1
|
Bavo F, Chechik L, Huynh K, Kolanowski A, Richardson A, Tardrew S, Basrur N, Levandoski MM, Fro̷lund B. Structural Determinants of Oxantel Analogs Reveal Modulatory Selectivity of α3β2 and α4β2 Neuronal Nicotinic Acetylcholine Receptors. ACS OMEGA 2025; 10:7338-7349. [PMID: 40028068 PMCID: PMC11866191 DOI: 10.1021/acsomega.4c11196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Nicotinic acetylcholine receptors (nAChRs), ligand-gated ion channels involved in key physiological processes, show pharmacological diversity across receptor subtypes and species. The structurally similar anthelmintic compounds pyrantel, morantel, and oxantel differentially affect the α3β2 and α4β2 nAChR subtypes. Mutation analysis located the modulator binding sites to β(+)/α(-) interface pockets, homologous to the orthosteric agonist sites. We present here the synthesis and pharmacological characterization of 10 oxantel analogs with various phenyl substituents, planarity, and N-methylation, thereby elucidating the structural determinants of nAChR allosteric modulation by oxantel. Two-electrode voltage-clamp in Xenopus laevis oocytes expressing α3β2 and α4β2, respectively, revealed that selectivity and pharmacological profiles were most severely affected by the position of the hydroxy group (meta in oxantel) and the nature of the phenyl substituent. Oxantel is a PAM for α3β2 receptors, with EC50 = 3.9 μM and E max = 1.98 (relative to ACh alone, EC50 = 3.4 μM), but a NAM for α4β2 receptors, with EC50 = 200 μM and E max = 0.75 (relative to ACh alone, EC50 = 1.1 μM). Examples of large changes in modulatory activity of the analogs include the o-OH in 2a, resulting in a α3β2-selective PAM (EC50 = 0.061 μM and E max = 2.08), and the p-OH in 2c elucidated stricter requirement for activity at α3β2 (EC50 = 5.8 μM and E max = 1.01) compared to α4β2 (EC50 = 96 μM and E max = 0.88). These results, rationalized by in-silico docking studies, highlight distinct analog selectivity between the two subtypes and fine-tuning their pharmacological profiles.
Collapse
Affiliation(s)
- Francesco Bavo
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Copenhagen 2100, Denmark
| | - Lucy Chechik
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Khoa Huynh
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Copenhagen 2100, Denmark
| | - Anna Kolanowski
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Avery Richardson
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Sydney Tardrew
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Nipun Basrur
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Mark M. Levandoski
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Bente Fro̷lund
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
2
|
Haufe Y, Loser D, Danker T, Nicke A. Symmetrical Bispyridinium Compounds Act as Open Channel Blockers of Cation-Selective Ion Channels. ACS Pharmacol Transl Sci 2024; 7:771-786. [PMID: 38495220 PMCID: PMC10941285 DOI: 10.1021/acsptsci.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 03/19/2024]
Abstract
Current treatments against organophosphate poisoning (OPP) do not directly address effects mediated by the overstimulation of nicotinic acetylcholine receptors (nAChR). Non-oxime bispyridinium compounds (BPC) promote acetylcholine esterase-independent recovery of organophosphate-induced paralysis. Here, we test the hypothesis that they act by positive modulatory action on nAChRs. Using two-electrode voltage clamp analysis in combination with mutagenesis and molecular docking analysis, the potency and molecular mode of action of a series of nine BPCs was investigated on human α7 and muscle-type nAChRs expressed in Xenopus laevis oocytes. The investigated BPCs inhibited α7 and/or muscle-type nAChRs with IC50 values in the high nanomolar to high micromolar range. Further analysis of the most potent analogues revealed a noncompetitive, voltage-dependent inhibition. Co-application with the α7-selective positive allosteric modulator PNU120596 and generation of α7/5HT3 receptor chimeras excluded direct interaction with the PNU120596 binding site and binding to the extracellular domain of the α7 nAChR, suggesting that they act as open channel blockers (OCBs). Molecular docking supported by mutagenesis localized the BPC binding area in the outer channel vestibule between the extracellular and transmembrane domains. Analysis of BPC action on other cation-selective channels suggests a rather nonspecific inhibition of pentameric cation channels. BPCs have been shown to ameliorate organophosphate-induced paralysis in vitro and in vivo. Our data support molecular action as OCBs at α7 and muscle-type nAChRs and suggest that their positive physiological effects are more complex than anticipated and require further investigation.
Collapse
Affiliation(s)
- Yves Haufe
- Walther
Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Dominik Loser
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Timm Danker
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Annette Nicke
- Walther
Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
3
|
Sanders VR, Millar NS. Potentiation and allosteric agonist activation of α7 nicotinic acetylcholine receptors: binding sites and hypotheses. Pharmacol Res 2023; 191:106759. [PMID: 37023990 DOI: 10.1016/j.phrs.2023.106759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Considerable progress has been made in recent years towards the identification and characterisation of novel subtype-selective modulators of nicotinic acetylcholine receptors (nAChRs). In particular, this has focussed on modulators of α7 nAChRs, a nAChR subtype that has been identified as a target for drug discovery in connection with a range of potential therapeutic applications. This review focusses upon α7-selective modulators that bind to receptor sites other than the extracellular 'orthosteric' agonist binding site for the endogenous agonist acetylcholine (ACh). Such compounds include those that are able to potentiate responses evoked by orthosteric agonists such as ACh (positive allosteric modulators; PAMs) and those that are able to activate α7 nAChRs by direct allosteric activation in the absence of an orthosteric agonist (allosteric agonists or 'ago-PAMs'). There has been considerable debate about the mechanism of action of α7-selective PAMs and allosteric agonists, much of which has centred around identifying the location of their binding sites on α7 nAChRs. Based on a variety of experimental evidence, including recent structural data, there is now clear evidence indicating that at least some α7-selective PAMs bind to an inter-subunit site located in the transmembrane domain. In contrast, there are differing hypotheses about the site or sites at which allosteric agonists bind to α7 nAChRs. It will be argued that the available evidence supports the conclusion that direct allosteric activation by allosteric agonists/ago-PAMs occurs via the same inter-subunit transmembrane site that has been identified for several α7-selective PAMs.
Collapse
Affiliation(s)
- Victoria R Sanders
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Neil S Millar
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
4
|
Recent Advances in the Discovery of Nicotinic Acetylcholine Receptor Allosteric Modulators. Molecules 2023; 28:molecules28031270. [PMID: 36770942 PMCID: PMC9920195 DOI: 10.3390/molecules28031270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Positive allosteric modulators (PAMs), negative allosteric modulators (NAMs), silent agonists, allosteric activating PAMs and neutral or silent allosteric modulators are compounds capable of modulating the nicotinic receptor by interacting at allosteric modulatory sites distinct from the orthosteric sites. This survey is focused on the compounds that have been shown or have been designed to interact with nicotinic receptors as allosteric modulators of different subtypes, mainly α7 and α4β2. Minimal chemical changes can cause a different pharmacological profile, which can then lead to the design of selective modulators. Experimental evidence supports the use of allosteric modulators as therapeutic tools for neurological and non-neurological conditions.
Collapse
|
5
|
Sanders VR, Sweeney A, Topf M, Millar NS. Stoichiometry-Selective Antagonism of α4β2 Nicotinic Acetylcholine Receptors by Fluoroquinolone Antibiotics. ACS Chem Neurosci 2022; 13:1805-1817. [PMID: 35657695 PMCID: PMC9204775 DOI: 10.1021/acschemneuro.2c00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
Quinolone antibiotics
disrupt bacterial DNA synthesis by interacting
with DNA gyrase and topoisomerase IV. However, in addition, they have
been shown to act as inhibitors of pentameric ligand-gated ion channels
such as GABAA receptors and the α7 nicotinic acetylcholine
receptor (nAChR). In the present study, we have examined the effects
of quinolone antibiotics on the human α4β2 nAChR, an important
subtype that is widely expressed in the central nervous system. A
key feature of α4β2 nAChRs is their ability to coassemble
into two distinct stoichiometries, (α4)2(β2)3 and (α4)3(β2)2, which results in differing affinities for acetylcholine.
The effects of nine quinolone antibiotics were examined on both stoichiometries
of the α4β2 receptor by two-electrode voltage-clamp recording.
All compounds exhibited significant inhibition of α4β2
nAChRs. However, all of the fluoroquinolone antibiotics examined (ciprofloxacin,
enoxacin, enrofloxacin, difloxacin, norfloxacin, pefloxacin, and sparfloxacin)
were significantly more potent inhibitors of (α4)2(β2)3 nAChRs than of (α4)3(β2)2 nAChRs. This stoichiometry-selective effect was most pronounced
with pefloxacin, which inhibited (α4)2(β2)3 nAChRs with an IC50 of 26.4 ± 3.4 μM
but displayed no significant inhibition of (α4)3(β2)2 nAChRs. In contrast, two nonfluorinated quinolone antibiotics
(cinoxacin and oxolinic acid) exhibited no selectivity in their inhibition
of the two stoichiometries of α4β2. Computational docking
studies suggest that pefloxacin interacts selectively with an allosteric
transmembrane site at the β2(+)/β2(−) subunit interface,
which is consistent with its selective inhibition of (α4)2(β2)3. These findings concerning the antagonist
effects of fluoroquinolones provide further evidence that differences
in the subunit stoichiometry of heteromeric nAChRs can result in substantial
differences in pharmacological properties.
Collapse
Affiliation(s)
- Victoria R. Sanders
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Aaron Sweeney
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Neil S. Millar
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
Smelt CLC, Sanders VR, Puinean AM, Lansdell SJ, Goodchild J, Millar NS. Agonist and antagonist properties of an insect GABA-gated chloride channel (RDL) are influenced by heterologous expression conditions. PLoS One 2021; 16:e0254251. [PMID: 34234379 PMCID: PMC8263253 DOI: 10.1371/journal.pone.0254251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) activated by the inhibitory neurotransmitter γ-aminobutyric acid (GABA) are expressed widely in both vertebrate and invertebrate species. One of the best characterised insect GABA-gated chloride channels is RDL, an abbreviation of ‘resistance to dieldrin’, that was originally identified by genetic screening in Drosophila melanogaster. Here we have cloned the analogous gene from the bumblebee Bombus terrestris audax (BtRDL) and examined its pharmacological properties by functional expression in Xenopus oocytes. Somewhat unexpectedly, the sensitivity of BtRDL to GABA, as measured by its apparent affinity (EC50), was influenced by heterologous expression conditions. This phenomenon was observed in response to alterations in the amount of cRNA injected; the length of time that oocytes were incubated before functional analysis; and by the presence or absence of a 3’ untranslated region. In contrast, similar changes in expression conditions were not associated with changes in apparent affinity with RDL cloned from D. melanogaster (DmRDL). Changes in apparent affinity with BtRDL were also observed following co-expression of a chaperone protein (NACHO). Similar changes in apparent affinity were observed with an allosteric agonist (propofol) and a non-competitive antagonist (picrotoxinin), indicating that expression-depended changes are not restricted to the orthosteric agonist binding site. Interestingly, instances of expression-dependent changes in apparent affinity have been reported previously for vertebrate glycine receptors, which are also members of the pLGIC super-family. Our observations with BtRDL are consistent with previous data obtained with vertebrate glycine receptors and indicates that agonist and antagonist apparent affinity can be influenced by the level of functional expression in a variety of pLGICs.
Collapse
Affiliation(s)
- Charles L C Smelt
- Division of Biosciences, University College London, London, United Kingdom
| | - Victoria R Sanders
- Division of Biosciences, University College London, London, United Kingdom
| | - Alin M Puinean
- Division of Biosciences, University College London, London, United Kingdom
| | - Stuart J Lansdell
- Division of Biosciences, University College London, London, United Kingdom
| | - Jim Goodchild
- Syngenta, Jealotts Hill International Research Centre, Bracknell, Berkshire, United Kingdom
| | - Neil S Millar
- Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
7
|
Abstract
The α7-type nicotinic acetylcholine receptor is one of the most unique and interesting of all the members of the cys-loop superfamily of ligand-gated ion channels. Since it was first identified initially as a binding site for α-bungarotoxin in mammalian brain and later as a functional homomeric receptor with relatively high calcium permeability, it has been pursued as a potential therapeutic target for numerous indications, from Alzheimer disease to asthma. In this review, we discuss the history and state of the art for targeting α7 receptors, beginning with subtype-selective agonists and the basic pharmacophore for the selective activation of α7 receptors. A key feature of α7 receptors is their rapid desensitization by standard "orthosteric" agonist, and we discuss insights into the conformational landscape of α7 receptors that has been gained by the development of ligands binding to allosteric sites. Some of these sites are targeted by positive allosteric modulators that have a wide range of effects on the activation profile of the receptors. Other sites are targeted by direct allosteric agonist or antagonists. We include a perspective on the potential importance of α7 receptors for metabotropic as well as ionotropic signaling. We outline the challenges that exist for future development of drugs to target this important receptor and approaches that may be considered to address those challenges. SIGNIFICANCE STATEMENT: The α7-type nicotinic acetylcholine receptor (nAChR) is acknowledged as a potentially important therapeutic target with functional properties associated with both ionotropic and metabotropic signaling. The functional properties of α7 nAChR can be regulated in diverse ways with the variety of orthosteric and allosteric ligands described in this review.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| |
Collapse
|
8
|
Papke RL, Garai S, Stokes C, Horenstein NA, Zimmerman AD, Abboud KA, Thakur GA. Differing Activity Profiles of the Stereoisomers of 2,3,5,6TMP-TQS, a Putative Silent Allosteric Modulator of α7 nAChR. Mol Pharmacol 2020; 98:292-302. [PMID: 32690627 PMCID: PMC7472127 DOI: 10.1124/mol.120.119958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Many synthetic compounds to which we attribute specific activities are produced as racemic mixtures of stereoisomers, and it may be that all the desired activity comes from a single enantiomer. We have previously shown this to be the case with the α7 nicotinic acetylcholine receptor positive allosteric modulator (PAM) 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS) and the α7 ago-PAM 4BP-TQS. Cis-trans-4-(2,3,5,6-tetramethylphenyl)-3a,4,5,9b-te-trahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (2,3,5,6TMP-TQS), previously published as a "silent allosteric modulator" and an antagonist of α7 allosteric activation, shares the same scaffold with three chiral centers as the aforementioned compounds. We isolated the enantiomers of 2,3,5,6TMP-TQS and determined that the (-) isomer was a significantly better antagonist than the (+) isomer of the allosteric activation of both wild-type α7 and the nonorthosterically activatible C190A α7 mutant by the ago-PAM GAT107 (the active isomer of 4BP-TQS). In contrast, (+)2,3,5,6TMP-TQS proved to be an α7 PAM. (-)2,3,5,6TMP-TQS was shown to antagonize the allosteric activation of α7 by the structurally unrelated ago-PAM B-973B as well as the allosteric activation of the TQS-sensitive α4β2L15'M mutant. In silico docking of 2,3,5,6TMP-TQS in the putative allosteric activation binding site suggested a specific interaction of the (-) enantiomer with α7T106, and allosteric activation of α7T106 mutants was not inhibited by (-)2,3,5,6TMP-TQS, confirming the importance of this interaction and supporting the model of the allosteric binding site. Comparisons and contrasts between 2,3,5,6TMP-TQS isomers and active and inactive enantiomers of other TQS-related compounds identify the orientation of the cyclopentenyl ring to the plane of the core quinoline to be a crucial determinate of PAM activity. SIGNIFICANCE STATEMENT: Many synthetic ligands are in use as racemic preparations. We show that one enantiomer of the TQS analog Cis-trans-4-(2,3,5,6-tetramethylphenyl)-3a,4,5,9b-te-trahydro-3H-cyclopenta[c]quinoline-8-sulfonamide, originally reported to lack activity when used as a racemic preparation, is an α7 nicotinic acetylcholine receptor positive allosteric modulator (PAM). The other enantiomer is not a PAM, but it is an effective allosteric antagonist. In silico studies and structural comparisons identify essential elements of both the allosteric ligands and receptor binding sites important for these allosteric activities.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Sumanta Garai
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Clare Stokes
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Arthur D Zimmerman
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Khalil A Abboud
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Ganesh A Thakur
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| |
Collapse
|
9
|
Nielsen BE, Stabile S, Vitale C, Bouzat C. Design, Synthesis, and Functional Evaluation of a Novel Series of Phosphonate-Functionalized 1,2,3-Triazoles as Positive Allosteric Modulators of α7 Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 2020; 11:2688-2704. [PMID: 32786318 DOI: 10.1021/acschemneuro.0c00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel widely distributed in the central nervous system, mainly in the hippocampus and cortex. The enhancement of its activity by positive allosteric modulators (PAMs) is a promising therapeutic strategy for cognitive deficits and neurodegenerative disorders. With the aim of developing novel scaffolds with PAM activity, we designed and synthesized a series of phosphonate-functionalized 1,4-disubstituted 1,2,3-triazoles using supported copper nanoparticles as the cycloaddition reaction catalyst and evaluated their activity on α7 receptors by single-channel and whole-cell recordings. We identified several triazole derivatives that displayed PAM activity, with the compound functionalized with the methyl phosphonate group being the most efficacious one. At the macroscopic level, α7 potentiation was evidenced as an increase of the maximal currents elicited by acetylcholine with minimal effects on desensitization, recapitulating the actions of type I PAMs. At the single-channel level, the active compounds did not affect channel amplitude but significantly increased the duration of channel openings and activation episodes. By using chimeric and mutant α7 receptors, we demonstrated that the new α7 PAMs share transmembrane structural determinants of potentiation with other chemically nonrelated PAMs. To gain further insight into the chemical basis of potentiation, we applied structure-activity relationship strategies involving modification of the chain length, inversion of substituent positions in the triazole ring, and changes in the aromatic nucleus. Our findings revealed that the phosphonate-functionalized 1,4-disubstituted 1,2,3-triazole is a novel pharmacophore for the development of therapeutic agents for neurological and neurodegenerative disorders associated with cholinergic dysfunction.
Collapse
Affiliation(s)
- Beatriz Elizabeth Nielsen
- Departamento de Biologı́a, Bioquı́mica y Farmacia, Instituto de Investigaciones Bioquı́micas de Bahı́a Blanca (INIBIBB), Departamento de Biologı́a, Bioquı́mica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Santiago Stabile
- Instituto de Quı́mica del Sur (INQUISUR), Departamento de Quı́mica, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Cristian Vitale
- Instituto de Quı́mica del Sur (INQUISUR), Departamento de Quı́mica, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Cecilia Bouzat
- Departamento de Biologı́a, Bioquı́mica y Farmacia, Instituto de Investigaciones Bioquı́micas de Bahı́a Blanca (INIBIBB), Departamento de Biologı́a, Bioquı́mica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
10
|
Gulsevin A. Nicotinic receptor pharmacology in silico: Insights and challenges. Neuropharmacology 2020; 177:108257. [PMID: 32738311 DOI: 10.1016/j.neuropharm.2020.108257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Nicotinic acetylcholine receptors (nAChR) are homo- or hetero-pentameric ligand-gated ion channels of the Cys-loop superfamily and play important roles in the nervous system and muscles. Studies on nAChR benefit from in silico modeling due to the lack of high-resolution structures for most receptor subtypes and challenges in experiments addressing the complex mechanism of activation involving allosteric sites. Although there is myriad of computational modeling studies on nAChR, the multitude of the methods and parameters used in these studies makes modeling nAChR a daunting task, particularly for the non-experts in the field. To address this problem, the modeling literature on Torpedo nAChR and α7 nAChR were focused on as examples of heteromeric and homomeric nAChR, and the key in silico modeling studies between the years 1995-2019 were concisely reviewed. This was followed by a critical analysis of these studies by comparing the findings with each other and with the emerging experimental and computational data on nAChR. Based on these critical analyses, suggestions were made to guide the future researchers in the field of in silico modeling of nAChR. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA, 37221.
| |
Collapse
|
11
|
Papke RL, Lindstrom JM. Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology 2020; 168:108021. [PMID: 32146229 PMCID: PMC7610230 DOI: 10.1016/j.neuropharm.2020.108021] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022]
Abstract
Postsynaptic nAChRs in the peripheral nervous system are critical for neuromuscular and autonomic neurotransmission. Pre- and peri-synaptic nAChRs in the brain modulate neurotransmission and are responsible for the addictive effects of nicotine. Subtypes of nAChRs in lymphocytes and non-synaptic locations may modulate inflammation and other cellular functions. All AChRs that function as ligand-gated ion channels are formed from five homologous subunits organized to form a central cation channel whose opening is regulated by ACh bound at extracellular subunit interfaces. nAChR subtype subunit composition can range from α7 homomers to α4β2α6β2β3 heteromers. Subtypes differ in affinities for ACh and other agonists like nicotine and in efficiencies with which their channels are opened and desensitized. Subtypes also differ in affinities for antagonists and for positive and negative allosteric modulators. Some agonists are "silent" with respect to channel opening, and AChRs may be able to signal metabotropic pathways by releasing G-proteins independent of channel opening. Electrophysiological studies that can resolve single-channel openings and molecular genetic approaches have allowed characterization of the structures of ligand binding sites, the cation channel, and the linkages between them, as well as the organization of AChR subunits and their contributions to function. Crystallography and cryo-electron-microscopy are providing increasing insights into the structures and functions of AChRs. However, much remains to be learned about both AChR structure and function, the in vivo functional roles of some AChR subtypes, and the development of better pharmacological tools directed at AChRs to treat addiction, pain, inflammation, and other medically important issues. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA.
| | - Jon M Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Brams M, Govaerts C, Kambara K, Price KL, Spurny R, Gharpure A, Pardon E, Evans GL, Bertrand D, Lummis SCR, Hibbs RE, Steyaert J, Ulens C. Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT 3 receptor via a common vestibule site. eLife 2020; 9:e51511. [PMID: 31990273 PMCID: PMC7015668 DOI: 10.7554/elife.51511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) or Cys-loop receptors are involved in fast synaptic signaling in the nervous system. Allosteric modulators bind to sites that are remote from the neurotransmitter binding site, but modify coupling of ligand binding to channel opening. In this study, we developed nanobodies (single domain antibodies), which are functionally active as allosteric modulators, and solved co-crystal structures of the prokaryote (Erwinia) channel ELIC bound either to a positive or a negative allosteric modulator. The allosteric nanobody binding sites partially overlap with those of small molecule modulators, including a vestibule binding site that is not accessible in some pLGICs. Using mutagenesis, we extrapolate the functional importance of the vestibule binding site to the human 5-HT3 receptor, suggesting a common mechanism of modulation in this protein and ELIC. Thus we identify key elements of allosteric binding sites, and extend drug design possibilities in pLGICs with an accessible vestibule site.
Collapse
Affiliation(s)
- Marijke Brams
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Cedric Govaerts
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université libre de BruxellesBrusselsBelgium
| | | | - Kerry L Price
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Radovan Spurny
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Anant Gharpure
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Genevieve L Evans
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | | | - Sarah CR Lummis
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| |
Collapse
|
13
|
Gulsevin A, Papke RL, Horenstein N. In Silico Modeling of the α7 Nicotinic Acetylcholine Receptor: New Pharmacological Challenges Associated with Multiple Modes of Signaling. Mini Rev Med Chem 2020; 20:841-864. [PMID: 32000651 PMCID: PMC8719523 DOI: 10.2174/1389557520666200130105256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
The α7 nicotinic acetylcholine receptor is a homopentameric ion-channel of the Cys-loop superfamily characterized by its low probability of opening, high calcium permeability, and rapid desensitization. The α7 receptor has been targeted for the treatment of the cognitive symptoms of schizophrenia, depression, and Alzheimer's disease, but it is also involved in inflammatory modulation as a part of the cholinergic anti-inflammatory pathway. Despite its functional importance, in silico studies of the α7 receptor cannot produce a general model explaining the structural features of receptor activation, nor predict the mode of action for various ligand classes. Two particular problems in modeling the α7 nAChR are the absence of a high-resolution structure and the presence of five potentially nonequivalent orthosteric ligand binding sites. There is wide variability regarding the templates used for homology modeling, types of ligands investigated, simulation methods, and simulation times. However, a systematic survey focusing on the methodological similarities and differences in modeling α7 has not been done. In this work, we make a critical analysis of the modeling literature of α7 nAChR by comparing the findings of computational studies with each other and with experimental studies under the main topics of structural studies, ligand binding studies, and comparisons with other nAChR. In light of our findings, we also summarize current problems in the field and make suggestions for future studies concerning modeling of the α7 receptor.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL 32610, United States
| | - Nicole Horenstein
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| |
Collapse
|
14
|
Camacho-Hernandez GA, Stokes C, Duggan BM, Kaczanowska K, Brandao-Araiza S, Doan L, Papke RL, Taylor P. Synthesis, Pharmacological Characterization, and Structure-Activity Relationships of Noncanonical Selective Agonists for α7 nAChRs. J Med Chem 2019; 62:10376-10390. [PMID: 31675224 DOI: 10.1021/acs.jmedchem.9b01467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A lack of selectivity of classical agonists for the nicotinic acetylcholine receptors (nAChR) has prompted us to identify and develop a distinct scaffold of α7 nAChR-selective ligands. Noncanonical 2,4,6-substituted pyrimidine analogues were framed around compound 40 for a structure-activity relationship study. The new lead compounds activate selectively the α7 nAChRs with EC50's between 30 and 140 nM in a PNU-120596-dependent, cell-based calcium influx assay. After characterizing the expanded lead landscape, we ranked the compounds for rapid activation using Xenopus oocytes expressing human α7 nAChR with a two-electrode voltage clamp. This approach enabled us to define the molecular determinants governing rapid activation, agonist potency, and desensitization of α7 nAChRs after exposure to pyrimidine analogues, thereby distinguishing this subclass of noncanonical agonists from previously defined types of agonists (agonists, partial agonists, silent agonists, and ago-PAMs). By NMR, we analyzed pKa values for ionization of lead candidates, demonstrating distinctive modes of interaction for this landscape of ligands.
Collapse
Affiliation(s)
- Gisela Andrea Camacho-Hernandez
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Clare Stokes
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Brendan M Duggan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Katarzyna Kaczanowska
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Stefania Brandao-Araiza
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Lisa Doan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Roger L Papke
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Palmer Taylor
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| |
Collapse
|
15
|
Tikhonova TA, Rassokhina IV, Kondrakhin EA, Fedosov MA, Bukanova JV, Rossokhin AV, Sharonova IN, Kovalev GI, Zavarzin IV, Volkova YA. Development of 1,3-thiazole analogues of imidazopyridines as potent positive allosteric modulators of GABA A receptors. Bioorg Chem 2019; 94:103334. [PMID: 31711764 DOI: 10.1016/j.bioorg.2019.103334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Structure-activity relationship studies were conducted in the search for 1,3-thiazole isosteric analogs of imidazopyridine drugs (Zolpidem, Alpidem). Three series of novel γ-aminobutyric acid receptor (GABAAR) ligands belonging to imidazo[2,1-b]thiazoles, imidazo[2,1-b][1,3,4]thiadiazoles, and benzo[d]imidazo[2,1-b]thiazoles were synthesized and characterized as active agents against GABAAR benzodiazepine-binding site. In each of these series, potent compounds were discovered using a radioligand competition binding assay. The functional properties of highest-affinity compounds 28 and 37 as GABAAR positive allosteric modulators (PAMs) were determined by electrophysiological measurements. In vivo studies on zebrafish demonstrated their potential for the further development of anxiolytics. Using the OECD "Fish, Acute Toxicity Test" active compounds were found safe and non-toxic. Structural bases for activity of benzo[d]imidazo[2,1-b]thiazoles were proposed using molecular docking studies. The isosteric replacement of the pyridine nuclei by 1,3-thiazole, 1,3,4-thiadiazole, or 1,3-benzothiazole in the ring-fused imidazole class of GABAAR PAMs was shown to be promising for the development of novel hypnotics, anxiolytics, anticonvulsants, and sedatives drug-candidates.
Collapse
Affiliation(s)
- Tatyana A Tikhonova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Irina V Rassokhina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Eugeny A Kondrakhin
- V. V. Zakusov Institute of Pharmacology, Russian Academy of Sciences, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Mikhail A Fedosov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Julia V Bukanova
- Research Center of Neurology, 5 By-str. Obukha, 105064 Moscow, Russia
| | | | - Irina N Sharonova
- Research Center of Neurology, 5 By-str. Obukha, 105064 Moscow, Russia
| | - Georgy I Kovalev
- V. V. Zakusov Institute of Pharmacology, Russian Academy of Sciences, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Yulia A Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia.
| |
Collapse
|
16
|
Nielsen BE, Bermudez I, Bouzat C. Flavonoids as positive allosteric modulators of α7 nicotinic receptors. Neuropharmacology 2019; 160:107794. [PMID: 31560909 DOI: 10.1016/j.neuropharm.2019.107794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/09/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The use of positive allosteric modulators (PAM) of α7 nicotinic receptors is a promising therapy for neurodegenerative, inflammatory and cognitive disorders. Flavonoids are polyphenolic compounds showing neuroprotective, anti-inflammatory and pro-cognitive actions. Besides their well-known antioxidant activity, flavonoids trigger intracellular pathways and interact with receptors, including α7. To reveal how the beneficial actions of flavonoids are linked to α7 function, we evaluated the effects of three representative flavonoids -genistein, quercetin and the neoflavonoid 5,7-dihydroxy-4-phenylcoumarin- on whole-cell and single-channel currents. All flavonoids increase the maximal currents elicited by acetylcholine with minimal effects on desensitization and do not reactivate desensitized receptors, a behaviour consistent with type I PAMs. At the single-channel level, they increase the duration of the open state and produce activation in long-duration episodes with a rank order of efficacy of genistein > quercetin ≥ neoflavonoid. By using mutant and chimeric α7 receptors, we demonstrated that flavonoids share transmembrane structural determinants with other PAMs. The α7-PAM activity of flavonoids results in decreased cell levels of reactive oxygen species. Thus, allosteric potentiation of α7 may be an additional mechanism underlying neuroprotective actions of flavonoids, which may be used as scaffolds for designing new therapeutic agents.
Collapse
Affiliation(s)
- Beatriz Elizabeth Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Isabel Bermudez
- Department of Medical and Biological Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
17
|
Stokes C, Garai S, Kulkarni AR, Cantwell LN, Noviello CM, Hibbs RE, Horenstein NA, Abboud KA, Thakur GA, Papke RL. Heteromeric Neuronal Nicotinic Acetylcholine Receptors with Mutant β Subunits Acquire Sensitivity to α7-Selective Positive Allosteric Modulators. J Pharmacol Exp Ther 2019; 370:252-268. [PMID: 31175218 PMCID: PMC6658922 DOI: 10.1124/jpet.119.259499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 01/29/2023] Open
Abstract
Homomeric α7 nicotinic acetylcholine receptors (nAChR) have an intrinsically low probability of opening that can be overcome by α7-selective positive allosteric modulators (PAMs), which bind at a site involving the second transmembrane domain (TM2). Mutation of a methionine that is unique to α7 at the 15' position of TM2 to leucine, the residue in most other nAChR subunits, largely eliminates the activity of such PAMs. We tested the effect of the reverse mutation (L15'M) in heteromeric nAChR receptors containing α4 and β2, which are the nAChR subunits that are most abundant in the brain. Receptors containing these mutations were found to be strongly potentiated by the α7 PAM 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS) but insensitive to the alternative PAM 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea. The presence of the mutation in the β2 subunit was necessary and sufficient for TQS sensitivity. The primary effect of the mutation in the α4 subunit was to reduce responses to acetylcholine applied alone. Sensitivity to TQS required only a single mutant β subunit, regardless of the position of the mutant β subunit within the pentameric complex. Similar results were obtained when β2L15'M was coexpressed with α2 or α3 and when the L15'M mutation was placed in β4 and coexpressed with α2, α3, or α4. Functional receptors were not observed when β1L15'M subunits were coexpressed with other muscle nAChR subunits. The unique structure-activity relationship of PAMs and the α4β2L15'M receptor compared with α7 and the availability of high-resolution α4β2 structures may provide new insights into the fundamental mechanisms of nAChR allosteric potentiation. SIGNIFICANCE STATEMENT: Heteromeric neuronal nAChRs have a relatively high initial probability of channel activation compared to receptors that are homomers of α7 subunits but are insensitive to PAMs, which greatly increase the open probability of α7 receptors. These features of heteromeric nAChR can be reversed by mutation of a single residue present in all neuronal heteromeric nAChR subunits to the sequence found in α7. Specifically, the mutation of the TM2 15' leucine to methionine in α subunits reduces heteromeric receptor channel activation, while the same mutation in neuronal β subunits allows heteromeric receptors to respond to select α7 PAMs. The results indicate a key role for this residue in the functional differences in the two main classes of neuronal nAChRs.
Collapse
Affiliation(s)
- Clare Stokes
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Sumanta Garai
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Abhijit R Kulkarni
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Lucas N Cantwell
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Colleen M Noviello
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Ryan E Hibbs
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Khalil A Abboud
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Ganesh A Thakur
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Roger L Papke
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| |
Collapse
|
18
|
Gulsevin A, Papke RL, Stokes C, Garai S, Thakur GA, Quadri M, Horenstein NA. Allosteric Agonism of α7 Nicotinic Acetylcholine Receptors: Receptor Modulation Outside the Orthosteric Site. Mol Pharmacol 2019; 95:606-614. [PMID: 30944209 PMCID: PMC6491904 DOI: 10.1124/mol.119.115758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/24/2019] [Indexed: 12/15/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of ligand-gated ion channels. Typically, channel activation follows the binding of agonists to the orthosteric binding sites of the receptor. α7 nAChRs have a very low probability of channel activation, which can be reversed by the binding of α7 selective positive allosteric modulators (PAMs) to putative sites within the transmembrane domains. Although typical PAMs, like PNU-120596, require coapplication of an orthosteric agonist to produce large channel activations, some, like GAT107 and B-973B [(S)-3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide], are characterized as allosteric activating PAMs, which also bind to an allosteric activation (AA) site in the extracellular domain and activate the α7 ion channel by themselves. We had previously characterized N,N-diethyl-N'-phenylpiperazine analogs with various functions. In this work, we docked members of this family to a homology model of the α7 receptor extracellular domain. The compound 1,1-diethyl-4(naphthalene-2-yl)piperazin-1-ium (2NDEP) a weak partial agonist, showed particularly favorable docking and binding energies at the putative AA site of the receptor. We hypothesized that 2NDEP could couple with PAMs through the AA site. This hypothesis was tested with the α7 mutant C190A, which is not activated by orthosteric agonists but is effectively activated by GAT107. The results showed that 2NDEP acts as an allosteric agonist of α7C190A when coapplied with the PAM PNU-120596. Also, the allosteric activity was nearly abolished upon coapplication with the AA site-selective antagonist 2,3,5,6MP-TQS (cis-trans-4-(2,3,5,6-tetramethylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide), consistent with AA site involvement. Overall, our findings show a novel mode of agonism through an allosteric site in the extracellular domain of α7 nAChR.
Collapse
Affiliation(s)
- Alican Gulsevin
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Roger L Papke
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Clare Stokes
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Sumanta Garai
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Ganesh A Thakur
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Marta Quadri
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Nicole A Horenstein
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| |
Collapse
|
19
|
Harvey AJ, Avery TD, Schaeffer L, Joseph C, Huff BC, Singh R, Morice C, Giethlen B, Grishin AA, Coles CJ, Kolesik P, Wagner S, Andriambeloson E, Huyard B, Poiraud E, Paul D, O’Connor SM. Discovery of BNC375, a Potent, Selective, and Orally Available Type I Positive Allosteric Modulator of α7 nAChRs. ACS Med Chem Lett 2019; 10:754-760. [PMID: 31097995 DOI: 10.1021/acsmedchemlett.9b00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
Positive allosteric modulators (PAMs) of α7 nAChRs can have different properties with respect to their effects on channel kinetics. Type I PAMs amplify peak channel response to acetylcholine but do not appear to influence channel desensitization kinetics, whereas Type II PAMs both increase channel response and delay receptor desensitization. Both Type I and Type II PAMs are reported in literature, but there are limited reports describing their structure-kinetic profile relationships. Here, we report a novel class of compounds with either Type I or Type II behavior that can be tuned by the relative stereochemistry around the central cyclopropyl ring: for example, (R,R)-13 (BNC375) and its analogues with RR stereochemistry around the central cyclopropyl ring are Type I PAMs, whereas compounds in the same series with SS stereochemistry (e.g., (S,S)-13) are Type II PAMs as measured using patch-clamp electrophysiology. Further fine control over the kinetics has been achieved by changing the substitutions on the aniline ring: generally the substitution of aniline with strong electron withdrawing groups reduces the Type II character of these compounds. Our structure-activity optimization efforts have led to the discovery of BNC375, a small molecule with good CNS-drug like properties and clinical candidate potential.
Collapse
Affiliation(s)
- Andrew J. Harvey
- Bionomics Limited, 31 Dalgleish Street, Thebarton, SA-5031, Australia
| | - Thomas D. Avery
- Bionomics Limited, 31 Dalgleish Street, Thebarton, SA-5031, Australia
| | - Laurent Schaeffer
- Prestwick Chemicals, 220 Boulevard Gonthier d’Andernach, Parc d’Innovation, 67400 Illkirch, France
| | - Christophe Joseph
- Prestwick Chemicals, 220 Boulevard Gonthier d’Andernach, Parc d’Innovation, 67400 Illkirch, France
| | - Belinda C. Huff
- Bionomics Limited, 31 Dalgleish Street, Thebarton, SA-5031, Australia
| | - Rajinder Singh
- Bionomics Limited, 31 Dalgleish Street, Thebarton, SA-5031, Australia
| | - Christophe Morice
- Prestwick Chemicals, 220 Boulevard Gonthier d’Andernach, Parc d’Innovation, 67400 Illkirch, France
| | - Bruno Giethlen
- Prestwick Chemicals, 220 Boulevard Gonthier d’Andernach, Parc d’Innovation, 67400 Illkirch, France
| | - Anton A. Grishin
- Bionomics Limited, 31 Dalgleish Street, Thebarton, SA-5031, Australia
| | - Carolyn J. Coles
- Bionomics Limited, 31 Dalgleish Street, Thebarton, SA-5031, Australia
| | - Peter Kolesik
- Bionomics Limited, 31 Dalgleish Street, Thebarton, SA-5031, Australia
| | - Stéphanie Wagner
- Neurofit, 850 Boulevard Sébastien Brant, Bioparc 1, Parc d’Innovation, 67400 Illkirch, France
| | - Emile Andriambeloson
- Neurofit, 850 Boulevard Sébastien Brant, Bioparc 1, Parc d’Innovation, 67400 Illkirch, France
| | - Bertrand Huyard
- Neurofit, 850 Boulevard Sébastien Brant, Bioparc 1, Parc d’Innovation, 67400 Illkirch, France
| | - Etienne Poiraud
- Neurofit, 850 Boulevard Sébastien Brant, Bioparc 1, Parc d’Innovation, 67400 Illkirch, France
| | - Dharam Paul
- Bionomics Limited, 31 Dalgleish Street, Thebarton, SA-5031, Australia
| | - Susan M. O’Connor
- Bionomics Limited, 31 Dalgleish Street, Thebarton, SA-5031, Australia
| |
Collapse
|
20
|
He X, Ni D, Lu S, Zhang J. Characteristics of Allosteric Proteins, Sites, and Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:107-139. [DOI: 10.1007/978-981-13-8719-7_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Quadri M, Garai S, Thakur GA, Stokes C, Gulsevin A, Horenstein NA, Papke RL. Macroscopic and Microscopic Activation of α7 Nicotinic Acetylcholine Receptors by the Structurally Unrelated Allosteric Agonist-Positive Allosteric Modulators (ago-PAMs) B-973B and GAT107. Mol Pharmacol 2019; 95:43-61. [PMID: 30348894 PMCID: PMC6277926 DOI: 10.1124/mol.118.113340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/18/2018] [Indexed: 01/25/2023] Open
Abstract
B-973 is an efficacious type II positive allosteric modulator (PAM) of α7 nicotinic acetylcholine receptors that, like 4BP-TQS and its active isomer GAT107, can produce direct allosteric activation in addition to potentiation of orthosteric agonist activity, which identifies it as an allosteric activating (ago)-PAM. We compared the properties of B-973B, the active enantiomer of B-973, with those of GAT107 regarding the separation of allosteric potentiation and activation. Both ago-PAMs can strongly activate mutants of α7 that are insensitive to standard orthosteric agonists like acetylcholine. Likewise, the activity of both ago-PAMs is largely eliminated by the M254L mutation in the putative transmembrane PAM-binding site. Allosteric activation by B-973B appeared more protracted than that produced by GAT107, and B-973B responses were relatively insensitive to the noncompetitive antagonist mecamylamine compared with GAT107 responses. Similar differences are also seen in the single-channel currents. The two agents generate unique profiles of full-conductance and subconductance states, with B-973B producing protracted bursts, even in the presence of mecamylamine. Modeling and docking studies suggest that the molecular basis for these effects depends on specific interactions in both the extracellular and transmembrane domains of the receptor.
Collapse
Affiliation(s)
- Marta Quadri
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Sumanta Garai
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Ganesh A Thakur
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Clare Stokes
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Alican Gulsevin
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Roger L Papke
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| |
Collapse
|
22
|
Liu W, Li MD. Insights Into Nicotinic Receptor Signaling in Nicotine Addiction: Implications for Prevention and Treatment. Curr Neuropharmacol 2018; 16:350-370. [PMID: 28762314 PMCID: PMC6018190 DOI: 10.2174/1570159x15666170801103009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/18/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop ligandgated ion-channel (LGIC) superfamily, which also includes the GABA, glycine, and serotonin receptors. Many nAChR subunits have been identified and shown to be involved in signal transduction on binding to them of either the neurotransmitter acetylcholine or exogenous ligands such as nicotine. The nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and they are expressed at neuromuscular junctions throughout the nervous system. METHODS AND RESULTS Because different nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes, and different nAChRs are implicated in various physiological functions and pathophysiological conditions, nAChRs represent potential molecular targets for drug addiction and medical therapeutic research. This review intends to provide insights into recent advances in nAChR signaling, considering the subtypes and subunits of nAChRs and their roles in nicotinic cholinergic systems, including structure, diversity, functional allosteric modulation, targeted knockout mutations, and rare variations of specific subunits, and the potency and functional effects of mutations by focusing on their effects on nicotine addiction (NA) and smoking cessation (SC). Furthermore, we review the possible mechanisms of action of nAChRs in NA and SC based on our current knowledge. CONCLUSION Understanding these cellular and molecular mechanisms will lead to better translational and therapeutic operations and outcomes for the prevention and treatment of NA and other drug addictions, as well as chronic diseases, such as Alzheimer's and Parkinson's. Finally, we put forward some suggestions and recommendations for therapy and treatment of NA and other chronic diseases.
Collapse
Affiliation(s)
- Wuyi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,School of Biological Sciences and Food Engineering, Fuyang Normal University, Fuyang, Anuhi 236041, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
23
|
Smelt CLC, Sanders VR, Newcombe J, Burt RP, Sheppard TD, Topf M, Millar NS. Identification by virtual screening and functional characterisation of novel positive and negative allosteric modulators of the α7 nicotinic acetylcholine receptor. Neuropharmacology 2018; 139:194-204. [PMID: 30009834 PMCID: PMC6078708 DOI: 10.1016/j.neuropharm.2018.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/19/2018] [Accepted: 07/08/2018] [Indexed: 01/01/2023]
Abstract
Several previous studies have demonstrated that the activity of neurotransmitters acting on ligand-gated ion channels such as the nicotinic acetylcholine receptor (nAChR) can be altered by compounds binding to allosteric modulatory sites. In the case of α7 nAChRs, both positive and negative allosteric modulators (PAMs and NAMs) have been identified and have attracted considerable interest. A recent study, employing revised structural models of the transmembrane domain of the α7 nAChR in closed and open conformations, has provided support for an inter-subunit transmembrane allosteric binding site (Newcombe et al 2017). In the present study, we have performed virtual screening of the DrugBank database using pharmacophore queries that were based on the predicted binding mode of PAMs to α7 nAChR structural models. A total of 81 compounds were identified in the DrugBank database, of which the 25 highest-ranked hits corresponded to one of four previously-identified therapeutic compound groups (carbonic anhydrase inhibitors, cyclin-dependent kinase inhibitors, diuretics targeting the Na+-K+-Cl- cotransporter, and fluoroquinolone antibiotics targeting DNA gyrase). The top-ranked compound from each of these four groups (DB04763, DB08122, furosemide and pefloxacin, respectively) was tested for its effects on human α7 nAChR expressed in Xenopus oocytes using two-electrode voltage-clamp electrophysiology. These studies, conducted with wild-type, mutant and chimeric receptors, resulted in all four compounds exerting allosteric modulatory effects. While DB04763, DB08122 and pefloxacin were antagonists, furosemide potentiated ACh responses. Our findings, supported by docking studies, are consistent with these compounds acting as PAMs and NAMs of the α7 nAChR via interaction with a transmembrane site. Identification of α7 nAChR positive and negative allosteric modulators. Furosemide is a positive allosteric modulator of α7 nAChRs. DB04763, DB08122 and pefloxacin are negative allosteric modulators of α7 nAChRs. Modulation of α7 nAChRs by an allosteric transmembrane site.
Collapse
Affiliation(s)
| | | | - Joseph Newcombe
- Department of Chemistry, University College London, London, UK; Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Richard P Burt
- Division of Biosciences, University College London, London, UK
| | - Tom D Sheppard
- Department of Chemistry, University College London, London, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Neil S Millar
- Division of Biosciences, University College London, London, UK.
| |
Collapse
|
24
|
Bouzat C, Sine SM. Nicotinic acetylcholine receptors at the single-channel level. Br J Pharmacol 2018; 175:1789-1804. [PMID: 28261794 PMCID: PMC5979820 DOI: 10.1111/bph.13770] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 01/28/2023] Open
Abstract
Over the past four decades, the patch clamp technique and nicotinic ACh (nACh) receptors have established an enduring partnership. Like all good partnerships, each partner has proven significant in its own right, while their union has spurred innumerable advances in life science research. A member and prototype of the superfamily of pentameric ligand-gated ion channels, the nACh receptor is a chemo-electric transducer, binding ACh released from nerves and rapidly opening its channel to cation flow to elicit cellular excitation. A subject of a Nobel Prize in Physiology or Medicine, the patch clamp technique provides unprecedented resolution of currents through single ion channels in their native cellular environments. Here, focusing on muscle and α7 nACh receptors, we describe the extraordinary contribution of the patch clamp technique towards understanding how they activate in response to neurotransmitter, how subtle structural and mechanistic differences among nACh receptor subtypes translate into significant physiological differences, and how nACh receptors are being exploited as therapeutic drug targets. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc/.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, INIBIBB (CONICET‐UNS), Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterMN55905USA
- Department of NeurologyMayo Clinic College of MedicineRochesterMN55905USA
- Department of Pharmacology and Experimental TherapeuticsMayo Clinic College of MedicineRochesterMN55905USA
| |
Collapse
|
25
|
Gielen M, Corringer P. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. J Physiol 2018; 596:1873-1902. [PMID: 29484660 PMCID: PMC5978336 DOI: 10.1113/jp275100] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast neurotransmission in the nervous system. Their dysfunction is associated with psychiatric, neurological and neurodegenerative disorders such as schizophrenia, epilepsy and Alzheimer's disease. Understanding their biophysical and pharmacological properties, at both the functional and the structural level, thus holds many therapeutic promises. In addition to their agonist-elicited activation, most pLGICs display another key allosteric property, namely desensitization, in which they enter a shut state refractory to activation upon sustained agonist binding. While the activation mechanisms of several pLGICs have been revealed at near-atomic resolution, the structural foundation of desensitization has long remained elusive. Recent structural and functional data now suggest that the activation and desensitization gates are distinct, and are located at both sides of the ion channel. Such a 'dual gate mechanism' accounts for the marked allosteric effects of channel blockers, a feature illustrated herein by theoretical kinetics simulations. Comparison with other classes of ligand- and voltage-gated ion channels shows that this dual gate mechanism emerges as a common theme for the desensitization and inactivation properties of structurally unrelated ion channels.
Collapse
Affiliation(s)
- Marc Gielen
- Channel Receptors UnitInstitut PasteurCNRS UMR 3571ParisFrance
| | | |
Collapse
|
26
|
Uspenska K, Lykhmus O, Arias HR, Pons S, Maskos U, Komisarenko S, Skok M. Positive allosteric modulators of α7* or β2* nicotinic acetylcholine receptors trigger different kinase pathways in mitochondria. Int J Biochem Cell Biol 2018; 99:226-235. [PMID: 29704624 DOI: 10.1016/j.biocel.2018.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/12/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Abstract
Mitochondrial nicotinic acetylcholine receptors (nAChRs) regulate the early stage of mitochondria-driven apoptosis, including cytochrome c release. Mitochondrial nAChR signaling is mainly mediated by intra-mitochondrial kinases, in an ion-independent manner. To determine the relationship between specific nAChR subtypes and mitochondrial kinases, the effects of a set of nAChR subtype-selective positive allosteric modulators (PAMs) on cytochrome c release from mouse liver mitochondria stimulated by 0.9 μM Ca2+, 0.5 mM H2O2 or 1.0 μM wortmanin is studied. The results indicate that Ca2+-stimulated cytochrome c release from wild-type, but not α7-/-, mice mitochondria is attenuated by the potent agonist PNU-282987 or type II PAMs (PNU-120596, 4BP-TQS, and PAM-2-4), but not by NS-1738, a type I PAM. In contrast, wortmannin-stimulated cytochrome c release from wild-type and, to a lesser extent, α7-/- mice mitochondria is efficiently attenuated by the β2-selective PAM desformylfrustrabromine. In conclusion, the ligand-evoked α7* nAChR conformational changes required to induce intra-mitochondrial signaling can be triggered through orthosteric (agonists) and transmembrane (type II PAMs) sites, but not by the interaction with type I PAMs. The α7 and β2 nAChR subunits are responsible for the engagement of distinct kinase pathways, supporting the concept that multiple heteromeric nAChR subtypes ensure mitochondria resistance to various exogenous and endogenous apoptogenic agents.
Collapse
Affiliation(s)
- Kateryna Uspenska
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine
| | - Hugo R Arias
- CONICET, Godoy Cruz, 2290, Buenos Aires, Argentina
| | - Stephanie Pons
- Institut Pasteur, 25, rue du Dr Roux, 75015, Paris, France
| | - Uwe Maskos
- Institut Pasteur, 25, rue du Dr Roux, 75015, Paris, France
| | - Serghiy Komisarenko
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine.
| |
Collapse
|
27
|
Designing selective modulators for the nicotinic receptor subtypes: challenges and opportunities. Future Med Chem 2018; 10:433-459. [PMID: 29451400 DOI: 10.4155/fmc-2017-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nicotinic receptors are membrane proteins involved in several physiological processes. They are considered suitable drug targets for various CNS disorders or conditions, as shown by the large number of compounds which have entered clinical trials. In recent years, nonconventional agonists have been discovered: positive allosteric modulators, allosteric agonists, site-specific agonists and silent desensitizers are compounds able to modulate the receptor interacting at sites different from the orthodox one, or to desensitize the receptor without prior opening. While these new findings can further complicate the pharmacology of these proteins and the design and optimization of ligands, they undoubtedly offer new opportunities to find drugs for the many therapeutic indications involving nicotinic receptors.
Collapse
|
28
|
Newcombe J, Chatzidaki A, Sheppard TD, Topf M, Millar NS. Diversity of Nicotinic Acetylcholine Receptor Positive Allosteric Modulators Revealed by Mutagenesis and a Revised Structural Model. Mol Pharmacol 2018; 93:128-140. [PMID: 29196491 PMCID: PMC5767682 DOI: 10.1124/mol.117.110551] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/30/2017] [Indexed: 01/26/2023] Open
Abstract
By combining electrophysiological and computational approaches we have examined a series of positive allosteric modulators (PAMs) acting on the human α7 nicotinic acetylcholine receptor (nAChR). Electrophysiological studies have focused on three α7-selective PAMs (A-867744, TBS-516, and TQS) that display similar effects on wild-type α7 nAChRs. In addition to potentiating agonist-evoked responses, all three compounds reduce receptor desensitization and, consequently, are classed as type II PAMs. Despite having similar effects on wild-type receptors, A-867744 was found to have profoundly differing effects on mutated receptors compared with TBS-516 and TQS, a finding that is consistent with previous studies indicating that A-867744 may have a different mechanism of action compare with other α7-selective type II PAMs. Due to evidence that these PAMs bind within the α7 nAChR transmembrane region, we generated and validated new structural models of α7. Importantly, we have corrected a previously identified error in the transmembrane region of the original cryo-electron microscopy Torpedo model; the only pentameric ligand-gated ion channel imaged in a native lipid membrane. Real-space refinement was used to generate closed and open conformations on which the α7 models were based. Consensus docking with an extended series of PAMs with chemical similarity to A-867744, TBS-516, and TQS suggests that all bind to a broadly similar intersubunit transmembrane site. However, differences in the predicted binding of A-867744, compared with TBS-516 and TQS, may help to explain the distinct functional effects of A-867744. Thus, our revised structural models may provide a useful tool for interpreting functional effects of PAMs.
Collapse
Affiliation(s)
- Joseph Newcombe
- Departments of Chemistry (J.N., T.D.S.) and Neuroscience, Physiology and Pharmacology (A.C., N.S.M.), University College London, London, United Kingdom; and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom (J.N., M.T.)
| | - Anna Chatzidaki
- Departments of Chemistry (J.N., T.D.S.) and Neuroscience, Physiology and Pharmacology (A.C., N.S.M.), University College London, London, United Kingdom; and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom (J.N., M.T.)
| | - Tom D Sheppard
- Departments of Chemistry (J.N., T.D.S.) and Neuroscience, Physiology and Pharmacology (A.C., N.S.M.), University College London, London, United Kingdom; and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom (J.N., M.T.)
| | - Maya Topf
- Departments of Chemistry (J.N., T.D.S.) and Neuroscience, Physiology and Pharmacology (A.C., N.S.M.), University College London, London, United Kingdom; and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom (J.N., M.T.)
| | - Neil S Millar
- Departments of Chemistry (J.N., T.D.S.) and Neuroscience, Physiology and Pharmacology (A.C., N.S.M.), University College London, London, United Kingdom; and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom (J.N., M.T.)
| |
Collapse
|
29
|
Delbart F, Brams M, Gruss F, Noppen S, Peigneur S, Boland S, Chaltin P, Brandao-Neto J, von Delft F, Touw WG, Joosten RP, Liekens S, Tytgat J, Ulens C. An allosteric binding site of the α7 nicotinic acetylcholine receptor revealed in a humanized acetylcholine-binding protein. J Biol Chem 2017; 293:2534-2545. [PMID: 29237730 PMCID: PMC5818190 DOI: 10.1074/jbc.m117.815316] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to the family of pentameric ligand-gated ion channels and mediate fast excitatory transmission in the central and peripheral nervous systems. Among the different existing receptor subtypes, the homomeric α7 nAChR has attracted considerable attention because of its possible implication in several neurological and psychiatric disorders, including cognitive decline associated with Alzheimer's disease or schizophrenia. Allosteric modulators of ligand-gated ion channels are of particular interest as therapeutic agents, as they modulate receptor activity without affecting normal fluctuations of synaptic neurotransmitter release. Here, we used X-ray crystallography and surface plasmon resonance spectroscopy of α7-acetylcholine-binding protein (AChBP), a humanized chimera of a snail AChBP, which has 71% sequence similarity with the extracellular ligand-binding domain of the human α7 nAChR, to investigate the structural determinants of allosteric modulation. We extended previous observations that an allosteric site located in the vestibule of the receptor offers an attractive target for receptor modulation. We introduced seven additional humanizing mutations in the vestibule-located binding site of AChBP to improve its suitability as a model for studying allosteric binding. Using a fragment-based screening approach, we uncovered an allosteric binding site located near the β8-β9 loop, which critically contributes to coupling ligand binding to channel opening in human α7 nAChR. This work expands our understanding of the topology of allosteric binding sites in AChBP and, by extrapolation, in the human α7 nAChR as determined by electrophysiology measurements. Our insights pave the way for drug design strategies targeting nAChRs involved in ion channel-mediated disorders.
Collapse
Affiliation(s)
- Florian Delbart
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Marijke Brams
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Fabian Gruss
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sam Noppen
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Steve Peigneur
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Sandro Boland
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium
| | - Patrick Chaltin
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium.,the Center for Innovation and Stimulation of Drug Discovery Leuven and Center for Drug Design and Discovery, KU Leuven, 3001 Heverlee, Belgium
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Wouter G Touw
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Robbie P Joosten
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Sandra Liekens
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jan Tytgat
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Chris Ulens
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium,
| |
Collapse
|
30
|
Bouzat C, Lasala M, Nielsen BE, Corradi J, Esandi MDC. Molecular function of α7 nicotinic receptors as drug targets. J Physiol 2017; 596:1847-1861. [PMID: 29131336 DOI: 10.1113/jp275101] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in many physiological and pathological processes. In vertebrates, there are seventeen different nAChR subunits that combine to yield a variety of receptors with different pharmacology, function, and localization. The homomeric α7 receptor is one of the most abundant nAChRs in the nervous system and it is also present in non-neuronal cells. It plays important roles in cognition, memory, pain, neuroprotection, and inflammation. Its diverse physiological actions and associated disorders have made of α7 an attractive novel target for drug modulation. Potentiation of the α7 receptor has emerged as a novel therapeutic strategy for several neurological diseases, such as Alzheimer's and Parkinson's diseases, and inflammatory disorders. In contrast, increased α7 activity has been associated with cancer cell proliferation. The presence of different drug target sites offers a great potential for α7 modulation in different pathological contexts. In particular, compounds that target allosteric sites offer significant advantages over orthosteric agonists due to higher selectivity and a broader spectrum of degrees and mechanisms of modulation. Heterologous expression of α7, together with chaperone proteins, combined with patch clamp recordings have provided important advances in our knowledge of the molecular basis of α7 responses and their potential modulation for pathological processes. This review gives a synthetic view of α7 and its molecular function, focusing on how its unique activation and desensitization features can be modified by pharmacological agents. This fundamental information offers insights into therapeutic strategies.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Matías Lasala
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Beatriz Elizabeth Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| |
Collapse
|
31
|
Nemecz Á, Prevost MS, Menny A, Corringer PJ. Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels. Neuron 2017; 90:452-70. [PMID: 27151638 DOI: 10.1016/j.neuron.2016.03.032] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 10/21/2022]
Abstract
Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors.
Collapse
Affiliation(s)
- Ákos Nemecz
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France
| | - Marie S Prevost
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Anaïs Menny
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France; Université Pierre et Marie Curie (UPMC), Cellule Pasteur, 75005 Paris, France
| | - Pierre-Jean Corringer
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France.
| |
Collapse
|
32
|
Sparling BA, DiMauro EF. Progress in the discovery of small molecule modulators of the Cys-loop superfamily receptors. Bioorg Med Chem Lett 2017; 27:3207-3218. [DOI: 10.1016/j.bmcl.2017.04.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
|
33
|
Wang J, Lindstrom J. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. Br J Pharmacol 2017; 175:1805-1821. [PMID: 28199738 DOI: 10.1111/bph.13745] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2)2 α5, (α4β2)2 β3 and (α6β2)2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Jingyi Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Kaczanowska K, Camacho Hernandez GA, Bendiks L, Kohs L, Cornejo-Bravo JM, Harel M, Finn MG, Taylor P. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins. J Am Chem Soc 2017; 139:3676-3684. [DOI: 10.1021/jacs.6b10746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Katarzyna Kaczanowska
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - Gisela Andrea Camacho Hernandez
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
- Facultad
de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana, Baja California 22390, Mexico
| | - Larissa Bendiks
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - Larissa Kohs
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - Jose Manuel Cornejo-Bravo
- Facultad
de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana, Baja California 22390, Mexico
| | - Michal Harel
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - M. G. Finn
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| |
Collapse
|
35
|
Corradi J, Bouzat C. Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery. Mol Pharmacol 2016; 90:288-99. [PMID: 27190210 DOI: 10.1124/mol.116.104240] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca(2+) permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer's disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| |
Collapse
|
36
|
Reyes-Parada M, Iturriaga-Vasquez P. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Expert Opin Drug Discov 2016; 11:969-81. [DOI: 10.1080/17460441.2016.1227317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Gasiorek A, Trattnig SM, Ahring PK, Kristiansen U, Frølund B, Frederiksen K, Jensen AA. Delineation of the functional properties and the mechanism of action of TMPPAA, an allosteric agonist and positive allosteric modulator of 5-HT3 receptors. Biochem Pharmacol 2016; 110-111:92-108. [DOI: 10.1016/j.bcp.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
|
38
|
1,3-diphenylpropan-1-ones as allosteric modulators of α7 nACh receptors with analgesic and antioxidant properties. Future Med Chem 2016; 8:731-49. [PMID: 27161515 DOI: 10.4155/fmc-2015-0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Nicotine acethylcholine receptors (nAChRs) play critical roles in cognitive processes, neuroprotection and inflammation. RESULTS According to their substituents, 1,3-diphenylpropan-1-one derivatives act as α7 nAChRs negative allosteric modulators (NAM, OMe) or Type I positive allosteric modulators (PAMs, OH). Compounds 7 and 31 were the most effective (989 and 666% enhancement of ACh-induced currents) and potent (EC50: 12.9 and 6.85 μM) PAMs. They exhibited strong radical scavenging values. Compound 31, selective over other neuronal nAChR subtypes and with acceptable pharmacokinetic profile, showed antinociceptive effects in a model of inflammatory pain. CONCLUSION Compound 31 is a novel, potent and selective α7 nAChR PAM, displaying antioxidant and analgesic activities. The 1,3-diphenylpropan-1-one scaffold could be the base toward more advanced type I PAMs for the treatment of nAChR-mediated diseases.
Collapse
|
39
|
Parikh V, Kutlu MG, Gould TJ. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophr Res 2016; 171:1-15. [PMID: 26803692 PMCID: PMC4762752 DOI: 10.1016/j.schres.2016.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The prevalence of tobacco use in the population with schizophrenia is enormously high. Moreover, nicotine dependence is found to be associated with symptom severity and poor outcome in patients with schizophrenia. The neurobiological mechanisms that explain schizophrenia-nicotine dependence comorbidity are not known. This study systematically reviews the evidence highlighting the contribution of nicotinic acetylcholine receptors (nAChRs) to nicotine abuse in schizophrenia. METHODS Electronic data bases (Medline, Google Scholar, and Web of Science) were searched using the selected key words that match the aims set forth for this review. A total of 276 articles were used for the qualitative synthesis of this review. RESULTS Substantial evidence from preclinical and clinical studies indicated that dysregulation of α7 and β2-subunit containing nAChRs account for the cognitive and affective symptoms of schizophrenia and nicotine use may represent a strategy to remediate these symptoms. Additionally, recent meta-analyses proposed that early tobacco use may itself increase the risk of developing schizophrenia. Genetic studies demonstrating that nAChR dysfunction that may act as a shared vulnerability factor for comorbid tobacco dependence and schizophrenia were found to support this view. The development of nAChR modulators was considered an effective therapeutic strategy to ameliorate psychiatric symptoms and to promote smoking cessation in schizophrenia patients. CONCLUSIONS The relationship between schizophrenia and smoking is complex. While the debate for the self-medication versus addiction vulnerability hypothesis continues, it is widely accepted that a dysfunction in the central nAChRs represent a common substrate for various symptoms of schizophrenia and comorbid nicotine dependence.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States.
| | - Munir Gunes Kutlu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| | - Thomas J Gould
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| |
Collapse
|
40
|
Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function. Neuron 2016; 89:983-99. [PMID: 26875626 DOI: 10.1016/j.neuron.2016.01.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/24/2015] [Accepted: 01/06/2016] [Indexed: 01/23/2023]
Abstract
To enhance physiological function of NMDA receptors (NMDARs), we identified positive allosteric modulators (PAMs) of NMDARs with selectivity for GluN2A subunit-containing receptors. X-ray crystallography revealed a binding site at the GluN1-GluN2A dimer interface of the extracellular ligand-binding domains (LBDs). Despite the similarity between the LBDs of NMDARs and AMPA receptors (AMPARs), GluN2A PAMs with good selectivity against AMPARs were identified. Potentiation was observed with recombinant triheteromeric GluN1/GluN2A/GluN2B NMDARs and with synaptically activated NMDARs in brain slices from wild-type (WT), but not GluN2A knockout (KO), mice. Individual GluN2A PAMs exhibited variable degrees of glutamate (Glu) dependence, impact on NMDAR Glu EC50, and slowing of channel deactivation. These distinct PAMs also exhibited differential impacts during synaptic plasticity induction. The identification of a new NMDAR modulatory site and characterization of GluN2A-selective PAMs provide powerful molecular tools to dissect NMDAR function and demonstrate the feasibility of a therapeutically desirable type of NMDAR enhancement.
Collapse
|
41
|
Horenstein NA, Papke RL, Kulkarni AR, Chaturbhuj GU, Stokes C, Manther K, Thakur GA. Critical Molecular Determinants of α7 Nicotinic Acetylcholine Receptor Allosteric Activation: SEPARATION OF DIRECT ALLOSTERIC ACTIVATION AND POSITIVE ALLOSTERIC MODULATION. J Biol Chem 2016; 291:5049-67. [PMID: 26742843 DOI: 10.1074/jbc.m115.692392] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 01/08/2023] Open
Abstract
The α7 nicotinic acetylcholine receptors (nAChRs) are uniquely sensitive to selective positive allosteric modulators (PAMs), which increase the efficiency of channel activation to a level greater than that of other nAChRs. Although PAMs must work in concert with "orthosteric" agonists, compounds such as GAT107 ((3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) have the combined properties of agonists and PAMs (ago-PAM) and produce very effective channel activation (direct allosteric activation (DAA)) by operating at two distinct sites in the absence of added agonist. One site is likely to be the same transmembrane site where PAMs like PNU-120596 function. We show that the other site, required for direct activation, is likely to be solvent-accessible at the extracellular domain vestibule. We identify key attributes of molecules in this family that are able to act at the DAA site through variation at the aryl ring substituent of the tetrahydroquinoline ring system and with two different classes of competitive antagonists of DAA. Analyses of molecular features of effective allosteric agonists allow us to propose a binding model for the DAA site, featuring a largely non-polar pocket accessed from the extracellular vestibule with an important role for Asp-101. This hypothesis is supported with data from site-directed mutants. Future refinement of the model and the characterization of specific GAT107 analogs will allow us to define critical structural elements that can be mapped onto the receptor surface for an improved understanding of this novel way to target α7 nAChR therapeutically.
Collapse
Affiliation(s)
- Nicole A Horenstein
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Roger L Papke
- the Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610-0267, and
| | - Abhijit R Kulkarni
- the Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Ganesh U Chaturbhuj
- the Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Clare Stokes
- the Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610-0267, and
| | - Khan Manther
- the Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610-0267, and
| | - Ganesh A Thakur
- the Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
42
|
Abstract
Lung cancers express an autocrine cholinergic loop in which secreted acetylcholine can stimulate tumor growth through both nicotinic and muscarinic receptors. Because activation of mAChR and nAChR stimulates growth; tumor growth can be stimulated by both locally synthesized acetylcholine as well as acetylcholine from distal sources and from nicotine in the high percentage of lung cancer patients who are smokers. The stimulation of lung cancer growth by cholinergic agonists offers many potential new targets for lung cancer therapy. Cholinergic signaling can be targeted at the level of choline transport; acetylcholine synthesis, secretion and degradation; and nicotinic and muscarinic receptors. In addition, the newly describe family of ly-6 allosteric modulators of nicotinic signaling such as lynx1 and lynx2 offers yet another new approach to novel lung cancer therapeutics. Each of these targets has their potential advantages and disadvantages for the development of new lung cancer therapies which are discussed in this review.
Collapse
Affiliation(s)
- Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States.
| |
Collapse
|
43
|
Grazioso G, Sgrignani J, Capelli R, Matera C, Dallanoce C, De Amici M, Cavalli A. Allosteric Modulation of Alpha7 Nicotinic Receptors: Mechanistic Insight through Metadynamics and Essential Dynamics. J Chem Inf Model 2015; 55:2528-39. [PMID: 26569022 DOI: 10.1021/acs.jcim.5b00459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing attention has recently been devoted to allosteric modulators, as they can provide inherent advantages over classic receptor agonists. In the field of nicotinic receptors (nAChRs), the main advantage is that allosteric modulators can trigger pharmacological responses, limiting receptor desensitization. Most of the known allosteric ligands are "positive allosteric modulators" (PAMs), which increase both sensitivity to receptor agonists and current amplitude. Intriguingly, some allosteric modulators are also able to activate the α7 receptor (α7-nAChR) even in the absence of orthosteric agonists. These compounds have been named "ago-allosteric modulators" and GAT107 has been studied in depth because of its unique mechanism of action. We here investigate by molecular dynamics simulations, metadynamics, and essential dynamics the activation mechanism of α7-nAChR, in the presence of different nicotinic modulators. We determine the free energy profiles associated with the closed-to-open motion of the loop C, and we highlight mechanistic differences observed in the presence of different modulators. In particular, we demonstrate that GAT107 triggers conformational motions and cross-talk similar to those observed when the α7-nACh receptor is in complex with both an agonist and an allosteric modulator.
Collapse
Affiliation(s)
- Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Jacopo Sgrignani
- Institute of Research in Biomedicine (IRB) , Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Romina Capelli
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Carlo Matera
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Clelia Dallanoce
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Andrea Cavalli
- Drug Discovery and Development-Computation, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy.,Department of Pharmacy and Biotecnology, University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
44
|
López JJ, Pérez EG, García-Colunga J. Dual effects of a 2-benzylquinuclidinium derivative on α7-containing nicotinic acetylcholine receptors in rat hippocampal interneurons. Neurosci Lett 2015; 607:35-39. [PMID: 26384784 DOI: 10.1016/j.neulet.2015.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely distributed in the brain. Particularly α7-containing nAChRs, associated with several physiological roles and pathologies, are one of the most abundant. Here, we studied 2-(4-hexyloxybenzyl)-1-methylquinuclidin-1-ium iodide (designated as 8d), on ion currents elicited by choline, ICh, (Ch, a selective agonist for α7-containing nAChRs), recorded in interneurons from the stratum radiatum of the rat hippocampal CA1 region by using the whole-cell voltage-clamp technique. The 8d-concentration/Ch-response relationship exhibited high and low inhibitory affinities for α7-containing nAChRs, with IC50 values of 0.59 and 6.80 μM, respectively. Interestingly, 8d in a range of 3-10 μM exerted opposite effects: a short early potentiation and a long late inhibition of the ICh; and 8d alone elicited a non-decaying inward current. Furthermore, potentiation and inhibition of the ICh by 8d depended on the membrane potential, both being stronger at -20 than at -70 mV; indicating that 8d interacts with at least two sites into the ion channel/receptor complex: one for potentiating and another for inhibiting the α7-containing nAChRs. These results suggest that 8d may act as agonist, antagonist and positive modulator of α7-containing nAChRs in hippocampal interneurons.
Collapse
Affiliation(s)
- Jhon J López
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Correo 22, Santiago, Chile
| | - Edwin G Pérez
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Correo 22, Santiago, Chile.
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| |
Collapse
|
45
|
Wang J, Kuryatov A, Jin Z, Norleans J, Kamenecka TM, Kenny PJ, Lindstrom J. A Novel α2/α4 Subtype-selective Positive Allosteric Modulator of Nicotinic Acetylcholine Receptors Acting from the C-tail of an α Subunit. J Biol Chem 2015; 290:28834-46. [PMID: 26432642 DOI: 10.1074/jbc.m115.676551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/30/2022] Open
Abstract
Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChR) are important therapeutic candidates as well as valuable research tools. We identified a novel type II PAM, (R)-7-bromo-N-(piperidin-3-yl)benzo[b]thiophene-2-carboxamide (Br-PBTC), which both increases activation and reactivates desensitized nAChRs. This compound increases acetylcholine-evoked responses of α2* and α4* nAChRs but is without effect on α3* or α6* nAChRs (* indicates the presence of other nAChR subunits). Br-BPTC acts from the C-terminal extracellular sequences of α4 subunits, which is also a PAM site for steroid hormone estrogens such as 17β-estradiol. Br-PBTC is much more potent than estrogens. Like 17β-estradiol, the non-steroid Br-PBTC only requires one α4 subunit to potentiate nAChR function, and its potentiation is stronger with more α4 subunits. This feature enables Br-BPTC to potentiate activation of (α4β2)(α6β2)β3 but not (α6β2)2β3 nAChRs. Therefore, this compound is potentially useful in vivo for determining functions of different α6* nAChR subtypes. Besides activation, Br-BPTC affects desensitization of nAChRs induced by sustained exposure to agonists. After minutes of exposure to agonists, Br-PBTC reactivated short term desensitized nAChRs that have at least two α4 subunits but not those with only one. Three α4 subunits were required for Br-BPTC to reactivate long term desensitized nAChRs. These data suggest that higher PAM occupancy promotes channel opening more efficiently and overcomes short and long term desensitization. This C-terminal extracellular domain could be a target for developing subtype or state-selective drugs for nAChRs.
Collapse
Affiliation(s)
- Jingyi Wang
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alexander Kuryatov
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhuang Jin
- Department of Molecular Therapeutics, Scripps Research Institute, Scripps, Florida 33458, and
| | - Jack Norleans
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, Scripps Research Institute, Scripps, Florida 33458, and
| | - Paul J Kenny
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jon Lindstrom
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
46
|
Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy. Pharmacol Res 2015; 101:9-17. [PMID: 26318763 DOI: 10.1016/j.phrs.2015.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022]
Abstract
For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.
Collapse
|
47
|
Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol 2015; 97:408-417. [PMID: 26231943 DOI: 10.1016/j.bcp.2015.07.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are receptors for the neurotransmitter acetylcholine and are members of the 'Cys-loop' family of pentameric ligand-gated ion channels (LGICs). Acetylcholine binds in the receptor extracellular domain at the interface between two subunits and research has identified a large number of nAChR-selective ligands, including agonists and competitive antagonists, that bind at the same site as acetylcholine (commonly referred to as the orthosteric binding site). In addition, more recent research has identified ligands that are able to modulate nAChR function by binding to sites that are distinct from the binding site for acetylcholine, including sites located in the transmembrane domain. These include positive allosteric modulators (PAMs), negative allosteric modulators (NAMs), silent allosteric modulators (SAMs) and compounds that are able to activate nAChRs via an allosteric binding site (allosteric agonists). Our aim in this article is to review important aspects of the pharmacological diversity of nAChR allosteric modulators and to describe recent evidence aimed at identifying binding sites for allosteric modulators on nAChRs.
Collapse
|
48
|
Role of Lynx1 and related Ly6 proteins as modulators of cholinergic signaling in normal and neoplastic bronchial epithelium. Int Immunopharmacol 2015; 29:93-8. [PMID: 26025503 DOI: 10.1016/j.intimp.2015.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 01/05/2023]
Abstract
The ly-6 proteins are a large family of proteins that resemble the snake three finger alpha toxins such as α-bungarotoxin and are defined by their multiple cysteine residues. Multiple members of the ly-6 protein family can modulate nicotinic signaling including lynx1, lynx2, slurp-1, slurp-2 and prostate stem cell antigen (PSCA). Consistent with the expression of multiple nicotinic receptors in bronchial epithelium, multiple members of the nicotinic-modulatory ly-6 proteins are expressed in lung including lynx1 and lynx2. We studied the role of lynx1 as an exemplar of the role of ly-6 proteins in lung. Our data demonstrates that lynx1 acts as a negative modulator of nicotinic signaling in normal and neoplastic lung. In normal lung lynx1 serves to limit the ability of chronic nicotine exposure to increase levels of nicotinic receptors and also serves to limit the ability of nicotine to upregulate levels of GABAA receptors in lung. In turn this allows lynx1 to limit the ability of nicotine to upregulate levels of mucin which is mediated by GABAergic signaling. This suggests that lynx1-mimetics may have potential for treatment of asthma and COPD. In that most lung cancer cells also express nicotinic receptor and lynx1 we examined the role of lynx-1 in lung cancer. Lynx1 levels are decreased in lung cancers compared to adjacent normal lung. Knockdown of lynx1 by siRNAs increased growth of lung cancer cells while expression of lynx1 in lung cancer cell decreased cell proliferation. This suggests that lynx1 is an endogenous regulator of lung cancer growth. Given that multiple small molecule negative and positive allosteric modulators of nicotinic receptors have already been developed, this suggests that lynx1 is a highly druggable target both for development of drugs that may limit lung cancer growth as well as for drugs that may be effective for asthma or COPD treatment.
Collapse
|
49
|
Chatzidaki A, D'Oyley JM, Gill-Thind JK, Sheppard TD, Millar NS. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors. Neuropharmacology 2015; 97:75-85. [PMID: 25998276 PMCID: PMC4548482 DOI: 10.1016/j.neuropharm.2015.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 11/29/2022]
Abstract
Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9′ position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22′ position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. A series of novel positive allosteric modulators (PAMs) is described. The series of PAMs display differing effects on α7 nAChR desensitisation. Transmembrane mutations influencing PAM activity are examined. Transmembrane mutations can convert PAMs into agonists. Identification of a mutation with differing effects on type I and type II PAMs.
Collapse
Affiliation(s)
- Anna Chatzidaki
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Jarryl M D'Oyley
- Department of Chemistry, University College London, London, United Kingdom
| | - JasKiran K Gill-Thind
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Tom D Sheppard
- Department of Chemistry, University College London, London, United Kingdom
| | - Neil S Millar
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom.
| |
Collapse
|
50
|
Wang J, Kuryatov A, Sriram A, Jin Z, Kamenecka TM, Kenny PJ, Lindstrom J. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors. J Biol Chem 2015; 290:13907-18. [PMID: 25869137 DOI: 10.1074/jbc.m115.646786] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets.
Collapse
Affiliation(s)
- Jingyi Wang
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alexander Kuryatov
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Aarati Sriram
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhuang Jin
- Department of Molecular Therapeutics at the Scripps Research Institute, Scripps, Florida 33458, and
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics at the Scripps Research Institute, Scripps, Florida 33458, and
| | - Paul J Kenny
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jon Lindstrom
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| |
Collapse
|