1
|
Toporcer T, Grendel T, Špaková I, Blichárová A, Verbóová Ľ, Benetinová Z, Čižmárová B, Rabajdová M, Toporcerová S. An In Vivo Model of Estrogen Supplementation Concerning the Expression of Ca 2+-Dependent Exchangers and Mortality, Vitality and Survival After Myocardial Infarction in Ovariectomized Rats. J Cardiovasc Dev Dis 2024; 11:352. [PMID: 39590195 PMCID: PMC11595027 DOI: 10.3390/jcdd11110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Ischemic-reperfusion damage of cardiomyocytes due to myocardial infarction (MI) often leads to the death of an individual. Premenopausal women have been observed to have a significantly lower risk of cardiovascular disease (CVD) than men of the same age. In menopausal women, this trend is significantly reversed, and the risk of CVD increases up to 10-fold. Estrogens affect the development and function of the heart muscle, and as they decrease, the risk and poor prognosis of CVD increase. This study is focused on the effects of estrogen supplementation on morbidity, vitality, and NCX1 expression after MI on a model system. METHODS In this study, female Sprague Dawley rats (n = 58), which were divided into three experimental groups (NN-control group, non-supplemented; OVX-N-ovariectomized, non-supplemented; OVX-S-ovariectomized, supplemented), received left thoracotomy in the fourth intercostal space. The left anterior descendent coronary artery was ligated 2 mm from its origin with an 8.0 suture. An immunohistological analysis as well as an RT-PCR analysis of NCX1 expression were performed. RESULTS A higher survival rate was recorded in the OVX-N group (86%) in comparison with the OVX-S group (53%) (p < 0.05). In addition, higher NCX1 expression 7 days/14 days after MI in the OVX-S group in comparison with the NN and OVX-N (p < 0.001 and p < 0.05) groups was recorded. Seven days after MI, a significantly higher expression (p < 0.005) of mRNA NCX1 in the OVX-N group was also recorded in comparison with the NN group. CONCLUSIONS This study provides a comprehensive description of the effect of estrogen supplementation on NCX1 expression and overall vitality in ovariectomized rats that survived MI.
Collapse
Affiliation(s)
- Tomáš Toporcer
- Department of Heart Surgery, East Slovak Institute of Cardiovascular Disease and Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
| | - Tomáš Grendel
- Department of Anesthesiology and Intensive Medicine, East Slovak Institute of Cardiovascular Disease and Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Alžbeta Blichárová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Ľudmila Verbóová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Zuzana Benetinová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Beata Čižmárová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Silvia Toporcerová
- Department of Gynecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University and Gyncare, 040 11 Košice, Slovakia
| |
Collapse
|
2
|
Tang J, Song H, Li S, Lam SM, Ping J, Yang M, Li N, Chang T, Yu Z, Liu W, Lu Y, Zhu M, Tang Z, Liu Z, Guo YR, Shui G, Veillette A, Zeng Z, Wu N. TMEM16F Expressed in Kupffer Cells Regulates Liver Inflammation and Metabolism to Protect Against Listeria Monocytogenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402693. [PMID: 39136057 PMCID: PMC11497084 DOI: 10.1002/advs.202402693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Indexed: 10/25/2024]
Abstract
Infection by bacteria leads to tissue damage and inflammation, which need to be tightly controlled by host mechanisms to avoid deleterious consequences. It is previously reported that TMEM16F, a calcium-activated lipid scramblase expressed in various immune cell types including T cells and neutrophils, is critical for the control of infection by bacterium Listeria monocytogenes (Lm) in vivo. This function correlated with the capacity of TMEM16F to repair the plasma membrane (PM) damage induced in T cells in vitro, by the Lm toxin listeriolysin O (LLO). However, whether the protective effect of TMEM16F on Lm infection in vivo is mediated by an impact in T cells, or in other cell types, is not determined. Herein, the immune cell types and mechanisms implicated in the protective effect of TMEM16F against Lm in vivo are elucidated. Cellular protective effects of TMEM16F correlated with its capacity of lipid scrambling and augment PM fluidity. Using cell type-specific TMEM16F-deficient mice, the indication is obtained that TMEM16F expressed in liver Kupffer cells (KCs), but not in T cells or B cells, is key for protection against Listeria in vivo. In the absence of TMEM16F, Listeria induced PM rupture and fragmentation of KCs in vivo. KC death associated with greater liver damage, inflammatory changes, and dysregulated liver metabolism. Overall, the results uncovered that TMEM16F expressed in Kupffer cells is crucial to protect the host against Listeria infection. This influence is associated with the capacity of Kupffer cell-expressed TMEM16F to prevent excessive inflammation and abnormal liver metabolism.
Collapse
Affiliation(s)
- Jianlong Tang
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Hua Song
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
| | - Shimin Li
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Jieming Ping
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Mengyun Yang
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Na Li
- Department of biochemistry and molecular biologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Teding Chang
- Department of Traumatic SurgeryTongji Trauma CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ze Yu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyNo. 1095 Jiefang AvenueWuhan430030China
| | - Weixiang Liu
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Yan Lu
- Department of Clinical ImmunologyThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Min Zhu
- Department of Thoracic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhaohui Tang
- Department of Traumatic SurgeryTongji Trauma CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyNo. 1095 Jiefang AvenueWuhan430030China
| | - Yusong R. Guo
- Department of biochemistry and molecular biologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cell Architecture Research CenterTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - André Veillette
- Laboratory of Molecular OncologyInstitut de recherches cliniques de Montréal (IRCM)MontréalQuébecH2W1R7Canada
- Department of MedicineUniversity of MontréalMontréalQuébecH3T 1J4Canada
- Department of MedicineMcGill UniversityMontréalQuébecH3G 1Y6Canada
| | - Zhutian Zeng
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
- Department of OncologyThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefei230001China
| | - Ning Wu
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
- Cell Architecture Research CenterTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
3
|
Ousingsawat J, Schreiber R, Kunzelmann K. Functional Interdependence of Anoctamins May Influence Conclusions from Overexpression Studies. Int J Mol Sci 2024; 25:9998. [PMID: 39337485 PMCID: PMC11432102 DOI: 10.3390/ijms25189998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Anoctamin 6 (ANO6, TMEM16F) is a phospholipid (PL) scramblase that moves PLs between both plasma membrane (PM) leaflets and operates as an ion channel. It plays a role in development and is essential for hemostasis, bone mineralization and immune defense. However, ANO6 has also been shown to regulate cellular Ca2+ signaling and PM compartments, thereby controlling the expression of ion channels such as CFTR. Given these pleiotropic effects, we investigated the functional interdependence of the ubiquitous ANO6 with other commonly co-expressed anoctamins. As most expression studies on anoctamins use HEK293 human embryonic kidney cells, we compared ion currents, PL scrambling and Ca2+ signals induced by the overexpression of anoctamins in HEK293 wild-type parental and ANO6-knockout cells. The data suggest that the endogenous expression of ANO6 significantly affects the results obtained from overexpressed anoctamins, particularly after increasing intracellular Ca2+. Thus, a significant interdependence of anoctamins may influence the interpretation of data obtained from the functional analysis of overexpressed anoctamins.
Collapse
Affiliation(s)
| | | | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, D-93053 Regensburg, Germany; (J.O.); (R.S.)
| |
Collapse
|
4
|
Liang Z, Dondorp DC, Chatzigeorgiou M. The ion channel Anoctamin 10/TMEM16K coordinates organ morphogenesis across scales in the urochordate notochord. PLoS Biol 2024; 22:e3002762. [PMID: 39173068 PMCID: PMC11341064 DOI: 10.1371/journal.pbio.3002762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/20/2024] [Indexed: 08/24/2024] Open
Abstract
During embryonic development, tissues and organs are gradually shaped into their functional morphologies through a series of spatiotemporally tightly orchestrated cell behaviors. A highly conserved organ shape across metazoans is the epithelial tube. Tube morphogenesis is a complex multistep process of carefully choreographed cell behaviors such as convergent extension, cell elongation, and lumen formation. The identity of the signaling molecules that coordinate these intricate morphogenetic steps remains elusive. The notochord is an essential tubular organ present in the embryonic midline region of all members of the chordate phylum. Here, using genome editing, pharmacology and quantitative imaging in the early chordate Ciona intestinalis we show that Ano10/Tmem16k, a member of the evolutionarily ancient family of transmembrane proteins called Anoctamin/TMEM16 is essential for convergent extension, lumen expansion, and connection during notochord morphogenesis. We find that Ano10/Tmem16k works in concert with the plasma membrane (PM) localized Na+/Ca2+ exchanger (NCX) and the endoplasmic reticulum (ER) residing SERCA, RyR, and IP3R proteins to establish developmental stage specific Ca2+ signaling molecular modules that regulate notochord morphogenesis and Ca2+ dynamics. In addition, we find that the highly conserved Ca2+ sensors calmodulin (CaM) and Ca2+/calmodulin-dependent protein kinase (CaMK) show an Ano10/Tmem16k-dependent subcellular localization. Their pharmacological inhibition leads to convergent extension, tubulogenesis defects, and deranged Ca2+ dynamics, suggesting that Ano10/Tmem16k is involved in both the "encoding" and "decoding" of developmental Ca2+ signals. Furthermore, Ano10/Tmem16k mediates cytoskeletal reorganization during notochord morphogenesis, likely by altering the localization of 2 important cytoskeletal regulators, the small GTPase Ras homolog family member A (RhoA) and the actin binding protein Cofilin. Finally, we use electrophysiological recordings and a scramblase assay in tissue culture to demonstrate that Ano10/Tmem16k likely acts as an ion channel but not as a phospholipid scramblase. Our results establish Ano10/Tmem16k as a novel player in the prevertebrate molecular toolkit that controls organ morphogenesis across scales.
Collapse
Affiliation(s)
- Zonglai Liang
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
5
|
Shan KZ, Le T, Liang P, Dong P, Lowry AJ, Kremmyda P, Claesson-Welsh L, Yang H. TMEM16F scramblase regulates angiogenesis via endothelial intracellular signaling. J Cell Sci 2024; 137:jcs261566. [PMID: 38940198 PMCID: PMC11273297 DOI: 10.1242/jcs.261566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
TMEM16F (also known as ANO6), a Ca2+-activated lipid scramblase (CaPLSase) that dynamically disrupts lipid asymmetry, plays a crucial role in various physiological and pathological processes, such as blood coagulation, neurodegeneration, cell-cell fusion and viral infection. However, the mechanisms through which it regulates these processes remain largely elusive. Using endothelial cell-mediated angiogenesis as a model, here we report a previously unknown intracellular signaling function of TMEM16F. We demonstrate that TMEM16F deficiency impairs developmental retinal angiogenesis in mice and disrupts angiogenic processes in vitro. Biochemical analyses indicate that the absence of TMEM16F enhances the plasma membrane association of activated Src kinase. This in turn increases VE-cadherin phosphorylation and downregulation, accompanied by suppressed angiogenesis. Our findings not only highlight the role of intracellular signaling by TMEM16F in endothelial cells but also open new avenues for exploring the regulatory mechanisms for membrane lipid asymmetry and their implications in disease pathogenesis.
Collapse
Affiliation(s)
- Ke Zoe Shan
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Trieu Le
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Pengfei Liang
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Ping Dong
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Augustus J. Lowry
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Polina Kremmyda
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala 751 85, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala 751 85, Sweden
| | - Huanghe Yang
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
- Department of Neurobiology, Duke University, School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
Zubia MV, Yong AJH, Holtz KM, Huang EJ, Jan YN, Jan LY. TMEM16F exacerbates tau pathology and mediates phosphatidylserine exposure in phospho-tau-burdened neurons. Proc Natl Acad Sci U S A 2024; 121:e2311831121. [PMID: 38941274 PMCID: PMC11228522 DOI: 10.1073/pnas.2311831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
TMEM16F is a calcium-activated phospholipid scramblase and nonselective ion channel, which allows the movement of lipids bidirectionally across the plasma membrane. While the functions of TMEM16F have been extensively characterized in multiple cell types, the role of TMEM16F in the central nervous system remains largely unknown. Here, we sought to study how TMEM16F in the brain may be involved in neurodegeneration. Using a mouse model that expresses the pathological P301S human tau (PS19 mouse), we found reduced tauopathy and microgliosis in 6- to 7-mo-old PS19 mice lacking TMEM16F. Furthermore, this reduction of pathology can be recapitulated in the PS19 mice with TMEM16F removed from neurons, while removal of TMEM16F from microglia of PS19 mice did not significantly impact tauopathy at this time point. Moreover, TMEM16F mediated aberrant phosphatidylserine exposure in neurons with phospho-tau burden. These studies raise the prospect of targeting TMEM16F in neurons as a potential treatment of neurodegeneration.
Collapse
Affiliation(s)
- Mario V. Zubia
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA94143
- Department of Physiology, University of California, San Francisco, CA94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| | - Adeline J. H. Yong
- Department of Physiology, University of California, San Francisco, CA94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| | | | - Eric J. Huang
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA94143
- Department of Pathology, University of California, San Francisco, CA94143
| | - Yuh Nung Jan
- Department of Physiology, University of California, San Francisco, CA94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| | - Lily Y. Jan
- Department of Physiology, University of California, San Francisco, CA94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| |
Collapse
|
7
|
Yan M, Wang Z, An Y, Li Z, Li Y, Zhang H, Li C, Wang L, Chen L, Gao C, Wang D, Gao C. OxLDL enhances procoagulant activity of endothelial cells by TMEM16F-mediated phosphatidylserine exposure. Cell Biol Int 2024; 48:848-860. [PMID: 38444077 DOI: 10.1002/cbin.12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/28/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Oxidized low-density lipoprotein (oxLDL), a key component in atherosclerosis and hyperlipidemia, is a risk factor for atherothrombosis in dyslipidemia, yet its mechanism is poorly understood. In this study, we used oxLDL-induced human aortic endothelial cells (HAECs) and high-fat diet (HFD)-fed mice as a hyperlipidemia model. Phosphatidylserine (PS) exposure, cytosolic Ca2+, reactive oxygen species (ROS), and lipid peroxidation were measured by flow cytometer. TMEM16F expression was detected by immunofluorescence, western blot, and reverse transcription polymerase chain reaction. Procoagulant activity (PCA) was measured by coagulation time, intrinsic/extrinsic factor Xase, and thrombin generation. We found that oxLDL-induced PS exposure and the corresponding PCA of HAECs were increased significantly compared with control, which could be inhibited over 90% by lactadherin. Importantly, TMEM16F expression in oxLDL-induced HAECs was upregulated by enhanced intracellular Ca2+ concentration, ROS, and lipid peroxidation, which led to PS exposure. Meanwhile, the knockdown of TMEM16F by short hairpin RNA significantly inhibited PS exposure in oxLDL-induced HAECs. Moreover, we observed that HFD-fed mice dramatically increased the progress of thrombus formation and accompanied upregulated TMEM16F expression by thromboelastography analysis, FeCl3-induced carotid artery thrombosis model, and western blot. Collectively, these results demonstrate that TMEM16F-mediated PS exposure may contribute to prothrombotic status under hyperlipidemic conditions, which may serve as a novel therapeutic target for the prevention of thrombosis in hyperlipidemia.
Collapse
Affiliation(s)
- Meishan Yan
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Zelong Wang
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Yao An
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Zhanni Li
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Yun Li
- Hematology Department, Daqing Oil Field General Hospital, Daqing, China
| | - Hongyu Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Caixia Li
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Lifeng Wang
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Li Chen
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Chao Gao
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Dongsheng Wang
- Department of Emergency, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Chunyan Gao
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| |
Collapse
|
8
|
Schreiber R, Ousingsawat J, Kunzelmann K. The anoctamins: Structure and function. Cell Calcium 2024; 120:102885. [PMID: 38642428 DOI: 10.1016/j.ceca.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
When activated by increase in intracellular Ca2+, anoctamins (TMEM16 proteins) operate as phospholipid scramblases and as ion channels. Anoctamin 1 (ANO1) is the Ca2+-activated epithelial anion-selective channel that is coexpressed together with the abundant scramblase ANO6 and additional intracellular anoctamins. In salivary and pancreatic glands, ANO1 is tightly packed in the apical membrane and secretes Cl-. Epithelia of airways and gut use cystic fibrosis transmembrane conductance regulator (CFTR) as an apical Cl- exit pathway while ANO1 supports Cl- secretion mainly by facilitating activation of luminal CFTR and basolateral K+ channels. Under healthy conditions ANO1 modulates intracellular Ca2+ signals by tethering the endoplasmic reticulum, and except of glands its direct secretory contribution as Cl- channel might be small, compared to CFTR. In the kidneys ANO1 supports proximal tubular acid secretion and protein reabsorption and probably helps to excrete HCO3-in the collecting duct epithelium. However, under pathological conditions as in polycystic kidney disease, ANO1 is strongly upregulated and may cause enhanced proliferation and cyst growth. Under pathological condition, ANO1 and ANO6 are upregulated and operate as secretory channel/phospholipid scramblases, partly by supporting Ca2+-dependent processes. Much less is known about the role of other epithelial anoctamins whose potential functions are discussed in this review.
Collapse
Affiliation(s)
- Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany.
| |
Collapse
|
9
|
Kunzelmann K, Ousingsawat J, Schreiber R. VSI: The anoctamins: Structure and function: "Intracellular" anoctamins. Cell Calcium 2024; 120:102888. [PMID: 38657371 DOI: 10.1016/j.ceca.2024.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Plasma membrane localized anoctamin 1, 2 and 6 (TMEM16A, B, F) have been examined in great detail with respect to structure and function, but much less is known about the other seven intracellular members of this exciting family of proteins. This is probably due to their limited accessibility in intracellular membranous compartments, such as the endoplasmic reticulum (ER) or endosomes. However, these so-called intracellular anoctamins are also found in the plasma membrane (PM) which adds to the confusion regarding their cellular role. Probably all intracellular anoctamins except of ANO8 operate as intracellular phospholipid (PL) scramblases, allowing for Ca2+-activated, passive transport of phospholipids like phosphatidylserine between both membrane leaflets. Probably all of them also conduct ions, which is probably part of their physiological function. In this brief overview, we summarize key findings on the biological functions of ANO3, 4, 5, 7, 8, 9 and 10 (TMEM16C, D, E, G, H, J, K) that are gradually coming to light. Compartmentalized regulation of intracellular Ca2+ signals, tethering of the ER to specific PM contact sites, and control of intracellular vesicular trafficking appear to be some of the functions of intracellular anoctamins, while loss of function and abnormal expression are the cause for various diseases.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| |
Collapse
|
10
|
Liu Z, Li K, Wang K, Zhang L, Jia S, Wang H, Jian F, Wu H. Knockdown of best1 Gene in Zebrafish Caused Abnormal Neuronal and Skeletal Development - A Subtype of Craniovertebral Junction Malformation? Neurospine 2024; 21:555-564. [PMID: 38317543 PMCID: PMC11224734 DOI: 10.14245/ns.2347238.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To investigate the developmental defects caused by knockdown of best1 gene in zebrafish as a model for a subtype of craniovertebral junction (CVJ) malformation. METHODS Two antisense morpholinos (MOs) were designed targeting zebrafish best1 to block translation (ATG-MO) or to disrupt splicing (I3E4-MO). MOs were microinjected into fertilized one-cell embryos. Efficacy of splicing MO was confirmed by reverse transcription-polymerase chain reaction. Phenotypes were analyzed and quantified by microscopy at multiple developmental stages. Neuronal outgrowth was assessed in transgenic zebrafish expressing green fluorescent protein in neurons. Skeletal ossification was visualized by Calcein staining. RESULTS Knockdown of best1 resulted in zebrafish embryos with shorter body length, curved axis, low survival rate, microcephaly, reduced eye size, smaller head and brain, impaired neuronal outgrowth, and reduced ossification of craniofacial and vertebral bone. CONCLUSION Best1 gene plays critical roles in ophthalmologic, neurological and skeletal development in zebrafish. A patient with a premature stop codon in BEST1 gene exhibited similar phenotypes, implying a subtype of CVJ malformation.
Collapse
Affiliation(s)
- Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Kang Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Lei Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Shanhang Jia
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - He Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Fengzeng Jian
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| |
Collapse
|
11
|
Kolesnikov DO, Nomerovskaya MA, Grigorieva ER, Reshetin DS, Skobeleva KV, Gusev KO, Shalygin AV, Kaznacheyeva EV. Calcium chelation independent effects of BAPTA on endogenous ANO6 channels in HEK293T cells. Biochem Biophys Res Commun 2024; 693:149378. [PMID: 38100999 DOI: 10.1016/j.bbrc.2023.149378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Selective calcium chelator 1,2-Bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA) is a common tool to investigate calcium signaling. However, BAPTA expresses various effects on intracellular calcium signaling, which are not related to its ability to bind Ca2+. In patch clamp experiments, we investigated calcium chelation independent effects of BAPTA on endogenous calcium-activated chloride channels ANO6 (TMEM16F) in HEK293T cells. We have found that application of BAPTA to intracellular solution led to two distinct effects on channels properties. On the one hand, application of BAPTA acutely reduced amplitude of endogenous ANO6 channels induced by 10 μM Ca2+ in single channel recordings. On the other hand, BAPTA application by itself induced ANO6 channel activity in the absence of the intracellular calcium elevation. Open channel probability was enhanced by increasing the intracellular BAPTA concentration from 0.1 to 1 and 10 mM. Another calcium chelator EGTA did not demonstrate chelation independent effects on the ANO6 activity in the same conditions. Due to off-target effects BAPTA should be used with caution when studying calcium-activated ANO6 channels.
Collapse
Affiliation(s)
- D O Kolesnikov
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - M A Nomerovskaya
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - E R Grigorieva
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - D S Reshetin
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - K V Skobeleva
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - K O Gusev
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - A V Shalygin
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation.
| | - E V Kaznacheyeva
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation.
| |
Collapse
|
12
|
Ye Z, Galvanetto N, Puppulin L, Pifferi S, Flechsig H, Arndt M, Triviño CAS, Di Palma M, Guo S, Vogel H, Menini A, Franz CM, Torre V, Marchesi A. Structural heterogeneity of the ion and lipid channel TMEM16F. Nat Commun 2024; 15:110. [PMID: 38167485 PMCID: PMC10761740 DOI: 10.1038/s41467-023-44377-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Transmembrane protein 16 F (TMEM16F) is a Ca2+-activated homodimer which functions as an ion channel and a phospholipid scramblase. Despite the availability of several TMEM16F cryogenic electron microscopy (cryo-EM) structures, the mechanism of activation and substrate translocation remains controversial, possibly due to restrictions in the accessible protein conformational space. In this study, we use atomic force microscopy under physiological conditions to reveal a range of structurally and mechanically diverse TMEM16F assemblies, characterized by variable inter-subunit dimerization interfaces and protomer orientations, which have escaped prior cryo-EM studies. Furthermore, we find that Ca2+-induced activation is associated to stepwise changes in the pore region that affect the mechanical properties of transmembrane helices TM3, TM4 and TM6. Our direct observation of membrane remodelling in response to Ca2+ binding along with additional electrophysiological analysis, relate this structural multiplicity of TMEM16F to lipid and ion permeation processes. These results thus demonstrate how conformational heterogeneity of TMEM16F directly contributes to its diverse physiological functions.
Collapse
Affiliation(s)
- Zhongjie Ye
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Nicola Galvanetto
- Department of Physics, University of Zurich, 8057, Zurich, Switzerland
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Leonardo Puppulin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Mestre, Venice, Italy
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan
| | - Simone Pifferi
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Holger Flechsig
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan
| | - Melanie Arndt
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | | | - Michael Di Palma
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Shifeng Guo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Horst Vogel
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anna Menini
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Clemens M Franz
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan
| | - Vincent Torre
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy.
- Institute of Materials (ION-CNR), Area Science Park, Basovizza, 34149, Trieste, Italy.
- BIoValley Investments System and Solutions (BISS), 34148, Trieste, Italy.
| | - Arin Marchesi
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan.
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy.
| |
Collapse
|
13
|
Kolesnikov DO, Grigorieva ER, Nomerovskaya MA, Reshetin DS, Shalygin AV, Kaznacheyeva E. The Effect of Calcium Ions on the Electrophysiological Properties of Single ANO6 Channels. Acta Naturae 2024; 16:40-47. [PMID: 38698960 PMCID: PMC11062105 DOI: 10.32607/actanaturae.27338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/23/2024] [Indexed: 05/05/2024] Open
Abstract
Proteins belonging to the anoctamin (ANO) family form calcium-activated chloride channels (CaCCs). The most unusual member of this family, ANO6 (TMEM16F), simultaneously exhibits the functions of calcium-dependent scramblase and the ion channel. ANO6 affects the plasma membrane dynamics and phosphatidylserine transport; it is also involved in programmed cell death. The properties of ANO6 channels remain the subject of debate. In this study, we investigated the effect of variations in the intracellular and extracellular concentrations of calcium ions on the electrophysiological properties of endogenous ANO6 channels by recording single ANO6 channels. It has been demonstrated that (1) a high calcium concentration in an extracellular solution increases the activity of endogenous ANO6 channels, (2) the permeability of endogenous ANO6 channels for chloride ions is independent of the extracellular concentration of calcium ions, (3) that an increase in the intracellular calcium concentration leads to the activation of endogenous ANO6 channels with double amplitude, and (4) that the kinetics of the channel depend on the plasma membrane potential rather than the intracellular concentration of calcium ions. Our findings give grounds for proposing new mechanisms for the regulation of the ANO6 channel activity by calcium ions both at the inner and outer sides of the membrane.
Collapse
Affiliation(s)
- D. O. Kolesnikov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - E. R. Grigorieva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - M. A. Nomerovskaya
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - D. S. Reshetin
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - A. V. Shalygin
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - E.V. Kaznacheyeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| |
Collapse
|
14
|
Shan KZ, Le T, Liang P, Dong P, Yang H. Endothelial TMEM16F lipid scramblase regulates angiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553724. [PMID: 37645870 PMCID: PMC10462142 DOI: 10.1101/2023.08.17.553724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Dynamic loss of lipid asymmetry through the activation of TMEM16 Ca2+-activated lipid scramblases (CaPLSases) has been increasingly recognized as an essential membrane event in a wide range of physiological and pathological processes, including blood coagulation, microparticle release, bone development, pain sensation, cell-cell fusion, and viral infection. Despite the recent implications of TMEM16F CaPLSase in vascular development and endothelial cell-mediated coagulation, its signaling role in endothelial biology remains to be established. Here, we show that endothelial TMEM16F regulates in vitro and in vivo angiogenesis through intracellular signaling. Developmental retinal angiogenesis is significantly impaired in TMEM16F deficient mice, as evidenced by fewer vascular loops and larger loop areas. Consistent with our in vivo observation, TMEM16F siRNA knockdown in human umbilical vein endothelial cells compromises angiogenesis in vitro. We further discovered that TMEM16F knockdown enhances VE-cadherin phosphorylation and reduces its expression. Moreover, TMEM16F knockdown also promotes Src kinase phosphorylation at tyrosine 416, which may be responsible for downregulating VE-cadherin expression. Our study thus uncovers a new biological function of TMEM16F in angiogenesis and provides a potential mechanism for how the CaPLSase regulates angiogenesis through intracellular signaling.
Collapse
Affiliation(s)
- Ke Zoe Shan
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Trieu Le
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
- Curreent address: Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Pengfei Liang
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Ping Dong
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
- Curreent address: Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
15
|
Li H, Liu S, Miao C, Lv Y, Hu Y. Integration of metabolomics and transcriptomics provides insights into enhanced osteogenesis in Ano5Cys360Tyr knock-in mouse model. Front Endocrinol (Lausanne) 2023; 14:1117111. [PMID: 36742392 PMCID: PMC9895949 DOI: 10.3389/fendo.2023.1117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare autosomal dominant disorder characterized by diaphyseal sclerosis of tubular bones and cemento-osseous lesions in mandibles. GDD is caused by point mutations in the ANO5 gene. However, the mechanisms underlying GDD have not been disclosed. We previously generated the first knock-in mouse model for GDD expressing a human mutation (p.Cys360Tyr) in ANO5 and homozygous Ano5 knock-in (Ano5KI/KI ) mice exhibited representative traits of human GDD especially including enhanced osteogenesis. METHODS Metabolomics and transcriptomics analyses were conducted for wildtype (Ano5+/+ ) and Ano5KI/KI mature mouse calvarial osteoblasts (mCOBs) grown in osteogenic cultures for 14 days to identify differential intracellular metabolites and genes involved in GDD. Subsequently, related differential genes were validated by qRT-PCR. Cell proliferation was confirmed by CCK8 assay and calcium content in mineral nodules was detected using SEM-EDS. RESULTS Metabolomics identified 42 differential metabolites that are primarily involved in amino acid and pyrimidine metabolism, and endocrine and other factor-regulated calcium reabsorption. Concomitantly, transcriptomic analysis revealed 407 differentially expressed genes in Ano5KI/KI osteoblasts compared with wildtype. Gene ontology and pathway analysis indicated that Ano5Cys360Tyr mutation considerably promoted cell cycle progression and perturbed calcium signaling pathway, which were confirmed by validated experiments. qRT-PCR and CCK-8 assays manifested that proliferation of Ano5KI/KI mCOBs was enhanced and the expression of cell cycle regulating genes (Mki67, Ccnb1, and Ccna2) was increased. In addition, SEM-EDS demonstrated that Ano5KI/KI mCOBs developed higher calcium contents in mineral nodules than Ano5+/+ mCOBs, while some calcium-related genes (Cacna1, Slc8a1, and Cyp27b1) were significantly up-regulated. Furthermore, osteocalcin which has been proved to be an osteoblast-derived metabolic hormone was upregulated in Ano5KI/KI osteoblast cultures. DISCUSSION Our data demonstrated that the Ano5Cys360Tyr mutation could affect the metabolism of osteoblasts, leading to unwonted calcium homeostasis and cellular proliferation that can contribute to the underlying pathogenesis of GDD disorders.
Collapse
|
16
|
Kühnapfel A, Ahnert P, Horn K, Kirsten H, Loeffler M, Scholz M. First genome-wide association study of 99 body measures derived from 3-dimensional body scans. Genes Dis 2022; 9:777-788. [PMID: 35782980 PMCID: PMC9243350 DOI: 10.1016/j.gendis.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
Body height, body mass index, hip and waist circumference are important risk factors or outcome variables in clinical and epidemiological research with complex underlying genetics. However, these classical anthropometric traits represent only a very limited view on the human body and other traits with potentially higher functional specificity are not yet studied to a larger extent. Participants of LIFE-Adult were assessed by three-dimensional body scanner VITUS XXL determining 99 high-quality anthropometric traits in parallel. Genotyping was performed by Axiom Genome-Wide CEU 1 Array Plate microarray technology and imputation was done using 1000 Genomes phase 3 reference panel. Combined phenotype and genetic information are available for a total of 7,562 participants. Largest heritabilities were estimated for height traits (maximum heritability with h2 = 44% for neck height) and 61 traits achieved values larger than 20%. By genome-wide analyses, we identified 16 loci associated with at least one of the 99 traits. Ten of these loci were not described for association with classical anthropometric traits so far. The strongest novel association was observed for 7p14.3 (rs11979006, P = 2.12 × 10−9) for the trait Back Width with ZNRF2 as the most plausible candidate gene. Loci established for association with classical anthropometric traits were subjected to anthropometric phenome-wide association analysis. From the reported 709 loci, 211 are co-associated with body scanner traits (enrichment: OR = 1.96, P = 1.08 × 10−61). We conclude that genetics of 3D laser-based anthropometry is promising to identify novel loci and to improve the functional understanding of established ones.
Collapse
|
17
|
Li H, Wang X, Chen E, Liu X, Ma X, Miao C, Tian Z, Dong R, Hu Y. Introduction of a Cys360Tyr Mutation in ANO5 Creates a Mouse Model for Gnathodiaphyseal Dysplasia. J Bone Miner Res 2022; 37:515-530. [PMID: 34841576 DOI: 10.1002/jbmr.4481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/06/2022]
Abstract
Gnathodiaphyseal dysplasia (GDD) is a rare autosomal dominant genetic disease characterized by the osteosclerosis of tubular bones and the formation of cemento-osseous lesions in mandibles. Although genetic mutations for GDD have been identified in the ANO5/TMEM16E gene, the cellular and molecular mechanisms behind the pathogenesis of GDD remain unclear. Here, we generated the first knock-in mouse model for GDD with the expression of human mutation p.Cys360Tyr in ANO5. Homozygous Ano5 knock-in mice (Ano5KI/KI ) replicated GDD-like skeletal features, including massive jawbones, bowing tibia, bone fragility, sclerosis, and cortical thickening of the femoral and tibial diaphysis. Serum alkaline phosphatase (ALP) levels were elevated in Ano5KI/KI mice as in GDD patients with p.Cys360Tyr mutation. Calvaria-derived Ano5KI/KI osteoblast cultures showed increased osteoblastogenesis, including hypermineralized bone matrix and enhanced bone formation-related factors expression. Interestingly, Ano5KI/KI bone marrow-derived macrophage cultures showed decreased osteoclastogenesis, and Ano5KI/KI osteoclasts exhibited disrupted actin ring formation, which may be associated with some signaling pathways. In conclusion, this new mouse model may facilitate elucidation of the pathogenesis of GDD and shed more light on its treatment. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hongyu Li
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Wang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Erjun Chen
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xinrong Ma
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Congcong Miao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhenchuan Tian
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Rui Dong
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ying Hu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Kolesnikov D, Perevoznikova A, Gusev K, Glushankova L, Kaznacheyeva E, Shalygin A. Electrophysiological Properties of Endogenous Single Ca 2+ Activated Cl - Channels Induced by Local Ca 2+ Entry in HEK293. Int J Mol Sci 2021; 22:4767. [PMID: 33946319 PMCID: PMC8124839 DOI: 10.3390/ijms22094767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Microdomains formed by proteins of endoplasmic reticulum and plasma membrane play a key role in store-operated Ca2+ entry (SOCE). Ca2+ release through inositol 1,4,5-trisphosphate receptor (IP3R) and subsequent Ca2+ store depletion activate STIM (stromal interaction molecules) proteins, sensors of intraluminal Ca2+, which, in turn, open the Orai channels in plasma membrane. Downstream to this process could be activated TRPC (transient receptor potential-canonical) calcium permeable channels. Using single channel patch-clamp technique we found that a local Ca2+ entry through TRPC1 channels activated endogenous Ca2+-activated chloride channels (CaCCs) with properties similar to Anoctamin6 (TMEM16F). Our data suggest that their outward rectification is based on the dependence from membrane potential of both the channel conductance and the channel activity: (1) The conductance of active CaCCs highly depends on the transmembrane potential (from 3 pS at negative potentials till 60 pS at positive potentials); (2) their activity (NPo) is enhanced with increasing Ca2+ concentration and/or transmembrane potential, conversely lowering of intracellular Ca2+ concentration reduced the open state dwell time; (3) CaCC amplitude is only slightly increased by intracellular Ca2+ concentration. Experiments with Ca2+ buffering by EGTA or BAPTA suggest close local arrangement of functional CaCCs and TRPC1 channels. It is supposed that Ca2+-activated chloride channels are involved in Ca2+ entry microdomains.
Collapse
Affiliation(s)
| | | | | | | | - Elena Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (D.K.); (A.P.); (K.G.); (L.G.)
| | - Alexey Shalygin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (D.K.); (A.P.); (K.G.); (L.G.)
| |
Collapse
|
19
|
Liang P, Yang H. Molecular underpinning of intracellular pH regulation on TMEM16F. J Gen Physiol 2021; 153:e202012704. [PMID: 33346788 PMCID: PMC7754671 DOI: 10.1085/jgp.202012704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
TMEM16F, a dual-function phospholipid scramblase and ion channel, is important in blood coagulation, skeleton development, HIV infection, and cell fusion. Despite advances in understanding its structure and activation mechanism, how TMEM16F is regulated by intracellular factors remains largely elusive. Here we report that TMEM16F lipid scrambling and ion channel activities are strongly influenced by intracellular pH (pHi). We found that low pHi attenuates, whereas high pHi potentiates, TMEM16F channel and scramblase activation under physiological concentrations of intracellular Ca2+ ([Ca2+]i). We further demonstrate that TMEM16F pHi sensitivity depends on [Ca2+]i and exhibits a bell-shaped relationship with [Ca2+]i: TMEM16F channel activation becomes increasingly pHi sensitive from resting [Ca2+]i to micromolar [Ca2+]i, but when [Ca2+]i increases beyond 15 µM, pHi sensitivity gradually diminishes. The mutation of a Ca2+-binding residue that markedly reduces TMEM16F Ca2+ sensitivity (E667Q) maintains the bell-shaped relationship between pHi sensitivity and Ca2+ but causes a dramatic shift of the peak [Ca2+]i from 15 µM to 3 mM. Our biophysical characterizations thus pinpoint that the pHi regulatory effects on TMEM16F stem from the competition between Ca2+ and protons for the primary Ca2+-binding residues in the pore. Within the physiological [Ca2+]i range, the protonation state of the primary Ca2+-binding sites influences Ca2+ binding and regulates TMEM16F activation. Our findings thus uncover a regulatory mechanism of TMEM16F by pHi and shine light on our understanding of the pathophysiological roles of TMEM16F in diseases with dysregulated pHi, including cancer.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Biochemistry, Duke University Medical Center, Durham, NC
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC
- Department of Neurobiology, Duke University Medical Center, Durham, NC
| |
Collapse
|
20
|
Millington-Burgess SL, Harper MT. Gene of the issue: ANO6 and Scott Syndrome. Platelets 2020; 31:964-967. [PMID: 31746257 DOI: 10.1080/09537104.2019.1693039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023]
Affiliation(s)
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge , Cambridge, UK
| |
Collapse
|
21
|
Feng S, Dang S, Han TW, Ye W, Jin P, Cheng T, Li J, Jan YN, Jan LY, Cheng Y. Cryo-EM Studies of TMEM16F Calcium-Activated Ion Channel Suggest Features Important for Lipid Scrambling. Cell Rep 2020; 28:567-579.e4. [PMID: 31291589 PMCID: PMC6684876 DOI: 10.1016/j.celrep.2019.06.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022] Open
Abstract
As a Ca2+-activated lipid scramblase and ion channel that mediates Ca2+ influx, TMEM16F relies on both functions to facilitate extracellular vesicle generation, blood coagulation, and bone formation. How a bona fide ion channel scrambles lipids remains elusive. Our structural analyses revealed the coexistence of an intact channel pore and PIP2-dependent protein conformation changes leading to membrane distortion. Correlated to the extent of membrane distortion, many tightly bound lipids are slanted. Structure-based mutagenesis studies further reveal that neutralization of some lipid-binding residues or those near membrane distortion specifically alters the onset of lipid scrambling, but not Ca2+ influx, thus identifying features outside of channel pore that are important for lipid scrambling. Together, our studies demonstrate that membrane distortion does not require open hydrophilic grooves facing the membrane interior and provide further evidence to suggest separate pathways for lipid scrambling and ion permeation. TMEM16F is a calcium-activated ion channel and lipid scramblase linked to the bleeding disorder Scott syndrome. Feng et al. examine cryo-EM structures of TMEM16F with or without Ca2+ ions and PIP2 nanodisc supplementation and identify structural features for lipid binding and membrane distortion critical for lipid scrambling activity.
Collapse
Affiliation(s)
- Shengjie Feng
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shangyu Dang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tina Wei Han
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Wenlei Ye
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peng Jin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tong Cheng
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Junrui Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Sepulveda-Villegas M, Elizondo-Montemayor L, Trevino V. Identification and analysis of 35 genes associated with vitamin D deficiency: A systematic review to identify genetic variants. J Steroid Biochem Mol Biol 2020; 196:105516. [PMID: 31678109 DOI: 10.1016/j.jsbmb.2019.105516] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
Abstract
Vitamin D deficiency is a public health concern associated with, but not limited to, skeletal anomalies, chronic diseases, immune conditions, and cancer, among others. Hypovitaminosis D is mainly associated with environmental and lifestyle factors that affect sunlight exposure. However, genetic factors also influence 25-hydroxyvitamin D (25[OH]D) serum concentration. Although there is available information of genes with clear biological relevance or markers identified by Genome-Wide Association Studies, an overall view and screening tool to identify known genetic causes of altered serum levels of 25(OH)D is lacking. Moreover, there are no studies including the total genetic evidence associated with abnormal serum concentration of 25(OH)D. Therefore, we conducted a de-novo systematic literature review to propose a set of genes comprehensive of all genetic variants reported to be associated with deficiency of vitamin D. Abstracts retrieved from PubMed search were organized by gene and curated one-by-one using the PubTerm web tool. The genes identified were classified according to the type of genetic evidence associated with serum 25(OH)D levels and were also compared with the few commonly screened genes related to vitamin D status. This strategy allowed the identification of 35 genes associated with serum 25(OH)D concentrations, 27 (75%) of which are not commercially available and are not, therefore, analyzed in clinical practice for genetic counseling, nor are they sufficiently studied for research purposes. Functional analysis of the genes identified confirmed their role in vitamin D pathways and diseases. Thus, the list of genes is an important source to understand the genetic determinants of 25(OH)D levels. To further support our findings, we provide a map of the reported functional variants and SNPs not included in ClinVar, minor allelic frequencies, SNP effect sizes, associated diseases, and an integrated overview of the biological role of the genes. In conclusion, we identified a comprehensive candidate list of genes associated with serum 25(OH)D concentrations, most of which are not commercially available, but would prove of importance in clinical practice in screening for patients that should respond to supplementation because of alterations in absorption, patients that would have little benefit because alterations in the downstream metabolism of vitamin D, and to study non-responsiveness to supplementation with vitamin D.
Collapse
Affiliation(s)
- Maricruz Sepulveda-Villegas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Bioinformatics Research Group, Ave. Morones Prieto 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Bioinformatics Research Group, Ave. Morones Prieto 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico; Tecnologico de Monterrey, Cardiovascular and Metabolomics Research Group, Hospital Zambrano Hellion, San Pedro Garza Garcia, P.C., 66278, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Bioinformatics Research Group, Ave. Morones Prieto 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico.
| |
Collapse
|
23
|
Wu N, Cernysiov V, Davidson D, Song H, Tang J, Luo S, Lu Y, Qian J, Gyurova IE, Waggoner SN, Trinh VQH, Cayrol R, Sugiura A, McBride HM, Daudelin JF, Labrecque N, Veillette A. Critical Role of Lipid Scramblase TMEM16F in Phosphatidylserine Exposure and Repair of Plasma Membrane after Pore Formation. Cell Rep 2020; 30:1129-1140.e5. [PMID: 31995754 PMCID: PMC7104872 DOI: 10.1016/j.celrep.2019.12.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
Plasma membrane damage and cell death during processes such as necroptosis and apoptosis result from cues originating intracellularly. However, death caused by pore-forming agents, like bacterial toxins or complement, is due to direct external injury to the plasma membrane. To prevent death, the plasma membrane has an intrinsic repair ability. Here, we found that repair triggered by pore-forming agents involved TMEM16F, a calcium-activated lipid scramblase also mutated in Scott's syndrome. Upon pore formation and the subsequent influx of intracellular calcium, TMEM16F induced rapid "lipid scrambling" in the plasma membrane. This response was accompanied by membrane blebbing, extracellular vesicle release, preserved membrane integrity, and increased cell viability. TMEM16F-deficient mice exhibited compromised control of infection by Listeria monocytogenes associated with a greater sensitivity of neutrophils to the pore-forming Listeria toxin listeriolysin O (LLO). Thus, the lipid scramblase TMEM16F is critical for plasma membrane repair after injury by pore-forming agents.
Collapse
Affiliation(s)
- Ning Wu
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada; Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Vitalij Cernysiov
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Hua Song
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jianlong Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vincent Quoc-Huy Trinh
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| | - Romain Cayrol
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| | - Ayumu Sugiura
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; Department of Medicine, University of Montréal, Montréal, QC H3C3J7, Canada; Department of Microbiology, Infectious Diseases and Immunology, University of Montréal, Montréal, QC H3C3J7, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
24
|
Wang X, Liu X, Dong R, Liang C, Reichenberger EJ, Hu Y. Genetic Disruption of Anoctamin 5 in Mice Replicates Human Gnathodiaphyseal Dysplasia (GDD). Calcif Tissue Int 2019; 104:679-689. [PMID: 30712070 DOI: 10.1007/s00223-019-00528-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare skeletal disorder which is mainly characterized by cemento-osseous lesions in mandibles, bone fragility, bowing and diaphyseal sclerosis of tubular bones. GDD is caused by point mutations in Anoctamin-5 (ANO5); however, the disease mechanisms remain unclear. Here we generated Ano5-knockout (KO) mice using a CRISPR/Cas 9 approach to study loss of function aspects of GDD mutations. Homozygous Ano5 knockout mice (Ano5-/-) replicate some typical traits of human GDD including massive jawbones, bowing tibia, sclerosis and cortical thickening of femoral and tibial diaphyses. Serum alkaline phosphatase (ALP) levels were elevated in Ano5-/- mice as in GDD patients. Calvaria-derived Ano5-/- osteoblast cultures show increased osteoblastogenesis, which is consistent with our previous in vitro observations. Bone matrix is hypermineralized, and the expression of bone formation-related factors is enhanced in Ano5-/- mice, suggesting that the osteogenic anomaly arises from a genetic disruption of Ano5. We believe this new mouse model will shed more light on the development of skeletal abnormalities in GDD on a cellular and molecular level.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiu Liu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Rui Dong
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chao Liang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health, Farmington, CT, USA
| | - Ying Hu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People's Republic of China.
- Beijing Stomatological Hospital, Beijing Institute of Dental Research, Capital Medical University, No 4 Tiantanxili, Dongcheng District, Beijing, 100050, People's Republic of China.
| |
Collapse
|
25
|
Benedetto R, Ousingsawat J, Cabrita I, Pinto M, Lérias JR, Wanitchakool P, Schreiber R, Kunzelmann K. Plasma membrane-localized TMEM16 proteins are indispensable for expression of CFTR. J Mol Med (Berl) 2019; 97:711-722. [PMID: 30915480 DOI: 10.1007/s00109-019-01770-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is the secretory chloride channel in epithelial tissues that has a central role in cystic fibrosis (CF) lung and gastrointestinal disease. A recent publication demonstrates a close association between CFTR and TMEM16A, the calcium-activated chloride channel. Thus, no CFTR chloride currents could be detected in airways and large intestine from mice lacking epithelial expression of TMEM16A. Here, we demonstrate that another plasma membrane-localized TMEM16 paralogue, TMEM16F, can compensate for the lack of TMEM16A. Using TMEM16 knockout mice, human lymphocytes, and a number of human cell lines with endogenous protein expression or heterologous expression, we demonstrate that CFTR can only function in the presence of either TMEM16A or TMEM16F. Double knockout of intestinal epithelial TMEM16A/F expression did not produce offsprings, suggesting a lethal phenotype in utero. Plasma membrane-localized TMEM16A or TMEM16F is required for exocytosis and expression of CFTR in the plasma membrane. TMEM16A/F proteins may therefore have an impact on disease severity in CF. KEY MESSAGES: • Cystic fibrosis is caused by the defective Cl- channel cystic fibrosis transmembrane conductance regulator (CFTR). • A close relationship exists between CFTR and the calcium-activated chloride channels TMEM16A/TMEM16F. • In conditional airway and intestinal knockout mice, lymphocytes from Scott disease patients and in overexpressing cells, CFTR is not functional in the absence of TMEM16A and TMEM16F. • TMEM16A and TMEM16F support membrane exocytosis and are essential for plasma membrane insertion of CFTR.
Collapse
Affiliation(s)
- Roberta Benedetto
- Physiological Institute, University of Regensburg, University Street 31, D-93053, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, D-93053, Regensburg, Germany
| | - Inês Cabrita
- Physiological Institute, University of Regensburg, University Street 31, D-93053, Regensburg, Germany
| | - Madalena Pinto
- Physiological Institute, University of Regensburg, University Street 31, D-93053, Regensburg, Germany
| | - Joana R Lérias
- Physiological Institute, University of Regensburg, University Street 31, D-93053, Regensburg, Germany
| | - Podchanart Wanitchakool
- Physiological Institute, University of Regensburg, University Street 31, D-93053, Regensburg, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, D-93053, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, D-93053, Regensburg, Germany.
| |
Collapse
|
26
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
27
|
Kim JH, Kim K, Kim I, Seong S, Kim SW, Kim N. Role of anoctamin 5, a gene associated with gnathodiaphyseal dysplasia, in osteoblast and osteoclast differentiation. Bone 2019; 120:432-438. [PMID: 30557634 DOI: 10.1016/j.bone.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022]
Abstract
Anoctamin 5 (Ano5) mutations are responsible for gnathodiaphyseal dysplasia, a rare skeletal syndrome. Despite the close linkage of Ano5 to bone remodeling, the molecular mechanisms underlying the role of Ano5 in bone remodeling remain unknown. In this study, we investigated whether Ano5 regulates osteoblast or osteoclast differentiation to maintain normal bone remodeling. Downregulation of Ano5 expression did not affect osteoblast differentiation and mineralization, while ectopic expression of Ano5 significantly enhanced receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation. Furthermore, Ano5-mediated Akt phosphorylation resulted in nuclear factor of activated T-cells c1 (NFATc1) activation, indicating that Ano5 regulates osteoclast differentiation through activation of the Akt-NFATc1 signaling pathway. Thus, our results suggest a possibility that Ano5 is involved in bone remodeling through regulating the function of osteoclasts rather than that of osteoblasts.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| |
Collapse
|
28
|
Warita K, Aoki R, Kitamura N, Shibuya I, Hosaka YZ. The precursor osteoblast-like cell, MC3T3-E1 cell line, enhances sodium-calcium exchanger 1 (Ncx1) gene expression by stretch stimuli prior to osteoblast differentiation. J Vet Med Sci 2019; 81:508-512. [PMID: 30745522 PMCID: PMC6483915 DOI: 10.1292/jvms.18-0766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study evaluated the expression of genes involved in the concentration of
Ca2+ in precursor osteoblast-like cell, MC3T3-E1 subjected to stretching
stimuli. Transient receptor potential vanilloid 4 (Trpv4) gene
expression, the factor that is activated by stretch stimulation and enables inflow of
Ca2+ from the extracellular space, was not affected as a result of stretch
stimulation; conversely, the expression of sodium-calcium exchanger 1
(Ncx1) gene involved in outflow of intracellular Ca2+
increased, depending on stimulation intensity. Localization of Ca2+ correlated
with the positioning of the endoplasmic reticulum, and intracellular Ca2+
decreased in inverse proportion to the intensity of the stretching force. These results
suggest that stretch stimulation activates intracellular Ca2+ elimination
rather than Ca2+ uptake before osteoblast differentiation.
Collapse
Affiliation(s)
- Katsuhiko Warita
- Veterinary Anatomy, Department of Veterinary Science, Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan.,Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ryo Aoki
- Veterinary Anatomy, Department of Veterinary Science, Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Naoki Kitamura
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Izumi Shibuya
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Yoshinao Z Hosaka
- Veterinary Anatomy, Department of Veterinary Science, Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan.,Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
29
|
Bricogne C, Fine M, Pereira PM, Sung J, Tijani M, Wang Y, Henriques R, Collins MK, Hilgemann DW. TMEM16F activation by Ca 2+ triggers plasma membrane expansion and directs PD-1 trafficking. Sci Rep 2019; 9:619. [PMID: 30679690 PMCID: PMC6345885 DOI: 10.1038/s41598-018-37056-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
TMEM16F is a Ca2+ -gated ion channel that is required for Ca2+ -activated phosphatidylserine exposure on the surface of many eukaryotic cells. TMEM16F is widely expressed and has roles in platelet activation during blood clotting, bone formation and T cell activation. By combining microscopy and patch clamp recording we demonstrate that activation of TMEM16F by Ca2+ ionophores in Jurkat T cells triggers large-scale surface membrane expansion in parallel with phospholipid scrambling. With continued ionophore application,TMEM16F-expressing cells then undergo extensive shedding of ectosomes. The T cell co-receptor PD-1 is selectively incorporated into ectosomes. This selectivity depends on its transmembrane sequence. Surprisingly, cells lacking TMEM16F not only fail to expand surface membrane in response to elevated cytoplasmic Ca2+, but instead undergo rapid massive endocytosis with PD-1 internalisation. These results establish a new role for TMEM16F as a regulator of Ca2+ activated membrane trafficking.
Collapse
Affiliation(s)
| | - Michael Fine
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, Texas, USA
| | - Pedro M Pereira
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St, London, UK
| | - Julia Sung
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK
| | - Maha Tijani
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK
| | - Youxue Wang
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, Texas, USA
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St, London, UK
| | - Mary K Collins
- UCL Cancer Institute, University College London, Gower St, London, UK.
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK.
- Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan.
| | - Donald W Hilgemann
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, Texas, USA.
| |
Collapse
|
30
|
Molecular Identities and ATP Release Activities of Two Types of Volume-Regulatory Anion Channels, VSOR and Maxi-Cl. CURRENT TOPICS IN MEMBRANES 2018; 81:125-176. [PMID: 30243431 DOI: 10.1016/bs.ctm.2018.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An elaborate volume regulation system based on interplay of ion channels and transporters was evolved to cope with constant osmotic challenges caused by intensive metabolism, transport and other physiological/pathophysiological events. In animal cells, two types of anion channels are directly activated by cell swelling and involved in the regulatory volume decrease (RVD): volume-sensitive outwardly rectifying anion channel (VSOR), also called volume-regulated anion channel (VRAC), and Maxi-Cl which is the most major type of maxi-anion channel (MAC). These two channels have very different biophysical profiles and exhibit opposite dependence on intracellular ATP. After several decades of verifying many false-positive candidates for VSOR and Maxi-Cl, LRRC8 family proteins emerged as major VSOR components, and SLCO2A1 protein as a core of Maxi-Cl. Still, neither of these proteins alone can fully reproduce the native channel phenotypes suggesting existence of missing components. Although both VSOR and Maxi-Cl have pores wide enough to accommodate bulky ATP4- and MgATP2- anions, evidence accumulated hitherto, based on pharmacological and gene silencing experiments, suggests that Maxi-Cl, but not VSOR, serves as one of the major pathways for the release of ATP from swollen and ischemic/hypoxic cells. Relations of VSOR and Maxi-Cl with diseases and their selective pharmacology are the topics promoted by recent advance in molecular identification of the two volume-activated, volume-regulatory anion channels.
Collapse
|
31
|
Schenk LK, Ousingsawat J, Skryabin BV, Schreiber R, Pavenstädt H, Kunzelmann K. Regulation and Function of TMEM16F in Renal Podocytes. Int J Mol Sci 2018; 19:ijms19061798. [PMID: 29912162 PMCID: PMC6032267 DOI: 10.3390/ijms19061798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
The Ca2+-activated phospholipid scramblase and ion channel TMEM16F is expressed in podocytes of renal glomeruli. Podocytes are specialized cells that form interdigitating foot processes as an essential component of the glomerular filter. These cells, which participate in generation of the primary urine, are often affected during primary glomerular diseases, such as glomerulonephritis and secondary hypertensive or diabetic nephropathy, which always leads to proteinuria. Because the function of podocytes is known to be controlled by intracellular Ca2+ signaling, it is important to know about the role of Ca2+-activated TMEM16F in these cells. To that end, we generated an inducible TMEM16F knockdown in the podocyte cell line AB8, and produced a conditional mouse model with knockout of TMEM16F in podocytes and renal epithelial cells of the nephron. We found that knockdown of TMEM16F did not produce proteinuria or any obvious phenotypic changes. Knockdown of TMEM16F affected cell death of tubular epithelial cells but not of glomerular podocytes when analyzed in TUNEL assays. Surprisingly, and in contrast to other cell types, TMEM16F did not control intracellular Ca2+ signaling and was not responsible for Ca2+-activated whole cell currents in podocytes. TMEM16F levels in podocytes were enhanced after inhibition of the endolysosomal pathway and after treatment with angiotensin II. Renal knockout of TMEM16F did not compromise renal morphology and serum electrolytes. Taken together, in contrast to other cell types, such as platelets, bone cells, and immune cells, TMEM16F shows little effect on basal properties of podocytes and does not appear to be essential for renal function.
Collapse
Affiliation(s)
- Laura K Schenk
- Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Boris V Skryabin
- Transgenic Animal and Genetic Engineering Models (TRAM), Department of Medicine, Westfälischen, Wilhelms⁻Universität Münster, 48149 Münster, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Hermann Pavenstädt
- Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
32
|
Hong J, Hatchell KE, Bradfield JP, Bjonnes A, Chesi A, Lai CQ, Langefeld CD, Lu L, Lu Y, Lutsey PL, Musani SK, Nalls MA, Robinson-Cohen C, Roizen JD, Saxena R, Tucker KL, Ziegler JT, Arking DE, Bis JC, Boerwinkle E, Bottinger EP, Bowden DW, Gilsanz V, Houston DK, Kalkwarf HJ, Kelly A, Lappe JM, Liu Y, Michos ED, Oberfield SE, Palmer ND, Rotter JI, Sapkota B, Shepherd JA, Wilson JG, Basu S, de Boer IH, Divers J, Freedman BI, Grant SFA, Hakanarson H, Harris TB, Kestenbaum BR, Kritchevsky SB, Loos RJF, Norris JM, Norwood AF, Ordovas JM, Pankow JS, Psaty BM, Sanghera DK, Wagenknecht LE, Zemel BS, Meigs J, Dupuis J, Florez JC, Wang T, Liu CT, Engelman CD, Billings LK. Transethnic Evaluation Identifies Low-Frequency Loci Associated With 25-Hydroxyvitamin D Concentrations. J Clin Endocrinol Metab 2018; 103:1380-1392. [PMID: 29325163 PMCID: PMC6276579 DOI: 10.1210/jc.2017-01802] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023]
Abstract
Context Vitamin D inadequacy is common in the adult population of the United States. Although the genetic determinants underlying vitamin D inadequacy have been studied in people of European ancestry, less is known about populations with Hispanic or African ancestry. Objective The Trans-Ethnic Evaluation of Vitamin D (TRANSCEN-D) genomewide association study (GWAS) consortium was assembled to replicate genetic associations with 25-hydroxyvitamin D [25(OH)D] concentrations from the Study of Underlying Genetic Determinants of Vitamin D and Highly Related Traits (SUNLIGHT) meta-analyses of European ancestry and to identify genetic variants related to vitamin D concentrations in African and Hispanic ancestries. Design Ancestry-specific (Hispanic and African) and transethnic (Hispanic, African, and European) meta-analyses were performed with Meta-Analysis Helper software (METAL). Patients or Other Participants In total, 8541 African American and 3485 Hispanic American (from North America) participants from 12 cohorts and 16,124 European participants from SUNLIGHT were included in the study. Main Outcome Measures Blood concentrations of 25(OH)D were measured for all participants. Results Ancestry-specific analyses in African and Hispanic Americans replicated single nucleotide polymorphisms (SNPs) in GC (2 and 4 SNPs, respectively). An SNP (rs79666294) near the KIF4B gene was identified in the African American cohort. Transethnic evaluation replicated GC and DHCR7 region SNPs. Additionally, the transethnic analyses revealed SNPs rs719700 and rs1410656 near the ANO6/ARID2 and HTR2A genes, respectively. Conclusions Ancestry-specific and transethnic GWASs of 25(OH)D confirmed findings in GC and DHCR7 for African and Hispanic American samples and revealed findings near KIF4B, ANO6/ARID2, and HTR2A. The biological mechanisms that link these regions with 25(OH)D metabolism warrant further investigation.
Collapse
Affiliation(s)
- Jaeyoung Hong
- Department of Biostatistics, Boston University School of Public Health, Boston,
Massachusetts
| | - Kathryn E Hatchell
- Department of Population Health Sciences, University of Wisconsin–Madison
School of Medicine and Public Health, Madison, Wisconsin
| | - Jonathan P Bradfield
- Center for Applied Genomics, Division of Human Genetics, The Children’s
Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew Bjonnes
- Center for Genomic Medicine, Massachusetts General Hospital, Boston,
Massachusetts
| | - Alessandra Chesi
- The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Chao-Qiang Lai
- USDA-ARS Human Nutrition Research Center on Aging at Tufts University, Boston,
Massachusetts
| | | | - Lingyi Lu
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of
Medicine at Mount Sinai, New York, New York
| | - Pamela L Lutsey
- Division of Epidemiology and Community Health, University of Minnesota,
Minneapolis, Minnesota
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson,
Mississippi
| | - Mike A Nalls
- Data Tecnica International, Glen Echo, Maryland
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes
of Health, Bethesda, Maryland
| | - Cassianne Robinson-Cohen
- Kidney Research Institute, Division of Nephrology, Department of Medicine,
University of Washington, Seattle, Washington
| | - Jeffery D Roizen
- Center for Applied Genomics, Division of Human Genetics, The Children’s
Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston,
Massachusetts
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences, University of Massachusetts
Lowell, Lowell, Massachusetts
| | - Julie T Ziegler
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University
School of Medicine, Baltimore, Maryland
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of
Washington, Seattle, Washington
| | - Eric Boerwinkle
- University of Texas Health Science Center at Houston, Houston, Texas
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of
Medicine at Mount Sinai, New York, New York
| | - Donald W Bowden
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Vicente Gilsanz
- Department of Radiology, Children’s Hospital of Los Angeles, Keck School of
Medicine, University of Southern California, Los Angeles, California
| | - Denise K Houston
- Department of Internal Medicine, Section on Gerontology and Geriatric
Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Heidi J Kalkwarf
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s
Hospital Medical Center, Cincinnati, Ohio
| | - Andrea Kelly
- The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia,
Pennsylvania
| | | | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences,
Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Erin D Michos
- Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins University
School of Medicine, Baltimore, Maryland
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Columbia
University Medical Center, New York, New York
| | | | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of
Pediatrics and Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center,
Torrance, California
| | - Bishwa Sapkota
- Department of Pediatrics, College of Medicine, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma
| | - John A Shepherd
- University of California San Francisco School of Medicine, San Francisco,
California
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical
Center, Jackson, Mississippi
| | - Saonli Basu
- Division of Biostatistics, University of Minnesota, Minneapolis,
Minnesota
| | - Ian H de Boer
- Kidney Research Institute, Division of Nephrology, Department of Medicine,
University of Washington, Seattle, Washington
| | - Jasmin Divers
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Struan F A Grant
- Center for Applied Genomics, Division of Human Genetics, The Children’s
Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Hakon Hakanarson
- Center for Applied Genomics, Division of Human Genetics, The Children’s
Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on
Aging, Bethesda, Maryland
| | - Bryan R Kestenbaum
- Kidney Research Institute, Division of Nephrology, Department of Medicine,
University of Washington, Seattle, Washington
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric
Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of
Medicine at Mount Sinai, New York, New York
- The Mindich Child Health and Development Institute, Icahn School of Medicine
at Mount Sinai, New York, New York
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of
Colorado Denver, Aurora, Colorado
| | - Arnita F Norwood
- Department of Medicine, University of Mississippi Medical Center, Jackson,
Mississippi
| | - Jose M Ordovas
- Nutrition and Genomics, JM-USDA Human Nutrition Research Center on Aging at
Tufts University, Boston, Massachusetts
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota,
Minneapolis, Minnesota
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of
Washington, Seattle, Washington
- University of Washington and Department of Epidemiology and Health Sciences,
University of Washington, Seattle, Washington
- Kaiser Permanente Washington Health Research Institute, Seattle,
Washington
| | - Dharambir K Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Oklahoma Center for Neuroscience, Oklahoma City, Oklahoma
| | | | - Babette S Zemel
- The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia,
Pennsylvania
| | - James Meigs
- Division of General Internal Medicine, Massachusetts General Hospital, Harvard
Medical School, Boston, Massachusetts
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston,
Massachusetts
- National Heart, Lung, and Blood Institute’s Framingham Heart Study,
Framingham, Massachusetts
| | - Jose C Florez
- Center for Genomic Medicine, Massachusetts General Hospital, Boston,
Massachusetts
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts
- Programs in Metabolism and Medical & Population Genetics, Broad Institute,
Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston,
Massachusetts
| | - Corinne D Engelman
- Department of Population Health Sciences, University of Wisconsin–Madison
School of Medicine and Public Health, Madison, Wisconsin
| | - Liana K Billings
- NorthShore University HealthSystem, Evanston, Illinois
- University of Chicago Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
33
|
Medrano-Soto A, Moreno-Hagelsieb G, McLaughlin D, Ye ZS, Hendargo KJ, Saier MH. Bioinformatic characterization of the Anoctamin Superfamily of Ca2+-activated ion channels and lipid scramblases. PLoS One 2018; 13:e0192851. [PMID: 29579047 PMCID: PMC5868767 DOI: 10.1371/journal.pone.0192851] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
Our laboratory has developed bioinformatic strategies for identifying distant phylogenetic relationships and characterizing families and superfamilies of transport proteins. Results using these tools suggest that the Anoctamin Superfamily of cation and anion channels, as well as lipid scramblases, includes three functionally characterized families: the Anoctamin (ANO), Transmembrane Channel (TMC) and Ca2+-permeable Stress-gated Cation Channel (CSC) families; as well as four families of functionally uncharacterized proteins, which we refer to as the Anoctamin-like (ANO-L), Transmembrane Channel-like (TMC-L), and CSC-like (CSC-L1 and CSC-L2) families. We have constructed protein clusters and trees showing the relative relationships among the seven families. Topological analyses suggest that the members of these families have essentially the same topologies. Comparative examination of these homologous families provides insight into possible mechanisms of action, indicates the currently recognized organismal distributions of these proteins, and suggests drug design potential for the disease-related channel proteins.
Collapse
Affiliation(s)
- Arturo Medrano-Soto
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | | | - Daniel McLaughlin
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Zachary S. Ye
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Kevin J. Hendargo
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Medina-Gomez C, Kemp JP, Trajanoska K, Luan J, Chesi A, Ahluwalia TS, Mook-Kanamori DO, Ham A, Hartwig FP, Evans DS, Joro R, Nedeljkovic I, Zheng HF, Zhu K, Atalay M, Liu CT, Nethander M, Broer L, Porleifsson G, Mullin BH, Handelman SK, Nalls MA, Jessen LE, Heppe DH, Richards JB, Wang C, Chawes B, Schraut KE, Amin N, Wareham N, Karasik D, Van der Velde N, Ikram MA, Zemel BS, Zhou Y, Carlsson CJ, Liu Y, McGuigan FE, Boer CG, Bønnelykke K, Ralston SH, Robbins JA, Walsh JP, Zillikens MC, Langenberg C, Li-Gao R, Williams FM, Harris TB, Akesson K, Jackson RD, Sigurdsson G, den Heijer M, van der Eerden BC, van de Peppel J, Spector TD, Pennell C, Horta BL, Felix JF, Zhao JH, Wilson SG, de Mutsert R, Bisgaard H, Styrkársdóttir U, Jaddoe VW, Orwoll E, Lakka TA, Scott R, Grant SF, Lorentzon M, van Duijn CM, Wilson JF, Stefansson K, Psaty BM, Kiel DP, Ohlsson C, Ntzani E, van Wijnen AJ, Forgetta V, Ghanbari M, Logan JG, Williams GR, Bassett JD, Croucher PI, Evangelou E, Uitterlinden AG, Ackert-Bicknell CL, Tobias JH, Evans DM, Rivadeneira F. Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects. Am J Hum Genet 2018; 102:88-102. [PMID: 29304378 DOI: 10.1016/j.ajhg.2017.12.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022] Open
Abstract
Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.
Collapse
|
35
|
Delion M, Braux J, Jourdain ML, Guillaume C, Bour C, Gangloff S, Pimpec-Barthes FL, Sermet-Gaudelus I, Jacquot J, Velard F. Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis. J Pathol 2017; 240:50-60. [PMID: 27235726 DOI: 10.1002/path.4753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 12/19/2022]
Abstract
Bone fragility and loss are a significant cause of morbidity in patients with cystic fibrosis (CF), and the lack of effective therapeutic options means that treatment is more often palliative rather than curative. A deeper understanding of the pathogenesis of CF-related bone disease (CFBD) is necessary to develop new therapies. Defective CF transmembrane conductance regulator (CFTR) protein and chronic inflammation in bone are important components of the CFBD development. The receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) drive the regulation of bone turnover. To investigate their roles in CFBD, we evaluated the involvement of defective CFTR in their production level in CF primary human osteoblasts with and without inflammatory stimulation, in the presence or not of pharmacological correctors of the CFTR. No major difference in cell ultrastructure was noted between cultured CF and non-CF osteoblasts, but a delayed bone matrix mineralization was observed in CF osteoblasts. Strikingly, resting CF osteoblasts exhibited strong production of RANKL protein, which was highly localized at the cell membrane and was enhanced in TNF (TNF-α) or IL-17-stimulated conditions. Under TNF stimulation, a defective response in OPG production was observed in CF osteoblasts in contrast to the elevated OPG production of non-CF osteoblasts, leading to an elevated RANKL-to-OPG protein ratio in CF osteoblasts. Pharmacological inhibition of CFTR chloride channel conductance in non-CF osteoblasts replicated both the decreased OPG production and the enhanced RANKL-to-OPG ratio. Interestingly, using CFTR correctors such as C18, we significantly reduced the production of RANKL by CF osteoblasts, in both resting and TNF-stimulated conditions. In conclusion, the overexpression of RANKL and high membranous RANKL localization in osteoblasts are related to defective CFTR, and may worsen bone resorption, leading to bone loss in patients with CF. Targeting osteoblasts with CFTR correctors may represent an effective strategy to treat CFBD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Martial Delion
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Julien Braux
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Marie-Laure Jourdain
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Christine Guillaume
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Camille Bour
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Sophie Gangloff
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | | | - Isabelle Sermet-Gaudelus
- Unité de Pneumo-Pédiatrie Allergologie, Hôpital Necker, Inserm U1551, Université Paris Sorbonne, Paris, France
| | - Jacky Jacquot
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Frédéric Velard
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| |
Collapse
|
36
|
Banerjee J, Leung CT, Li A, Peterson-Yantorno K, Ouyang H, Stamer WD, Civan MM. Regulatory Roles of Anoctamin-6 in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2017; 58:492-501. [PMID: 28125837 PMCID: PMC5283088 DOI: 10.1167/iovs.16-20188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/07/2016] [Indexed: 12/19/2022] Open
Abstract
Purpose Trabecular meshwork (TM) cell volume is a determinant of aqueous humor outflow resistance, and thereby IOP. Regulation of TM cell volume depends on chloride ion (Cl-) release through swelling-activated channels (ICl,Swell), whose pore is formed by LRRC8 proteins. Chloride ion release through swelling-activated channels has been reported to be regulated by calcium-activated anoctamins, but this finding is controversial. Particularly uncertain has been the effect of anoctamin Ano6, reported as a Ca2+-activated Cl- (CaCC) or cation channel in other cells. The current study tested whether anoctamin activity modifies volume regulation of primary TM cell cultures and cell lines. Methods Gene expression was studied with quantitative PCR, supplemented by reverse-transcriptase PCR and Western immunoblots. Currents were measured by ruptured whole-cell patch clamping and volume by electronic cell sizing. Results Primary TM cell cultures and the TM5 and GTM3 cell lines expressed Ano6 3 to 4 orders of magnitude higher than the other anoctamin CaCCs (Ano1 and Ano2). Ionomycin increased cell Ca2+ and activated macroscopic currents conforming to CaCCs in other cells, but displayed significantly more positive mean reversal potentials (+5 to +12 mV) than those displayed by ICl,Swell (-14 to -21 mV) in the same cells. Nonselective CaCC inhibitors (tannic acid>CaCCinh-A01) and transient Ano6 knockdown strongly inhibited ionomycin-activated currents, ICl,Swell and the regulatory volume response to hyposmotic swelling. Conclusions Ionomycin activates CaCCs associated with net cation movement in TM cells. These currents, ICl,Swell, and cell volume are regulated by Ano6. The findings suggest a novel clinically-relevant approach for altering cell volume, and thereby outflow resistance, by targeting Ano6.
Collapse
Affiliation(s)
- Juni Banerjee
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Chi-Ting Leung
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Ang Li
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
- Guangdong-Hong Kong - Macau Institute of CNS Regeneration, Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | - Kim Peterson-Yantorno
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Huan Ouyang
- Guangdong-Hong Kong - Macau Institute of CNS Regeneration, Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | - W. Daniel Stamer
- Departments of Ophthalmology and Biomedical Engineering, Duke University, DUMC 3802, Durham, North Carolina, United States
| | - Mortimer M. Civan
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| |
Collapse
|
37
|
Generation and differentiation of induced pluripotent stem cells reveal ankylosing spondylitis risk gene expression in bone progenitors. Clin Rheumatol 2016; 36:143-154. [PMID: 27864696 PMCID: PMC5216109 DOI: 10.1007/s10067-016-3469-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022]
Abstract
Axial spondyloarthritis (axSpA), which encompasses ankylosing spondylitis, is a complex genetic disease. Aberrant bone formation is a key feature of pathogenesis that can lead to ankylosis of the spine. Our objective is to determine, whether genes whose variants confer susceptibility to AS are expressed in bone progenitors like mesenchymal stem cells (MSCs). Since MSCs from bone marrow is difficult to obtain, we first examined, whether MSCs can be derived from induced pluripotent stem cells (iPSCs). Dermal fibroblasts of two axSpA patients and one healthy control were reprogrammed into iPSCs using a Sendai virus vector encoding pluripotency genes. Pluripotency of iPSCs was examined by embryoid body formation and by testing for stem cell specific gene and protein expression using RT-PCR and immuno fluorescence. iPSCs were differentiated into MSCs by a TGFß inhibitor. MSCs were characterized by flow cytometry using lineage specific antibodies and by their capacity to develop into chondrocytes, adipocytes, and osteoblasts in lineage-specific medium. RNA-seq was applied to determine genome-wide gene expression patterns in MSCs, iPSCs, and blood. We show for the first time, that expression levels of several AS susceptibility genes (EDIL3, ANO6, HAPLN1, ANTXR2) involved in bone formation are significantly elevated in MSCs (2–15-fold; p ≤ 0.05) compared to blood or iPSCs and demonstrate that iPSC-derived MSCs can be differentiated into osteoblasts, chondrocytes, and adipocytes. We conclude, MSCs generated from patient fibroblast-derived iPSC lines are useful tools for studying functional genomics of risk genes associated with bone formation in AS pathogenesis.
Collapse
|
38
|
Andreeva TV, Tyazhelova TV, Rykalina VN, Gusev FE, Goltsov AY, Zolotareva OI, Aliseichik MP, Borodina TA, Grigorenko AP, Reshetov DA, Ginter EK, Amelina SS, Zinchenko RA, Rogaev EI. Whole exome sequencing links dental tumor to an autosomal-dominant mutation in ANO5 gene associated with gnathodiaphyseal dysplasia and muscle dystrophies. Sci Rep 2016; 6:26440. [PMID: 27216912 PMCID: PMC4877638 DOI: 10.1038/srep26440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
Tumors of the jaws may represent different human disorders and frequently associate with pathologic bone fractures. In this report, we analyzed two affected siblings from a family of Russian origin, with a history of dental tumors of the jaws, in correspondence to original clinical diagnosis of cementoma consistent with gigantiform cementoma (GC, OMIM: 137575). Whole exome sequencing revealed the heterozygous missense mutation c.1067G > A (p.Cys356Tyr) in ANO5 gene in these patients. To date, autosomal-dominant mutations have been described in the ANO5 gene for gnathodiaphyseal dysplasia (GDD, OMIM: 166260), and multiple recessive mutations have been described in the gene for muscle dystrophies (OMIM: 613319, 611307); the same amino acid (Cys) at the position 356 is mutated in GDD. These genetic data and similar clinical phenotypes demonstrate that the GC and GDD likely represent the same type of bone pathology. Our data illustrate the significance of mutations in single amino-acid position for particular bone tissue pathology. Modifying role of genetic variations in another gene on the severity of the monogenic trait pathology is also suggested. Finally, we propose the model explaining the tissue-specific manifestation of clinically distant bone and muscle diseases linked to mutations in one gene.
Collapse
Affiliation(s)
- T V Andreeva
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.,Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - T V Tyazhelova
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - V N Rykalina
- Max-Planck Institute for Molecular Genetics, Berlin 14195, Germany.,Alacris Theranostics GmbH, Berlin 14195, Germany.,Freie Universitaät Berlin, Berlin 14195, Germany
| | - F E Gusev
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.,Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - A Yu Goltsov
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - O I Zolotareva
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Center of Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow 119234, Russia
| | - M P Aliseichik
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - T A Borodina
- Max-Planck Institute for Molecular Genetics, Berlin 14195, Germany.,Alacris Theranostics GmbH, Berlin 14195, Germany.,Freie Universitaät Berlin, Berlin 14195, Germany
| | - A P Grigorenko
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.,Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - D A Reshetov
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - E K Ginter
- Federal State Budgetary Institution «Research Centre for Medical Genetics», Moscow 115478, Russia
| | - S S Amelina
- The Rostov State Medical University, Rostov-on-Don 344022, Russia
| | - R A Zinchenko
- Federal State Budgetary Institution «Research Centre for Medical Genetics», Moscow 115478, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - E I Rogaev
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.,Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.,Faculty of Bioengineering and Bioinformatics, Center of Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow 119234, Russia.,Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| |
Collapse
|
39
|
Modulating Ca²⁺ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch 2015; 468:475-90. [PMID: 26700940 DOI: 10.1007/s00424-015-1767-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Since the discovery of TMEM16A (anoctamin 1, ANO1) as Ca(2+)-activated Cl(-) channel, the protein was found to serve different physiological functions, depending on the type of tissue. Subsequent reports on other members of the anoctamin family demonstrated a broad range of yet poorly understood properties. Compromised anoctamin function is causing a wide range of diseases, such as hearing loss (ANO2), bleeding disorder (ANO6), ataxia and dystonia (ANO3, 10), persistent borrelia and mycobacteria infection (ANO10), skeletal syndromes like gnathodiaphyseal dysplasia and limb girdle muscle dystrophy (ANO5), and cancer (ANO1, 6, 7). Animal models demonstrate CF-like airway disease, asthma, and intestinal hyposecretion (ANO1). Although present data indicate that ANO1 is a Ca(2+)-activated Cl(-) channel, it remains unclear whether all anoctamins form plasma membrane-localized or intracellular chloride channels. We find Ca(2+)-activated Cl(-) currents appearing by expression of most anoctamin paralogs, including the Nectria haematococca homologue nhTMEM16 and the yeast homologue Ist2. As recent studies show a role of anoctamins, Ist2, and the related transmembrane channel-like (TMC) proteins for intracellular Ca(2+) signaling, we will discuss the role of these proteins in generating compartmentalized Ca(2+) signals, which may give a hint as to the broad range of cellular functions of anoctamins.
Collapse
|
40
|
Brooks MB, Catalfamo JL, MacNguyen R, Tim D, Fancher S, McCardle JA. A TMEM16F point mutation causes an absence of canine platelet TMEM16F and ineffective activation and death-induced phospholipid scrambling. J Thromb Haemost 2015; 13:2240-52. [PMID: 26414452 DOI: 10.1111/jth.13157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/12/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND TMEM16F is an ion channel and calcium-dependent lipid scramblase that mediates phosphatidylserine (PS) exposure on the plasma membrane. Two disparate disease phenotypes are associated with TMEM16F loss-of-function mutations: a rare bleeding disorder (Scott syndrome) and skeletal malformations due to aberrant bone mineralization in a TMEM16F knockout mouse. We therefore undertook comparative studies of TMEM16F expression in canine Scott syndrome (CSS), an autosomal recessive platelet defect. OBJECTIVES To define anoctamin proteins and scramblase response of CSS platelets and to determine whether TMEM16F is the CSS disease gene. METHODS CSS TMEM16F cDNA and gene were sequenced and mutation detection was performed in CSS pedigrees. Platelet fractions from CSS dogs were isolated for proteomic and immunologic characterization of TMEM16F. Annexin V was used as a flow cytometric marker of induced platelet PS externalization. RESULTS A TMEM16F splice site mutation segregated with the CSS trait and TMEM16F protein was undetectable in CSS platelet membranes; however, a second anoctamin, TMEM16K, was found. Proteomic analyses revealed a network of 32 proteins that differentially cosegregated with platelet plasma membrane TMEM16F. CSS platelets had profoundly impaired scramblase response to pharmacologic and physiologic agents that increase intraplatelet calcium and conditions that induce apoptotic and necrotic cell death. CONCLUSIONS CSS platelets represent a TMEM16F-null mutant model that demonstrates a central role for TMEM16F in mediating platelet PS externalization in response to activating and death signals. Platelet TMEM16F may prove a novel drug target for modulating platelet procoagulant activity and extending platelet life span.
Collapse
Affiliation(s)
- M B Brooks
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - J L Catalfamo
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - R MacNguyen
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - D Tim
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - S Fancher
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - J A McCardle
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| |
Collapse
|