1
|
Cupeiro R, Benito PJ, Amigo T, González-Lamuño D. The association of SLC16A1 ( MCT1) gene polymorphism with body composition changes during weight loss interventions: A randomized trial with sex-dependent analysis. Appl Physiol Nutr Metab 2025; 50:1-12. [PMID: 39787575 DOI: 10.1139/apnm-2024-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Monocarboxylates, transported by monocarboxylate transporters (MCTs), have been proposed to influence energy homeostasis and exhibit altered metabolism during exercise. This study investigated the association between the Asp490Glu (T1470A) (rs1049434) polymorphism of the SLC16A1 (MCT1) gene and changes in body composition in males and females with overweight or obesity. The 173 participants (56.6% females) completed a 6-month randomized controlled trial, being assigned to the Supervised Exercise group (strength, endurance, or strength plus endurance training) or the Physical Activity (PA) Recommendations group. Participants were genotypically categorized as Asp/Asp (TT), Asp/Glu (TA), or Glu/Glu (AA). ANCOVA analysis showed main effects for genotype and interaction genotype × group (p < 0.05) for several variables, especially in females. Asp/Asp (TT) females showed greater reductions in total fat mass (-29.30 ± 8.75% change), percentage of body fat (-17.50 ± 8.06% change), and body weight (-13.90 ± 2.62% change) compared with Glu/Glu (AA) (p ≤ 0.020; d ≥ 0.18) and Asp/Glu (TA) (p ≤ 0.050; d ≥ 0.16) females, but only within the PA Recommendations group. Data indicated higher decreases in lean body mass of the Asp/Asp (TT) compared to Glu/Glu (AA) in females (p = 0.067, η2 p = 0.067) and to Asp/Glu (TA) in males (p = 0.026; η2 p = 0.101). Our investigation suggests an association of the single-nucleotide polymorphism with body composition changes especially in females following exercise recommendations, highlighting the importance of supervised training to offset genetic predisposition for different weight loss. Differences in males only appeared for lean body mass, suggesting sex differences for this genetic association. The study underscores the potential influence of MCT1 functionality on human adaptations to weight loss interventions. ClinicalTrials.gov information: registry name, Nutrition and Physical Activity for Obesity (PRONAF); registration number, NCT01116856.
Collapse
Affiliation(s)
- Rocío Cupeiro
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Madrid, Spain
| | - Pedro J Benito
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Madrid, Spain
| | - Teresa Amigo
- Department of Medical and Surgery Sciences, School of Medicine, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Domingo González-Lamuño
- Department of Medical and Surgery Sciences, School of Medicine, Universidad de Cantabria, Santander, Cantabria, Spain
- Pediatric Department, University Hospital Marqués de Valdecilla - Research Institute Valdecilla (IDIVAL), Santander, Cantabria, Spain
| |
Collapse
|
2
|
Seki S, Kobayashi T, Beppu K, Nojo M, Hoshina K, Kikuchi N, Okamoto T, Nakazato K, Hwang I. Association Among MCT1 rs1049434 Polymorphism, Athlete Status, and Physiological Parameters in Japanese Long-Distance Runners. Genes (Basel) 2024; 15:1627. [PMID: 39766893 PMCID: PMC11675177 DOI: 10.3390/genes15121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Monocarboxylate transporters (MCTs) comprise 14 known isoforms, with MCT1 being particularly important for lactate transport. Variations in lactate metabolism capacity and aerobic performance are associated with the T1470A polymorphism in MCT1. We aimed to investigate the frequency of the T1470A polymorphism and compare relevant physiological parameters among long-distance runners, wherein these parameters are fundamental to athletic performance. METHODS We included 158 Japanese long-distance runners (LD) and 649 individuals from the general Japanese population (CON). The frequency of the T1470A polymorphism was compared between these groups and across athletic levels using the chi-square test. Additionally, physiological data were collected from 57 long-distance runners, and respiratory gas measurements were obtained using the mixing-chamber method during a graded incremental exercise test. RESULTS We observed a significant difference between the LD and CON groups in the dominant model and between the sub-28 min group and 28 min or above group in the recessive model. As the competitive level increased, the frequency of the AA genotype also increased. When comparing physiological parameters between the AA genotype and T allele, subjects with the AA genotype showed significantly higher values for oxygen uptake at lactate threshold (p = 0.001), oxygen uptake at onset of blood lactate accumulation (p = 0.01), maximal oxygen uptake (p = 0.005), and maximal blood lactate concentration (p = 0.038). CONCLUSIONS These results suggest that the AA genotype of the T1470A polymorphism of MCT1 is an effective genotype associated with athletic status and aerobic capacity in Japanese long-distance runners.
Collapse
Affiliation(s)
- Shotaro Seki
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku 158-8508, Japan; (T.K.); (N.K.); (T.O.); (I.H.)
| | - Tetsuro Kobayashi
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku 158-8508, Japan; (T.K.); (N.K.); (T.O.); (I.H.)
| | - Kenji Beppu
- LOGISTEED Track & Field Club House, LOGISTEED, Ltd., Hachigasakimidori-cho, Matsudo-shi 270-0024, Japan; (K.B.); (M.N.)
| | - Manabu Nojo
- LOGISTEED Track & Field Club House, LOGISTEED, Ltd., Hachigasakimidori-cho, Matsudo-shi 270-0024, Japan; (K.B.); (M.N.)
| | - Kosaku Hoshina
- Graduate School of Media and Governance, Keio University, 5322, Endo, Fujisawa 252-0882, Japan;
| | - Naoki Kikuchi
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku 158-8508, Japan; (T.K.); (N.K.); (T.O.); (I.H.)
| | - Takanobu Okamoto
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku 158-8508, Japan; (T.K.); (N.K.); (T.O.); (I.H.)
| | - Koichi Nakazato
- Faculty of Medical Science, Nippon Sport Science University, 1221-1, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan;
| | - Inkwan Hwang
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku 158-8508, Japan; (T.K.); (N.K.); (T.O.); (I.H.)
| |
Collapse
|
3
|
Chávez-Guevara IA, González-Rodríguez E, Moreno-Brito V, Pérez-León JA, Amaro-Gahete FJ, Trejo-Trejo M, Ramos-Jiménez A. The polymorphism T1470A of the SLC16A1 gene is associated with the lactate and ventilatory thresholds but not with fat oxidation capacity in young men. Eur J Appl Physiol 2024; 124:1835-1843. [PMID: 38216723 DOI: 10.1007/s00421-023-05407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
PURPOSE To examine the association of the single nucleotide polymorphism A1470T in the SLC16A1 gene with blood lactate accumulation during a graded exercise test and its associated metaboreflex. METHODS Forty-six Latin-American men (Age: 27 ± 6 years; Body fat: 17.5 ± 4.7%) performed a graded exercise test on a treadmill for the assessment of maximal oxygen uptake (VO2max), lactate threshold (LT), ventilatory threshold (VT) and the exercise intensity corresponding to maximal fat oxidation rate (FATmax), via capillary blood samples and indirect calorimetry. Genomic DNA was extracted from a peripheral blood sample. Genotyping assay was carried out by real-time polymerase chain reaction to identify the A1470T polymorphism (rs1049434). RESULTS Genotypes distribution were in Hardy-Weinberg equilibrium (X2 = 5.6, p > 0.05), observing allele frequencies of 0.47 and 0.53 for the A and T alleles, respectively. No difference in VO2max, body composition nor FATmax were observed across genotypes, whereas carriers of the TT genotype showed a higher LT (24.5 ± 2.2 vs. 15.6 ± 1.7 mL kg-1 min-1, p < 0.01) and VT in comparison to carriers of the AA + AT genotypes (32.5 ± 3.3 vs. 21.7 ± 1.5 mL kg-1 min-1, p < 0.01). Both, VO2max and the A1470T polymorphism were positively associated to the LT (R2 = 0.50, p < 0.01) and VT (R2 = 0.55, p < 0.01). Only VO2max was associated to FATmax (R2 = 0.39, p < 0.01). CONCLUSION Independently of cardiorespiratory fitness, the A1470T polymorphism is associated to blood lactate accumulation and its associated ventilatory response during submaximal intensity exercise. However, the A1470 polymorphism does not influence fat oxidation capacity during exercise in young men.
Collapse
Affiliation(s)
- Isaac A Chávez-Guevara
- Faculty of Sports Campus Ensenada, Autonomous University of Baja California, Baja California, Mexico
| | | | - Verónica Moreno-Brito
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Jorge A Pérez-León
- Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua, Mexico
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
| | - Marina Trejo-Trejo
- Faculty of Sports Campus Mexicali, Autonomous University of Baja California, Baja California, Mexico
| | - Arnulfo Ramos-Jiménez
- Department of Health Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua, Mexico.
| |
Collapse
|
4
|
Elshaer SE, Hamad GM, Sobhy SE, Darwish AMG, Baghdadi HH, H Abo Nahas H, El-Demerdash FM, Kabeil SSA, Altamimi AS, Al-Olayan E, Alsunbul M, Docmac OK, Jaremko M, Hafez EE, Saied EM. Supplementation of Saussurea costus root alleviates sodium nitrite-induced hepatorenal toxicity by modulating metabolic profile, inflammation, and apoptosis. Front Pharmacol 2024; 15:1378249. [PMID: 38881874 PMCID: PMC11177093 DOI: 10.3389/fphar.2024.1378249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Sodium nitrite (NaNO2) is a widely used food ingredient, although excessive concentrations can pose potential health risks. In the present study, we evaluated the deterioration effects of NaNO2 additives on hematology, metabolic profile, liver function, and kidney function of male Wistar rats. We further explored the therapeutic potential of supplementation with S. costus root ethanolic extract (SCREE) to improve NaNO2-induced hepatorenal toxicity. In this regard, 65 adult male rats were divided into eight groups; Group 1: control, Groups 2, 3, and 4 received SCREE in 200, 400, and 600 mg/kg body weight, respectively, Group 5: NaNO2 (6.5 mg/kg body weight), Groups 6, 7 and 8 received NaNO2 (6.5 mg/kg body weight) in combination with SCREE (200, 400, and 600 mg/kg body weight), respectively. Our results revealed that the NaNO2-treated group shows a significant change in deterioration in body and organ weights, hematological parameters, lipid profile, and hepatorenal dysfunction, as well as immunohistochemical and histopathological alterations. Furthermore, the NaNO2-treated group demonstrated a considerable increase in the expression of TNF-α cytokine and tumor suppressor gene P53 in the kidney and liver, while a significant reduction was detected in the anti-inflammatory cytokine IL-4 and the apoptosis suppressor gene BCL-2, compared to the control group. Interestingly, SCREE administration demonstrated the ability to significantly alleviate the toxic effects of NaNO2 and improve liver function in a dose-dependent manner, including hematological parameters, lipid profile, and modulation of histopathological architecture. Additionally, SCREE exhibited the ability to modulate the expression levels of inflammatory cytokines and apoptotic genes in the liver and kidney. The phytochemical analysis revealed a wide set of primary metabolites in SCREE, including phenolics, flavonoids, vitamins, alkaloids, saponins and tannins, while the untargeted UPLC/T-TOF-MS/MS analysis identified 183 metabolites in both positive and negative ionization modes. Together, our findings establish the potential of SCREE in mitigating the toxic effects of NaNO2 by modulating metabolic, inflammatory, and apoptosis. Together, this study underscores the promise of SCREE as a potential natural food detoxifying additive to counteract the harmful impacts of sodium nitrite.
Collapse
Affiliation(s)
- Samy E Elshaer
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Gamal M Hamad
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Sherien E Sobhy
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Amira M Galal Darwish
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sanaa S A Kabeil
- Department of Protein Research, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Abdulmalik S Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences., College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omaima Kamel Docmac
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Elsayed E Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Essa M Saied
- Chemistry Department (Biochemistry Division), Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Yamaguchi A, Mukai Y, Sakuma T, Suganuma Y, Furugen A, Narumi K, Kobayashi M. Molecular characteristic analysis of single-nucleotide polymorphisms in SLC16A9/hMCT9. Life Sci 2023; 334:122205. [PMID: 37879602 DOI: 10.1016/j.lfs.2023.122205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
AIMS Human monocarboxylate transporter 9 (hMCT9), encoded by SLC16A9, is a transporter that mediates creatine transport across the transmembrane. Previously, we reported that hMCT9 is an extracellular pH- and Na+-sensitive creatine transporter with two kinetic components. Recently, some variants of hMCT9 have been found to be associated with serum uric acid levels, hyperuricemia, and gout. Among these, two single-nucleotide polymorphisms (SNPs) have also been reported: rs550527563 (L93M) and rs2242206 (T258K). However, the effect of these SNPs on hMCT9 transport activity remains unclear. This study aimed to determine the influence of hMCT9 L93M and T258K on transport characteristics. MAIN METHODS hMCT9 L93M and T258K were constructed by site-directed mutagenesis and expressed in Xenopus laevis oocyte. Transport activity of uric acid and creatine via hMCT9 were measured by using a Xenopus laevis oocyte heterologous expression system. KEY FINDINGS We assessed the transport activity of uric acid and creatine, and observed that hMCT9-expressing oocytes transported uric acid approximately 3- to 4-fold more than water-injected oocytes. hMCT9 L93M slightly reduced the transport activity of creatine, whereas hMCT9 T258K did not affect the transport activity. Interestingly, hMCT9 T258K abolished Na+ sensitivity and altered the substrate affinity from two components to one. SIGNIFICANCE In conclusion, hMCT9 SNPs affect transport activity and characteristics. hMCT9 L93M and T258K may induce dysfunction and contribute to pathologies such as hyperuricemia and gout. This is a first study to evaluate molecular characteristics of hMCT9 SNPs.
Collapse
Affiliation(s)
- Atsushi Yamaguchi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-Jo, Nishi-5-Chome, Kita-ku, Sapporo 060-8648, Japan; Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yuto Mukai
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Tomoya Sakuma
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yudai Suganuma
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
6
|
Kotchetkov P, Blakeley N, Lacoste B. Involvement of brain metabolism in neurodevelopmental disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:67-113. [PMID: 37993180 DOI: 10.1016/bs.irn.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Neurodevelopmental disorders (NDDs) affect a significant portion of the global population and have a substantial social and economic impact worldwide. Most NDDs manifest in early childhood and are characterized by deficits in cognition, communication, social interaction and motor control. Due to a limited understanding of the etiology of NDDs, current treatment options primarily focus on symptom management rather than on curative solutions. Moreover, research on NDDs is problematic due to its reliance on a neurocentric approach. However, recent studies are broadening the scope of research on NDDs, to include dysregulations within a diverse network of brain cell types, including vascular and glial cells. This review aims to summarize studies from the past few decades on potential new contributions to the etiology of NDDs, with a special focus on metabolic signatures of various brain cells. In particular, we aim to convey how the metabolic functions are intimately linked to the onset and/or progression of common NDDs such as autism spectrum disorders, fragile X syndrome, Rett syndrome and Down syndrome.
Collapse
Affiliation(s)
- Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicole Blakeley
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Geistlinger K, Schmidt JDR, Beitz E. Human monocarboxylate transporters accept and relay protons via the bound substrate for selectivity and activity at physiological pH. PNAS NEXUS 2023; 2:pgad007. [PMID: 36874278 PMCID: PMC9982067 DOI: 10.1093/pnasnexus/pgad007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
Human monocarboxylate/H+ transporters, MCT, facilitate the transmembrane translocation of vital weak acid metabolites, mainly l-lactate. Tumors exhibiting a Warburg effect rely on MCT activity for l-lactate release. Recently, high-resolution MCT structures revealed binding sites for anticancer drug candidates and the substrate. Three charged residues, Lys 38, Asp 309, and Arg 313 (MCT1 numbering) are essential for substrate binding and initiation of the alternating access conformational change. However, the mechanism by which the proton cosubstrate binds and traverses MCTs remained elusive. Here, we report that substitution of Lys 38 by neutral residues maintained MCT functionality in principle, yet required strongly acidic pH conditions for wildtype-like transport velocity. We determined pH-dependent biophysical transport properties, Michaelis-Menten kinetics, and heavy water effects for MCT1 wildtype and Lys 38 mutants. Our experimental data provide evidence for the bound substrate itself to accept and shuttle a proton from Lys 38 to Asp 309 initiating transport. We have shown before that substrate protonation is a pivotal step in the mechanisms of other MCT-unrelated weak acid translocating proteins. In connection with this study, we conclude that utilization of the proton binding and transfer capabilities of the transporter-bound substrate is probably a universal theme for weak acid anion/H+ cotransport.
Collapse
Affiliation(s)
- Katharina Geistlinger
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, Kiel 24118, Germany
| | - Jana D R Schmidt
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, Kiel 24118, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, Kiel 24118, Germany
| |
Collapse
|
8
|
Łacina P, Butrym A, Turlej E, Stachowicz-Suhs M, Wietrzyk J, Mazur G, Bogunia-Kubik K. BSG (CD147) Serum Level and Genetic Variants Are Associated with Overall Survival in Acute Myeloid Leukaemia. J Clin Med 2022; 11:jcm11020332. [PMID: 35054026 PMCID: PMC8779396 DOI: 10.3390/jcm11020332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Basigin (BSG, CD147) is a multifunctional protein involved in cancer cell survival, mostly by controlling lactate transport through its interaction with monocarboxylate transporters (MCTs) such as MCT1. Previous studies have found that single nucleotide polymorphisms (SNPs) in the gene coding for BSG and MCT1, as well as levels of the soluble form of BSG (sBSG), are potential biomarkers in various diseases. The goal of this study was to confirm BSG and MCT1 RNA overexpression in AML cell lines, as well as to analyse soluble BSG levels and selected BSG/MCT1 genetic variants as potential biomarkers in AML patients. We found that BSG and MCT1 were overexpressed in most AML cell lines. Soluble BSG was increased in AML patients compared to healthy controls, and correlated with various clinical parameters. High soluble BSG was associated with worse overall survival, higher bone marrow blast percentage, and higher white blood cell count. BSG SNPs rs4919859 and rs4682, as well as MCT1 SNP rs1049434, were also associated with overall survival of AML patients. In conclusion, this study confirms the importance of BSG/MCT1 in AML, and suggests that soluble BSG and BSG/MCT1 genetic variants may act as potential AML biomarkers.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-713-709-960-236
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| |
Collapse
|
9
|
Massidda M, Flore L, Kikuchi N, Scorcu M, Piras F, Cugia P, Cięszczyk P, Tocco F, Calò CM. Influence of the MCT1-T1470A polymorphism (rs1049434) on repeated sprint ability and blood lactate accumulation in elite football players: a pilot study. Eur J Appl Physiol 2021; 121:3399-3408. [PMID: 34480633 DOI: 10.1007/s00421-021-04797-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim of this study is to investigate the influence of the MCT1 T1470A polymorphism (rs1049434) on repeated sprint ability (RSA) and lactate accumulation after RSA testing. METHODS Twenty-six elite Italian male football players (age: 17.7 ± 0.78 years; height: 179.2 ± 7.40 cm; weight: 72.1 ± 5.38 kg) performed RSA testing (6 × 30-m sprints with an active recovery between sprints), and lactate measurements were obtained at 1, 3, 5, 7, and 10 min post-exercise. Genotyping for the MCT1 T1470A polymorphism was performed using PCR. RESULTS Genotype distributions were in Hardy-Weinberg equilibrium, being 42% wildtype (A/A), 46% heterozygotes (T/A), and 12% mutated homozygotes (T/T). Significant differences between genotypic groups were found in the two final sprint times of the RSA test. Under a dominant model, carriers of the major A-allele (Glu-490) in the dominant model showed a significantly lower sprint time compared to footballers with the T/T (Asp/Asp) genotype (5th Sprint time: A/A + T/A = 4.60 s vs TT = 4.97 s, 95% CI 0.07-0.67, p = 0.022; 6th Sprint: A/A + T/A = 4.56 s vs T/T = 4.87 s, 95% CI 0.05-0.57, p = 0.033). CONCLUSIONS The T1470A (Glu490Asp) polymorphism of MCT1 was associated with RSA. Our findings suggest that the presence of the major A-allele (Glu-490) is favourable for RSA in football players.
Collapse
Affiliation(s)
- M Massidda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
- Italian Federation of Sports Medicine Federation (FMSI), Rome, Italy.
- Faculty of Medicine and Surgery, Sport and Exercise Science Degree Courses, University of Cagliari, Cagliari, Italy.
| | - L Flore
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - N Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - M Scorcu
- Italian Federation of Sports Medicine Federation (FMSI), Rome, Italy
- Cagliari Calcio Spa, Cagliari, Italy
| | - F Piras
- Italian Federation of Sports Medicine Federation (FMSI), Rome, Italy
- Cagliari Calcio Spa, Cagliari, Italy
| | - P Cugia
- Italian Federation of Sports Medicine Federation (FMSI), Rome, Italy
- Cagliari Calcio Spa, Cagliari, Italy
| | - P Cięszczyk
- Department of Physical Education, University of Physical Education and Sport, Gdańsk, Poland
| | - F Tocco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - C M Calò
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
The MCT1 gene Glu490Asp polymorphism (rs1049434) is associated with endurance athlete status, lower blood lactate accumulation and higher maximum oxygen uptake. Biol Sport 2021; 38:465-474. [PMID: 34475628 PMCID: PMC8329966 DOI: 10.5114/biolsport.2021.101638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/14/2020] [Accepted: 10/10/2020] [Indexed: 01/07/2023] Open
Abstract
The purpose of this study was to explore the association of the MCT1 gene Glu490Asp polymorphism (rs1049434) with athletic status and performance of endurance athletes. A total of 1,208 Brazilians (318 endurance athletes and 890 non-athletes) and 867 Europeans (315 endurance athletes and 552 non-athletes) were evaluated in a case-control approach. Brazilian participants were classified based on self-declared ethnicity to test whether the polymorphism was different between Caucasians and Afro-descendants. Moreover, 66 Hungarian athletes underwent an incremental test until exhaustion to assess blood lactate levels, while 46 Russian athletes had their maximum oxygen uptake ( V ⋅ O 2 max ) compared between genotypes. In the Brazilian cohort, the major T-allele was more frequent in Caucasian top-level competitors compared to their counterparts of lower competitive level (P = 0.039), and in Afro-descendant athletes compared to non-athletes (P = 0.015). Similarly, the T-allele was more frequent in European athletes (P = 0.029). Meta-analysis of the Brazilian and European cohorts confirmed that the T-allele is over-represented in endurance athletes (OR: 1.48, P = 0.03), especially when Afro-descendant athletes were included in the meta-analysis (OR: 1.58, P = 0.005). Furthermore, carriers of the T/T genotype accumulated less blood lactate in response to intense effort (P < 0.01) and exhibited higher V ⋅ O 2 max (P = 0.04). In conclusion, the Glu490Asp polymorphism was associated with endurance athletic status and performance. Our findings suggest that, although ethnic differences may exist, the presence of the major T-allele (i.e., the Glu-490 allele) favours endurance performance more than the mutant A-allele (i.e., the 490-Asp allele).
Collapse
|
11
|
Kobayashi M, Narumi K, Furugen A, Iseki K. Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4). Pharmacol Ther 2021; 226:107862. [PMID: 33894276 DOI: 10.1016/j.pharmthera.2021.107862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4) are involved in the proton-dependent transport of monocarboxylates such as L-lactate, which play an essential role in cellular metabolism and pH regulation. hMCT1 and 4 are overexpressed in a number of cancers, and polymorphisms in hMCT1 have been reported to be associated with the prognosis of some cancers. Accordingly, recent advances have focused on the inhibition of these transporters as a novel therapeutic strategy in cancers. To screen for MCT inhibitors for clinical application, it is important to study MCT function and regulation, and the effect of compounds on them, using human-derived cells. In this review, we focus on the transport function, regulation, and biology of hMCT1 and hMCT4, and the effects of genetic variation in these transporters in humans.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan; Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
12
|
Whitehead A, Krause FN, Moran A, MacCannell ADV, Scragg JL, McNally BD, Boateng E, Murfitt SA, Virtue S, Wright J, Garnham J, Davies GR, Dodgson J, Schneider JE, Murray AJ, Church C, Vidal-Puig A, Witte KK, Griffin JL, Roberts LD. Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nat Commun 2021; 12:1905. [PMID: 33772024 PMCID: PMC7998027 DOI: 10.1038/s41467-021-22272-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Brown and beige adipose tissue are emerging as distinct endocrine organs. These tissues are functionally associated with skeletal muscle, adipose tissue metabolism and systemic energy expenditure, suggesting an interorgan signaling network. Using metabolomics, we identify 3-methyl-2-oxovaleric acid, 5-oxoproline, and β-hydroxyisobutyric acid as small molecule metabokines synthesized in browning adipocytes and secreted via monocarboxylate transporters. 3-methyl-2-oxovaleric acid, 5-oxoproline and β-hydroxyisobutyric acid induce a brown adipocyte-specific phenotype in white adipocytes and mitochondrial oxidative energy metabolism in skeletal myocytes both in vitro and in vivo. 3-methyl-2-oxovaleric acid and 5-oxoproline signal through cAMP-PKA-p38 MAPK and β-hydroxyisobutyric acid via mTOR. In humans, plasma and adipose tissue 3-methyl-2-oxovaleric acid, 5-oxoproline and β-hydroxyisobutyric acid concentrations correlate with markers of adipose browning and inversely associate with body mass index. These metabolites reduce adiposity, increase energy expenditure and improve glucose and insulin homeostasis in mouse models of obesity and diabetes. Our findings identify beige adipose-brown adipose-muscle physiological metabokine crosstalk.
Collapse
Affiliation(s)
| | - Fynn N Krause
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Amy Moran
- School of Medicine, University of Leeds, Leeds, UK
| | | | | | - Ben D McNally
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Steven A Murfitt
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Samuel Virtue
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - John Wright
- School of Medicine, University of Leeds, Leeds, UK
| | - Jack Garnham
- School of Medicine, University of Leeds, Leeds, UK
| | - Graeme R Davies
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - James Dodgson
- Phenotypic Screening and High Content Imaging, Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christopher Church
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
13
|
Recent developments of human monocarboxylate transporter (hMCT) inhibitors as anticancer agents. Drug Discov Today 2021; 26:836-844. [DOI: 10.1016/j.drudis.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
|
14
|
Association between MCT1 T1470A polymorphism and climbing status in Polish and Japanese climbers. Biol Sport 2020; 38:229-234. [PMID: 34079167 PMCID: PMC8139354 DOI: 10.5114/biolsport.2020.98624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/13/2020] [Accepted: 08/04/2020] [Indexed: 01/07/2023] Open
Abstract
Sport climbing will become an official event at the 2020 Tokyo Olympics; it is a popular wilderness sport among athletes and amateurs. Our previous study suggested that the T1470A polymorphism (rs1049434) of the monocarboxylate transporter 1 (MCT1) gene is associated with athletic performance and physiological phenotypes. The purpose of this study was to investigate the frequency of MCT1 T1470A polymorphism in Polish and Japanese climbers using a case-control study. Our sample consisted of 226 climbers (Japanese: n = 100, 64 male and 36 female; Polish: n = 126, 97 male and 29 female) and 1028 non-athletic controls (Japanese, n = 407; Polish = 621) who were genotyped for the MCT1 T1470A polymorphism (rs1049434) using the TaqMan SNP genotyping assay or restriction enzyme. The frequency of the TT genotype and T allele was significantly higher in climbers than in controls among the Polish subjects (genotype: p = 0.030, allele: p = 0.010); however, there were no significant differences in the genotype and allelic frequencies between the Japanese climbers and controls (genotype: p = 0.968; allele: p = 0.803). Our results suggested that the frequency of the T allele (TT+TA genotype) in the MCT1 T1470A polymorphism is over-represented in Polish climbers but not in Japanese climbers. In addition, the frequency of the T allele and TT genotype in Polish lead climbers is higher than that in controls.
Collapse
|
15
|
Seifter JL. Body Fluid Compartments, Cell Membrane Ion Transport, Electrolyte Concentrations, and Acid-Base Balance. Semin Nephrol 2020; 39:368-379. [PMID: 31300092 DOI: 10.1016/j.semnephrol.2019.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Measurements made in the blood, part of the extracellular compartment, are used in the clinical assessment of acid-base disorders; however, intracellular events determine much of the metabolic importance of these disorders. Intracellular and interstitial compartment acid-base balance is complex and varies in different tissues. This review considers the determination of extracellular pH in the context of ion transport processes at the interface of cells and the interstitial fluid, and between epithelial cells lining the transcellular contents of the gastrointestinal and urinary tracts that open to the external environment. A further consideration is the role of these membrane transporters in the generation of acid-base disorders and the associated disruption of electrolyte balance. This review suggests a process of internal and external balance for pH regulation similar to that of potassium, and considers the role of secretory gastrointestinal epithelia and renal epithelia with respect to normal pH homeostasis and clinical disorders. Electroneutrality of electrolytes in the extracellular fluid is a fundamental feature of reciprocal changes in Cl- or non-Cl- anions and HCO3-. Normal mechanisms for protecting cell pH and producing normal gastrointestinal and renal secretions in healthy states also may result in disease when abnormal. In a similar manner, organic anions such as ketoacid anions and lactate, normally transported as fuels between organs, result in acid-base disturbances in disease. Understanding the genomic basis of these transporters may contribute to specific treatments.
Collapse
|
16
|
Yamaguchi A, Futagi Y, Kobayashi M, Narumi K, Furugen A, Iseki K. Extracellular lysine 38 plays a crucial role in pH-dependent transport via human monocarboxylate transporter 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183068. [DOI: 10.1016/j.bbamem.2019.183068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023]
|
17
|
Molecular characterization of the orphan transporter SLC16A9, an extracellular pH- and Na+-sensitive creatine transporter. Biochem Biophys Res Commun 2020; 522:539-544. [DOI: 10.1016/j.bbrc.2019.11.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
|
18
|
Relationships between plasma lactate, plasma alanine, genetic variations in lactate transporters and type 2 diabetes in the Japanese population. Drug Metab Pharmacokinet 2020; 35:131-138. [DOI: 10.1016/j.dmpk.2019.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/28/2019] [Accepted: 10/03/2019] [Indexed: 01/17/2023]
|
19
|
Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B 2020; 10:61-78. [PMID: 31993307 PMCID: PMC6977534 DOI: 10.1016/j.apsb.2019.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Solute carrier (SLC) transporters meditate many essential physiological functions, including nutrient uptake, ion influx/efflux, and waste disposal. In its protective role against tumors and infections, the mammalian immune system coordinates complex signals to support the proliferation, differentiation, and effector function of individual cell subsets. Recent research in this area has yielded surprising findings on the roles of solute carrier transporters, which were discovered to regulate lymphocyte signaling and control their differentiation, function, and fate by modulating diverse metabolic pathways and balanced levels of different metabolites. In this review, we present current information mainly on glucose transporters, amino-acid transporters, and metal ion transporters, which are critically important for mediating immune cell homeostasis in many different pathological conditions.
Collapse
Key Words
- 3-PG, 3-phosphoglyceric acid
- ABC, ATP-binding cassette
- AIF, apoptosis-inducing factor
- AP-1, activator protein 1
- ASCT2, alanine serine and cysteine transporter system 2
- ATP, adenosine triphosphate
- BCR, B cell receptor
- BMDMs, bone marrow-derived macrophages
- CD45R, a receptor-type protein tyrosine phosphatase
- CTL, cytotoxic T lymphocytes
- DC, dendritic cells
- EAATs, excitatory amino acid transporters
- ER, endoplasmic reticulum
- ERRα, estrogen related receptor alpha
- FFA, free fatty acids
- G-6-P, glucose 6-phosphate
- GLUT, glucose transporters
- GSH, glutathione
- Glucose
- Glutamine
- HIF-1α, hypoxia-inducible factor 1-alpha
- HIV-1, human immunodeficiency virus type 1
- Hk1, hexokinase-1
- IFNβ, interferon beta
- IFNγ, interferon gamma
- IKK, IκB kinase
- IKKβ, IκB kinase beta subunit
- IL, interleukin
- LDHA, lactate dehydrogenase A
- LPS, lipopolysaccharide
- Lymphocytes
- Lyn, tyrosine-protein kinase
- MAPK, mitogen-activated protein kinase
- MCT, monocarboxylate transporters
- MS, multiple sclerosis
- Metal ion
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NO, nitric oxide
- NOD2, nucleotide-binding oligomerization domain containing 2
- PEG2, prostaglandin E2
- PI-3K/AKT, phosphatidylinositol-3-OH kinase/serine–threonine kinase
- PPP, pentose phosphate pathway
- Pfk, phosphofructokinase
- RA, rheumatoid arthritis
- RLR, RIG-I-like receptor
- ROS, reactive oxygen species
- SLC, solute carrier
- SLE, systemic lupus erythematosus
- SNAT, sodium-coupled neutral amino acid transporters
- STAT, signal transducers and activators of transcription
- Solute carrier
- TAMs, tumor-associated macrophages
- TCA, tricarboxylic acid
- TCR, T cell receptor
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TRPM7, transient receptor potential cation channel subfamily M member 7
- Teffs, effector T cells
- Th1/2/17, type 1/2/17 helper T cells
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- ZIP, zrt/irt-like proteins
- iNOS, inducible nitric oxide synthase
- iTregs, induced regulatory T cells
- mTORC1, mammalian target of rapamycin complex 1
- α-KG, α-ketoglutaric acid
Collapse
|
20
|
Futagi Y, Kobayashi M, Narumi K, Furugen A, Iseki K. Homology modeling and site-directed mutagenesis identify amino acid residues underlying the substrate selection mechanism of human monocarboxylate transporters 1 (hMCT1) and 4 (hMCT4). Cell Mol Life Sci 2019; 76:4905-4921. [PMID: 31101938 PMCID: PMC11105385 DOI: 10.1007/s00018-019-03151-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/21/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
Human monocarboxylate transporters (hMCTs/SLC16As) mediate the transport of monocarboxylic compounds across plasma membranes. Among the hMCTs, hMCT1 and hMCT4 are expressed in various tissues, and transport substrates involved in energy metabolism. Both transporters mediate L-lactate transport, but, although hMCT1 also transports L-5-oxoproline (L-OPro), this compound is minimally transported by hMCT4. Thus, we were interested in the molecular mechanism responsible for the difference in substrate specificity between hMCT1 and hMCT4. Therefore, we generated 3D structure models of hMCT1 and hMCT4 to identify amino acid residues involved in the substrate specificity of these transporters. We found that the substrate specificity of hMCT1 was regulated by residues involved in turnover number (M69) and substrate affinity (F367), and these residues were responsible for recognizing (directly or indirectly) the -NH- moiety of L-OPro. Furthermore, our homology model of hMCT1 predicted that M69 and F367 participate in hydrophobic interactions with another region of hMCT1, emphasizing its potentially important role in the binding and translocation cycle of L-OPro. Mutagenesis experiments supported this model, showing that efficient L-OPro transport required a hydrophobic, long linear structure at position 69 and a hydrophobic, γ-branched structure at position 367. Our work demonstrated that the amino acid residues, M69 and F367, are key molecular elements for the transport of L-OPro by hMCT1. These two residues may be involved in substrate recognition and/or substrate-induced conformational changes.
Collapse
Affiliation(s)
- Yuya Futagi
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
- Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan.
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan.
| |
Collapse
|
21
|
High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nat Biomed Eng 2019; 3:796-805. [DOI: 10.1038/s41551-019-0454-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
|
22
|
A Multi-Biochemical and In Silico Study on Anti-Enzymatic Actions of Pyroglutamic Acid against PDE-5, ACE, and Urease Using Various Analytical Techniques: Unexplored Pharmacological Properties and Cytotoxicity Evaluation. Biomolecules 2019; 9:biom9090392. [PMID: 31438631 PMCID: PMC6770154 DOI: 10.3390/biom9090392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
In the current study, pyroglutamic acid (pGlu), a natural amino acid derivative, has efficiently inhibited the catalytic activities of three important enzymes, namely: Human recombinant phosphodiesterase-5A1 (PDE5A1), human angiotensin-converting enzyme (ACE), and urease. These enzymes were reported to be associated with several important clinical conditions in humans. Radioactivity-based assay, spectrophotometric-based assay, and an Electrospray Ionization-Mass Spectrometry-based method were employed to ascertain the inhibitory actions of pGlu against PDE5A1, ACE, and urease, respectively. The results unveiled that pGlu potently suppressed the activity of PDE5A1 (half-maximal inhibitory concentration; IC50 = 5.23 µM) compared with that of standard drug sildenafil citrate (IC50 = 7.14 µM). Moreover, pGlu at a concentration of 20 µg/mL was found to efficiently inhibit human ACE with 98.2% inhibition compared with that of standard captopril (99.6%; 20 µg/mL). The urease-catalyzed reaction was also remarkably inactivated by pGlu and standard acetohydroxamic acid with IC50 values of 1.8 and 3.9 µM, respectively. Remarkably, the outcome of in vitro cytotoxicity assay did not reveal any significant cytotoxic properties of pGlu against human cervical carcinoma cells and normal human fetal lung fibroblast cells. In addition to in vitro assays, molecular docking analyses were performed to corroborate the outcomes of in vitro results with predicted structure-activity relationships. In conclusion, pGlu could be presented as a natural and multifunctional agent with promising applications in the treatment of some ailments connected with the above-mentioned anti-enzymatic properties.
Collapse
|
23
|
Mitochondrial Neuroglobin Is Necessary for Protection Induced by Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cells in Astrocytic Cells Subjected to Scratch and Metabolic Injury. Mol Neurobiol 2018; 56:5167-5187. [PMID: 30536184 DOI: 10.1007/s12035-018-1442-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
Astrocytes are specialized cells capable of regulating inflammatory responses in neurodegenerative diseases or traumatic brain injury. In addition to playing an important role in neuroinflammation, these cells regulate essential functions for the preservation of brain tissue. Therefore, the search for therapeutic alternatives to preserve these cells and maintain their functions contributes in some way to counteract the progress of the injury and maintain neuronal survival in various brain pathologies. Among these strategies, the conditioned medium from human adipose-derived mesenchymal stem cells (CM-hMSCA) has been reported with a potential beneficial effect against several neuropathologies. In this study, we evaluated the potential effect of CM-hMSCA in a model of human astrocytes (T98G cells) subjected to scratch injury. Our findings demonstrated that CM-hMSCA regulates the cytokines IL-2, IL-6, IL-8, IL-10, GM-CSF, and TNF-α, downregulates calcium at the cytoplasmic level, and regulates mitochondrial dynamics and the respiratory chain. These actions are accompanied by modulation of the expression of different proteins involved in signaling pathways such as AKT/pAKT and ERK1/2/pERK, and may mediate the localization of neuroglobin (Ngb) at the cellular level. We also confirmed that Ngb mediated the protective effects of CM-hMSCA through regulation of proteins involved in survival pathways and oxidative stress. In conclusion, regulation of brain inflammation combined with the recovery of fundamental cellular aspects in the face of injury makes CM-hMSCA a promising candidate for the protection of astrocytes in brain pathologies.
Collapse
|
24
|
Kimura Y, Kobayashi M, Asari M, Higuchi I, Narumi K, Furugen A, Iseki K. Genetic variations in the monocarboxylate transporter genes (SLC16A1, SLC16A3, and SLC16A11) in the Japanese population. Drug Metab Pharmacokinet 2018; 33:215-218. [DOI: 10.1016/j.dmpk.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
|
25
|
Seifter JL, Chang HY. Extracellular Acid-Base Balance and Ion Transport Between Body Fluid Compartments. Physiology (Bethesda) 2018; 32:367-379. [PMID: 28814497 DOI: 10.1152/physiol.00007.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/18/2023] Open
Abstract
Clinical assessment of acid-base disorders depends on measurements made in the blood, part of the extracellular compartment. Yet much of the metabolic importance of these disorders concerns intracellular events. Intracellular and interstitial compartment acid-base balance is complex and heterogeneous. This review considers the determinants of the extracellular fluid pH related to the ion transport processes at the interface of cells and the interstitial fluid, and between epithelial cells lining the transcellular contents of the gastrointestinal and urinary tracts that open to the external environment. The generation of acid-base disorders and the associated disruption of electrolyte balance are considered in the context of these membrane transporters. This review suggests a process of internal and external balance for pH regulation, similar to that of potassium. The role of secretory gastrointestinal epithelia and renal epithelia with respect to normal pH homeostasis and clinical disorders are considered. Electroneutrality of electrolytes in the ECF is discussed in the context of reciprocal changes in Cl- or non Cl- anions and [Formula: see text].
Collapse
|
26
|
Łacina P, Butrym A, Mazur G, Bogunia-Kubik K. BSG and MCT1 Genetic Variants Influence Survival in Multiple Myeloma Patients. Genes (Basel) 2018; 9:genes9050226. [PMID: 29695106 PMCID: PMC5977166 DOI: 10.3390/genes9050226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023] Open
Abstract
Multiple myeloma (MM) is a haematologic malignancy characterized by the presence of atypical plasma cells. Basigin (BSG, CD147) controls lactate export through the monocarboxylic acid transporter 1 (MCT1, SLC16A1) and supports MM survival and proliferation. Additionally, BSG is implicated in response to treatment with immunomodulatory drugs (thalidomide and its derivatives). We investigated the role of single nucleotide polymorphisms (SNPs) in the gene coding for BSG and SLC16A1 in MM. Following an in silico analysis, eight SNPs (four in BSG and four in SLC16A1) predicted to have a functional effect were selected and analyzed in 135 MM patients and 135 healthy individuals. Alleles rs4919859 C, rs8637 G, and haplotype CG were associated with worse progression-free survival (p = 0.006, p = 0.017, p = 0.002, respectively), while rs7556664 A, rs7169 T and rs1049434 A (all in linkage disequilibrium (LD), r² > 0.98) were associated with better overall survival (p = 0.021). Similar relationships were observed in thalidomide-treated patients. Moreover, rs4919859 C, rs8637 G, rs8259 A and the CG haplotype were more common in patients in stages II⁻III of the International Staging System (p < 0.05), while rs8259 A correlated with higher levels of β-2-microglobulin and creatinine (p < 0.05). Taken together, our results show that BSG and SLC16A1 variants affect survival, and may play an important role in MM.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| | - Aleksandra Butrym
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| |
Collapse
|
27
|
Ishiguro Y, Furugen A, Narumi K, Nishimura A, Hirano T, Kobayashi M, Iseki K. Valproic acid transport in the choriocarcinoma placenta cell line JEG-3 proceeds independently of the proton-dependent transporters MCT1 and MCT4. Drug Metab Pharmacokinet 2018; 33:270-274. [PMID: 30341000 DOI: 10.1016/j.dmpk.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/21/2018] [Accepted: 03/19/2018] [Indexed: 01/06/2023]
Abstract
Medication therapy is the first line of treatment in the management of epilepsy. Fetal exposure to valproic acid (VPA), an antiepileptic drug, poses an elevated risk of teratogenicity in early pregnancy. Some studies have reported that monocarboxylate transporters (MCTs) may be involved in the placental transport of VPA. However, it has not been determined which MCTs contribute to VPA transport into the placenta. Therefore, the aim of this study was to determine how MCTs contribute to VPA transport into the placenta using the human placenta choriocarcinoma cell line JEG-3. VPA uptake was investigated using JEG-3 cells and radiolabeled VPA. MCT expression in JEG-3 cells was detected using RT-PCR and western blotting. Knockdown of MCTs was carried out using siRNAs. VPA uptake into JEG-3 cells was pH- and concentration-dependent, and described by using the Michaelis-Menten equation (Km = 0.95 ± 0.17 mM; Vmax = 19.3 ± 1.21 nmol/mg protein/15 s). MCT1 and MCT4 expression was found in JEG-3 cells, and typical MCT inhibitors significantly inhibited VPA uptake into JEG-3 cells. However, knockdown of MCT1 and MCT4 did not alter VPA uptake. In conclusion, VPA transport is mediated by a proton-dependent transporter in JEG-3 cells, but not by MCT1 and MCT4.
Collapse
Affiliation(s)
- Yuri Ishiguro
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Nishimura
- Department of Pharmacy, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Takeshi Hirano
- Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Masaki Kobayashi
- Department of Pharmacy, Hokkaido University Hospital, Sapporo 060-8648, Japan.
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmacy, Hokkaido University Hospital, Sapporo 060-8648, Japan.
| |
Collapse
|
28
|
Sass JO, Kalkan Uçar S, van Karnebeek CDM. From rodent heart to inborn errors of human metabolism. Mol Genet Metab 2018; 123:287-288. [PMID: 29429868 DOI: 10.1016/j.ymgme.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences, University of Applied Sciences, Rheinbach, Germany.
| | - Sema Kalkan Uçar
- Metabolism Unit, Department of Pediatrics, Ege University, Medical Faculty, Izmir, Turkey
| | - Clara D M van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada; Department of Pediatrics, Academic Medical Centre, Amsterdam, The Netherlands; Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Involvement of monocarboxylate transporter 1 (SLC16A1) in the uptake of l-lactate in human astrocytes. Life Sci 2018; 192:110-114. [DOI: 10.1016/j.lfs.2017.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 11/24/2022]
|
30
|
van der Pol A, Gil A, Silljé HHW, Tromp J, Ovchinnikova ES, Vreeswijk-Baudoin I, Hoes M, Domian IJ, van de Sluis B, van Deursen JM, Voors AA, van Veldhuisen DJ, van Gilst WH, Berezikov E, van der Harst P, de Boer RA, Bischoff R, van der Meer P. Accumulation of 5-oxoproline in myocardial dysfunction and the protective effects of OPLAH. Sci Transl Med 2017; 9:eaam8574. [PMID: 29118264 DOI: 10.1126/scitranslmed.aam8574] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022]
Abstract
In response to heart failure (HF), the heart reacts by repressing adult genes and expressing fetal genes, thereby returning to a more fetal-like gene profile. To identify genes involved in this process, we carried out transcriptional analysis on murine hearts at different stages of development and on hearts from adult mice with HF. Our screen identified Oplah, encoding for 5-oxoprolinase, a member of the γ-glutamyl cycle that functions by scavenging 5-oxoproline. OPLAH depletion occurred as a result of cardiac injury, leading to elevated 5-oxoproline and oxidative stress, whereas OPLAH overexpression improved cardiac function after ischemic injury. In HF patients, we observed elevated plasma 5-oxoproline, which was associated with a worse clinical outcome. Understanding and modulating fetal-like genes in the failing heart may lead to potential diagnostic, prognostic, and therapeutic options in HF.
Collapse
Affiliation(s)
- Atze van der Pol
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | - Andres Gil
- Department of Pharmacy, Analytical Biochemistry, University of Groningen, 9713 AV Groningen, Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | - Jasper Tromp
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
- National Heart Centre Singapore, 169609 Singapore, Singapore
| | - Ekaterina S Ovchinnikova
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
- European Research Institute for the Biology of Aging, Laboratory of Stem Cell Regulation and Mechanisms of Regeneration, University of Groningen, 9713 AV Groningen, Netherlands
| | - Inge Vreeswijk-Baudoin
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | - Martijn Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | - Ibrahim J Domian
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Bart van de Sluis
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | | | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | - Wiek H van Gilst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Aging, Laboratory of Stem Cell Regulation and Mechanisms of Regeneration, University of Groningen, 9713 AV Groningen, Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | - Rainer Bischoff
- Department of Pharmacy, Analytical Biochemistry, University of Groningen, 9713 AV Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands.
| |
Collapse
|
31
|
Futagi Y, Kobayashi M, Narumi K, Furugen A, Iseki K. Identification of a selective inhibitor of human monocarboxylate transporter 4. Biochem Biophys Res Commun 2017; 495:427-432. [PMID: 28993194 DOI: 10.1016/j.bbrc.2017.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022]
Abstract
The human monocarboxylate transporters (hMCTs/SLC16As) mediate the uptake of various monocarboxylates. Several isoforms of hMCTs are expressed in cancerous tissue as well as in normal tissue. In cancerous tissue, hypoxia induces the expression of hMCT4, which transports the energetic metabolite l-lactate across the plasma membrane. Since hMCT4 is involved in pH regulation and the transport of l-lactate in cancer cells, an hMCT4 inhibitor could function as an anticancer agent. Although several non specific hMCT inhibitors have been developed, a selective hMCT4 inhibitor has not yet been identified. The aim of this study was therefore to identify a selective hMCT4 inhibitor for use as a pharmacological tool for studying hMCT4. The heterologous expression system of the Xenopus oocyte was used to assess the effects of test compounds on hMCT4, whereupon isobutyrate derivatives, fibrates, and bindarit (2-[(1-benzyl-1H-indazol-3-yl)methoxy]-2-methylpropanoic acid) were demonstrated to exhibit selective inhibitory effects against this transporter. It is suggested that the structure formed from the joining of an isobutyrate moiety and two aromatic rings by appropriate linkers is important for acquiring the selective hMCT4-inhibiting activity. These findings provide novel insights into the ligand recognition of hMCT4, and contribute to the development of novel anticancer agents.
Collapse
Affiliation(s)
- Yuya Futagi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan; Research Fellow of the Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Masaki Kobayashi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo 060-8648, Japan.
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo 060-8648, Japan.
| |
Collapse
|
32
|
Futagi Y, Sasaki S, Kobayashi M, Narumi K, Furugen A, Iseki K. The flexible cytoplasmic loop 3 contributes to the substrate affinity of human monocarboxylate transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1790-1795. [DOI: 10.1016/j.bbamem.2017.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 01/26/2023]
|
33
|
Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE. Blockade of Neuroglobin Reduces Protection of Conditioned Medium from Human Mesenchymal Stem Cells in Human Astrocyte Model (T98G) Under a Scratch Assay. Mol Neurobiol 2017; 55:2285-2300. [PMID: 28332151 DOI: 10.1007/s12035-017-0481-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 12/25/2022]
Abstract
Previous studies have indicated that paracrine factors (conditioned medium) increase wound closure and reduce reactive oxygen species in a traumatic brain injury in vitro model. Although the beneficial effects of conditioned medium from human adipose tissue-derived mesenchymal stem cells (hMSCA-CM) have been previously suggested for various neurological diseases, their actions on astrocytic cells are not well understood. In this study, we have explored the effect of hMSCA-CM on human astrocyte model (T98G cells) subjected to scratch assay. Our results indicated that hMSCA-CM improved cell viability, reduced nuclear fragmentation, attenuated the production of reactive oxygen species, and preserved mitochondrial membrane potential and ultrastructural parameters. In addition, hMSCA-CM upregulated neuroglobin in T98G cells and the genetic silencing of this protein prevented the protective action of hMSCA-CM on damaged cells, suggesting that neuroglobin is mediating, at least in part, the protective effect of hMSCA-CM. Overall, this evidence suggests that the use of hMSCA-CM is a promising therapeutic strategy for the protection of astrocytic cells in central nervous system (CNS) pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gina Guio Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
- GALLY International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA
- School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA
| | - Vadim V Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., 119991, Moscow, Russia
| | - Paula Esquinas
- Facultad Medicina Veterinaria y Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
34
|
Metabolic Profiling Reveals Effects of Age, Sexual Development and Neutering in Plasma of Young Male Cats. PLoS One 2016; 11:e0168144. [PMID: 27942045 PMCID: PMC5152928 DOI: 10.1371/journal.pone.0168144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/25/2016] [Indexed: 01/10/2023] Open
Abstract
Neutering is a significant risk factor for obesity in cats. The mechanisms that promote neuter-associated weight gain are not well understood but following neutering, acute changes in energy expenditure and energy consumption have been observed. Metabolic profiling (GC-MS and UHPLC-MS-MS) was used in a longitudinal study to identify changes associated with age, sexual development and neutering in male cats fed a nutritionally-complete dry diet to maintain an ideal body condition score. At eight time points, between 19 and 52 weeks of age, fasted blood samples were taken from kittens neutered at either 19 weeks of age (Early Neuter (EN), n = 8) or at 31 weeks of age (Conventional Neuter (CN), n = 7). Univariate and multivariate analyses were used to compare plasma metabolites (n = 370) from EN and CN cats. Age was the primary driver of variance in the plasma metabolome, including a developmental change independent of neuter group between 19 and 21 weeks in lysolipids and fatty acid amides. Changes associated with sexual development and its subsequent loss were also observed, with differences at some time points observed between EN and CN cats for 45 metabolites (FDR p<0.05). Pathway Enrichment Analysis also identified significant effects in 20 pathways, dominated by amino acid, sterol and fatty acid metabolism. Most changes were interpretable within the context of male sexual development, and changed following neutering in the CN group. Felinine metabolism in CN cats was the most significantly altered pathway, increasing during sexual development and decreasing acutely following neutering. Felinine is a testosterone-regulated, felid-specific glutathione derivative secreted in urine. Alterations in tryptophan, histidine and tocopherol metabolism observed in peripubertal cats may be to support physiological functions of glutathione following diversion of S-amino acids for urinary felinine secretion.
Collapse
|
35
|
Narumi K, Kobayashi M, Kondo A, Furugen A, Yamada T, Takahashi N, Iseki K. Characterization of loxoprofen transport in Caco-2 cells: the involvement of a proton-dependent transport system in the intestinal transport of loxoprofen. Biopharm Drug Dispos 2016; 37:447-455. [PMID: 27514365 DOI: 10.1002/bdd.2026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 11/10/2022]
Abstract
Loxoprofen, a propionate non-steroidal anti-inflammatory drug (NSAID), is used widely in East Asian countries. However, little is known about the transport mechanisms contributing to its intestinal absorption. The objectives of this study were to characterize the intestinal transport of loxoprofen using the human intestinal Caco-2 cell model. The transport of loxoprofen was investigated in cellular uptake studies. The uptake of loxoprofen into Caco-2 cells was pH- and concentration-dependent, and was described by a Michaelis-Menten equation with passive diffusion (Km : 4.8 mm, Vmax : 142 nmol/mg protein/30 s, and Kd : 2.2 μl/mg protein/30 s). Moreover, the uptake of loxoprofen was inhibited by a typical monocarboxylate transporter (MCT) inhibitor as well as by various monocarboxylates. The uptake of [14 C] l-lactic acid, a typical MCT substrate, in Caco-2 cells was saturable with relatively high affinity for MCT. Because loxoprofen inhibited the uptake of [14 C] l-lactic acid in a noncompetitive manner, it was unlikely that loxoprofen uptake was mediated by high-affinity MCT(s). Our results suggest that transport of loxoprofen in Caco-2 cells is, at least in part, mediated by a proton-dependent transport system. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Department of Pharmacy, Hokkaido University Hospital, Sapporo, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ayuko Kondo
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takehiro Yamada
- Department of Pharmacy, Hokkaido University Hospital, Sapporo, Japan
| | - Natsuko Takahashi
- Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan. .,Department of Pharmacy, Hokkaido University Hospital, Sapporo, Japan.
| |
Collapse
|
36
|
Sasaki S, Futagi Y, Ideno M, Kobayashi M, Narumi K, Furugen A, Iseki K. Interaction of atorvastatin with the human glial transporter SLC16A1. Eur J Pharmacol 2016; 788:248-254. [PMID: 27341998 DOI: 10.1016/j.ejphar.2016.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 06/21/2016] [Indexed: 12/26/2022]
|
37
|
Sass JO, Gemperle-Britschgi C, Tarailo-Graovac M, Patel N, Walter M, Jordanova A, Alfadhel M, Barić I, Çoker M, Damli-Huber A, Faqeih EA, García Segarra N, Geraghty MT, Jåtun BM, Kalkan Uçar S, Kriewitz M, Rauchenzauner M, Bilić K, Tournev I, Till C, Sayson B, Beumer D, Ye CX, Zhang LH, Vallance H, Alkuraya FS, van Karnebeek CDM. Unravelling 5-oxoprolinuria (pyroglutamic aciduria) due to bi-allelic OPLAH mutations: 20 new mutations in 14 families. Mol Genet Metab 2016; 119:44-9. [PMID: 27477828 DOI: 10.1016/j.ymgme.2016.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 01/09/2023]
Abstract
Primary 5-oxoprolinuria (pyroglutamic aciduria) is caused by a genetic defect in the γ-glutamyl cycle, affecting either glutathione synthetase or 5-oxoprolinase. While several dozens of patients with glutathione synthetase deficiency have been reported, with hemolytic anemia representing the clinical key feature, 5-oxoprolinase deficiency due to OPLAH mutations is less frequent and so far has not attracted much attention. This has prompted us to investigate the clinical phenotype as well as the underlying genotype in patients from 14 families of various ethnic backgrounds who underwent diagnostic mutation analysis following the detection of 5-oxoprolinuria. In all patients with 5-oxoprolinuria studied, bi-allelic mutations in OPLAH were indicated. An autosomal recessive mode of inheritance for 5-oxoprolinase deficiency is further supported by the identification of a single mutation in all 9/14 parent sample sets investigated (except for the father of one patient whose result suggests homozygosity), and the absence of 5-oxoprolinuria in all tested heterozygotes. It is remarkable, that all 20 mutations identified were novel and private to the respective families. Clinical features were highly variable and in several sib pairs, did not segregate with 5-oxoprolinuria. Although a pathogenic role of 5-oxoprolinase deficiency remains possible, this is not supported by our findings. Additional patient ascertainment and long-term follow-up is needed to establish the benign nature of this inborn error of metabolism. It is important that all symptomatic patients with persistently elevated levels of 5-oxoproline and no obvious explanation are investigated for the genetic etiology.
Collapse
Affiliation(s)
- Jörn Oliver Sass
- Bioanalytics & Biochemistry, Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany; Clinical Chemistry & Biochemistry, Children's Research Center, University Children's Hospital, Zürich, Switzerland; Laboratory of Clinical Biochemistry and Metabolism, University Children's Hospital, Freiburg, Germany.
| | - Corinne Gemperle-Britschgi
- Clinical Chemistry & Biochemistry, Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Maja Tarailo-Graovac
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Nisha Patel
- Developmental Genetics Unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Melanie Walter
- Laboratory of Clinical Biochemistry and Metabolism, University Children's Hospital, Freiburg, Germany
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium; Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University, Sofia, Bulgaria
| | - Majid Alfadhel
- Genetics Division, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Mahmut Çoker
- Metabolism Unit, Department of Pediatrics, Ege University Medical Faculty, Izmir, Turkey
| | | | - Eissa Ali Faqeih
- Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Nuria García Segarra
- Center for Molecular Diseases (CMM), Department of Pediatrics, Centre hospitalier universitaire vaudois (CHUV), Lausanne, Switzerland
| | - Michael T Geraghty
- Metabolic Unit, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | | - Sema Kalkan Uçar
- Metabolism Unit, Department of Pediatrics, Ege University Medical Faculty, Izmir, Turkey
| | - Merten Kriewitz
- Kinder- und Jugendmedizin, Verbundkrankenhaus Bernkastel/Wittlich, Wittlich, Germany
| | | | - Karmen Bilić
- Clinical Institute of Laboratory Diagnostics, University Hospital Center Zagreb, Croatia
| | - Ivailo Tournev
- Department of Neurology, Medical University, Sofia, Bulgaria; Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria
| | - Claudia Till
- Bioanalytics & Biochemistry, Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Bryan Sayson
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Beumer
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Cynthia Xin Ye
- Laboratory of Clinical Biochemistry and Metabolism, University Children's Hospital, Freiburg, Germany
| | - Lin-Hua Zhang
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada; Child and Family Research Institute, Vancouver, BC, Canada
| | - Hilary Vallance
- Child and Family Research Institute, Vancouver, BC, Canada; Department of Pathology, Laboratory Medicine, BC Children's and Women's Hospital, University of British Columbia, Vancouver, Canada
| | - Fowzan S Alkuraya
- Developmental Genetics Unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Clara D M van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada; Child and Family Research Institute, Vancouver, BC, Canada
| |
Collapse
|
38
|
Cupeiro R, Pérez-Prieto R, Amigo T, Gortázar P, Redondo C, González-Lamuño D. Role of the monocarboxylate transporter MCT1 in the uptake of lactate during active recovery. Eur J Appl Physiol 2016; 116:1005-10. [PMID: 27026015 DOI: 10.1007/s00421-016-3365-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/12/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE We assessed the role of monocarboxylate transporter 1 (MCT1) on lactate clearance during an active recovery after high-intensity exercise, by comparing genetic groups based on the T1470A (rs1049434) MCT1 polymorphism, whose influence on lactate transport has been proven. METHODS Sixteen young male elite field hockey players participated in this study. All of them completed two 400 m maximal run tests performed on different days, followed by 40 min of active or passive recovery. Lactate samples were measured immediately after the tests, and at min 10, 20, 30 and 40 of the recoveries. Blood lactate decreases were calculated for each 10-min period. Participants were distributed into three groups according to the T1470A polymorphism (TT, TA and AA). RESULTS TT group had a lower blood lactate decrease than AA group during the 10-20 min period of the active recovery (p = 0.018). This period had the highest blood lactate for the whole sample, significantly differing from the other periods (p ≤ 0.003). During the passive recovery, lactate declines were constant except for the 0-10-min period (p ≤ 0.003), suggesting that liver uptake is similar in all the genetic groups, and that the difference seen during the active recovery is mainly due to muscle lactate uptake. CONCLUSIONS These differences according to the polymorphic variant T1470A suggest that MCT1 affects the plasma lactate decrease during a crucial period of active recovery, where the maximal lactate amount is cleared (i.e. 10-20 min period).
Collapse
Affiliation(s)
- Rocío Cupeiro
- LFE Research Group, Faculty of Physical Activity and Sports Sciences-INEF, Universidad Politécnica de Madrid, C/Martín Fierro no 7, 28040, Madrid, Spain.
| | - Raúl Pérez-Prieto
- Laboratory of Pediatrics, Facultad de Medicina, Universidad de Cantabria, Avda. Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain
| | - Teresa Amigo
- Laboratory of Pediatrics, Facultad de Medicina, Universidad de Cantabria, Avda. Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain.,Division of Pediatrics, Valdecilla Research Institute (IDIVAL), Edificio IDIVAL, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain
| | - Pilar Gortázar
- Division of Pediatrics, Valdecilla Research Institute (IDIVAL), Edificio IDIVAL, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain
| | - Carlos Redondo
- Laboratory of Pediatrics, Facultad de Medicina, Universidad de Cantabria, Avda. Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain
| | - Domingo González-Lamuño
- Laboratory of Pediatrics, Facultad de Medicina, Universidad de Cantabria, Avda. Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain.,Division of Pediatrics, Valdecilla Research Institute (IDIVAL), Edificio IDIVAL, Avenida Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain
| |
Collapse
|
39
|
Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain. Biomolecules 2016; 6:biom6020016. [PMID: 27023624 PMCID: PMC4919911 DOI: 10.3390/biom6020016] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Glutamate is present in the brain at an average concentration—typically 10–12 mM—far in excess of those of other amino acids. In glutamate-containing vesicles in the brain, the concentration of glutamate may even exceed 100 mM. Yet because glutamate is a major excitatory neurotransmitter, the concentration of this amino acid in the cerebral extracellular fluid must be kept low—typically µM. The remarkable gradient of glutamate in the different cerebral compartments: vesicles > cytosol/mitochondria > extracellular fluid attests to the extraordinary effectiveness of glutamate transporters and the strict control of enzymes of glutamate catabolism and synthesis in well-defined cellular and subcellular compartments in the brain. A major route for glutamate and ammonia removal is via the glutamine synthetase (glutamate ammonia ligase) reaction. Glutamate is also removed by conversion to the inhibitory neurotransmitter γ-aminobutyrate (GABA) via the action of glutamate decarboxylase. On the other hand, cerebral glutamate levels are maintained by the action of glutaminase and by various α-ketoglutarate-linked aminotransferases (especially aspartate aminotransferase and the mitochondrial and cytosolic forms of the branched-chain aminotransferases). Although the glutamate dehydrogenase reaction is freely reversible, owing to rapid removal of ammonia as glutamine amide, the direction of the glutamate dehydrogenase reaction in the brain in vivo is mainly toward glutamate catabolism rather than toward the net synthesis of glutamate, even under hyperammonemia conditions. During hyperammonemia, there is a large increase in cerebral glutamine content, but only small changes in the levels of glutamate and α-ketoglutarate. Thus, the channeling of glutamate toward glutamine during hyperammonemia results in the net synthesis of 5-carbon units. This increase in 5-carbon units is accomplished in part by the ammonia-induced stimulation of the anaplerotic enzyme pyruvate carboxylase. Here, we suggest that glutamate may constitute a buffer or bulwark against changes in cerebral amine and ammonia nitrogen. Although the glutamate transporters are briefly discussed, the major emphasis of the present review is on the enzymology contributing to the maintenance of glutamate levels under normal and hyperammonemic conditions. Emphasis will also be placed on the central role of glutamate in the glutamine-glutamate and glutamine-GABA neurotransmitter cycles between neurons and astrocytes. Finally, we provide a brief and selective discussion of neuropathology associated with altered cerebral glutamate levels.
Collapse
|
40
|
Sasaki S, Futagi Y, Ideno M, Kobayashi M, Narumi K, Furugen A, Iseki K. Effect of diclofenac on SLC16A3/MCT4 by the Caco-2 cell line. Drug Metab Pharmacokinet 2016; 31:218-23. [PMID: 27236641 DOI: 10.1016/j.dmpk.2016.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
In the present study, we demonstrated that monocarboxylate transporter 4 (MCT4) is functionally expressed in Caco-2 cells. We studied the effects of 4 nonsteroidal anti-inflammatory drugs on the uptake of l-lactate as a good substrate of MCT4 by the cells. The monocarboxylate drugs inhibited the uptake of l-lactate into the cells. Diclofenac, as a member of the aryl-acetic acid group of nonsteroidal anti-inflammatory drugs, was the most potent inhibitor, with an inhibition constant of 20 μM. In the next study, we determined the type of inhibition for diclofenac. An l-lactate carrier is non-competitively inhibitable by the drug. We also demonstrated, in Xenopus oocyte expression system, potential of diclofenac for MCT4 inhibitor. The present results could provide a useful tool to discover MCT4-specific inhibitors.
Collapse
Affiliation(s)
- Shotaro Sasaki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yuya Futagi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Masaya Ideno
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmacy, Hokkaido University Hospital, Sapporo 060-8648, Japan.
| |
Collapse
|
41
|
Ideno M, Sasaki S, Kobayashi M, Futagi Y, Narumi K, Iseki K. Influence of high glucose state on bromopyruvate-induced cytotoxity by human colon cancer cell lines. Drug Metab Pharmacokinet 2016; 31:67-72. [DOI: 10.1016/j.dmpk.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
|
42
|
Sasaki S, Kobayashi M, Futagi Y, Ogura J, Yamaguchi H, Iseki K. Involvement of Histidine Residue His382 in pH Regulation of MCT4 Activity. PLoS One 2015; 10:e0122738. [PMID: 25919709 PMCID: PMC4412719 DOI: 10.1371/journal.pone.0122738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/12/2015] [Indexed: 11/18/2022] Open
Abstract
Monocarboxylate transporter 4 (MCT4) is a pH-dependent bi-directional lactate transporter. Transport of lactate via MCT4 is increased by extracellular acidification. We investigated the critical histidine residue involved in pH regulation of MCT4 function. Transport of lactate via MCT4 was measured by using a Xenopus laevis oocyte expression system. MCT4-mediated lactate transport was inhibited by Zn2+ in a pH physiological condition but not in an acidic condition. The histidine modifier DEPC (diethyl pyrocarbonate) reduced MCT4 activity but did not completely inactivate MCT4. After treatment with DEPC, pH regulation of MCT4 function was completely knocked out. Inhibitory effects of DEPC were reversed by hydroxylamine and suppressed in the presence of excess lactate and Zn2+. Therefore, we performed an experiment in which the extracellular histidine residue was replaced with alanine. Consequently, the pH regulation of MCT4-H382A function was also knocked out. Our findings demonstrate that the histidine residue His382 in the extracellular loop of the transporter is essential for pH regulation of MCT4-mediated substrate transport activity.
Collapse
Affiliation(s)
- Shotaro Sasaki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060–0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060–0812, Japan
| | - Yuya Futagi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060–0812, Japan
| | - Jiro Ogura
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060–0812, Japan
| | - Hiroaki Yamaguchi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060–0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060–0812, Japan
- Department of Pharmacy, Hokkaido University Hospital, Sapporo 060–8648, Japan
- * E-mail:
| |
Collapse
|