1
|
Brischigliaro M, Krüger A, Moran JC, Antonicka H, Ahn A, Shoubridge E, Rorbach J, Barrientos A. The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches. Nucleic Acids Res 2024; 52:9710-9726. [PMID: 39036954 PMCID: PMC11381339 DOI: 10.1093/nar/gkae645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The University of Miami Medical Scientist Training Program (MSTP), 1600 NW 10th Ave.,Miami, FL33136, USA
| | - Hana Antonicka
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | - Eric A Shoubridge
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16th St, Miami, FL-33125, USA
| |
Collapse
|
2
|
Brewer TE, Wagner A. Horizontal Gene Transfer of a key Translation Factor and its Role in Polyproline Proteome Evolution. Mol Biol Evol 2024; 41:msae180. [PMID: 39189989 PMCID: PMC11388002 DOI: 10.1093/molbev/msae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Prolines cause ribosomes to stall during translation due to their rigid structure. This phenomenon occurs in all domains of life and is exacerbated at polyproline motifs. Such stalling can be eased by the elongation factor P (EF-P) in bacteria. We discovered a potential connection between the loss of ancestral EF-P, the appearance of horizontally transferred EF-P variants, and genomic signs of EF-P dysfunction. Horizontal transfer of the efp gene has occurred several times among bacteria and is associated with the loss of highly conserved polyproline motifs. In this study, we pinpoint cases of horizontal EF-P transfer among a diverse set of bacteria and examine genomic features associated with these events in the phyla Thermotogota and Planctomycetes. In these phyla, horizontal EF-P transfer is also associated with the loss of entire polyproline motif-containing proteins, whose expression is likely dependent on EF-P. In particular, three proteases (Lon, ClpC, and FtsH) and three tRNA synthetases (ValS, IleS1, and IleS2) appear highly sensitive to EF-P transfer. The conserved polyproline motifs within these proteins all reside within close proximity to ATP-binding-regions, some of which are crucial for their function. Our work shows that an ancient EF-P dysfunction has left genomic traces that persist to this day, although it remains unclear whether this dysfunction was strictly due to loss of ancestral EF-P or was related to the appearance of an exogenous variant. The latter possibility would imply that the process of "domesticating" a horizontally transferred efp gene can perturb the overall function of EF-P.
Collapse
Affiliation(s)
- Tess E Brewer
- Faculty of Biology, Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
3
|
Martin-Solana E, Diaz-Lopez I, Mohamedi Y, Ventoso I, Fernandez JJ, Fernandez-Fernandez MR. Progressive alterations in polysomal architecture and activation of ribosome stalling relief factors in a mouse model of Huntington's disease. Neurobiol Dis 2024; 195:106488. [PMID: 38565397 PMCID: PMC7616275 DOI: 10.1016/j.nbd.2024.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD. We performed 3D electron tomography of high-pressure frozen and freeze-substituted striatal tissue from HD models and corresponding controls at different ages. Electron tomography results revealed progressive remodelling towards a more compacted polysomal architecture in the mouse model, an effect that coincided with the emergence and progression of HD related symptoms. The aberrant polysomal architecture is compatible with ribosome stalling phenomena. In fact, we also detected in the zQ175 model an increase in the striatal expression of the stalling relief factor EIF5A2 and an increase in the accumulation of eIF5A1, eIF5A2 and hypusinated eIF5A1, the active form of eIF5A1. Polysomal sedimentation gradients showed differences in the relative accumulation of 40S ribosomal subunits and in polysomal distribution in striatal samples of the zQ175 model. These findings indicate that changes in the architecture of the protein synthesis machinery may underlie translational alterations associated with HD, opening new avenues for understanding the progression of the disease.
Collapse
Affiliation(s)
- Eva Martin-Solana
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain
| | - Irene Diaz-Lopez
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Yamina Mohamedi
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Ivan Ventoso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jose-Jesus Fernandez
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain; Centro de Investigación en Nanomateriales y Nanotecnología (CINN-CSIC). Av. Vega 4-6, 33940 El Entrego, Asturias, Spain.
| | - Maria Rosario Fernandez-Fernandez
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain; Centro de Investigación en Nanomateriales y Nanotecnología (CINN-CSIC). Av. Vega 4-6, 33940 El Entrego, Asturias, Spain.
| |
Collapse
|
4
|
Daskalova SM, Dedkova LM, Maini R, Talukder P, Bai X, Chowdhury SR, Zhang C, Nangreave RC, Hecht SM. Elongation Factor P Modulates the Incorporation of Structurally Diverse Noncanonical Amino Acids into Escherichia coli Dihydrofolate Reductase. J Am Chem Soc 2023; 145:23600-23608. [PMID: 37871253 PMCID: PMC10762953 DOI: 10.1021/jacs.3c07524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The introduction of noncanonical amino acids into proteins and peptides has been of great interest for many years and has facilitated the detailed study of peptide/protein structure and mechanism. In addition to numerous nonproteinogenic α-l-amino acids, bacterial ribosome modification has provided the wherewithal to enable the synthesis of peptides and proteins with a much greater range of structural diversity, as has the use of endogenous bacterial proteins in reconstituted protein synthesizing systems. In a recent report, elongation factor P (EF-P), putatively essential for enabling the incorporation of contiguous proline residues into proteins, was shown to facilitate the introduction of an N-methylated amino acid in addition to proline. This finding prompted us to investigate the properties of this protein factor with a broad variety of structurally diverse amino acid analogues using an optimized suppressor tRNAPro that we designed. While these analogues can generally be incorporated into proteins only in systems containing modified ribosomes specifically selected for their incorporation, we found that EF-P could significantly enhance their incorporation into model protein dihydrofolate reductase using wild-type ribosomes. Plausibly, the increased yields observed in the presence of structurally diverse amino acid analogues may result from the formation of a stabilized ribosomal complex in the presence of EF-P that provides more favorable conditions for peptide bond formation. This finding should enable the facile incorporation of a much broader structural variety of amino acid analogues into proteins and peptides using native ribosomes.
Collapse
Affiliation(s)
- Sasha M Daskalova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Rumit Maini
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Poulami Talukder
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoguang Bai
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sandipan Roy Chowdhury
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chao Zhang
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan C Nangreave
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
5
|
Meydan S, Guydosh NR. Is there a localized role for translational quality control? RNA (NEW YORK, N.Y.) 2023; 29:1623-1643. [PMID: 37582617 PMCID: PMC10578494 DOI: 10.1261/rna.079683.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
It is known that mRNAs and the machinery that translates them are not uniformly distributed throughout the cytoplasm. As a result, the expression of some genes is localized to particular parts of the cell and this makes it possible to carry out important activities, such as growth and signaling, in three-dimensional space. However, the functions of localized gene expression are not fully understood, and the underlying mechanisms that enable localized expression have not been determined in many cases. One consideration that could help in addressing these challenges is the role of quality control (QC) mechanisms that monitor translating ribosomes. On a global level, QC pathways are critical for detecting aberrant translation events, such as a ribosome that stalls while translating, and responding by activating stress pathways and resolving problematic ribosomes and mRNAs at the molecular level. However, it is unclear how these pathways, even when uniformly active throughout the cell, affect local translation. Importantly, some QC pathways have themselves been reported to be enriched in the proximity of particular organelles, but the extent of such localized activity remains largely unknown. Here, we describe the major QC pathways and review studies that have begun to explore their roles in localized translation. Given the limited data in this area, we also pose broad questions about the possibilities and limitations for how QC pathways could facilitate localized gene expression in the cell with the goal of offering ideas for future experimentation.
Collapse
Affiliation(s)
- Sezen Meydan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas R Guydosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Höllerer S, Jeschek M. Ultradeep characterisation of translational sequence determinants refutes rare-codon hypothesis and unveils quadruplet base pairing of initiator tRNA and transcript. Nucleic Acids Res 2023; 51:2377-2396. [PMID: 36727459 PMCID: PMC10018350 DOI: 10.1093/nar/gkad040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/05/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Translation is a key determinant of gene expression and an important biotechnological engineering target. In bacteria, 5'-untranslated region (5'-UTR) and coding sequence (CDS) are well-known mRNA parts controlling translation and thus cellular protein levels. However, the complex interaction of 5'-UTR and CDS has so far only been studied for few sequences leading to non-generalisable and partly contradictory conclusions. Herein, we systematically assess the dynamic translation from over 1.2 million 5'-UTR-CDS pairs in Escherichia coli to investigate their collective effect using a new method for ultradeep sequence-function mapping. This allows us to disentangle and precisely quantify effects of various sequence determinants of translation. We find that 5'-UTR and CDS individually account for 53% and 20% of variance in translation, respectively, and show conclusively that, contrary to a common hypothesis, tRNA abundance does not explain expression changes between CDSs with different synonymous codons. Moreover, the obtained large-scale data provide clear experimental evidence for a base-pairing interaction between initiator tRNA and mRNA beyond the anticodon-codon interaction, an effect that is often masked for individual sequences and therefore inaccessible to low-throughput approaches. Our study highlights the indispensability of ultradeep sequence-function mapping to accurately determine the contribution of parts and phenomena involved in gene regulation.
Collapse
Affiliation(s)
- Simon Höllerer
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology – ETH Zurich, Basel CH-4058, Switzerland
| | - Markus Jeschek
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology – ETH Zurich, Basel CH-4058, Switzerland
- Institute of Microbiology, Synthetic Microbiology Group, University of Regensburg, Regensburg D-93053, Germany
| |
Collapse
|
7
|
Castillo KD, Wu C, Ding Z, Lopez-Garcia OK, Rowlinson E, Sachs MS, Bell-Pedersen D. A circadian clock translational control mechanism targets specific mRNAs to cytoplasmic messenger ribonucleoprotein granules. Cell Rep 2022; 41:111879. [PMID: 36577368 PMCID: PMC10241597 DOI: 10.1016/j.celrep.2022.111879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/13/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022] Open
Abstract
Phosphorylation of Neurospora crassa eukaryotic initiation factor 2 α (eIF2α), a conserved translation initiation factor, is clock controlled. To determine the impact of rhythmic eIF2α phosphorylation on translation, we performed temporal ribosome profiling and RNA sequencing (RNA-seq) in wild-type (WT), clock mutant Δfrq, eIF2α kinase mutant Δcpc-3, and constitutively active cpc-3c cells. About 14% of mRNAs are rhythmically translated in WT cells, and translation rhythms for ∼30% of these mRNAs, which we named circadian translation-initiation-controlled genes (cTICs), are dependent on the clock and CPC-3. Most cTICs are expressed from arrhythmic mRNAs and contain a P-body (PB) localization motif in their 5' leader sequence. Deletion of SNR-1, a component of cytoplasmic messenger ribonucleoprotein granules (cmRNPgs) that include PBs and stress granules (SGs), and the PB motif on one of the cTIC mRNAs, zip-1, significantly alters zip-1 rhythmic translation. These results reveal that the clock regulates rhythmic translation of specific mRNAs through rhythmic eIF2α activity and cmRNPg metabolism.
Collapse
Affiliation(s)
- Kathrina D Castillo
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Zhaolan Ding
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Emma Rowlinson
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Leiva LE, Elgamal S, Leidel SA, Orellana O, Ibba M, Katz A. Oxidative stress strongly restricts the effect of codon choice on the efficiency of protein synthesis in Escherichia coli. Front Microbiol 2022; 13:1042675. [PMID: 36532460 PMCID: PMC9749903 DOI: 10.3389/fmicb.2022.1042675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/04/2022] [Indexed: 04/21/2025] Open
Abstract
INTRODUCTION The response of enterobacteria to oxidative stress is usually considered to be regulated by transcription factors such as OxyR and SoxR. Nevertheless, several reports have shown that under oxidative stress the levels, modification and aminoacylation of tRNAs may be altered suggesting a role of codon bias in regulation of gene expression under this condition. METHODS In order to characterize the effects of oxidative stress on translation elongation we constructed a library of 61 plasmids, each coding for the green fluorescent protein (GFP) translationally fused to a different set of four identical codons. RESULTS Using these reporters, we observed that GFP production levels vary widely (~15 fold) when Escherichia coli K-12 is cultured in minimal media as a consequence of codon choice variations. When bacteria are cultured under oxidative stress caused by paraquat the levels of GFP produced by most clones is reduced and, in contrast to control conditions, the range of GFP levels is restricted to a ~2 fold range. Restricting elongation of particular sequences does not increase the range of GFP production under oxidative stress, but altering translation initiation rates leads to an increase in this range. DISCUSSION Altogether, our results suggest that under normal conditions the speed of translation elongation is in the range of the speed of initiation and, consequently, codon choice impacts the speed of protein synthesis. In contrast, under oxidative stress translation initiation becomes much slower than elongation, limiting the speed of translation such that codon choice has at most only subtle effects on the overall output of translation.
Collapse
Affiliation(s)
- Lorenzo Eugenio Leiva
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Sara Elgamal
- Department of Microbiology, The Center for RNA Biology, Ohio State University, Columbus, OH, United States
| | - Sebastian A. Leidel
- Research Group for RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Michael Ibba
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Assaf Katz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Translation stalling proline motifs are enriched in slow-growing, thermophilic, and multicellular bacteria. THE ISME JOURNAL 2022; 16:1065-1073. [PMID: 34824398 DOI: 10.1038/s41396-021-01154-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
Rapid bacterial growth depends on the speed at which ribosomes can translate mRNA into proteins. mRNAs that encode successive stretches of proline can cause ribosomes to stall, substantially reducing translation speed. Such stalling is especially detrimental for species that must grow and divide rapidly. Here, we focus on di-prolyl motifs (XXPPX) and ask whether their prevalence varies with growth rate. To find out we conducted a broad survey of such motifs in >3000 bacterial genomes across 35 phyla. Indeed, fast-growing species encode fewer motifs than slow-growing species, especially in highly expressed proteins. We also found many di-prolyl motifs within thermophiles, where prolines can help maintain proteome stability. Moreover, bacteria with complex, multicellular lifecycles also encode many di-prolyl motifs. This is especially evident in the slow-growing phylum Myxococcota. Bacteria in this phylum encode many serine-threonine kinases, and many di-prolyl motifs at potential phosphorylation sites within these kinases. Serine-threonine kinases are involved in cell signaling and help regulate developmental processes linked to multicellularity in the Myxococcota. Altogether, our observations suggest that weakened selection on translational rate, whether due to slow or thermophilic growth, may allow di-prolyl motifs to take on new roles in biological processes that are unrelated to translational rate.
Collapse
|
10
|
Barba-Aliaga M, Alepuz P. Role of eIF5A in Mitochondrial Function. Int J Mol Sci 2022; 23:1284. [PMID: 35163207 PMCID: PMC8835957 DOI: 10.3390/ijms23031284] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is an evolutionarily conserved protein that binds ribosomes to facilitate the translation of peptide motifs with consecutive prolines or combinations of prolines with glycine and charged amino acids. It has also been linked to other molecular functions and cellular processes, such as nuclear mRNA export and mRNA decay, proliferation, differentiation, autophagy, and apoptosis. The growing interest in eIF5A relates to its association with the pathogenesis of several diseases, including cancer, viral infection, and diabetes. It has also been proposed as an anti-aging factor: its levels decay in aged cells, whereas increasing levels of active eIF5A result in the rejuvenation of the immune and vascular systems and improved brain cognition. Recent data have linked the role of eIF5A in some pathologies with its function in maintaining healthy mitochondria. The eukaryotic translation initiation factor 5A is upregulated under respiratory metabolism and its deficiency reduces oxygen consumption, ATP production, and the levels of several mitochondrial metabolic enzymes, as well as altering mitochondria dynamics. However, although all the accumulated data strongly link eIF5A to mitochondrial function, the precise molecular role and mechanisms involved are still unknown. In this review, we discuss the findings linking eIF5A and mitochondria, speculate about its role in regulating mitochondrial homeostasis, and highlight its potential as a target in diseases related to energy metabolism.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| |
Collapse
|
11
|
Tietze L, Lale R. Importance of the 5' regulatory region to bacterial synthetic biology applications. Microb Biotechnol 2021; 14:2291-2315. [PMID: 34171170 PMCID: PMC8601185 DOI: 10.1111/1751-7915.13868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023] Open
Abstract
The field of synthetic biology is evolving at a fast pace. It is advancing beyond single-gene alterations in single hosts to the logical design of complex circuits and the development of integrated synthetic genomes. Recent breakthroughs in deep learning, which is increasingly used in de novo assembly of DNA components with predictable effects, are also aiding the discipline. Despite advances in computing, the field is still reliant on the availability of pre-characterized DNA parts, whether natural or synthetic, to regulate gene expression in bacteria and make valuable compounds. In this review, we discuss the different bacterial synthetic biology methodologies employed in the creation of 5' regulatory regions - promoters, untranslated regions and 5'-end of coding sequences. We summarize methodologies and discuss their significance for each of the functional DNA components, and highlight the key advances made in bacterial engineering by concentrating on their flaws and strengths. We end the review by outlining the issues that the discipline may face in the near future.
Collapse
Affiliation(s)
- Lisa Tietze
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Rahmi Lale
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| |
Collapse
|
12
|
Zhao YH, Zhou T, Wang JX, Li Y, Fang MF, Liu JN, Li ZH. Evolution and structural variations in chloroplast tRNAs in gymnosperms. BMC Genomics 2021; 22:750. [PMID: 34663228 PMCID: PMC8524817 DOI: 10.1186/s12864-021-08058-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
Background Chloroplast transfer RNAs (tRNAs) can participate in various vital processes. Gymnosperms have important ecological and economic value, and they are the dominant species in forest ecosystems in the Northern Hemisphere. However, the evolution and structural changes in chloroplast tRNAs in gymnosperms remain largely unclear. Results In this study, we determined the nucleotide evolution, phylogenetic relationships, and structural variations in 1779 chloroplast tRNAs in gymnosperms. The numbers and types of tRNA genes present in the chloroplast genomes of different gymnosperms did not differ greatly, where the average number of tRNAs was 33 and the frequencies of occurrence for various types of tRNAs were generally consistent. Nearly half of the anticodons were absent. Molecular sequence variation analysis identified the conserved secondary structures of tRNAs. About a quarter of the tRNA genes were found to contain precoded 3′ CCA tails. A few tRNAs have undergone novel structural changes that are closely related to their minimum free energy, and these structural changes affect the stability of the tRNAs. Phylogenetic analysis showed that tRNAs have evolved from multiple common ancestors. The transition rate was higher than the transversion rate in gymnosperm chloroplast tRNAs. More loss events than duplication events have occurred in gymnosperm chloroplast tRNAs during their evolutionary process. Conclusions These findings provide novel insights into the molecular evolution and biological characteristics of chloroplast tRNAs in gymnosperms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08058-3.
Collapse
Affiliation(s)
- Yu-He Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Tong Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jiu-Xia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Min-Feng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jian-Ni Liu
- State Key Laboratory of Continental Dynamics, Department of Geology, Early Life Institute, Northwest University, Xi'an, 710069, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
13
|
Abstract
Genetic editing has revolutionized biotechnology, but delivery of endonuclease genes as DNA can lead to aberrant integration or overexpression, leading to off-target effects. Here, we develop a mechanism to deliver Cre recombinase as a protein by engineering the bacterial type six secretion system (T6SS). Using multiple T6SS fusion proteins, Aeromonas dhakensis or attenuated Vibrio cholerae donor strains, and a gain-of-function cassette for detecting Cre recombination, we demonstrate successful delivery of active Cre directly into recipient cells. The most efficient transfer was achieved using a truncated version of PAAR2 from V. cholerae, resulting in a relatively small (118-amino-acid) delivery tag. We further demonstrate the versatility of this system by delivering an exogenous effector, TseC, enabling V. cholerae to kill Pseudomonas aeruginosa. This implies that P. aeruginosa is naturally resistant to all native effectors of V. cholerae and that the TseC chaperone protein is not required for its activity. Moreover, it demonstrates that the engineered system can improve T6SS efficacy against specific pathogens, proposing future application in microbiome manipulation or as a next-generation antimicrobial. Inexpensive and easy to produce, this protein delivery system has many potential applications, ranging from studying T6SS effectors to genetic editing.
Collapse
|
14
|
Krafczyk R, Qi F, Sieber A, Mehler J, Jung K, Frishman D, Lassak J. Proline codon pair selection determines ribosome pausing strength and translation efficiency in bacteria. Commun Biol 2021; 4:589. [PMID: 34002016 PMCID: PMC8129111 DOI: 10.1038/s42003-021-02115-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
The speed of mRNA translation depends in part on the amino acid to be incorporated into the nascent chain. Peptide bond formation is especially slow with proline and two adjacent prolines can even cause ribosome stalling. While previous studies focused on how the amino acid context of a Pro-Pro motif determines the stalling strength, we extend this question to the mRNA level. Bioinformatics analysis of the Escherichia coli genome revealed significantly differing codon usage between single and consecutive prolines. We therefore developed a luminescence reporter to detect ribosome pausing in living cells, enabling us to dissect the roles of codon choice and tRNA selection as well as to explain the genome scale observations. Specifically, we found a strong selective pressure against CCC/U-C, a sequon causing ribosomal frameshifting even under wild-type conditions. On the other hand, translation efficiency as positive evolutionary driving force led to an overrepresentation of CCG. This codon is not only translated the fastest, but the corresponding prolyl-tRNA reaches almost saturating levels. By contrast, CCA, for which the cognate prolyl-tRNA amounts are limiting, is used to regulate pausing strength. Thus, codon selection both in discrete positions but especially in proline codon pairs can tune protein copy numbers.
Collapse
Affiliation(s)
- Ralph Krafczyk
- grid.5252.00000 0004 1936 973XDepartment of Biology I, Microbiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Fei Qi
- grid.411404.40000 0000 8895 903XInstitute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, China ,grid.6936.a0000000123222966Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Alina Sieber
- grid.5252.00000 0004 1936 973XDepartment of Biology I, Microbiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Judith Mehler
- grid.5252.00000 0004 1936 973XDepartment of Biology I, Microbiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Kirsten Jung
- grid.5252.00000 0004 1936 973XDepartment of Biology I, Microbiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Dmitrij Frishman
- grid.6936.a0000000123222966Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jürgen Lassak
- grid.5252.00000 0004 1936 973XDepartment of Biology I, Microbiology, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
15
|
Hummels KR, Kearns DB. Translation elongation factor P (EF-P). FEMS Microbiol Rev 2020; 44:208-218. [PMID: 32011712 DOI: 10.1093/femsre/fuaa003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/30/2020] [Indexed: 01/01/2023] Open
Abstract
Translation elongation factor P (EF-P) is conserved in all three domains of life (called eIF5A and aIF5A in eukaryotes and archaea, respectively) and functions to alleviate ribosome pausing during the translation of specific sequences, including consecutive proline residues. EF-P was identified in 1975 as a factor that stimulated the peptidyltransferase reaction in vitro but its involvement in the translation of tandem proline residues was not uncovered until 2013. Throughout the four decades of EF-P research, perceptions of EF-P function have changed dramatically. In particular, while EF-P was thought to potentiate the formation of the first peptide bond in a protein, it is now broadly accepted to act throughout translation elongation. Further, EF-P was initially reported to be essential, but recent work has shown that the requirement of EF-P for growth is conditional. Finally, it is thought that post-translational modification of EF-P is strictly required for its function but recent studies suggest that EF-P modification may play a more nuanced role in EF-P activity. Here, we review the history of EF-P research, with an emphasis on its initial isolation and characterization as well as the discoveries that altered our perceptions of its function.
Collapse
Affiliation(s)
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN USA
| |
Collapse
|
16
|
Leiva LE, Pincheira A, Elgamal S, Kienast SD, Bravo V, Leufken J, Gutiérrez D, Leidel SA, Ibba M, Katz A. Modulation of Escherichia coli Translation by the Specific Inactivation of tRNA Gly Under Oxidative Stress. Front Genet 2020; 11:856. [PMID: 33014012 PMCID: PMC7461829 DOI: 10.3389/fgene.2020.00856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria modulate the response to oxidative stress according to the prevailing metabolic state of the cells.
Collapse
Affiliation(s)
- Lorenzo Eugenio Leiva
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Pincheira
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sara Elgamal
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Sandra D Kienast
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells-in-Motion Cluster of Excellence and Faculty of Medicine, University of Münster, Münster, Germany.,Research Group for RNA Biochemistry, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Verónica Bravo
- Unidad de Microbiología, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Johannes Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells-in-Motion Cluster of Excellence and Faculty of Medicine, University of Münster, Münster, Germany.,Research Group for RNA Biochemistry, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Daniela Gutiérrez
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells-in-Motion Cluster of Excellence and Faculty of Medicine, University of Münster, Münster, Germany.,Research Group for RNA Biochemistry, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michael Ibba
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Tollerson R, Ibba M. Translational regulation of environmental adaptation in bacteria. J Biol Chem 2020; 295:10434-10445. [PMID: 32518156 DOI: 10.1074/jbc.rev120.012742] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/08/2020] [Indexed: 01/26/2023] Open
Abstract
Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation-initiation, elongation, and termination-cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels of specific protein products using programmed ribosome pausing or inducing frameshifting. Recent studies have improved understanding and revealed greater complexity regarding long-standing paradigms describing key regulatory steps of translation such as start-site selection and the coupling of transcription and translation. In this review, we describe how bacteria regulate their gene expression at the three translational steps and discuss how translation is used to detect and respond to changes in the cellular environment. Finally, we appraise the costs and benefits of regulation at the translational level in bacteria.
Collapse
Affiliation(s)
- Rodney Tollerson
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Michael Ibba
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Ribosome collisions alter frameshifting at translational reprogramming motifs in bacterial mRNAs. Proc Natl Acad Sci U S A 2019; 116:21769-21779. [PMID: 31591196 PMCID: PMC6815119 DOI: 10.1073/pnas.1910613116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ribosomes move along mRNAs in 3-nucleotide steps as they interpret codons that specify which amino acid is required at each position in the protein. There are multiple examples of genes with DNA sequences that do not match the produced proteins because ribosomes move to a new reading frame in the message before finishing translation (so-called frameshifting). This report shows that, when ribosomes stall at mRNA regions prone to cause frameshifting events, trailing ribosomes that collide with them can significantly change the outcome and potentially regulate protein production. This work highlights the principle that biological macromolecules do not function in isolation, and it provides an example of how physical interactions between neighboring complexes can be used to augment their performance. Translational frameshifting involves the repositioning of ribosomes on their messages into decoding frames that differ from those dictated during initiation. Some messenger RNAs (mRNAs) contain motifs that promote deliberate frameshifting to regulate production of the encoded proteins. The mechanisms of frameshifting have been investigated in many systems, and the resulting models generally involve single ribosomes responding to stimulator sequences in their engaged mRNAs. We discovered that the abundance of ribosomes on messages containing the IS3, dnaX, and prfB frameshift motifs significantly influences the levels of frameshifting. We show that this phenomenon results from ribosome collisions that occur during translational stalling, which can alter frameshifting in both the stalled and trailing ribosomes. Bacteria missing ribosomal protein bL9 are known to exhibit a reduction in reading frame maintenance and to have a strong dependence on elongation factor P (EFP). We discovered that ribosomes lacking bL9 become compacted closer together during collisions and that the E-sites of the stalled ribosomes appear to become blocked, which suggests subsequent transpeptidation in transiently stalled ribosomes may become compromised in the absence of bL9. In addition, we determined that bL9 can suppress frameshifting of its host ribosome, likely by regulating E-site dynamics. These findings provide mechanistic insight into the behavior of colliding ribosomes during translation and suggest naturally occurring frameshift elements may be regulated by the abundance of ribosomes relative to an mRNA pool.
Collapse
|
19
|
Zhang H, Alsaleh G, Feltham J, Sun Y, Napolitano G, Riffelmacher T, Charles P, Frau L, Hublitz P, Yu Z, Mohammed S, Ballabio A, Balabanov S, Mellor J, Simon AK. Polyamines Control eIF5A Hypusination, TFEB Translation, and Autophagy to Reverse B Cell Senescence. Mol Cell 2019; 76:110-125.e9. [PMID: 31474573 PMCID: PMC6863385 DOI: 10.1016/j.molcel.2019.08.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/30/2019] [Accepted: 08/02/2019] [Indexed: 02/08/2023]
Abstract
Failure to make adaptive immune responses is a hallmark of aging. Reduced B cell function leads to poor vaccination efficacy and a high prevalence of infections in the elderly. Here we show that reduced autophagy is a central molecular mechanism underlying immune senescence. Autophagy levels are specifically reduced in mature lymphocytes, leading to compromised memory B cell responses in old individuals. Spermidine, an endogenous polyamine metabolite, induces autophagy in vivo and rejuvenates memory B cell responses. Mechanistically, spermidine post-translationally modifies the translation factor eIF5A, which is essential for the synthesis of the autophagy transcription factor TFEB. Spermidine is depleted in the elderly, leading to reduced TFEB expression and autophagy. Spermidine supplementation restored this pathway and improved the responses of old human B cells. Taken together, our results reveal an unexpected autophagy regulatory mechanism mediated by eIF5A at the translational level, which can be harnessed to reverse immune senescence in humans.
Collapse
Affiliation(s)
- Hanlin Zhang
- The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Ghada Alsaleh
- The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Jack Feltham
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Yizhe Sun
- The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131, Naples, Italy
| | - Thomas Riffelmacher
- The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Philip Charles
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK; Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Lisa Frau
- The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Philip Hublitz
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Zhanru Yu
- Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131, Naples, Italy; Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stefan Balabanov
- Division of Haematology, University Hospital and University of Zürich, 8091, Zürich, Switzerland
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| |
Collapse
|
20
|
Park H, Subramaniam AR. Inverted translational control of eukaryotic gene expression by ribosome collisions. PLoS Biol 2019; 17:e3000396. [PMID: 31532761 PMCID: PMC6750593 DOI: 10.1371/journal.pbio.3000396] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022] Open
Abstract
The canonical model of eukaryotic translation posits that efficient translation initiation increases protein expression and mRNA stability. Contrary to this model, we find that increasing initiation rate can decrease both protein expression and stability of certain mRNAs in the budding yeast Saccharomyces cerevisiae. These mRNAs encode a stretch of polybasic residues that cause ribosome stalling. Our computational modeling predicts that the observed decrease in gene expression at high initiation rates occurs when ribosome collisions at stalls stimulate abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage. Consistent with this prediction, the collision-associated quality-control factors Asc1 and Hel2 (orthologs of human RACK1 and ZNF598, respectively) decrease gene expression from stall-containing mRNAs only at high initiation rates. Remarkably, hundreds of S. cerevisiae mRNAs that contain ribosome stall sequences also exhibit lower translation efficiency. We propose that inefficient translation initiation allows these stall-containing endogenous mRNAs to escape collision-stimulated reduction in gene expression. Higher rates of translation counterintuitively lead to lower protein levels from eukaryotic mRNAs that encode ribosome stalls; modelling suggests that this occurs when ribosome collisions at stalls trigger abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage.
Collapse
Affiliation(s)
- Heungwon Park
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ghoneim DH, Zhang X, Brule CE, Mathews DH, Grayhack EJ. Conservation of location of several specific inhibitory codon pairs in the Saccharomyces sensu stricto yeasts reveals translational selection. Nucleic Acids Res 2019; 47:1164-1177. [PMID: 30576464 PMCID: PMC6379720 DOI: 10.1093/nar/gky1262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/19/2018] [Accepted: 12/06/2018] [Indexed: 12/30/2022] Open
Abstract
Synonymous codons provide redundancy in the genetic code that influences translation rates in many organisms, in which overall codon use is driven by selection for optimal codons. It is unresolved if or to what extent translational selection drives use of suboptimal codons or codon pairs. In Saccharomyces cerevisiae, 17 specific inhibitory codon pairs, each comprised of adjacent suboptimal codons, inhibit translation efficiency in a manner distinct from their constituent codons, and many are translated slowly in native genes. We show here that selection operates within Saccharomyces sensu stricto yeasts to conserve nine of these codon pairs at defined positions in genes. Conservation of these inhibitory codon pairs is significantly greater than expected, relative to conservation of their constituent codons, with seven pairs more highly conserved than any other synonymous pair. Conservation is strongly correlated with slow translation of the pairs. Conservation of suboptimal codon pairs extends to two related Candida species, fungi that diverged from Saccharomyces ∼270 million years ago, with an enrichment for codons decoded by I•A and U•G wobble in both Candida and Saccharomyces. Thus, conservation of inhibitory codon pairs strongly implies selection for slow translation at particular gene locations, executed by suboptimal codon pairs.
Collapse
Affiliation(s)
- Dalia H Ghoneim
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Xiaoju Zhang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Christina E Brule
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Elizabeth J Grayhack
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
22
|
Hummels KR, Kearns DB. Suppressor mutations in ribosomal proteins and FliY restore Bacillus subtilis swarming motility in the absence of EF-P. PLoS Genet 2019; 15:e1008179. [PMID: 31237868 PMCID: PMC6613710 DOI: 10.1371/journal.pgen.1008179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/08/2019] [Accepted: 05/07/2019] [Indexed: 11/19/2022] Open
Abstract
Translation elongation factor P (EF-P) alleviates ribosome pausing at a subset of motifs encoding consecutive proline residues, and is required for growth in many organisms. Here we show that Bacillus subtilis EF-P also alleviates ribosome pausing at sequences encoding tandem prolines and ribosomes paused within several essential genes without a corresponding growth defect in an efp mutant. The B. subtilis efp mutant is instead impaired for flagellar biosynthesis which results in the abrogation of a form of motility called swarming. We isolate swarming suppressors of efp and identify mutations in 8 genes that suppressed the efp mutant swarming defect, many of which encode conserved ribosomal proteins or ribosome-associated factors. One mutation abolished a translational pause site within the flagellar C-ring component FliY to increase flagellar number and restore swarming motility in the absence of EF-P. Our data support a model wherein EF-P-alleviation of ribosome pausing may be particularly important for macromolecular assemblies like the flagellum that require precise protein stoichiometries.
Collapse
Affiliation(s)
- Katherine R. Hummels
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
23
|
Klee SM, Sinn JP, Holmes AC, Lehman BL, Krawczyk T, Peter KA, McNellis TW. Extragenic Suppression of Elongation Factor P Gene Mutant Phenotypes in Erwinia amylovora. J Bacteriol 2019; 201:e00722-18. [PMID: 30885930 PMCID: PMC6509650 DOI: 10.1128/jb.00722-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor P (EF-P) facilitates the translation of certain peptide motifs, including those with multiple proline residues. EF-P must be posttranslationally modified for full functionality; in enterobacteria, this is accomplished by two enzymes, namely, EpmA and EpmB, which catalyze the β-lysylation of EF-P at a conserved lysine position. Mutations to efp or its modifying enzymes produce pleiotropic phenotypes, including decreases in virulence, swimming motility, and extracellular polysaccharide production, as well as proteomic perturbations. Here, we generated targeted deletion mutants of the efp, epmA, and epmB genes in the Gram-negative bacterium Erwinia amylovora, which causes fire blight, an economically important disease of apples and pears. As expected, the Δefp, ΔepmA, and ΔepmB mutants were all defective in virulence on apples, and all three mutants were complemented in trans with plasmids bearing wild-type copies of the corresponding genes. By analyzing spontaneous suppressor mutants, we found that mutations in the hrpA3 gene partially or completely suppressed the colony size, extracellular polysaccharide production, and virulence phenotypes in apple fruits and apple tree shoots but not the swimming motility phenotypes of the Δefp, ΔepmA, and ΔepmB mutants. The deletion of hrpA3 alone did not produce any alterations in any characteristics measured, indicating that the HrpA3 protein is not essential for any of the processes examined. The hrpA3 gene encodes a putative DEAH-box ATP-dependent RNA helicase. These results suggest that the loss of the HrpA3 protein at least partially compensates for the lack of the EF-P protein or β-lysylated EF-P.IMPORTANCE Fire blight disease has relatively few management options, with antibiotic application at bloom time being chief among them. As modification to elongation factor P (EF-P) is vital to virulence in several species, both EF-P and its modifying enzymes make attractive targets for novel antibiotics. However, it will be useful to understand how bacteria might overcome the hindrance of EF-P function so that we may be better prepared to anticipate bacterial adaptation to such antibiotics. The present study indicates that the mutation of hrpA3 could provide a partial offset for the loss of EF-P activity. In addition, little is known about EF-P functional interactions or the HrpA3 predicted RNA helicase, and our genetic approach allowed us to discern a novel gene associated with EF-P function.
Collapse
Affiliation(s)
- Sara M Klee
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Judith P Sinn
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Aleah C Holmes
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian L Lehman
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Teresa Krawczyk
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Kari A Peter
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Timothy W McNellis
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
24
|
Abstract
The eukaryotic translation pathway has been studied for more than four decades, but the molecular mechanisms that regulate each stage of the pathway are not completely defined. This is in part because we have very little understanding of the kinetic framework for the assembly and disassembly of pathway intermediates. Steps of the pathway are thought to occur in the subsecond to second time frame, but most assays to monitor these events require minutes to hours to complete. Understanding translational control in sufficient detail will therefore require the development of assays that can precisely monitor the kinetics of the translation pathway in real time. Here, we describe the translation pathway from the perspective of its kinetic parameters, discuss advances that are helping us move toward the goal of a rigorous kinetic understanding, and highlight some of the challenges that remain.
Collapse
|
25
|
Elongation factor P is required to maintain proteome homeostasis at high growth rate. Proc Natl Acad Sci U S A 2018; 115:11072-11077. [PMID: 30297417 DOI: 10.1073/pnas.1812025115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Elongation factor P (EF-P) is a universally conserved translation factor that alleviates ribosome pausing at polyproline (PPX) motifs by facilitating peptide bond formation. In the absence of EF-P, PPX peptide bond formation can limit translation rate, leading to pleotropic phenotypes including slowed growth, increased antibiotic sensitivity, and loss of virulence. In this study, we observe that many of these phenotypes are dependent on growth rate. Limiting growth rate suppresses a variety of detrimental phenotypes associated with ribosome pausing at PPX motifs in the absence of EF-P. Polysome levels are also similar to wild-type under slow growth conditions, consistent with global changes in ribosome queuing in cells without EF-P when growth rate is decreased. Inversely, under high protein synthesis demands, we observe that Escherichia coli lacking EF-P have reduced fitness. Our data demonstrate that EF-P-mediated relief of ribosome queuing is required to maintain proteome homeostasis under conditions of high translational demands.
Collapse
|
26
|
Klee SM, Mostafa I, Chen S, Dufresne C, Lehman BL, Sinn JP, Peter KA, McNellis TW. An Erwinia amylovora yjeK mutant exhibits reduced virulence, increased chemical sensitivity and numerous environmentally dependent proteomic alterations. MOLECULAR PLANT PATHOLOGY 2018; 19:1667-1678. [PMID: 29232043 PMCID: PMC6638024 DOI: 10.1111/mpp.12650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 05/02/2023]
Abstract
The Gram-negative bacterium Erwinia amylovora causes fire blight, an economically important disease of apples and pears. Elongation factor P (EF-P) is a highly conserved protein that stimulates the formation of the first peptide bond of certain proteins and facilitates the translation of certain proteins, including those with polyproline motifs. YjeK and YjeA are two enzymes involved in the essential post-translational β-lysylation of EF-P at a conserved lysine residue, K34. EF-P, YjeA and YjeK have been shown to be essential for the full virulence of Escherichia coli, Salmonella species and Agrobacterium tumefaciens, with efp, yjeA and yjeK mutants having highly similar phenotypes. Here, we identified an E. amylovora yjeK::Tn5 transposon mutant with decreased virulence in apple fruit and trees. The yjeK::Tn5 mutant also showed pleiotropic phenotypes, including reduced growth in rich medium, lower extracellular polysaccharide production, reduced swimming motility and increased chemical sensitivity compared with the wild-type, whilst maintaining wild-type level growth in minimal medium. All yjeK::Tn5 mutant phenotypes were complemented in trans with a plasmid bearing a wild-type copy of yjeK. Comprehensive, quantitative proteomics analyses revealed numerous, environmentally dependent changes in the prevalence of a wide range of proteins, in higher abundance and lower abundance, in yjeK::Tn5 compared with the wild-type, and many of these alterations could be linked to yjeK::Tn5 mutant phenotypes. The environmental dependence of the yjeK::Tn5 mutant proteomic alterations suggests that YjeK could be required for aspects of the environmentally dependent regulation of protein translation. YjeK activity may be critical to overcoming stress, including the challenging host environment faced by invading pathogenic bacteria.
Collapse
Affiliation(s)
- Sara M. Klee
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
- Graduate Program in Plant PathologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| | - Islam Mostafa
- Department of BiologyUniversity of FloridaGainesvilleFL 32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFL 32611USA
- Department of Pharmacognosy, Faculty of PharmacyZagazig UniversityZagazig 44519Egypt
| | - Sixue Chen
- Department of BiologyUniversity of FloridaGainesvilleFL 32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFL 32611USA
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFL 32611USA
- Interdisciplinary Center for Biotechnology ResearchUniversity of FloridaGainesvilleFL 32611USA
| | | | - brian L. Lehman
- The Pennsylvania State University Fruit Research and Extension CenterBiglervillePA 17307USA
| | - Judith P. Sinn
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| | - Kari A. Peter
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
- The Pennsylvania State University Fruit Research and Extension CenterBiglervillePA 17307USA
| | - Timothy W. McNellis
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| |
Collapse
|
27
|
Liu C, Zhang B, Liu YM, Yang KQ, Liu SJ. New Intracellular Shikimic Acid Biosensor for Monitoring Shikimate Synthesis in Corynebacterium glutamicum. ACS Synth Biol 2018; 7:591-601. [PMID: 29087704 DOI: 10.1021/acssynbio.7b00339] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The quantitative monitoring of intracellular metabolites with in vivo biosensors provides an efficient means of identifying high-yield strains and observing product accumulation in real time. In this study, a shikimic acid (SA) biosensor was constructed from a LysR-type transcriptional regulator (ShiR) of Corynebacterium glutamicum. The SA biosensor specifically responded to the increase of intracellular SA concentration over a linear range of 19.5 ± 3.6 to 120.9 ± 1.2 fmole at the single-cell level. This new SA biosensor was successfully used to (1) monitor the SA production of different C. glutamicum strains; (2) develop a novel result-oriented high-throughput ribosome binding site screening and sorting strategy that was used for engineering high-yield shikimate-producing strains; and (3) engineer a whole-cell biosensor through the coexpression of the SA sensor and a shikimate transporter shiA gene in C. glutamicum RES167. This work demonstrated that a new intracellular SA biosensor is a valuable tool facilitating the fast development of microbial SA producer.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Bo Zhang
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
- Zhejiang University of Technology, 310014 Hangzhou, PR China
| | - Yi-Ming Liu
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
| | - Ke-Qian Yang
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
| |
Collapse
|
28
|
Buskirk AR, Green R. Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0183. [PMID: 28138069 DOI: 10.1098/rstb.2016.0183] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
Ribosomes translate genetic information into polypeptides in several basic steps: initiation, elongation, termination and recycling. When ribosomes are arrested during elongation or termination, the cell's capacity for protein synthesis is reduced. There are numerous quality control systems in place to distinguish between paused ribosomes that need some extra input to proceed and terminally stalled ribosomes that need to be rescued. Here, we discuss similarities and differences in the systems for resolution of pauses and rescue of arrested ribosomes in bacteria and eukaryotes, and how ribosome profiling has transformed our ability to decipher these molecular events.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
29
|
Abstract
Elongation factor P (EF-P) binds to ribosomes requiring assistance with the formation of oligo-prolines. In order for EF-P to associate with paused ribosomes, certain tRNAs with specific d-arm residues must be present in the peptidyl site, e.g., tRNAPro. Once EF-P is accommodated into the ribosome and bound to Pro-tRNAPro, productive synthesis of the peptide bond occurs. The underlying mechanism by which EF-P facilitates this reaction seems to have entropic origins. Maximal activity of EF-P requires a posttranslational modification in Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Each of these modifications is distinct and ligated onto its respective EF-P through entirely convergent means. Here we review the facets of translation elongation that are controlled by EF-P, with a particular focus on the purpose behind the many different modifications of EF-P.
Collapse
Affiliation(s)
- Andrei Rajkovic
- Molecular, Cellular and Developmental Biology Program and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210;
| | - Michael Ibba
- Molecular, Cellular and Developmental Biology Program and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210; .,Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
30
|
Ferrin MA, Subramaniam AR. Kinetic modeling predicts a stimulatory role for ribosome collisions at elongation stall sites in bacteria. eLife 2017; 6. [PMID: 28498106 PMCID: PMC5446239 DOI: 10.7554/elife.23629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/10/2017] [Indexed: 02/01/2023] Open
Abstract
Ribosome stalling on mRNAs can decrease protein expression. To decipher ribosome kinetics at stall sites, we induced ribosome stalling at specific codons by starving the bacterium Escherichia coli for the cognate amino acid. We measured protein synthesis rates from a reporter library of over 100 variants that encoded systematic perturbations of translation initiation rate, the number of stall sites, and the distance between stall sites. Our measurements are quantitatively inconsistent with two widely-used kinetic models for stalled ribosomes: ribosome traffic jams that block initiation, and abortive (premature) termination of stalled ribosomes. Rather, our measurements support a model in which collision with a trailing ribosome causes abortive termination of the stalled ribosome. In our computational analysis, ribosome collisions selectively stimulate abortive termination without fine-tuning of kinetic rate parameters at ribosome stall sites. We propose that ribosome collisions serve as a robust timer for translational quality control pathways to recognize stalled ribosomes.
Collapse
Affiliation(s)
- Michael A Ferrin
- Basic Sciences Division and Computational Biology Program of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Arvind R Subramaniam
- Basic Sciences Division and Computational Biology Program of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
31
|
Li J, Zhang C, Huang P, Kuru E, Forster-Benson ETC, Li T, Church GM. Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system. TRANSLATION (AUSTIN, TEX.) 2017; 5:e1327006. [PMID: 28702280 PMCID: PMC5501384 DOI: 10.1080/21690731.2017.1327006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 01/10/2023]
Abstract
Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ∼6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ∼2/3rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batch systems suffer from low ribosome recycling efficiency when translating proteins from 82 kD to 224 kD. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ∼1.5 to ∼2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Harvard Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Chi Zhang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Poyi Huang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Taibo Li
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Harvard Institute of Biologically Inspired Engineering, Boston, MA, USA
| |
Collapse
|
32
|
Synonymous Codons: Choose Wisely for Expression. Trends Genet 2017; 33:283-297. [PMID: 28292534 DOI: 10.1016/j.tig.2017.02.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
Abstract
The genetic code, which defines the amino acid sequence of a protein, also contains information that influences the rate and efficiency of translation. Neither the mechanisms nor functions of codon-mediated regulation were well understood. The prevailing model was that the slow translation of codons decoded by rare tRNAs reduces efficiency. Recent genome-wide analyses have clarified several issues. Specific codons and codon combinations modulate ribosome speed and facilitate protein folding. However, tRNA availability is not the sole determinant of rate; rather, interactions between adjacent codons and wobble base pairing are key. One mechanism linking translation efficiency and codon use is that slower decoding is coupled to reduced mRNA stability. Changes in tRNA supply mediate biological regulationfor instance,, changes in tRNA amounts facilitate cancer metastasis.
Collapse
|
33
|
Zoschke R, Chotewutmontri P, Barkan A. Translation and Co-translational Membrane Engagement of Plastid-encoded Chlorophyll-binding Proteins Are Not Influenced by Chlorophyll Availability in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:385. [PMID: 28400776 PMCID: PMC5368244 DOI: 10.3389/fpls.2017.00385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 05/11/2023]
Abstract
Chlorophyll is an indispensable constituent of the photosynthetic machinery in green organisms. Bound by apoproteins of photosystems I and II, chlorophyll performs light-harvesting and charge separation. Due to the phototoxic nature of free chlorophyll and its precursors, chlorophyll synthesis is regulated to comply with the availability of nascent chlorophyll-binding apoproteins. Conversely, the synthesis and co-translational insertion of such proteins into the thylakoid membrane have been suggested to be influenced by chlorophyll availability. In this study, we addressed these hypotheses by using ribosome profiling to examine the synthesis and membrane targeting of chlorophyll-binding apoproteins in chlorophyll-deficient chlH maize mutants (Zm-chlH). ChlH encodes the H subunit of the magnesium chelatase (also known as GUN5), which catalyzes the first committed step in chlorophyll synthesis. Our results show that the number and distribution of ribosomes on plastid mRNAs encoding chlorophyll-binding apoproteins are not substantially altered in Zm-chlH mutants, suggesting that chlorophyll has no impact on ribosome dynamics. Additionally, a Zm-chlH mutation does not change the amino acid position at which nascent chlorophyll-binding apoproteins engage the thylakoid membrane, nor the efficiency with which membrane-engagement occurs. Together, these results provide evidence that chlorophyll availability does not selectively activate the translation of plastid mRNAs encoding chlorophyll apoproteins. Our results imply that co- or post-translational proteolysis of apoproteins is the primary mechanism that adjusts apoprotein abundance to chlorophyll availability in plants.
Collapse
Affiliation(s)
- Reimo Zoschke
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
- *Correspondence: Reimo Zoschke,
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, EugeneOR, USA
| |
Collapse
|
34
|
Ardell DH, Hou YM. Initiator tRNA genes template the 3' CCA end at high frequencies in bacteria. BMC Genomics 2016; 17:1003. [PMID: 27927177 PMCID: PMC5143459 DOI: 10.1186/s12864-016-3314-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/18/2016] [Indexed: 01/06/2023] Open
Abstract
Background While the CCA sequence at the mature 3′ end of tRNAs is conserved and critical for translational function, a genetic template for this sequence is not always contained in tRNA genes. In eukaryotes and Archaea, the CCA ends of tRNAs are synthesized post-transcriptionally by CCA-adding enzymes. In Bacteria, tRNA genes template CCA sporadically. Results In order to understand the variation in how prokaryotic tRNA genes template CCA, we re-annotated tRNA genes in tRNAdb-CE database version 0.8. Among 132,129 prokaryotic tRNA genes, initiator tRNA genes template CCA at the highest average frequency (74.1%) over all functional classes except selenocysteine and pyrrolysine tRNA genes (88.1% and 100% respectively). Across bacterial phyla and a wide range of genome sizes, many lineages exist in which predominantly initiator tRNA genes template CCA. Convergent and parallel retention of CCA templating in initiator tRNA genes evolved in independent histories of reductive genome evolution in Bacteria. Also, in a majority of cyanobacterial and actinobacterial genera, predominantly initiator tRNA genes template CCA. We also found that a surprising fraction of archaeal tRNA genes template CCA. Conclusions We suggest that cotranscriptional synthesis of initiator tRNA CCA 3′ ends can complement inefficient processing of initiator tRNA precursors, “bootstrap” rapid initiation of protein synthesis from a non-growing state, or contribute to an increase in cellular growth rates by reducing overheads of mass and energy to maintain nonfunctional tRNA precursor pools. More generally, CCA templating in structurally non-conforming tRNA genes can afford cells robustness and greater plasticity to respond rapidly to environmental changes and stimuli. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3314-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David H Ardell
- Program in Quantitative and Systems Biology, University of California, 5200 North Lake Road, CA, 95343, Merced, USA. .,Molecular and Cell Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, BLSB 220, Philadelphia, PA, 19107, USA
| |
Collapse
|
35
|
Watson A, Kronqvist N, Spalluto CM, Griffiths M, Staples KJ, Wilkinson T, Holmskov U, Sorensen GL, Rising A, Johansson J, Madsen J, Clark H. Novel expression of a functional trimeric fragment of human SP-A with efficacy in neutralisation of RSV. Immunobiology 2016; 222:111-118. [PMID: 27793398 PMCID: PMC5152705 DOI: 10.1016/j.imbio.2016.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/02/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and hospitalisation of infants in developed countries. Surfactant protein A (SP-A) is an important innate immune molecule, localized in pulmonary surfactant. SP-A binds to carbohydrates on the surface of pathogens in a calcium-dependent manner to enable neutralisation, agglutination and clearance of pathogens including RSV. SP-A forms trimeric units and further oligomerises through interactions between its N-terminal domains. Whilst a recombinant trimeric fragment of the closely related molecule (surfactant protein D) has been shown to retain many of the native protein’s functions, the importance of the SP-A oligomeric structure in its interaction with RSV has not been determined. The aim of this study was to produce a functional trimeric recombinant fragment of human (rfh)SP-A, which lacks the N-terminal domain (and the capacity to oligomerise) and test its ability to neutralise RSV in an in vitro model of human bronchial epithelial infection. We used a novel expression tag derived from spider silk proteins (‘NT’) to produce rfhSP-A in Escherichia coli, which we found to be trimeric and to bind to mannan in a calcium-dependent manner. Trimeric rfhSP-A reduced infection levels of human bronchial epithelial (AALEB) cells by RSV by up to a mean (±SD) of 96.4 (±1.9) % at 5 μg/ml, which was significantly more effective than dimeric rfhSP-A (34.3 (±20.5) %) (p < 0.0001). Comparatively, native human SP-A reduced RSV infection by up to 38.5 (±28.4) %. For the first time we report the development of a functional trimeric rfhSP-A molecule which is highly efficacious in neutralising RSV, despite lacking the N-terminal domain and capacity to oligomerise.
Collapse
Affiliation(s)
- Alastair Watson
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Nina Kronqvist
- Division for Neurogeriatrics, Center for Alzheimer Research, Department of NVS, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - C Mirella Spalluto
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Mark Griffiths
- Leukocyte Biology, Imperial College London, Royal Brompton Campus, London SW3 6NP, United Kingdom
| | - Karl J Staples
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Tom Wilkinson
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom; Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom
| | - Uffe Holmskov
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anna Rising
- Division for Neurogeriatrics, Center for Alzheimer Research, Department of NVS, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 750 07 Uppsala, Sweden
| | - Jan Johansson
- Division for Neurogeriatrics, Center for Alzheimer Research, Department of NVS, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 750 07 Uppsala, Sweden
| | - Jens Madsen
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom; Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Howard Clark
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom; Division for Neurogeriatrics, Center for Alzheimer Research, Department of NVS, Karolinska Institutet, 141 57 Huddinge, Sweden; Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom.
| |
Collapse
|
36
|
Nam D, Choi E, Shin D, Lee EJ. tRNA Pro -mediated downregulation of elongation factor P is required for mgtCBR expression during Salmonella infection. Mol Microbiol 2016; 102:221-232. [PMID: 27350030 DOI: 10.1111/mmi.13454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 12/31/2022]
Abstract
Bacterial ribosome requires elongation factor P to translate fragments harbouring consecutive proline codons. Given the abundance of ORFs with potential EF-P regulated sites, EF-P was assumed to be constitutively expressed. Here, we report that the intracellular pathogen Salmonella enterica serovar Typhimurium decreases efp mRNA levels during course of infection. We determined that the decrease in efp mRNA is triggered by low levels of charged tRNAPro , a condition that Salmonella experiences when inside a macrophage phagosome. Surprisingly, downregulation of EF-P selectively promotes expression of the virulence mgtC gene and contributes to Salmonella's ability to survive inside macrophages. The decrease in EF-P levels induces ribosome stalling at the consecutive proline codons of the mgtP open reading frame in the mgtCBR leader RNA, and thus allows formation of a stem-loop structure promoting transcription of the mgtC gene. The substitution of proline codons in the mgtP gene eliminates EF-P-mediated mgtC expression and thus Salmonella's survival inside macrophages. Our findings indicate that Salmonella benefits virulence genes by decreasing EF-P levels and inducing the stringent response inside host.
Collapse
Affiliation(s)
- Daesil Nam
- Division of Microbiology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Eunna Choi
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, South Korea
| | - Dongwoo Shin
- Division of Microbiology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Eun-Jin Lee
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
37
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Mandal A, Mandal S, Park MH. Global quantitative proteomics reveal up-regulation of endoplasmic reticulum stress response proteins upon depletion of eIF5A in HeLa cells. Sci Rep 2016; 6:25795. [PMID: 27180817 PMCID: PMC4867578 DOI: 10.1038/srep25795] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/20/2016] [Indexed: 11/08/2022] Open
Abstract
The eukaryotic translation factor, eIF5A, is a translation factor essential for protein synthesis, cell growth and animal development. By use of a adenoviral eIF5A shRNA, we have achieved an effective depletion of eIF5A in HeLa cells and undertook in vivo comprehensive proteomic analyses to examine the effects of eIF5A depletion on the total proteome and to identify cellular pathways influenced by eIF5A. The proteome of HeLa cells transduced with eIF5A shRNA was compared with that of scramble shRNA-transduced counterpart by the iTRAQ method. We identified 972 proteins consistently detected in three iTRAQ experiments and 104 proteins with significantly altered levels (protein ratio ≥1.5 or ≤0.66, p-value ≤0.05) at 72 h and/or 96 h of Ad-eIF5A-shRNA transduction. The altered expression levels of key pathway proteins were validated by western blotting. Integration of functional ontology with expression data of the 104 proteins revealed specific biological processes that are prominently up- or down-regulated. Heatmap analysis and Cytoscape visualization of biological networks identified protein folding as the major cellular process affected by depletion of eIF5A. Our unbiased, quantitative, proteomic data demonstrate that the depletion of eIF5A leads to endoplasmic reticulum stress, an unfolded protein response and up-regulation of chaperone expression in HeLa cells.
Collapse
Affiliation(s)
- Ajeet Mandal
- Molecular and Cellular Biochemistry Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg.30 Rm. 3A300, Bethesda, MD 20892, USA
| | - Swati Mandal
- Molecular and Cellular Biochemistry Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg.30 Rm. 3A300, Bethesda, MD 20892, USA
| | - Myung Hee Park
- Molecular and Cellular Biochemistry Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg.30 Rm. 3A300, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Rajkovic A, Hummels KR, Witzky A, Erickson S, Gafken PR, Whitelegge JP, Faull KF, Kearns DB, Ibba M. Translation Control of Swarming Proficiency in Bacillus subtilis by 5-Amino-pentanolylated Elongation Factor P. J Biol Chem 2016; 291:10976-85. [PMID: 27002156 DOI: 10.1074/jbc.m115.712091] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 01/02/2023] Open
Abstract
Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys(32) of B. subtilis EF-P that is required for swarming motility. A fluorescent in vivo B. subtilis reporter system identified peptide motifs whose efficient synthesis was most dependent on 5-aminopentanol EF-P. Examination of the B. subtilis genome sequence showed that these EF-P-dependent peptide motifs were represented in flagellar genes. Taken together, these data show that, in B. subtilis, a previously uncharacterized posttranslational modification of EF-P can modulate the synthesis of specific diprolyl motifs present in proteins required for swarming motility.
Collapse
Affiliation(s)
- Andrei Rajkovic
- From the Molecular, Cellular, and Developmental Biology Program and Center for RNA Biology and
| | | | | | | | - Philip R Gafken
- the Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, and
| | - Julian P Whitelegge
- the Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Kym F Faull
- the Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Daniel B Kearns
- the Department of Biology, Indiana University, Bloomington, Indiana 47305
| | - Michael Ibba
- From the Molecular, Cellular, and Developmental Biology Program and Center for RNA Biology and Microbiology, Ohio State University, Columbus, Ohio 43210,
| |
Collapse
|
40
|
Lassak J, Wilson DN, Jung K. Stall no more at polyproline stretches with the translation elongation factors EF-P and IF-5A. Mol Microbiol 2015; 99:219-35. [PMID: 26416626 DOI: 10.1111/mmi.13233] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 01/18/2023]
Abstract
Synthesis of polyproline proteins leads to translation arrest. To overcome this ribosome stalling effect, bacteria depend on a specialized translation elongation factor P (EF-P), being orthologous and functionally identical to eukaryotic/archaeal elongation factor e/aIF-5A (recently renamed 'EF5'). EF-P binds to the stalled ribosome between the peptidyl-tRNA binding and tRNA-exiting sites, and stimulates peptidyl-transferase activity, thus allowing translation to resume. In their active form, both EF-P and e/aIF-5A are post-translationally modified at a positively charged residue, which protrudes toward the peptidyl-transferase center when bound to the ribosome. While archaeal and eukaryotic IF-5A strictly depend on (deoxy-) hypusination (hypusinylation) of a conserved lysine, bacteria have evolved diverse analogous modification strategies to activate EF-P. In Escherichia coli and Salmonella enterica a lysine is extended by β-lysinylation and subsequently hydroxylated, whereas in Pseudomonas aeruginosa and Shewanella oneidensis an arginine in the equivalent position is rhamnosylated. Inactivation of EF-P, or the corresponding modification systems, reduces not only bacterial fitness, but also impairs virulence. Here, we review the function of EF-P and IF-5A and their unusual posttranslational protein modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, D-82152, Martinsried, Germany
| | - Daniel N Wilson
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Kirsten Jung
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, D-82152, Martinsried, Germany
| |
Collapse
|
41
|
Ceroni F, Algar R, Stan GB, Ellis T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 2015; 12:415-8. [PMID: 25849635 DOI: 10.1038/nmeth.3339] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/20/2015] [Indexed: 12/29/2022]
Abstract
Heterologous gene expression can be a significant burden for cells. Here we describe an in vivo monitor that tracks changes in the capacity of Escherichia coli in real time and can be used to assay the burden imposed by synthetic constructs and their parts. We identify construct designs with reduced burden that predictably outperformed less efficient designs, despite having equivalent output.
Collapse
Affiliation(s)
- Francesca Ceroni
- 1] Centre for Synthetic Biology and Innovation, Imperial College London, London, UK. [2] Department of Bioengineering, Imperial College London, London, UK
| | - Rhys Algar
- 1] Centre for Synthetic Biology and Innovation, Imperial College London, London, UK. [2] Department of Bioengineering, Imperial College London, London, UK
| | - Guy-Bart Stan
- 1] Centre for Synthetic Biology and Innovation, Imperial College London, London, UK. [2] Department of Bioengineering, Imperial College London, London, UK
| | - Tom Ellis
- 1] Centre for Synthetic Biology and Innovation, Imperial College London, London, UK. [2] Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
42
|
Naganathan A, Wood MP, Moore SD. The large ribosomal subunit protein L9 enables the growth of EF-P deficient cells and enhances small subunit maturation. PLoS One 2015; 10:e0120060. [PMID: 25879934 PMCID: PMC4399890 DOI: 10.1371/journal.pone.0120060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/03/2015] [Indexed: 01/08/2023] Open
Abstract
The loss of the large ribosomal protein L9 causes a reduction in translation fidelity by an unknown mechanism. To identify pathways affected by L9, we identified mutants of E. coli that require L9 for fitness. In a prior study, we characterized L9-dependent mutations in the essential GTPase Der (EngA). Here, we describe a second class of L9-dependent mutations that either compromise or inactivate elongation factor P (EF-P, eIF5A in eukaryotes). Without L9, Δefp cells are practically inviable. Cell fractionation studies revealed that, in both the Der and EF-P mutant cases, L9's activity reduces immature 16S rRNA in 30S particles and partially restores the abundance of monosomes. Inspired by these findings, we discovered that L9 also enhances 16S maturation in wild-type cells. Surprisingly, although the amount of immature 16S in 30S particles was found to be elevated in ΔrplI cells, the amount in polysomes was low and inversely correlated with the immature 16S abundance. These findings provide an explanation for the observed fitness increases afforded by L9 in these mutants and reveal particular physiological conditions in which L9 becomes critical. Additionally, L9 may affect the partitioning of small subunits containing immature 16S rRNA.
Collapse
Affiliation(s)
- Anusha Naganathan
- The Burnett School of Biomedical Sciences, College of Medicine, The University of Central Florida, Orlando, FL, 32816, United States of America
| | - Matthew P. Wood
- Seattle Biomed, 307 Westlake Ave N, Suite 500, Seattle, WA, 98109, United States of America
- Department of Global Health, University of Washington, 1510 N.E. San Juan Road, Seattle, WA, 98195, United States of America
| | - Sean D. Moore
- The Burnett School of Biomedical Sciences, College of Medicine, The University of Central Florida, Orlando, FL, 32816, United States of America
- * E-mail:
| |
Collapse
|
43
|
|
44
|
Woolstenhulme CJ, Guydosh NR, Green R, Buskirk AR. High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Rep 2015; 11:13-21. [PMID: 25843707 DOI: 10.1016/j.celrep.2015.03.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/17/2015] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
Abstract
Ribosome profiling is a powerful method for globally assessing the activity of ribosomes in a cell. Despite its application in many organisms, ribosome profiling studies in bacteria have struggled to obtain the resolution necessary to precisely define translational pauses. Here, we report improvements that yield much higher resolution in E. coli profiling data, enabling us to more accurately assess ribosome pausing and refine earlier studies of the impact of polyproline motifs on elongation. We comprehensively characterize pausing at proline-rich motifs in the absence of elongation factor EFP. We find that only a small fraction of genes with strong pausing motifs have reduced ribosome density downstream, and we identify features that explain this phenomenon. These features allow us to predict which proteins likely have reduced output in the efp-knockout strain.
Collapse
Affiliation(s)
- Christopher J Woolstenhulme
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Nicholas R Guydosh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
Investigating Bacterial Protein Synthesis Using Systems Biology Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:21-40. [PMID: 26621460 DOI: 10.1007/978-3-319-23603-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein synthesis is essential for bacterial growth and survival. Its study in Escherichia coli helped uncover features conserved among bacteria as well as universally. The pattern of discovery and the identification of some of the longest-known components of the protein synthesis machinery, including the ribosome itself, tRNAs, and translation factors proceeded through many stages of successively more refined biochemical purifications, finally culminating in the isolation to homogeneity, identification, and mapping of the smallest unit required for performing the given function. These early studies produced a wealth of information. However, many unknowns remained. Systems biology approaches provide an opportunity to investigate protein synthesis from a global perspective, overcoming the limitations of earlier ad hoc methods to gain unprecedented insights. This chapter reviews innovative systems biology approaches, with an emphasis on those designed specifically for investigating the protein synthesis machinery in E. coli.
Collapse
|