite host-induced Zn2+ nutritional immunity, pathogens such as Candida albicans, are still capable of causing disease and thus must be equipped with robust Zn2+ sensory, uptake and detoxification machinery. This review will discuss the strategies employed by mammalian hosts to limit Zn2+ during infection, and the subsequent fungal interventions that counteract Zn2+ nutritional immunity.
Collapse
Affiliation(s)
- Omran F Alamir
- Department of Natural Sciences, College of Health Sciences, The Public Authority for Applied Education and Training, Al Asimah, Kuwait
| | - Rita O Oladele
- Department of Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - C Ibe
- Department of Microbiology, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| |
Collapse
|
7
|
Tang J, Zhuo Y, Li Y. Effects of Iron and Zinc on Mitochondria: Potential Mechanisms of Glaucomatous Injury. Front Cell Dev Biol 2021; 9:720288. [PMID: 34447755 PMCID: PMC8383321 DOI: 10.3389/fcell.2021.720288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is the most substantial cause of irreversible blinding, which is accompanied by progressive retinal ganglion cell damage. Retinal ganglion cells are energy-intensive neurons that connect the brain and retina, and depend on mitochondrial homeostasis to transduce visual information through the brain. As cofactors that regulate many metabolic signals, iron and zinc have attracted increasing attention in studies on neurons and neurodegenerative diseases. Here, we summarize the research connecting iron, zinc, neuronal mitochondria, and glaucomatous injury, with the aim of updating and expanding the current view of how retinal ganglion cells degenerate in glaucoma, which can reveal novel potential targets for neuroprotection.
Collapse
Affiliation(s)
- Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Dietz JV, Fox JL, Khalimonchuk O. Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond. Cells 2021; 10:cells10092198. [PMID: 34571846 PMCID: PMC8468894 DOI: 10.3390/cells10092198] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cellular iron homeostasis and mitochondrial iron homeostasis are interdependent. Mitochondria must import iron to form iron–sulfur clusters and heme, and to incorporate these cofactors along with iron ions into mitochondrial proteins that support essential functions, including cellular respiration. In turn, mitochondria supply the cell with heme and enable the biogenesis of cytosolic and nuclear proteins containing iron–sulfur clusters. Impairment in cellular or mitochondrial iron homeostasis is deleterious and can result in numerous human diseases. Due to its reactivity, iron is stored and trafficked through the body, intracellularly, and within mitochondria via carefully orchestrated processes. Here, we focus on describing the processes of and components involved in mitochondrial iron trafficking and storage, as well as mitochondrial iron–sulfur cluster biogenesis and heme biosynthesis. Recent findings and the most pressing topics for future research are highlighted.
Collapse
Affiliation(s)
- Jonathan V. Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
| | - Jennifer L. Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA;
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68198, USA
- Correspondence:
| |
Collapse
|
9
|
Kim LJ, Tsuyuki KM, Hu F, Park EY, Zhang J, Iraheta JG, Chia JC, Huang R, Tucker AE, Clyne M, Castellano C, Kim A, Chung DD, DaVeiga CT, Parsons EM, Vatamaniuk OK, Jeong J. Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:215-236. [PMID: 33884692 PMCID: PMC8316378 DOI: 10.1111/tpj.15286] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 05/26/2023]
Abstract
Mitochondria and chloroplasts are organelles with high iron demand that are particularly susceptible to iron-induced oxidative stress. Despite the necessity of strict iron regulation in these organelles, much remains unknown about mitochondrial and chloroplast iron transport in plants. Here, we propose that Arabidopsis ferroportin 3 (FPN3) is an iron exporter that is dual-targeted to mitochondria and chloroplasts. FPN3 is expressed in shoots, regardless of iron conditions, but its transcripts accumulate under iron deficiency in roots. fpn3 mutants cannot grow as well as the wild type under iron-deficient conditions and their shoot iron levels are lower compared with the wild type. Analyses of iron homeostasis gene expression in fpn3 mutants and inductively coupled plasma mass spectrometry (ICP-MS) measurements show that iron levels in the mitochondria and chloroplasts are increased relative to the wild type, consistent with the proposed role of FPN3 as a mitochondrial/plastid iron exporter. In iron-deficient fpn3 mutants, abnormal mitochondrial ultrastructure was observed, whereas chloroplast ultrastructure was not affected, implying that FPN3 plays a critical role in the mitochondria. Overall, our study suggests that FPN3 is essential for optimal iron homeostasis.
Collapse
Affiliation(s)
- Leah J. Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Fengling Hu
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Emily Y. Park
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jingwen Zhang
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Rong Huang
- Cornell High Energy Synchrotron Source, Ithaca, New York 14853
| | - Avery E. Tucker
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Madeline Clyne
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Claire Castellano
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Angie Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Daniel D. Chung
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | | | - Olena K. Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
10
|
Terzioğlu E, Alkım C, Arslan M, Balaban BG, Holyavkin C, Kısakesen Hİ, Topaloğlu A, Yılmaz Şahin Ü, Gündüz Işık S, Akman S, Çakar ZP. Genomic, transcriptomic and physiological analyses of silver-resistant Saccharomyces cerevisiae obtained by evolutionary engineering. Yeast 2020; 37:413-426. [PMID: 33464648 DOI: 10.1002/yea.3514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/12/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
Silver is a non-essential metal used in medical applications as an antimicrobial agent, but it is also toxic for biological systems. To investigate the molecular basis of silver resistance in yeast, we employed evolutionary engineering using successive batch cultures at gradually increased silver stress levels up to 0.25-mM AgNO3 in 29 populations and obtained highly silver-resistant and genetically stable Saccharomyces cerevisiae strains. Cross-resistance analysis results indicated that the silver-resistant mutants also gained resistance against copper and oxidative stress. Growth physiological analysis results revealed that the highly silver-resistant evolved strain 2E was not significantly inhibited by silver stress, unlike the reference strain. Genomic and transcriptomic analysis results revealed that there were mutations and/or significant changes in the expression levels of the genes involved in cell wall integrity, cellular respiration, oxidative metabolism, copper homeostasis, endocytosis and vesicular transport activities. Particularly the missense mutation in the RLM1 gene encoding a transcription factor involved in the maintenance of cell wall integrity and with 707 potential gene targets might have a key role in the high silver resistance of 2E, along with its improved cell wall integrity, as confirmed by the lyticase sensitivity assay results. In conclusion, the comparative physiological, transcriptomic and genomic analysis results of the silver-resistant S. cerevisiae strain revealed potential key factors that will help understand the complex molecular mechanisms of silver resistance in yeast.
Collapse
Affiliation(s)
- Ergi Terzioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Ceren Alkım
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Mevlüt Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Van Yüzüncü Yıl University, Van, Turkey
| | - Berrak Gülçin Balaban
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Can Holyavkin
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Halil İbrahim Kısakesen
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Alican Topaloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Ülkü Yılmaz Şahin
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Sema Gündüz Işık
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Süleyman Akman
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Zeynep Petek Çakar
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
11
|
Ibuot A, Dean AP, Pittman JK. Multi-genomic analysis of the cation diffusion facilitator transporters from algae. Metallomics 2020; 12:617-630. [PMID: 32195517 DOI: 10.1039/d0mt00009d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metal transport processes are relatively poorly understood in algae in comparison to higher plants and other eukaryotes. A screen of genomes from 33 taxonomically diverse algal species was conducted to identify members of the Cation Diffusion Facilitator (CDF) family of metal ion transporter. All algal genomes contained at least one CDF gene with four species having >10 CDF genes (median of 5 genes per genome), further confirming that this is a ubiquitous gene family. Phylogenetic analysis suggested a CDF gene organisation of five groups, which includes Zn-CDF, Fe/Zn-CDF and Mn-CDF groups, consistent with previous phylogenetic analyses, and two functionally undefined groups. One of these undefined groups was algal specific although excluded chlorophyte and rhodophyte sequences. The majority of sequences (22 out of 26 sequences) from this group had a putative ion binding site motif within transmembrane domain 2 and 5 that was distinct from other CDF proteins, such that alanine or serine replaced the conserved histidine residue. The phylogenetic grouping was supported by sequence cluster analysis. Yeast heterologous expression of CDF proteins from Chlamydomonas reinhardtii indicated Zn2+ and Co2+ transport function by CrMTP1, and Mn2+ transport function by CrMTP2, CrMTP3 and CrMTP4, which validated the phylogenetic prediction. However, the Mn-CDF protein CrMTP3 was also able to provide zinc and cobalt tolerance to the Zn- and Co-sensitive zrc1 cot1 yeast strain. There is wide diversity of CDF transporters within the algae lineage, and some of these genes may be attractive targets for future applications of metal content engineering in plants or microorganisms.
Collapse
Affiliation(s)
- Aniefon Ibuot
- Department of Science Technology, Akwa Ibom State Polytechnic, P.M.B. 1200 Ikot Ekpene, Ikot Osurua, Akwa Ibom State, Nigeria
| | | | | |
Collapse
|
12
|
Li L, Bertram S, Kaplan J, Jia X, Ward DM. The mitochondrial iron exporter genes MMT1 and MMT2 in yeast are transcriptionally regulated by Aft1 and Yap1. J Biol Chem 2020; 295:1716-1726. [PMID: 31896574 PMCID: PMC7008362 DOI: 10.1074/jbc.ra119.011154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Budding yeast (Saccharomyces cerevisiae) responds to low cytosolic iron by up-regulating the expression of iron import genes; iron import can reflect iron transport into the cytosol or mitochondria. Mmt1 and Mmt2 are nuclearly encoded mitochondrial proteins that export iron from the mitochondria into the cytosol. Here we report that MMT1 and MMT2 expression is transcriptionally regulated by two pathways: the low-iron-sensing transcription factor Aft1 and the oxidant-sensing transcription factor Yap1. We determined that MMT1 and MMT2 expression is increased under low-iron conditions and decreased when mitochondrial iron import is increased through overexpression of the high-affinity mitochondrial iron importer Mrs3. Moreover, loss of iron-sulfur cluster synthesis induced expression of MMT1 and MMT2 We show that exposure to the oxidant H2O2 induced MMT1 expression but not MMT2 expression and identified the transcription factor Yap1 as being involved in oxidant-mediated MMT1 expression. We defined Aft1- and Yap1-dependent transcriptional sites in the MMT1 promoter that are necessary for low-iron- or oxidant-mediated MMT1 expression. We also found that the MMT2 promoter contains domains that are important for regulating its expression under low-iron conditions, including an upstream region that appears to partially repress expression under low-iron conditions. Our findings reveal that MMT1 and MMT2 are induced under low-iron conditions and that the low-iron regulator Aft1 is required for this induction. We further uncover an Aft1-binding site in the MMT1 promoter sufficient for inducing MMT1 transcription and identify an MMT2 promoter region required for low iron induction.
Collapse
Affiliation(s)
- Liangtao Li
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Sophie Bertram
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Jerry Kaplan
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Xuan Jia
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Diane M Ward
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84132.
| |
Collapse
|
13
|
Mach J, Sutak R. Iron in parasitic protists – from uptake to storage and where we can interfere. Metallomics 2020; 12:1335-1347. [DOI: 10.1039/d0mt00125b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comprehensive review of iron metabolism in parasitic protists and its potential use as a drug target.
Collapse
Affiliation(s)
- Jan Mach
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| | - Robert Sutak
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| |
Collapse
|
14
|
Lindahl PA. A comprehensive mechanistic model of iron metabolism in Saccharomyces cerevisiae. Metallomics 2019; 11:1779-1799. [PMID: 31531508 DOI: 10.1039/c9mt00199a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ironome of budding yeast (circa 2019) consists of approximately 139 proteins and 5 nonproteinaceous species. These proteins were grouped according to location in the cell, type of iron center(s), and cellular function. The resulting 27 groups were used, along with an additional 13 nonprotein components, to develop a mesoscale mechanistic model that describes the import, trafficking, metallation, and regulation of iron within growing yeast cells. The model was designed to be simultaneously mutually autocatalytic and mutually autoinhibitory - a property called autocatinhibitory that should be most realistic for simulating cellular biochemical processes. The model was assessed at the systems' level. General conclusions are presented, including a new perspective on understanding regulatory mechanisms in cellular systems. Some unsettled issues are described. This model, once fully developed, has the potential to mimic the phenotype (at a coarse-grain level) of all iron-related genetic mutations in this simple and well-studied eukaryote.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA.
| |
Collapse
|
15
|
Devaux F, Thiébaut A. The regulation of iron homeostasis in the fungal human pathogen Candida glabrata. MICROBIOLOGY-SGM 2019; 165:1041-1060. [PMID: 31050635 DOI: 10.1099/mic.0.000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is an essential element to most microorganisms, yet an excess of iron is toxic. Hence, living cells have to maintain a tight balance between iron uptake and iron consumption and storage. The control of intracellular iron concentrations is particularly challenging for pathogens because mammalian organisms have evolved sophisticated high-affinity systems to sequester iron from microbes and because iron availability fluctuates among the different host niches. In this review, we present the current understanding of iron homeostasis and its regulation in the fungal pathogen Candida glabrata. This yeast is an emerging pathogen which has become the second leading cause of candidemia, a life-threatening invasive mycosis. C. glabrata is relatively poorly studied compared to the closely related model yeast Saccharomyces cerevisiae or to the pathogenic yeast Candida albicans. Still, several research groups have started to identify the actors of C. glabrata iron homeostasis and its transcriptional and post-transcriptional regulation. These studies have revealed interesting particularities of C. glabrata and have shed new light on the evolution of fungal iron homeostasis.
Collapse
Affiliation(s)
- Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| |
Collapse
|
16
|
Migocka M, Maciaszczyk-Dziubinska E, Małas K, Posyniak E, Garbiec A. Metal tolerance protein MTP6 affects mitochondrial iron and manganese homeostasis in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:285-300. [PMID: 30304441 PMCID: PMC6305187 DOI: 10.1093/jxb/ery342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 05/24/2023]
Abstract
Members of the cation diffusion facilitator (CDF) family have been identified in all kingdoms of life. They have been divided into three subgroups, namely Zn-CDF, Fe/Zn-CDF, and Mn-CDF, based on their putative specificity to transported metal ions. The plant metal tolerance protein 6 (MTP6) proteins fall into the Fe/Zn-CDF subgroup; however, their function in iron/zinc transport has not yet been confirmed. Here, we characterized the MTP6 protein from cucumber, Cucumis sativus. When expressed in yeast and in protoplasts isolated from Arabidopsis cells, CsMTP6 localized in mitochondria and contributed to the efflux of Fe and Mn from these organelles. Immunolocalization of CsMTP6 in cucumber membranes confirmed this association with mitochondria. Root expression and protein levels of CsMTP6 were significantly up-regulated in conditions of Fe deficiency and excess, but were not affected by Mn availability. These results indicate that MTP6 proteins contribute to the distribution of Fe and Mn between the cytosol and mitochondria of plant cells, and are regulated by Fe to maintain mitochondrial and cytosolic iron homeostasis under varying conditions of Fe availability.
Collapse
Affiliation(s)
- Magdalena Migocka
- University of Wroclaw, Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia, Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubinska
- University of Wroclaw, Institute of Experimental Biology, Department of Genetics and Cell Physiology, Kanonia, Wroclaw, Poland
| | - Karolina Małas
- University of Wroclaw, Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia, Wroclaw, Poland
| | - Ewelina Posyniak
- University of Wroclaw, Institute of Experimental Biology, Department of Animal Developmental Biology, Sienkiewicza, Wroclaw, Poland
| | - Arnold Garbiec
- University of Wroclaw, Institute of Experimental Biology, Department of Animal Developmental Biology, Sienkiewicza, Wroclaw, Poland
| |
Collapse
|
17
|
Abstract
Mitochondria are an iconic distinguishing feature of eukaryotic cells. Mitochondria encompass an active organellar network that fuses, divides, and directs a myriad of vital biological functions, including energy metabolism, cell death regulation, and innate immune signaling in different tissues. Another crucial and often underappreciated function of these dynamic organelles is their central role in the metabolism of the most abundant and biologically versatile transition metals in mammalian cells, iron. In recent years, cellular and animal models of mitochondrial iron dysfunction have provided vital information in identifying new proteins that have elucidated the pathways involved in mitochondrial homeostasis and iron metabolism. Specific signatures of mitochondrial iron dysregulation that are associated with disease pathogenesis and/or progression are becoming increasingly important. Understanding the molecular mechanisms regulating mitochondrial iron pathways will help better define the role of this important metal in mitochondrial function and in human health and disease.
Collapse
Affiliation(s)
- Diane M Ward
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| |
Collapse
|
18
|
Migocka M, Małas K, Maciaszczyk-Dziubinska E, Papierniak A, Posyniak E, Garbiec A. Cucumber metal tolerance protein 7 (CsMTP7) is involved in the accumulation of Fe in mitochondria under Fe excess. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:988-1003. [PMID: 29932267 DOI: 10.1111/tpj.14006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/04/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
The plant metal tolerance protein family (MTP) includes 12 members that have been classified into three phylogenetically different subgroups - Zn-cation diffusion facilitator (CDF), Fe/Zn-CDF and Mn-CDF - based on their putative metal specificity. To date, only members belonging to the Zn-CDF or Mn-CDF group have been characterized functionally. The plant Fe/Zn-CDF subgroup includes two proteins, MTP6 and MTP7, but their function and metal specificity have not been confirmed. In this study we showed that cucumber CsMTP7 is a highly specific mitochondrial Fe importer that is able to confer yeast tolerance to Fe excess through increased accumulation of Fe in the mitochondria. We also demonstrated that CsMTP7 contributes to the increased accumulation of Fe in the mitochondria of Arabidopsis thaliana protoplasts. The transcripts and mitochondrial levels of CsMTP7 and ferritin - the iron-storing protein - are significantly increased in cucumber roots in response to Fe excess. This finding suggests that CsMTP7 and ferritin work in concert to accumulate Fe in plant mitochondria. As genes that encode orthologous proteins have been identified in phylogenetically distant organisms, including Archaea, cyanobacteria, humans and plants, but not in yeast, we concluded that the MTP7-mediated mitochondrial Fe accumulation may be conserved in the species, and express mitochondrial ferritin for mitochondrial Fe storage.
Collapse
Affiliation(s)
- Magdalena Migocka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Karolina Małas
- Department of Plant Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Institute of Experimental Biology, Wroclaw University, Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Anna Papierniak
- Department of Plant Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Ewelina Posyniak
- Department of Animal Developmental Biology, Institute of Experimental Biology, Wroclaw University, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Arnold Garbiec
- Department of Animal Developmental Biology, Institute of Experimental Biology, Wroclaw University, Sienkiewicza 21, 50-335, Wroclaw, Poland
| |
Collapse
|
19
|
Ward DM, Chen OS, Li L, Kaplan J, Bhuiyan SA, Natarajan SK, Bard M, Cox JE. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis. J Biol Chem 2018; 293:10782-10795. [PMID: 29773647 DOI: 10.1074/jbc.ra118.001781] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/11/2018] [Indexed: 01/05/2023] Open
Abstract
Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial iron metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29 Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increases mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism.
Collapse
Affiliation(s)
- Diane M Ward
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Opal S Chen
- the DNA Sequencing Core, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Liangtao Li
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Jerry Kaplan
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Shah Alam Bhuiyan
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - Selvamuthu K Natarajan
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - Martin Bard
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - James E Cox
- the Department of Biochemistry and.,Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah 84112
| |
Collapse
|
20
|
A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese. Sci Rep 2018; 8:211. [PMID: 29317744 PMCID: PMC5760699 DOI: 10.1038/s41598-017-18584-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023] Open
Abstract
Much of iron and manganese metabolism occurs in mitochondria. Uptake of redox-active iron must be tightly controlled, but little is known about how metal ions enter mitochondria. Recently, we established that the divalent metal transporter 1 (DMT1) is present in the outer mitochondrial membrane (OMM). Therefore we asked if it mediates Fe2+ and Mn2+ influx. Mitochondria were isolated from HEK293 cells permanently transfected with inducible rat DMT1 isoform 1 A/+IRE (HEK293-rDMT1). Fe2+-induced quenching of the dye PhenGreen™SK (PGSK) occurred in two phases, one of which reflected OMM DMT1 with stronger Fe2+ uptake after DMT1 overexpression. DMT1-specific quenching showed an apparent affinity of ~1.5 µM for Fe2+and was blocked by the DMT1 inhibitor CISMBI. Fe2+ influx reflected an imposed proton gradient, a response that was also observed in purified rat kidney cortex (rKC) mitochondria. Non-heme Fe accumulation assayed by ICPOES and stable 57Fe isotope incorporation by ICPMS were increased in HEK293-rDMT1 mitochondria. HEK293-rDMT1 mitochondria displayed higher 59Fe2+ and 54Mn2+ uptake relative to controls with 54Mn2+ uptake blocked by the DMT1 inhibitor XEN602. Such transport was defective in rKC mitochondria with the Belgrade (G185R) mutation. Thus, these results support a role for DMT1 in mitochondrial Fe2+ and Mn2+ acquisition.
Collapse
|
21
|
Eisenberg-Bord M, Schuldiner M. Mitochatting - If only we could be a fly on the cell wall. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1469-1480. [PMID: 28433686 DOI: 10.1016/j.bbamcr.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/24/2022]
Abstract
Mitochondria, cellular metabolic hubs, perform many essential processes and are required for the production of metabolites such as ATP, iron-sulfur clusters, heme, amino acids and nucleotides. To fulfill their multiple roles, mitochondria must communicate with all other organelles to exchange small molecules, ions and lipids. Since mitochondria are largely excluded from vesicular trafficking routes, they heavily rely on membrane contact sites. Contact sites are areas of close proximity between organelles that allow efficient transfer of molecules, saving the need for slow and untargeted diffusion through the cytosol. More globally, multiple metabolic pathways require coordination between mitochondria and additional organelles and mitochondrial activity affects all other cellular entities and vice versa. Therefore, uncovering the different means of mitochondrial communication will allow us a better understanding of mitochondria and may illuminate disease processes that occur in the absence of proper cross-talk. In this review we focus on how mitochondria interact with all other organelles and emphasize how this communication is essential for mitochondrial and cellular homeostasis. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
22
|
Abstract
INTRODUCTION Mitochondria are cellular organelles that perform numerous bioenergetic, biosynthetic, and regulatory functions and play a central role in iron metabolism. Extracellular iron is taken up by cells and transported to the mitochondria, where it is utilized for synthesis of cofactors essential to the function of enzymes involved in oxidation-reduction reactions, DNA synthesis and repair, and a variety of other cellular processes. Areas covered: This article reviews the trafficking of iron to the mitochondria and normal mitochondrial iron metabolism, including heme synthesis and iron-sulfur cluster biogenesis. Much of our understanding of mitochondrial iron metabolism has been revealed by pathologies that disrupt normal iron metabolism. These conditions affect not only iron metabolism but mitochondrial function and systemic health. Therefore, this article also discusses these pathologies, including conditions of systemic and mitochondrial iron dysregulation as well as cancer. Literature covering these areas was identified via PubMed searches using keywords: Iron, mitochondria, Heme Synthesis, Iron-sulfur Cluster, and Cancer. References cited by publications retrieved using this search strategy were also consulted. Expert commentary: While much has been learned about mitochondrial and its iron, key questions remain. Developing a better understanding of mitochondrial iron and its regulation will be paramount in developing therapies for syndromes that affect mitochondrial iron.
Collapse
Affiliation(s)
- Bibbin T. Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
| | - David H. Manz
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
- School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut
| | - Frank M. Torti
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut
| | - Suzy V. Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
| |
Collapse
|
23
|
HAL2 overexpression induces iron acquisition in bdf1Δ cells and enhances their salt resistance. Curr Genet 2016; 63:229-239. [DOI: 10.1007/s00294-016-0628-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 11/26/2022]
|
24
|
Chang HC, Wu R, Shang M, Sato T, Chen C, Shapiro JS, Liu T, Thakur A, Sawicki KT, Prasad SVN, Ardehali H. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med 2016; 8:247-267. [PMID: 26896449 PMCID: PMC4772952 DOI: 10.15252/emmm.201505748] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 01/19/2023] Open
Abstract
Excess cellular iron increases reactive oxygen species (ROS) production and causes cellular damage. Mitochondria are the major site of iron metabolism and ROS production; however, few studies have investigated the role of mitochondrial iron in the development of cardiac disorders, such as ischemic heart disease or cardiomyopathy (CM). We observe increased mitochondrial iron in mice after ischemia/reperfusion (I/R) and in human hearts with ischemic CM, and hypothesize that decreasing mitochondrial iron protects against I/R damage and the development of CM. Reducing mitochondrial iron genetically through cardiac-specific overexpression of a mitochondrial iron export protein or pharmacologically using a mitochondria-permeable iron chelator protects mice against I/R injury. Furthermore, decreasing mitochondrial iron protects the murine hearts in a model of spontaneous CM with mitochondrial iron accumulation. Reduced mitochondrial ROS that is independent of alterations in the electron transport chain's ROS producing capacity contributes to the protective effects. Overall, our findings suggest that mitochondrial iron contributes to cardiac ischemic damage, and may be a novel therapeutic target against ischemic heart disease.
Collapse
Affiliation(s)
- Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rongxue Wu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Meng Shang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatsuya Sato
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chunlei Chen
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason S Shapiro
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ting Liu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anita Thakur
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Konrad T Sawicki
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sathyamangla V N Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol 2015; 94:292-308. [DOI: 10.1016/j.ejcb.2015.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Transcription factor ADS-4 regulates adaptive responses and resistance to antifungal azole stress. Antimicrob Agents Chemother 2015; 59:5396-404. [PMID: 26100701 DOI: 10.1128/aac.00542-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022] Open
Abstract
Azoles are commonly used as antifungal drugs or pesticides to control fungal infections in medicine and agriculture. Fungi adapt to azole stress by rapidly activating the transcription of a number of genes, and transcriptional increases in some azole-responsive genes can elevate azole resistance. The regulatory mechanisms that control transcriptional responses to azole stress in filamentous fungi are not well understood. This study identified a bZIP transcription factor, ADS-4 (antifungal drug sensitive-4), as a new regulator of adaptive responses and resistance to antifungal azoles. Transcription of ads-4 in Neurospora crassa cells increased when they were subjected to ketoconazole treatment, whereas the deletion of ads-4 resulted in hypersensitivity to ketoconazole and fluconazole. In contrast, the overexpression of ads-4 increased resistance to fluconazole and ketoconazole in N. crassa. Transcriptome sequencing (RNA-seq) analysis, followed by quantitative reverse transcription (qRT)-PCR confirmation, showed that ADS-4 positively regulated the transcriptional responses of at least six genes to ketoconazole stress in N. crassa. The gene products of four ADS-4-regulated genes are known contributors to azole resistance, including the major efflux pump CDR4 (Pdr5p ortholog), an ABC multidrug transporter (NcAbcB), sterol C-22 desaturase (ERG5), and a lipid transporter (NcRTA2) that is involved in calcineurin-mediated azole resistance. Deletion of the ads-4-homologous gene Afads-4 in Aspergillus fumigatus caused hypersensitivity to itraconazole and ketoconazole, which suggested that ADS-4 is a functionally conserved regulator of adaptive responses to azoles. This study provides important information on a new azole resistance factor that could be targeted by a new range of antifungal pesticides and drugs.
Collapse
|
27
|
Cation Diffusion Facilitator family: Structure and function. FEBS Lett 2015; 589:1283-95. [PMID: 25896018 DOI: 10.1016/j.febslet.2015.04.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 01/13/2023]
Abstract
The Cation Diffusion Facilitators (CDFs) form a family of membrane-bound proteins capable of transporting zinc and other heavy metal ions. Involved in metal tolerance/resistance by efflux of ions, CDF proteins share a two-modular architecture consisting of a transmembrane domain (TMD) and C-terminal domain (CTD) that protrudes into the cytoplasm. Discovery of a Zn²⁺ and Cd²⁺ CDF transporter from a marine bacterium Maricaulis maris that does not possess the CTD questions current perceptions regarding this family of proteins. This article describes a new, CTD-lacking subfamily of CDFs and our current knowledge about this family of proteins in the view of these findings.
Collapse
|