1
|
Koff M, Monagas-Valentin P, Novikov B, Chandel I, Panin V. Protein O-mannosylation: one sugar, several pathways, many functions. Glycobiology 2023; 33:911-926. [PMID: 37565810 PMCID: PMC10859634 DOI: 10.1093/glycob/cwad067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Recent research has unveiled numerous important functions of protein glycosylation in development, homeostasis, and diseases. A type of glycosylation taking the center stage is protein O-mannosylation, a posttranslational modification conserved in a wide range of organisms, from yeast to humans. In animals, protein O-mannosylation plays a crucial role in the nervous system, whereas protein O-mannosylation defects cause severe neurological abnormalities and congenital muscular dystrophies. However, the molecular and cellular mechanisms underlying protein O-mannosylation functions and biosynthesis remain not well understood. This review outlines recent studies on protein O-mannosylation while focusing on the functions in the nervous system, summarizes the current knowledge about protein O-mannosylation biosynthesis, and discusses the pathologies associated with protein O-mannosylation defects. The evolutionary perspective revealed by studies in the Drosophila model system are also highlighted. Finally, the review touches upon important knowledge gaps in the field and discusses critical questions for future research on the molecular and cellular mechanisms associated with protein O-mannosylation functions.
Collapse
Affiliation(s)
- Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| |
Collapse
|
2
|
Hours CM, Gil S, Gressens P. Molecular and Cellular Insights: A Focus on Glycans and the HNK1 Epitope in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:15139. [PMID: 37894820 PMCID: PMC10606426 DOI: 10.3390/ijms242015139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a synaptic disorder with a GABA/glutamate imbalance in the perineuronal nets and structural abnormalities such as increased dendritic spines and decreased long distance connections. Specific pregnancy disorders significantly increase the risk for an ASD phenotype such as preeclampsia, preterm birth, hypoxia phenomena, and spontaneous miscarriages. They are associated with defects in the glycosylation-immune placental processes implicated in neurogenesis. Some glycans epitopes expressed in the placenta, and specifically in the extra-villous trophoblast also have predominant functions in dendritic process and synapse function. Among these, the most important are CD57 or HNK1, CD22, CD24, CD33 and CD45. They modulate the innate immune cells at the maternal-fetal interface and they promote foeto-maternal tolerance. There are many glycan-based pathways of immunosuppression. N-glycosylation pathway dysregulation has been found to be associated with autoimmune-like phenotypes and maternal-autoantibody-related (MAR) autism have been found to be associated with central, systemic and peripheric autoimmune processes. Essential molecular pathways associated with the glycan-epitopes expression have been found to be specifically dysregulated in ASD, notably the Slit/Robo, Wnt, and mTOR/RAGE signaling pathways. These modifications have important effects on major transcriptional pathways with important genetic expression consequences. These modifications lead to defects in neuronal progenitors and in the nervous system's implementation specifically, with further molecular defects in the GABA/glutamate system. Glycosylation placental processes are crucial effectors for proper maternofetal immunity and endocrine/paracrine pathways formation. Glycans/ galectins expression regulate immunity and neurulation processes with a direct link with gene expression. These need to be clearly elucidated in ASD pathophysiology.
Collapse
Affiliation(s)
- Camille M Hours
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Service de Psychiatrie de l'Enfant et de l'Adolescent, APHP, Hôpital Robert Debré, 75019 Paris, France
| | - Sophie Gil
- INSERM 1144, Therapeutics in Neuropsychopharmacology, Université Paris Cité, 75019 Paris, France
| | - Pierre Gressens
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Neurologie Pédiatrique, APHP, Hôpital Robert Debré, 75019 Paris, France
| |
Collapse
|
3
|
Nagai K, Muto Y, Miura S, Takahashi K, Naruse Y, Hiruta R, Hashimoto Y, Uzuki M, Haga Y, Fujii R, Ueda K, Kawaguchi Y, Fujii M, Kitazume S. Brain-specific glycosylation enzyme GnT-IX maintains levels of protein tyrosine phosphatase receptor PTPRZ, thereby mediating glioma growth. J Biol Chem 2023; 299:105128. [PMID: 37543361 PMCID: PMC10480537 DOI: 10.1016/j.jbc.2023.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
Gliomas are the most prevalent primary tumor of the central nervous system. Despite advances in imaging technologies, neurosurgical techniques, and radiotherapy, a cure for high-grade glioma remains elusive. Several groups have reported that protein tyrosine phosphatase receptor type Z (PTPRZ) is highly expressed in glioblastoma, and that targeting PTPRZ attenuates tumor growth in mice. PTPRZ is modified with diverse glycan, including the PTPRZ-unique human natural killer-1 capped O-mannosyl core M2 glycans. However, the regulation and function of these unique glycans are unclear. Using CRISPR genome-editing technology, we first demonstrated that disruption of the PTPRZ gene in human glioma LN-229 cells resulted in profoundly reduced tumor growth in xenografted mice, confirming the potential of PTPRZ as a therapeutic target for glioma. Furthermore, multiple glycan analyses revealed that PTPRZ derived from glioma patients and from xenografted glioma expressed abundant levels of human natural killer-1-capped O-Man glycans via extrinsic signals. Finally, since deficiency of O-Man core M2 branching enzyme N-acetylglucosaminyltransferase IX (GnT-IX) was reported to reduce PTPRZ protein levels, we disrupted the GnT-IX gene in LN-229 cells and found a significant reduction of glioma growth both in vitro and in the xenograft model. These results suggest that the PTPR glycosylation enzyme GnT-IX may represent a promising therapeutic target for glioma.
Collapse
Affiliation(s)
- Kenichiro Nagai
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan
| | - Yui Muto
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Saori Miura
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Kazuto Takahashi
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Yu Naruse
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan
| | - Ryo Hiruta
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Miwa Uzuki
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Yoshimi Haga
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Risa Fujii
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan.
| | - Shinobu Kitazume
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan.
| |
Collapse
|
4
|
Monagas-Valentin P, Bridger R, Chandel I, Koff M, Novikov B, Schroeder P, Wells L, Panin V. Protein tyrosine phosphatase 69D is a substrate of protein O-mannosyltransferases 1-2 that is required for the wiring of sensory axons in Drosophila. J Biol Chem 2023; 299:102890. [PMID: 36634851 PMCID: PMC9950532 DOI: 10.1016/j.jbc.2023.102890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Mutations in protein O-mannosyltransferases (POMTs) result in severe brain defects and congenital muscular dystrophies characterized by abnormal glycosylation of α-dystroglycan (α-Dg). However, neurological phenotypes of POMT mutants are not well understood, and the functional substrates of POMTs other than α-Dg remain unknown. Using a Drosophila model, here we reveal that Dg alone cannot account for the phenotypes of POMT mutants, and identify Protein tyrosine phosphatase 69D (PTP69D) as a gene interacting with POMTs in producing the abdomen rotation phenotype. Using RNAi-mediated knockdown, mutant alleles, and a dominant-negative form of PTP69D, we reveal that PTP69D is required for the wiring of larval sensory axons. We also found that PTP69D and POMT genes interact in this process, and that their interactions lead to complex synergistic or antagonistic effects on axon wiring phenotypes, depending on the mode of genetic manipulation. Using glycoproteomic approaches, we further characterized the glycosylation of the PTP69D transgenic construct expressed in genetic strains with different levels of POMT activity. We found that the PTP69D construct carries many O-linked mannose modifications when expressed in Drosophila with wild-type or ectopically upregulated expression of POMTs. These modifications were absent in POMT mutants, suggesting that PTP69D is a substrate of POMT-mediated O-mannosylation. Taken together, our results indicate that PTP69D is a novel functional substrate of POMTs that is required for axon connectivity. This mechanism of POMT-mediated regulation of receptor-type protein tyrosine phosphatase functions could potentially be conserved in mammals and may shed new light on the etiology of neurological defects in muscular dystrophies.
Collapse
Affiliation(s)
- Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Patrick Schroeder
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
5
|
Quereda C, Pastor À, Martín-Nieto J. Involvement of abnormal dystroglycan expression and matriglycan levels in cancer pathogenesis. Cancer Cell Int 2022; 22:395. [PMID: 36494657 PMCID: PMC9733019 DOI: 10.1186/s12935-022-02812-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dystroglycan (DG) is a glycoprotein composed of two subunits that remain non-covalently bound at the plasma membrane: α-DG, which is extracellular and heavily O-mannosyl glycosylated, and β-DG, an integral transmembrane polypeptide. α-DG is involved in the maintenance of tissue integrity and function in the adult, providing an O-glycosylation-dependent link for cells to their extracellular matrix. β-DG in turn contacts the cytoskeleton via dystrophin and participates in a variety of pathways transmitting extracellular signals to the nucleus. Increasing evidence exists of a pivotal role of DG in the modulation of normal cellular proliferation. In this context, deficiencies in DG glycosylation levels, in particular those affecting the so-called matriglycan structure, have been found in an ample variety of human tumors and cancer-derived cell lines. This occurs together with an underexpression of the DAG1 mRNA and/or its α-DG (core) polypeptide product or, more frequently, with a downregulation of β-DG protein levels. These changes are in general accompanied in tumor cells by a low expression of genes involved in the last steps of the α-DG O-mannosyl glycosylation pathway, namely POMT1/2, POMGNT2, CRPPA, B4GAT1 and LARGE1/2. On the other hand, a series of other genes acting earlier in this pathway are overexpressed in tumor cells, namely DOLK, DPM1/2/3, POMGNT1, B3GALNT2, POMK and FKTN, hence exerting instead a pro-oncogenic role. Finally, downregulation of β-DG, altered β-DG processing and/or impaired β-DG nuclear levels are increasingly found in human tumors and cell lines. It follows that DG itself, particular genes/proteins involved in its glycosylation and/or their interactors in the cell could be useful as biomarkers of certain types of human cancer, and/or as molecular targets of new therapies addressing these neoplasms.
Collapse
Affiliation(s)
- Cristina Quereda
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - Àngels Pastor
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - José Martín-Nieto
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain ,grid.5268.90000 0001 2168 1800Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’, Universidad de Alicante, 03080 Alicante, Spain
| |
Collapse
|
6
|
Dang K, Jiang S, Gao Y, Qian A. The role of protein glycosylation in muscle diseases. Mol Biol Rep 2022; 49:8037-8049. [DOI: 10.1007/s11033-022-07334-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
7
|
Feng Y, Jiang H, Li G, He G, Li X. Decreased Expression of Protein O-linked Mannose β 1,2-N-Acetylglucosaminyltransferase 1 Contributes to Alzheimer's Disease-like Pathologies. J Neurophysiol 2022; 127:1067-1074. [PMID: 35320023 DOI: 10.1152/jn.00362.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by senile plaques and neurofibrillary tangles composed of β-amyloid peptide (Aβ) and tau hyperphosphorylation, respectively. Mannosylation, a particular type of post-translational modification, may be involved in the pathogenesis of AD. However, its underlying mechanism remains unclear. Protein O-linked mannose β 1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) catalyzes the formation of the N-acetylglucosamine β-1,2-Man linkage of O-mannosylglycan, which can increase the protein post-translational mannosylation level. The defective POMGnT1 gene leads to the hypomannosylation of proteins, which may cause cognitive decline in aged people. This study aimed to investigate whether POMGnT1 participated in the pathogenesis of AD and explore its underlying role using AD mouse and cell models. In this study, the expression of POMGnT1 was measured in AD models [β-amyloid precursor protein (APP)/presenilin-1 (PS1) transgenic mice, an AD mouse model; N2a cells stably transfected with Swedish mutant APP (N2a/APP), an AD cell model]. The results revealed that the expression of POMGnT1 decreased in AD mouse and cell models. Additionally, POMGnT1-overexpressing N2a/APP cells were built by retroviral transfection. POMGnT1 overexpression may lower Aβ levels by reducing APP production and downregulating β-and γ-secretase activities. It also promoted clearance of Aβ by upregulating insulin-degrading enzymes and ameliorated tau hyperphosphorylation. Hence, it was concluded that POMGnT1 was involved in the pathogenic process of AD. The decreased expression of POMGnT1 contributes to AD-like pathologies.
Collapse
Affiliation(s)
- Yuxue Feng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanxiao Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gongbo Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaofeng Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Choi BR, Cave C, Na CH, Sockanathan S. GDE2-Dependent Activation of Canonical Wnt Signaling in Neurons Regulates Oligodendrocyte Maturation. Cell Rep 2021; 31:107540. [PMID: 32375055 PMCID: PMC7254694 DOI: 10.1016/j.celrep.2020.107540] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 12/30/2022] Open
Abstract
Neurons and oligodendrocytes communicate to regulate oligodendrocyte development and ensure appropriate axonal myelination. Here, we show that Glycerophosphodiester phosphodiesterase 2 (GDE2) signaling underlies a neuronal pathway that promotes oligodendrocyte maturation through the release of soluble neuronally derived factors. Mice lacking global or neuronal GDE2 expression have reduced mature oligodendrocytes and myelin proteins but retain normal numbers of oligodendrocyte precursor cells (OPCs). Wild-type (WT) OPCs cultured in conditioned medium (CM) from Gde2-null (Gde2KO) neurons exhibit delayed maturation, recapitulating in vivo phenotypes. Gde2KO neurons show robust reduction in canonical Wnt signaling, and genetic activation of Wnt signaling in Gde2KO neurons rescues in vivo and in vitro oligodendrocyte maturation. Phosphacan, a known stimulant of oligodendrocyte maturation, is reduced in CM from Gde2KO neurons but is restored when Wnt signaling is activated. These studies identify GDE2 control of Wnt signaling as a neuronal pathway that signals to oligodendroglia to promote oligodendrocyte maturation.
Collapse
Affiliation(s)
- Bo-Ran Choi
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, PCTB 1004, Baltimore, MD 21205, USA
| | - Clinton Cave
- Neuroscience Program, Middlebury College, 276 Bicentennial Way, MBH 351, Middlebury, VT 05753, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, MRB 753, Baltimore, MD 21205, USA
| | - Shanthini Sockanathan
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, PCTB 1004, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Reelin Counteracts Chondroitin Sulfate Proteoglycan-Mediated Cortical Dendrite Growth Inhibition. eNeuro 2020; 7:ENEURO.0168-20.2020. [PMID: 32641498 PMCID: PMC7393641 DOI: 10.1523/eneuro.0168-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022] Open
Abstract
Disruptions in neuronal dendrite development alter brain circuitry and are associated with debilitating neurological disorders. Nascent apical dendrites of cortical excitatory neurons project into the marginal zone (MZ), a cell-sparse layer characterized by intense chondroitin sulfate proteoglycan (CSPG) expression. Paradoxically, CSPGs are known to broadly inhibit neurite growth and regeneration. This raises the possibility that the growing apical dendrite is somehow insensitive to CSPG-mediated neurite growth inhibition. To test this, developing cortical neurons were challenged with both soluble CSPGs and CSPG-positive stripe substrates in vitro. Soluble CSPGs inhibited dendritic growth and cortical dendrites respected CSPG stripe boundaries, effects that could be counteracted by prior CSPG inactivation by chondroitinase. Importantly, addition of Reelin, an extracellular signaling protein highly expressed in the MZ, partially rescued dendritic growth in the presence of CSPGs. High-resolution confocal imaging revealed that the CSPG-enriched areas of the MZ spatially correspond with the areas of reduced dendritic density in the Reelin null (reeler) cortex compared with controls. Chondroitinase injections into reeler explants resulted in increased dendritic growth into the MZ, recovering to near wild-type levels. Activation of the serine threonine kinase Akt is required for Reelin-dependent dendritic growth and we find that CSPGs induce Akt dephosphorylation, an effect that can be counteracted by Reelin addition. In contrast, CSPG application had no effect on the cytoplasmic adaptor Dab1, which is rapidly phosphorylated in response to Reelin and is upstream of Akt. These findings suggest CSPGs do inhibit cortical dendritic growth, but this effect can be counteracted by Reelin signaling.
Collapse
|
10
|
Schmidt S, Arendt T, Morawski M, Sonntag M. Neurocan Contributes to Perineuronal Net Development. Neuroscience 2020; 442:69-86. [PMID: 32634529 DOI: 10.1016/j.neuroscience.2020.06.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 11/27/2022]
Abstract
Perineuronal nets (PNs) are matrix molecule assemblies surrounding neuronal somata, dendrites and axon initial segments in a lattice-like appearance. PN molecules are involved in many structural and physiological processes during development and in adulthood, suggesting a crucial role in normal brain function. Neurocan, as one of the main PN proteoglycans, is suggested to control important developmental processes of neuronal tissue. This statement relies on thorough and excellent experimental work mainly conducted in reduced systems, such as cell cultures. However, previous data collected in neurocan-deficient mice do not seem to support neurocan's role in development since brain development in general and the formation of PNs especially in the hippocampus were reported to be undisturbed in neurocan-deficient mice. Here, we aim to re-address the role of neurocan in developmental processes by investigating the influence of neurocan on PN formation in the medial nucleus of the trapezoid body, a PN-enriched nucleus in the auditory brainstem, using neurocan-deficient mice. Immunohistochemical and biochemical analyses demonstrate that neurocan controls the regulation of PN development by influencing mRNA and protein quantity of various PN molecules. Resulting alterations in PN fine structure are critical for PN function as estimated by reduced amount of GAD65/67 and prolongation of synaptic transmission delay of calyx of Held synapses. Thus, neurocan contributes to proper PN formation and synapse physiology in the MNTB.
Collapse
Affiliation(s)
- Sophie Schmidt
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Mandy Sonntag
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany.
| |
Collapse
|
11
|
Sheikh MO, Venzke D, Anderson ME, Yoshida-Moriguchi T, Glushka JN, Nairn AV, Galizzi M, Moremen KW, Campbell KP, Wells L. HNK-1 sulfotransferase modulates α-dystroglycan glycosylation by 3-O-sulfation of glucuronic acid on matriglycan. Glycobiology 2020; 30:817-829. [PMID: 32149355 DOI: 10.1093/glycob/cwaa024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mutations in multiple genes required for proper O-mannosylation of α-dystroglycan are causal for congenital/limb-girdle muscular dystrophies and abnormal brain development in mammals. Previously, we and others further elucidated the functional O-mannose glycan structure that is terminated by matriglycan, [(-GlcA-β3-Xyl-α3-)n]. This repeating disaccharide serves as a receptor for proteins in the extracellular matrix. Here, we demonstrate in vitro that HNK-1 sulfotransferase (HNK-1ST/carbohydrate sulfotransferase) sulfates terminal glucuronyl residues of matriglycan at the 3-hydroxyl and prevents further matriglycan polymerization by the LARGE1 glycosyltransferase. While α-dystroglycan isolated from mouse heart and kidney is susceptible to exoglycosidase digestion of matriglycan, the functional, lower molecular weight α-dystroglycan detected in brain, where HNK-1ST expression is elevated, is resistant. Removal of the sulfate cap by a sulfatase facilitated dual-glycosidase digestion. Our data strongly support a tissue specific mechanism in which HNK-1ST regulates polymer length by competing with LARGE for the 3-position on the nonreducing GlcA of matriglycan.
Collapse
Affiliation(s)
- M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - David Venzke
- Department of Molecular Physiology and Biophysics, Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mary E Anderson
- Department of Molecular Physiology and Biophysics, Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Takako Yoshida-Moriguchi
- Department of Molecular Physiology and Biophysics, Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - John N Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Alison V Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Melina Galizzi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kevin P Campbell
- Department of Molecular Physiology and Biophysics, Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Nagae M, Yamaguchi Y, Taniguchi N, Kizuka Y. 3D Structure and Function of Glycosyltransferases Involved in N-glycan Maturation. Int J Mol Sci 2020; 21:E437. [PMID: 31936666 PMCID: PMC7014118 DOI: 10.3390/ijms21020437] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Glycosylation is the most ubiquitous post-translational modification in eukaryotes. N-glycan is attached to nascent glycoproteins and is processed and matured by various glycosidases and glycosyltransferases during protein transport. Genetic and biochemical studies have demonstrated that alternations of the N-glycan structure play crucial roles in various physiological and pathological events including progression of cancer, diabetes, and Alzheimer's disease. In particular, the formation of N-glycan branches regulates the functions of target glycoprotein, which are catalyzed by specific N-acetylglucosaminyltransferases (GnTs) such as GnT-III, GnT-IVs, GnT-V, and GnT-IX, and a fucosyltransferase, FUT8s. Although the 3D structures of all enzymes have not been solved to date, recent progress in structural analysis of these glycosyltransferases has provided insights into substrate recognition and catalytic reaction mechanisms. In this review, we discuss the biological significance and structure-function relationships of these enzymes.
Collapse
Affiliation(s)
- Masamichi Nagae
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi 981-8558, Japan;
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan;
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
13
|
Eill GJ, Sinha A, Morawski M, Viapiano MS, Matthews RT. The protein tyrosine phosphatase RPTPζ/phosphacan is critical for perineuronal net structure. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49907-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
14
|
Eill GJ, Sinha A, Morawski M, Viapiano MS, Matthews RT. The protein tyrosine phosphatase RPTPζ/phosphacan is critical for perineuronal net structure. J Biol Chem 2019; 295:955-968. [PMID: 31822561 DOI: 10.1074/jbc.ra119.010830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/09/2019] [Indexed: 01/06/2023] Open
Abstract
Perineuronal nets (PNNs) are conspicuous neuron-specific substructures within the extracellular matrix of the central nervous system that have generated an explosion of interest over the last decade. These reticulated structures appear to surround synapses on the cell bodies of a subset of the neurons in the central nervous system and play key roles in both developmental and adult-brain plasticity. Despite the interest in these structures and compelling demonstrations of their importance in regulating plasticity, their precise functional mechanisms remain elusive. The limited mechanistic understanding of PNNs is primarily because of an incomplete knowledge of their molecular composition and structure and a failure to identify PNN-specific targets. Thus, it has been challenging to precisely manipulate PNNs to rigorously investigate their function. Here, using mouse models and neuronal cultures, we demonstrate a role of receptor protein tyrosine phosphatase zeta (RPTPζ) in PNN structure. We found that in the absence of RPTPζ, the reticular structure of PNNs is lost and phenocopies the PNN structural abnormalities observed in tenascin-R knockout brains. Furthermore, we biochemically analyzed the contribution of RPTPζ to PNN formation and structure, which enabled us to generate a more detailed model for PNNs. We provide evidence for two distinct kinds of interactions of PNN components with the neuronal surface, one dependent on RPTPζ and the other requiring the glycosaminoglycan hyaluronan. We propose that these findings offer important insight into PNN structure and lay important groundwork for future strategies to specifically disrupt PNNs to precisely dissect their function.
Collapse
Affiliation(s)
- Geoffrey J Eill
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Ashis Sinha
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210.,Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Russell T Matthews
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
15
|
Gao T, Yan J, Liu CC, Palma AS, Guo Z, Xiao M, Chen X, Liang X, Chai W, Cao H. Chemoenzymatic Synthesis of O-Mannose Glycans Containing Sulfated or Nonsulfated HNK-1 Epitope. J Am Chem Soc 2019; 141:19351-19359. [PMID: 31738061 DOI: 10.1021/jacs.9b08964] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human natural killer-1 (HNK-1) epitope is a unique sulfated trisaccharide sequence presented on O- and N-glycans of various glycoproteins and on glycolipids. It is overexpressed in the nervous system and plays crucial roles in nerve regeneration, synaptic plasticity, and neuronal diseases. However, the investigation of functional roles of HNK-1 in a more complex glycan context at the molecular level remains a big challenge due to lack of access to related structurally well-defined complex glycans. Herein, we describe a highly efficient chemoenzymatic approach for the first collective synthesis of HNK-1-bearing O-mannose glycans with different branching patterns, and for their nonsulfated counterparts. The successful strategy relies on both chemical glycosylation of a trisaccharide lactone donor for the introduction of sulfated HNK-1 branch and substrate promiscuities of bacterial glycosyltransferases that can tolerate sulfated substrates for enzymatic diversification. Glycan microarray analysis with the resulting complex synthetic glycans demonstrated their recognition by two HNK-1-specific antibodies including anti-HNK-1/N-CAM (CD57) and Cat-315, which provided further evidence for the recognition epitopes of these antibodies and the essential roles of the sulfate group for HNK-1 glycan-antibody recognition.
Collapse
Affiliation(s)
- Tian Gao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology , Shandong University , Qingdao 266237 , China.,Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266237 , China
| | - Jingyu Yan
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology , Shandong University , Qingdao 266237 , China.,Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266237 , China
| | - Angelina S Palma
- UCIBIO, Department of Chemistry, Faculty of Science and Technology , NOVA University of Lisbon , Caparica 2829-516 , Portugal
| | - Zhimou Guo
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Min Xiao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology , Shandong University , Qingdao 266237 , China
| | - Xi Chen
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Wengang Chai
- The Glycosciences Laboratory, Faculty of Medicine , Imperial College London , London SW7 2AZ , United Kingdom
| | - Hongzhi Cao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology , Shandong University , Qingdao 266237 , China.,Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266237 , China
| |
Collapse
|
16
|
The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 2019; 20:451-465. [PMID: 31263252 DOI: 10.1038/s41583-019-0196-3] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/09/2023]
Abstract
Perineuronal nets (PNNs) are extracellular matrix (ECM) chondroitin sulfate proteoglycan (CSPG)-containing structures that surround the soma and dendrites of various mammalian neuronal cell types. PNNs appear during development around the time that the critical periods for developmental plasticity end and are important for both their onset and closure. A similar structure - the perinodal ECM - surrounds the axonal nodes of Ranvier and appears as myelination is completed, acting as an ion-diffusion barrier that affects axonal conduction speed. Recent work has revealed the importance of PNNs in controlling plasticity in the CNS. Digestion, blocking or removal of PNNs influences functional recovery after a variety of CNS lesions. PNNs have further been shown to be involved in the regulation of memory and have been implicated in a number of psychiatric disorders.
Collapse
|
17
|
Xia Z, Ouyang D, Li Q, Li M, Zou Q, Li L, Yi W, Zhou E. The Expression, Functions, Interactions and Prognostic Values of PTPRZ1: A Review and Bioinformatic Analysis. J Cancer 2019; 10:1663-1674. [PMID: 31205522 PMCID: PMC6548002 DOI: 10.7150/jca.28231] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
Available studies demonstrate that receptor-type tyrosine-protein phosphatase zeta (PTPRZ1) is expressed in different tumor tissues, and functions in cell proliferation, cell adhesion and migration, epithelial-to-mesenchymal transition, cancer stem cells and treatment resistance by interacting with or binding to several molecules. These included pleiotrophin (PTN), midkine, interleukin-34, β-catenin, VEGF, NF-κB, HIF-2, PSD-95, MAGI-3, contactin and ErbB4. PTPRZ1 was involved in survival signaling and could predict the prognosis of several tumors. This review discusses: the current knowledge about PTPRZ1, its expression, co-receptors, ligands, functions, signaling pathway, prognostic values and therapeutic agents that target PTPRZ1.
Collapse
Affiliation(s)
- Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dengjie Ouyang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianying Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Moyun Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lun Li
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Enxiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Meng C, Sasmal A, Zhang Y, Gao T, Liu CC, Khan N, Varki A, Wang F, Cao H. Chemoenzymatic Assembly of Mammalian O-Mannose Glycans. Angew Chem Int Ed Engl 2018; 57:9003-9007. [PMID: 29802667 DOI: 10.1002/anie.201804373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/04/2018] [Indexed: 12/27/2022]
Abstract
O-Mannose glycans account up to 30 % of total O-glycans in the brain. Previous synthesis and functional studies have only focused on the core M3 O-mannose glycans of α-dystroglycan, which are a causative factor for various muscular diseases. In this study, a highly efficient chemoenzymatic strategy was developed that enabled the first collective synthesis of 63 core M1 and core M2 O-mannose glycans. This chemoenzymatic strategy features the gram-scale chemical synthesis of five judiciously designed core structures, and the diversity-oriented modification of the core structures with three enzyme modules to provide 58 complex O-mannose glycans in a linear sequence that does not exceed four steps. The binding profiles of synthetic O-mannose glycans with a panel of lectins, antibodies, and brain proteins were also explored by using a printed O-mannose glycan array.
Collapse
Affiliation(s)
- Caicai Meng
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center, University of California, San Diego, CA, 92093, USA
| | - Yan Zhang
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
| | - Tian Gao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Naazneen Khan
- Glycobiology Research and Training Center, University of California, San Diego, CA, 92093, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, CA, 92093, USA
| | - Fengshan Wang
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| |
Collapse
|
19
|
Meng C, Sasmal A, Zhang Y, Gao T, Liu CC, Khan N, Varki A, Wang F, Cao H. Chemoenzymatic Assembly of Mammalian O-Mannose Glycans. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caicai Meng
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center; University of California; San Diego CA 92093 USA
| | - Yan Zhang
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
| | - Tian Gao
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Naazneen Khan
- Glycobiology Research and Training Center; University of California; San Diego CA 92093 USA
| | - Ajit Varki
- Glycobiology Research and Training Center; University of California; San Diego CA 92093 USA
| | - Fengshan Wang
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
| | - Hongzhi Cao
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| |
Collapse
|
20
|
Benktander JD, Gizaw ST, Gaunitz S, Novotny MV. Analytical Scheme Leading to Integrated High-Sensitivity Profiling of Glycosphingolipids Together with N- and O-Glycans from One Sample. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1125-1137. [PMID: 29744812 PMCID: PMC6226365 DOI: 10.1007/s13361-018-1933-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 05/15/2023]
Abstract
Glycoconjugates are directly or indirectly involved in many biological processes. Due to their complex structures, the structural elucidation of glycans and the exploration of their role in biological systems have been challenging. Glycan pools generated through release from glycoprotein or glycolipid mixtures can often be very complex. For the sake of procedural simplicity, many glycan profiling studies choose to concentrate on a single class of glycoconjugates. In this paper, we demonstrate it feasible to cover glycosphingolipids, N-glycans, and O-glycans isolated from the same sample. Small volumes of human blood serum and ascites fluid as well as small mouse brain tissue samples are sufficient to profile sequentially glycans from all three classes of glycoconjugates and even positively identify some mixture components through MALDI-MS and LC-ESI-MS. The results show that comprehensive glycan profiles can be obtained from the equivalent of 500-μg protein starting material or possibly less. These methodological improvements can help accelerating future glycomic comprehensive studies, especially for precious clinical samples. Graphical Abstract Outline of glycan profiling procedures.
Collapse
Affiliation(s)
- John D Benktander
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Solomon T Gizaw
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Milos V Novotny
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA.
| |
Collapse
|
21
|
Irvine SF, Kwok JCF. Perineuronal Nets in Spinal Motoneurones: Chondroitin Sulphate Proteoglycan around Alpha Motoneurones. Int J Mol Sci 2018; 19:ijms19041172. [PMID: 29649136 PMCID: PMC5979458 DOI: 10.3390/ijms19041172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 12/27/2022] Open
Abstract
Perineuronal nets (PNNs) are extracellular matrix structures surrounding neuronal sub-populations throughout the central nervous system, regulating plasticity. Enzymatically removing PNNs successfully enhances plasticity and thus functional recovery, particularly in spinal cord injury models. While PNNs within various brain regions are well studied, much of the composition and associated populations in the spinal cord is yet unknown. We aim to investigate the populations of PNN neurones involved in this functional motor recovery. Immunohistochemistry for choline acetyltransferase (labelling motoneurones), PNNs using Wisteria floribunda agglutinin (WFA) and chondroitin sulphate proteoglycans (CSPGs), including aggrecan, was performed to characterise the molecular heterogeneity of PNNs in rat spinal motoneurones (Mns). CSPG-positive PNNs surrounded ~70–80% of Mns. Using WFA, only ~60% of the CSPG-positive PNNs co-localised with WFA in the spinal Mns, while ~15–30% of Mns showed CSPG-positive but WFA-negative PNNs. Selective labelling revealed that aggrecan encircled ~90% of alpha Mns. The results indicate that (1) aggrecan labels spinal PNNs better than WFA, and (2) there are differences in PNN composition and their associated neuronal populations between the spinal cord and cortex. Insights into the role of PNNs and their molecular heterogeneity in the spinal motor pools could aid in designing targeted strategies to enhance functional recovery post-injury.
Collapse
Affiliation(s)
- Sian F Irvine
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Jessica C F Kwok
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
- Centre of Reconstructive Neurosciences, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague 4, Czech Republic.
| |
Collapse
|
22
|
Biodiversity of CS–proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem J 2018; 475:587-620. [DOI: 10.1042/bcj20170820] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
Abstract
Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.
Collapse
|
23
|
Azevedo H, Amato Khaled N, Santos P, Bernardi Bertonha F, Moreira-Filho CA. Temporal analysis of hippocampal CA3 gene coexpression networks in a rat model of febrile seizures. Dis Model Mech 2018; 11:dmm.029074. [PMID: 29196444 PMCID: PMC5818071 DOI: 10.1242/dmm.029074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Complex febrile seizures during infancy constitute an important risk factor for development of epilepsy. However, little is known about the alterations induced by febrile seizures that make the brain susceptible to epileptic activity. In this context, the use of animal models of hyperthermic seizures (HS) could allow the temporal analysis of brain molecular changes that arise after febrile seizures. Here, we investigated temporal changes in hippocampal gene coexpression networks during the development of rats submitted to HS. Total RNA samples were obtained from the ventral hippocampal CA3 region at four time points after HS at postnatal day (P) 11 and later used for gene expression profiling. Temporal endpoints were selected for investigating the acute (P12), latent (P30 and P60) and chronic (P120) stages of the HS model. A weighted gene coexpression network analysis was used to characterize modules of coexpressed genes, as these modules might contain genes with similar functions. The transcriptome analysis pipeline consisted of building gene coexpression networks, identifying network modules and hubs, performing gene-trait correlations and examining changes in module connectivity. Modules were functionally enriched to identify functions associated with HS. Our data showed that HS induce changes in developmental, cell adhesion and immune pathways, such as Wnt, Hippo, Notch, Jak-Stat and Mapk. Interestingly, modules involved in cell adhesion, neuronal differentiation and synaptic transmission were activated as early as 1 day after HS. These results suggest that HS trigger transcriptional alterations that could lead to persistent neurogenesis, tissue remodeling and inflammation in the CA3 hippocampus, making the brain prone to epileptic activity. Summary: We carried out a temporal analysis of hippocampal gene coexpression networks to identify relevant genes in a rat model of hyperthermic seizures. These genes were mostly related to immune response, cell adhesion and neurogenesis.
Collapse
Affiliation(s)
- Hatylas Azevedo
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Nathália Amato Khaled
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Paula Santos
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | | |
Collapse
|
24
|
Protein O-Mannosyltransferases Affect Sensory Axon Wiring and Dynamic Chirality of Body Posture in the Drosophila Embryo. J Neurosci 2017; 38:1850-1865. [PMID: 29167399 DOI: 10.1523/jneurosci.0346-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila, both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies.SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT-dependent mechanism that maintains symmetry of a developing system affected by chiral forces. Furthermore, POMTs were found to be required for proper axon connectivity of sensory neurons, suggesting that O-mannosylation regulates the sensory feedback controlling muscle contractions. This novel POMT function in the peripheral nervous system may shed light on analogous functions in mammals and help to elucidate pathomechanisms of neurological abnormalities in muscular dystrophies.
Collapse
|
25
|
Reactivity of anti-HNK-1 antibodies to branched O- mannose glycans associated with demyelination. Biochem Biophys Res Commun 2017; 487:450-456. [DOI: 10.1016/j.bbrc.2017.04.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/16/2017] [Indexed: 11/21/2022]
|
26
|
Neurodevelopmental Changes in Excitatory Synaptic Structure and Function in the Cerebral Cortex of Sanfilippo Syndrome IIIA Mice. Sci Rep 2017; 7:46576. [PMID: 28418018 PMCID: PMC5394534 DOI: 10.1038/srep46576] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Sanfilippo syndrome, MPS IIIA-D, results from deficits in lysosomal enzymes that specifically degrade heparan sulfate, a sulfated glycosaminoglycan. The accumulation of heparan sulfate results in neurological symptoms, culminating in extensive neurodegeneration and early death. To study the impact of storage in postnatal neurodevelopment, we examined murine models of MPS IIIA, which lack the enzyme sulfamidase. We show that changes occur in excitatory postsynaptic structure and function in the somatosensory cortex prior to signs of neurodegeneration. These changes coincide with accumulation of heparan sulfate with characteristic non-reducing ends, which is present at birth in the mutant mice. Accumulation of heparan sulfate was also detected in primary cultures of cortical neural cells, especially astrocytes. Accumulation of heparan sulfate in cultured astrocytes corresponded with augmented extracellular heparan sulfate and glypican 4 levels. Heparan sulfate from the cerebral cortex of MPS IIIA mice showed enhanced ability to increase glutamate AMPA receptor subunits at the cell surface of wild type neurons. These data support the idea that abnormalities in heparan sulfate content and distribution contribute to alterations in postsynaptic function. Our findings identify a disease-induced developmental phenotype that temporally overlaps with the onset of behavioral changes in a mouse model of MPS IIIA.
Collapse
|
27
|
Chondroitin sulfates and their binding molecules in the central nervous system. Glycoconj J 2017; 34:363-376. [PMID: 28101734 PMCID: PMC5487772 DOI: 10.1007/s10719-017-9761-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/31/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.
Collapse
|
28
|
Dwyer CA, Esko JD. Glycan susceptibility factors in autism spectrum disorders. Mol Aspects Med 2016; 51:104-14. [PMID: 27418189 DOI: 10.1016/j.mam.2016.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Idiopathic autism spectrum disorders (ASDs) are neurodevelopmental disorders with unknown etiology. An estimated 1:68 children in the U.S. are diagnosed with ASDs, making these disorders a substantial public health issue. Recent advances in genome sequencing have identified numerous genetic variants across the ASD patient population. Many genetic variants identified occur in genes that encode glycosylated extracellular proteins (proteoglycans or glycoproteins) or enzymes involved in glycosylation (glycosyltransferases and sulfotransferases). It remains unknown whether "glycogene" variants cause changes in glycosylation and whether they contribute to the etiology and pathogenesis of ASDs. Insights into glycan susceptibility factors are provided by studies in the normal brain and congenital disorders of glycosylation, which are often accompanied by ASD-like behaviors. The purpose of this review is to present evidence that supports a contribution of extracellular glycans and glycoconjugates to the etiology and pathogenesis of idiopathic ASDs and other types of pervasive neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chrissa A Dwyer
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease. Mol Vis 2016; 22:658-73. [PMID: 27375352 PMCID: PMC4911909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 06/14/2016] [Indexed: 11/01/2022] Open
Abstract
PURPOSE The POMGNT1 gene, encoding protein O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, is associated with muscle-eye-brain disease (MEB) and other dystroglycanopathies. This gene's lack of function or expression causes hypoglycosylation of α-dystroglycan (α-DG) in the muscle and the central nervous system, including the brain and the retina. The ocular symptoms of patients with MEB include retinal degeneration and detachment, glaucoma, and abnormal electroretinogram. Nevertheless, the POMGnT1 expression pattern in the healthy mammalian retina has not yet been investigated. In this work, we address the expression of the POMGNT1 gene in the healthy retina of a variety of mammals and characterize the distribution pattern of this gene in the adult mouse retina and the 661W photoreceptor cell line. METHODS Using reverse transcription (RT)-PCR and immunoblotting, we studied POMGNT1 expression at the mRNA and protein levels in various mammalian species, from rodents to humans. Immunofluorescence confocal microscopy analyses were performed to characterize the distribution profile of its protein product in mouse retinal sections and in 661W cultured cells. The intranuclear distribution of POMT1 and POMT2, the two enzymes preceding POMGnT1 in the α-DG O-mannosyl glycosylation pathway, was also analyzed. RESULTS POMGNT1 mRNA and its encoded protein were expressed in the neural retina of all mammals studied. POMGnT1 was located in the cytoplasmic fraction in the mouse retina and concentrated in the myoid portion of the photoreceptor inner segments, where the protein colocalized with GM130, a Golgi complex marker. The presence of POMGnT1 in the Golgi complex was also evident in 661W cells. However, and in contrast to retinal tissue, POMGnT1 additionally accumulated in the nucleus of the 661W photoreceptors. Colocalization was found within this organelle between POMGnT1 and POMT1/2, the latter associated with euchromatic regions of the nucleus. CONCLUSIONS Our results indicate that POMGnT1 participates not only in the synthesis of O-mannosyl glycans added to α-DG in the Golgi complex but also in the glycosylation of other yet-to-be-identified proteins in the nucleus of mouse photoreceptors.
Collapse
|
30
|
Yabuno K, Morise J, Kizuka Y, Hashii N, Kawasaki N, Takahashi S, Miyata S, Izumikawa T, Kitagawa H, Takematsu H, Oka S. A Sulfated Glycosaminoglycan Linkage Region is a Novel Type of Human Natural Killer-1 (HNK-1) Epitope Expressed on Aggrecan in Perineuronal Nets. PLoS One 2015; 10:e0144560. [PMID: 26659409 PMCID: PMC4686076 DOI: 10.1371/journal.pone.0144560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/19/2015] [Indexed: 01/18/2023] Open
Abstract
Human natural killer-1 (HNK-1) carbohydrate (HSO3-3GlcAβ1-3Galβ1-4GlcNAc-R) is highly expressed in the brain and required for learning and neural plasticity. We previously demonstrated that expression of the HNK-1 epitope is mostly abolished in knockout mice for GlcAT-P (B3gat1), a major glucuronyltransferase required for HNK-1 biosynthesis, but remained in specific regions such as perineuronal nets (PNNs) in these mutant mice. Considering PNNs are mainly composed of chondroitin sulfate proteoglycans (CSPGs) and regulate neural plasticity, GlcAT-P-independent expression of HNK-1 in PNNs is suggested to play a role in neural plasticity. However, the function, structure, carrier glycoprotein and biosynthetic pathway for GlcAT-P-irrelevant HNK-1 epitope remain unclear. In this study, we identified a unique HNK-1 structure on aggrecan in PNNs. To determine the biosynthetic pathway for the novel HNK-1, we generated knockout mice for GlcAT-S (B3gat2), the other glucuronyltransferase required for HNK-1 biosynthesis. However, GlcAT-P and GlcAT-S double-knockout mice did not exhibit reduced HNK-1 expression compared with single GlcAT-P-knockout mice, indicating an unusual biosynthetic pathway for the HNK-1 epitope in PNNs. Aggrecan was purified from cultured cells in which GlcAT-P and -S are not expressed and we determined the structure of the novel HNK-1 epitope using liquid chromatography/mass spectrometry (LC/MS) as a sulfated linkage region of glycosaminoglycans (GAGs), HSO3-GlcA-Gal-Gal-Xyl-R. Taken together, we propose a hypothetical model where GlcAT-I, the sole glucuronyltransferase required for synthesis of the GAG linkage, is also responsible for biosynthesis of the novel HNK-1 on aggrecan. These results could lead to discovery of new roles of the HNK-1 epitope in neural plasticity.
Collapse
Affiliation(s)
- Keiko Yabuno
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiko Kizuka
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, 158-8501, Japan
| | - Nana Kawasaki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, 158-8501, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology Faculty of Medicine University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Shinji Miyata
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Tomomi Izumikawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
31
|
Cheng CW, Chou CC, Lin CH, Nycholat C, Fukuda M, Khoo KH. Efficient Mapping of Sulfated Glycotopes by Negative Ion Mode nanoLC-MS/MS-Based Sulfoglycomic Analysis of Permethylated Glycans. Anal Chem 2015; 87:6380-8. [PMID: 26016788 PMCID: PMC4843773 DOI: 10.1021/acs.analchem.5b01409] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have previously developed the enabling techniques for sulfoglycomics based on mass spectrometry (MS) analysis of permethylated glycans, which preserves the attractive features of more reliable MS/MS sequencing compared with that performed on native glycans, while providing an easy way to separate and hence enrich the sulfated glycans. Unlike LC-MS/MS analysis of native glycans in negative ion mode that has been more widely in use, the characteristics and potential benefits of similar applications based on permethylated sulfated glycans have not been fully investigated. We report here the important features of reverse phase-based nanoLC-MS/MS analysis of permethylated sulfated glycans in negative ion mode and demonstrate that complementary sets of diagnostic fragment ions afforded can allow rapid identification of various fucosylated, sialylated, sulfated glycotopes and definitive determination of the location of sulfate in a way difficult to achieve by other means. A parallel acquisition of both higher collision energy and trap-based MS(2) coupled with a product dependent MS(3) is conceivably the most productive sulfoglycomic workflow currently possible and the manually curated fragmentation characteristics presented here will allow future developments in automating data analysis.
Collapse
Affiliation(s)
- Chu-Wen Cheng
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chun-Hung Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Corwin Nycholat
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Minoru Fukuda
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Kay-Hooi Khoo
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|