1
|
Xiao J, Sun T, Jiang S, Xiao Z, Shan Y, Li T, Pan Z, Li Q, Fu F. Antioxidant Effects and Potential Mechanisms of Citrus reticulata 'Chachi' Components: An Integrated Approach of Network Pharmacology and Metabolomics. Foods 2024; 13:4018. [PMID: 39766961 PMCID: PMC11675786 DOI: 10.3390/foods13244018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Citrus reticulata 'Chachi' (CRC), recognized for its considerable edible and medicinal significance, is a valuable source of metabolites beneficial to human health. This research investigates the metabolic distinctions and antioxidant properties across four different parts of CRC, using multivariate statistical analysis to interpret metabolomic data and network pharmacology to identify potential antioxidant targets and relevant signaling pathways. The results indicate considerable metabolic differences in different parts of the sample, with 1622 metabolites showing differential expression, including 816 secondary metabolites, primarily consisting of terpenoids (31.02%) and flavonoids (25.22%). The dried mature citrus peel (CP) section demonstrates the highest level of total phenolics (6.8 mg/g), followed by the pulp without seed (PU) (4.52 mg/g), pulp with seed (PWS) (4.26 mg/g), and the seed (SE) (2.16 mg/g). Interestingly, targeted high-performance liquid chromatography of flavonoids reveals the highest level of nobiletin and tangeretin in CP, whereas PU has the highest level of hesperidin, narirutin, and didymin. Furthermore, all four sections of CRC exhibit robust antioxidant properties in in vitro assessments (CP > PU > PWS > SE). Lastly, the network pharmacology uncovered potential antioxidant mechanisms in CRC. This research offers deeper insights into the development and utilization of byproducts in the CRC processing industry.
Collapse
Affiliation(s)
- Jiahao Xiao
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Tian Sun
- Zheng Gan Hui (Jiang Men Xin Hui) Dried Tangerine Peel, Ltd., Jiangmen 529100, China
| | - Shengyu Jiang
- Zheng Gan Hui (Jiang Men Xin Hui) Dried Tangerine Peel, Ltd., Jiangmen 529100, China
| | - Zhiqiang Xiao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yang Shan
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Tao Li
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Zhaoping Pan
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Qili Li
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Fuhua Fu
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
2
|
Meaza I, Williams AR, Wise SS, Lu H, Wise JP. Carcinogenic Mechanisms of Hexavalent Chromium: From DNA Breaks to Chromosome Instability and Neoplastic Transformation. Curr Environ Health Rep 2024; 11:484-546. [PMID: 39466546 PMCID: PMC11872169 DOI: 10.1007/s40572-024-00460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW Hexavalent chromium [Cr(VI)] is a well-established human carcinogen, yet the mechanisms by which it leads to carcinogenic outcomes is still unclear. As a driving factor in its carcinogenic mechanism, Cr(VI) causes DNA double strand breaks and break-repair deficiency, leading to the development of chromosome instability. Therefore, the aim of this review is to discuss studies assessing Cr(VI)-induced DNA double strand breaks, chromosome damage and instability, and neoplastic transformation including cell culture, experimental animal, human pathology and epidemiology studies. RECENT FINDINGS Recent findings confirm Cr(VI) induces DNA double strand breaks, chromosome instability and neoplastic transformation in exposed cells, animals and humans, emphasizing these outcomes as key steps in the mechanism of Cr(VI) carcinogenesis. Moreover, recent findings suggest chromosome instability is a key phenotype in Cr(VI)-neoplastically transformed clones and is an inheritable and persistent phenotype in exposed cells, once more suggesting chromosome instability as central in the carcinogenic mechanism. Although limited, some studies have demonstrated DNA damage and epigenetic modulation are also key outcomes in biopsies from chromate workers that developed lung cancer. Additionally, we also summarized new studies showing Cr(VI) causes genotoxic and clastogenic effects in cells from wildlife, such as sea turtles, whales, and alligators. Overall, across the literature, it is clear that Cr(VI) causes neoplastic transformation and lung cancer. Many studies measured Cr(VI)-induced increases in DNA double strand breaks, the most lethal type of breaks clearly showing that Cr(VI) is genotoxic. Unrepaired or inaccurately repaired breaks lead to the development of chromosome instability, which is a common phenotype in Cr(VI) exposed cells, animals, and humans. Indeed, many studies show Cr(VI) induces both structural and numerical chromosome instability. Overall, the large body of literature strongly supports the conclusion that Cr(VI) causes DNA double strand breaks, inhibits DNA repair and chromosome instability, which are key to the development of Cr(VI)-induced cell transformation.
Collapse
Affiliation(s)
- Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Aggie R Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA.
| |
Collapse
|
3
|
Yang L, Li S, Chen Y, Wang M, Yu J, Bai W, Hong L. Combined Metabolomics and Network Pharmacology Analysis Reveal the Effect of Rootstocks on Anthocyanins, Lipids, and Potential Pharmacological Ingredients of Tarroco Blood Orange ( Citrus sinensis L. Osbeck). PLANTS (BASEL, SWITZERLAND) 2024; 13:2259. [PMID: 39204695 PMCID: PMC11358934 DOI: 10.3390/plants13162259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The benefits of citrus fruits are strongly associated with their secondary metabolites. In this study, we conducted widely targeted metabolomics analyses to compare the variability of the ingredients in four scion-rootstock combinations. A total of 376 differential metabolites were obtained by a multivariate statistical analysis, and a KEGG pathway analysis showed that the enriched metabolic pathways were mainly related to the biosynthesis of flavonoids as well as lipid metabolism. The anthocyanin-targeted metabolomic features showed that cyanidin 3-O-glucoside, cyanidin 3-O-(6-O-malonyl-beta-D-glucoside), cyanidin 3-O-sophoroside, and cyanidin 3-O-xyloside were the pigments responsible for the red color of Tarocco. A lipid metabolomics analysis revealed that when Tarocco was hetero-grafted with rootstock H, there was an increase in the content of each lipid subclass, accompanied by an increase in the levels of unsaturated fatty acids, including polyunsaturated linoleic and linolenic acids, thus impacting the ratio of unsaturated fatty acids to saturated fatty acids. Additionally, we determined their antioxidant capacity ('Trifoliate orange' (Z) > 'Citrange' (ZC) > 'Hongju' (H) > 'Ziyang Xiangcheng' (X)) using in vitro assays. Finally, we utilized a network pharmacology analysis to explore the antioxidant mechanisms and potential pharmacological ingredients; we obtained 26 core targets proteins and 42 core metabolites associated with oxidative damage, providing a basis for future preventive and therapeutic applications of these metabolites.
Collapse
Affiliation(s)
- Lei Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Shuang Li
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Yang Chen
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Min Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Jianjun Yu
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Wenqin Bai
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Lin Hong
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| |
Collapse
|
4
|
Wang J, Li J, Wang S, Pan Y, Yang J, Yin L, Dou H, Hou Y. Amphiregulin secreted by umbilical cord multipotent stromal cells protects against ferroptosis of macrophages via the activating transcription factor 3-CD36 axis to alleviate endometrial fibrosis. Stem Cells 2024; 42:763-776. [PMID: 38733123 DOI: 10.1093/stmcls/sxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
Endometrium fibrosis is the leading cause of uterine infertility. Macrophages participated in the occurrence and development of endometrial fibrosis. We previously reported that human umbilical cord multipotent stromal cells (hUC-MSCs) exerted their therapeutic effect in a macrophage-dependent manner in endometrial fibrosis. However precise mechanisms by which hUC-MSCs may influence macrophages in endometrial fibrosis remain largely unexplored. Here, we demonstrated that abnormal iron and lipid metabolism occurred in patients with intrauterine adhesions (IUA) and murine models. Ferroptosis has been proven to contribute to the progression of fibrotic diseases. Our results revealed that pharmacological activation of ferroptosis by Erastin aggravated endometrial fibrosis, while inhibition of ferroptosis by Ferrostatin-1 ameliorated endometrial fibrosis in vivo. Moreover, ferroptosis of macrophages was significantly upregulated in endometria of IUA murine models. Of note, transcriptome profiles revealed that CD36 gene expression was significantly increased in patients with IUA and immunofluorescence analysis showed CD36 protein was mainly located in macrophages. Silencing CD36 in macrophages could reverse cell ferroptosis. Dual luciferase reporter assay revealed that CD36 was the direct target of activation transcription factor 3 (ATF3). Furthermore, through establishing coculture system and IUA murine models, we found that hUC-MSCs had a protective role against macrophage ferroptosis and alleviated endometrial fibrosis related to decreased CD36 and ATF3. The effect of hUC-MSCs on macrophage ferroptosis was attributed to the upregulation of amphiregulin (AREG). Our data highlighted that macrophage ferroptosis occurred in endometrial fibrosis via the ATF3-CD36 pathway and hUC-MSCs protected against macrophage ferroptosis to alleviate endometrial fibrosis via secreting AREG. These findings provided a potential target for therapeutic implications of endometrial fibrosis.
Collapse
Affiliation(s)
- Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of People's Republic of China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of People's Republic of China
| | - Shuangan Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of People's Republic of China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of People's Republic of China
- Jiangsu International Laboratory of Immunity and Metabolism, The Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Jingjing Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of People's Republic of China
| | - Lijie Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of People's Republic of China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of People's Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of People's Republic of China
| |
Collapse
|
5
|
Granata S, Vivarelli F, Morosini C, Canistro D, Paolini M, Fairclough LC. Toxicological Aspects Associated with Consumption from Electronic Nicotine Delivery System (ENDS): Focus on Heavy Metals Exposure and Cancer Risk. Int J Mol Sci 2024; 25:2737. [PMID: 38473984 DOI: 10.3390/ijms25052737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Tobacco smoking remains one of the leading causes of premature death worldwide. Electronic Nicotine Delivery Systems (ENDSs) are proposed as a tool for smoking cessation. In the last few years, a growing number of different types of ENDSs were launched onto the market. Despite the manufacturing differences, ENDSs can be classified as "liquid e-cigarettes" (e-cigs) equipped with an atomizer that vaporizes a liquid composed of vegetable glycerin (VG), polypropylene glycol (PG), and nicotine, with the possible addition of flavorings; otherwise, the "heated tobacco products" (HTPs) heat tobacco sticks through contact with an electronic heating metal element. The presence of some metals in the heating systems, as well as in solder joints, involves the possibility that heavy metal ions can move from these components to the liquid, or they can be adsorbed into the tobacco stick from the heating blade in the case of HTPs. Recent evidence has indicated the presence of heavy metals in the refill liquids and in the mainstream such as arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), copper (Cu), and lead (Pb). The present review discusses the toxicological aspects associated with the exposition of heavy metals by consumption from ENDSs, focusing on metal carcinogenesis risk.
Collapse
Affiliation(s)
- Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucy C Fairclough
- School of Life Sciences, University of Nottingham, East Dr, Nottingham NG7 2TQ, UK
| |
Collapse
|
6
|
SHAHRANI MESFERAL, GAHTANI REEM, ABOHASSAN MOHAMMAD, ALSHAHRANI MOHAMMAD, ALRAEY YASSER, DERA AYED, ASIRI MOHAMMADRAJEH, RAJAGOPALAN PRASANNA. High-throughput computational screening and in vitro evaluation identifies 5-(4-oxo-4H-3,1-benzoxazin-2-yl)-2-[3-(4-oxo-4H-3,1-benzoxazin-2-yl) phenyl]-1H-isoindole-1,3(2H)-dione (C3), as a novel EGFR-HER2 dual inhibitor in gastric tumors. Oncol Res 2023; 32:251-259. [PMID: 38186572 PMCID: PMC10765126 DOI: 10.32604/or.2023.043139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 01/09/2024] Open
Abstract
Gastric cancers are caused primarily due to the activation and amplification of the EGFR or HER2 kinases resulting in cell proliferation, adhesion, angiogenesis, and metastasis. Conventional therapies are ineffective due to the intra-tumoral heterogeneity and concomitant genetic mutations. Hence, dual inhibition strategies are recommended to increase potency and reduce cytotoxicity. In this study, we have conducted computational high-throughput screening of the ChemBridge library followed by in vitro assays and identified novel selective inhibitors that have a dual impediment of EGFR/HER2 kinase activities. Diversity-based High-throughput Virtual Screening (D-HTVS) was used to screen the whole ChemBridge small molecular library against EGFR and HER2. The atomistic molecular dynamic simulation was conducted to understand the dynamics and stability of the protein-ligand complexes. EGFR/HER2 kinase enzymes, KATOIII, and Snu-5 cells were used for in vitro validations. The atomistic Molecular Dynamics simulations followed by solvent-based Gibbs binding free energy calculation of top molecules, identified compound C3 (5-(4-oxo-4H-3,1-benzoxazin-2-yl)-2-[3-(4-oxo-4H-3,1-benzoxazin-2-yl) phenyl]-1H-isoindole-1,3(2H)-dione) to have a good affinity for both EGFR and HER2. The predicted compound, C3, was promising with better binding energy, good binding pose, and optimum interactions with the EGFR and HER2 residues. C3 inhibited EGFR and HER2 kinases with IC50 values of 37.24 and 45.83 nM, respectively. The GI50 values of C3 to inhibit KATOIII and Snu-5 cells were 84.76 and 48.26 nM, respectively. Based on these findings, we conclude that the identified compound C3 showed a conceivable dual inhibitory activity on EGFR/HER2 kinase, and therefore can be considered as a plausible lead-like molecule for treating gastric cancers with minimal side effects, though testing in higher models with pharmacokinetic approach is required.
Collapse
Affiliation(s)
- MESFER AL SHAHRANI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - REEM GAHTANI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - MOHAMMAD ABOHASSAN
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - MOHAMMAD ALSHAHRANI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - YASSER ALRAEY
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - AYED DERA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - MOHAMMAD RAJEH ASIRI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - PRASANNA RAJAGOPALAN
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
7
|
Wise JTF, Kondo K. Increased Lipogenesis Is Important for Hexavalent Chromium-Transformed Lung Cells and Xenograft Tumor Growth. Int J Mol Sci 2023; 24:17060. [PMID: 38069382 PMCID: PMC10707372 DOI: 10.3390/ijms242317060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Hexavalent chromium, Cr(VI), is a known carcinogen and environmental health concern. It has been established that reactive oxygen species, genomic instability, and DNA damage repair deficiency are important contributors to the Cr(VI)-induced carcinogenesis mechanism. However, some hallmarks of cancer remain under-researched regarding the mechanism behind Cr(VI)-induced carcinogenesis. Increased lipogenesis is important to carcinogenesis and tumorigenesis in multiple types of cancers, yet the role increased lipogenesis has in Cr(VI) carcinogenesis is unclear. We report here that Cr(VI)-induced transformation of three human lung cell lines (BEAS-2B, BEP2D, and WTHBF-6) resulted in increased lipogenesis (palmitic acid levels), and Cr(VI)-transformed cells had an increased expression of key lipogenesis proteins (ATP citrate lyase [ACLY], acetyl-CoA carboxylase [ACC1], and fatty acid synthase [FASN]). We also determined that the Cr(VI)-transformed cells did not exhibit an increase in fatty acid oxidation or lipid droplets compared to their passage-matched control cells. Additionally, we observed increases in ACLY, ACC1, and FASN in lung tumor tissue compared with normal-adjacent lung tissue (in chromate workers that died of chromate-induced tumors). Next, using a known FASN inhibitor (C75), we treated Cr(VI)-transformed BEAS-2B with this inhibitor and measured cell growth, FASN protein expression, and growth in soft agar. We observed that FASN inhibition results in a decreased protein expression, decreased cell growth, and the inhibition of colony growth in soft agar. Next, using shRNA to knock down the FASN protein in Cr(VI)-transformed BEAS-2B cells, we saw a decrease in FASN protein expression and a loss of the xenograft tumor development of Cr(VI)-transformed BEAS-2B cells. These results demonstrate that FASN is important for Cr(VI)-transformed cell growth and cancer properties. In conclusion, these data show that Cr(VI)-transformation in vitro caused an increase in lipogenesis, and that this increase is vital for Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- James T. F. Wise
- Wise Laboratory of Nutritional Toxicology and Metabolism, School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, 269 Knapp Hall, Baton Rouge, LA 70803, USA
- School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, Baton Rouge, LA 70803, USA
- School of Nutrition and Food Sciences, Louisiana State University Agriculture Center, Baton Rouge, LA 70803, USA
- Division of Nutritional Sciences, Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City 770-8509, Japan
| |
Collapse
|
8
|
Cao X, Shi K, Xu Y, Zhang P, Zhang H, Pan S. Integrated metabolomics and network pharmacology to reveal antioxidant mechanisms and potential pharmacological ingredients of citrus herbs. Food Res Int 2023; 174:113514. [PMID: 37986422 DOI: 10.1016/j.foodres.2023.113514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
The benefits of citrus herbs are strongly associated with their secondary metabolites. In the study, we conducted widely-targeted metabolomics and ultra-high performance liquid chromatography (UPLC) to compare the variability of ingredients in four citrus herbs. In total, we discovered 1126 secondary metabolites, primarily comprising flavonoids, phenolic acids, lignans and coumarins, and alkaloids. Differential metabolites of citrus herbs were searched by multivariate statistical analysis. Notably, Citri Reticulatae Pericarpium contained higher levels of flavonoids, while Zhique and Huajuhong demonstrated a greater abundance of coumarins. Among the flavonoids determined by UPLC, Guangchenpi demonstrated significantly elevated levels of polymethoxyflavones (tangeretin and nobiletin) compared to other citrus herbs. Additionally, we determined their antioxidant capacity (Chenpi > Guangchenpi > Huajuhong > Zhique) using in vitro assays. Finally, we utilized network pharmacology to explore the antioxidant mechanisms and potential pharmacological ingredients, providing a basis for future preventive and therapeutic applications of these metabolites.
Collapse
Affiliation(s)
- Xiaomin Cao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Kaixin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Yang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Peipei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Hongyan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China.
| |
Collapse
|
9
|
Shi S, Li J, Zhang Z, Tu H, Max C. Isorhapontigenin (ISO) inhibits malignant cell transformation, migration, and invasion through MEG3/NEDD9 signaling in Cr(VI)-transformed cells. Toxicol Appl Pharmacol 2023; 476:116661. [PMID: 37619952 PMCID: PMC10874125 DOI: 10.1016/j.taap.2023.116661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Cr(VI) compounds are confirmed human carcinogens. Maternally expression 3 (MEG3) is the first long non-coding RNA to be identified as a tumor suppressor. MEG3 is frequently downregulated or lost in various primary human tumor tissues and cancer cell lines. Downregulation of MEG3 is associated with cancer initiation, progression, and metastasis. Our previous study has revealed that MEG3 was lost and NEDD9 was upregulated in Cr(VI)-transformed cells compared to those in passage-matched normal BEAS-2B cells. Overexpression of MEG3 reduced NEDD9. β-Catenin was activated in Cr(VI)-transformed cells, overexpression of MEG3 or knockdown of NEDD9 inhibited the activation of β-Catenin. The results from the present study showed that isorhapontigenin (ISO) treatment is able to suppress cell proliferation, migration, and invasion of Cr(VI)-transformed cells. Further study showed that ISO treatment in Cr(VI)-transformed cells decreases the levels of Ki67, a biomarker for cell proliferation, and of cyclin D1, a regulator for the cell cycle. ISO elevated the MEG3 expression level in Cr(VI)-transformed cells. The DNA methylation transferases DNMT3a, DNMT3b, and DNMT1 levels were reduced upon ISO treatment. ISO treatment decreased both mRNA and protein levels of NEDD9. In addition, ISO treatment reduced the activation of β-catenin. Slug was upregulated and E-Cadherin was downregulated in Cr(VI)-transformed cells, treatment with ISO decreased Slug and increased E-Cadherin. This study demonstrated that ISO is a potent therapeutical agent against lung cancer induced by Cr(VI).
Collapse
Affiliation(s)
- Sophia Shi
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25(th) Street, NY, New York 10010, United States of America
| | - Jingxia Li
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25(th) Street, NY, New York 10010, United States of America
| | - Zhuo Zhang
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25(th) Street, NY, New York 10010, United States of America
| | - Huailu Tu
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25(th) Street, NY, New York 10010, United States of America
| | - Costa Max
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25(th) Street, NY, New York 10010, United States of America.
| |
Collapse
|
10
|
Zhang Z, Shi S, Li J, Costa M. Long Non-Coding RNA MEG3 in Metal Carcinogenesis. TOXICS 2023; 11:toxics11020157. [PMID: 36851033 PMCID: PMC9962265 DOI: 10.3390/toxics11020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Most transcripts from human genomes are non-coding RNAs (ncRNAs) that are not translated into proteins. ncRNAs are divided into long (lncRNAs) and small non-coding RNAs (sncRNAs). LncRNAs regulate their target genes both transcriptionally and post-transcriptionally through interactions with proteins, RNAs, and DNAs. Maternally expressed gene 3 (MEG3), a lncRNA, functions as a tumor suppressor. MEG3 regulates cell proliferation, cell cycle, apoptosis, hypoxia, autophagy, and many other processes involved in tumor development. MEG3 is downregulated in various cancer cell lines and primary human cancers. Heavy metals, such as hexavalent chromium (Cr(VI)), arsenic, nickel, and cadmium, are confirmed human carcinogens. The exposure of cells to these metals causes a variety of cancers. Among them, lung cancer is the one that can be induced by exposure to all of these metals. In vitro studies have demonstrated that the chronic exposure of normal human bronchial epithelial cells (BEAS-2B) to these metals can cause malignant cell transformation. Metal-transformed cells have the capability to cause an increase in cell proliferation, resistance to apoptosis, elevated migration and invasion, and properties of cancer stem-like cells. Studies have revealed that MEG is downregulated in Cr(VI)-transformed cells, nickel-transformed cells, and cadmium (Cd)-transformed cells. The forced expression of MEG3 reduces the migration and invasion of Cr(VI)-transformed cells through the downregulation of the neuronal precursor of developmentally downregulated protein 9 (NEDD9). MEG3 suppresses the malignant cell transformation of nickel-transformed cells. The overexpression of MEG3 decreases Bcl-xL, causing reduced apoptosis resistance in Cd-transformed cells. This paper reviews the current knowledge of lncRNA MEG3 in metal carcinogenesis.
Collapse
|
11
|
Li C, Edeni D, Platkin S, Liu R, Li J, Hossain M, Rahman M, Islam H, Phillips JL, Xu D. Effect of Gene 33/Mig6/ERRFI1 on hexavalent chromium-induced transformation of human bronchial epithelial cells depends on the length of exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 40:227-247. [PMID: 36715065 DOI: 10.1080/26896583.2022.2147358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hexavalent chromium (Cr(VI)) compounds are environmental and occupational lung carcinogens. The present study followed the chronic effect of Cr(VI) on the neoplastic transformation of BEAS-2B lung bronchial epithelial cells with or without deletion of Gene 33 (Mig6, EFFRI1), a multifunctional adaptor protein. We find that Gene 33-deleted cells exhibit increased anchorage-independent growth compared to control cells after transformed by 8-week but not 24-week Cr(VI) exposure. Gene 33-deleted cells show a higher level of cell proliferation and are more resistant to acute Cr(VI) toxicity compared to control cells after transformed by 8-week but not 24-week Cr(VI) exposure, despite that 24-week-transformed cells have increased resistance to acute Cr(VI) toxicity. However, Gene 33-deleted cells show increased migration after transformed by both 8-week and 24-week Cr(VI) exposures. Furthermore, only cells transformed by 24 weeks of Cr(VI) exposure can form subcutaneous tumors in nude mice. Although no significant difference in the size of tumors formed by the two cell types, there is a marked difference in the histological manifestation and more MMP3 expression in tumors from Gene 33-deleted cells. Our results demonstrate progressive neoplastic transformation of BEAS-2B cells and the adaptation of these cells to Gene 33 deletion during chronic exposure to Cr(VI).
Collapse
Affiliation(s)
- Cen Li
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Dina Edeni
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Sarah Platkin
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Raymond Liu
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Jiangwei Li
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Maheen Hossain
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Mozibur Rahman
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Humayun Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - John L Phillips
- Department of Urology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Dazhong Xu
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| |
Collapse
|
12
|
Wise SS, Lu H, Speer RM, Wise JP, Young J, Toyoda JH, Meaza I, Croom-Perez TJ, Kouokam JC, Specht A, Liu KJ, Hoyle GW, Wise JP. Chromium distribution in an oropharyngeal aspiration model for hexavalent chromium in rats. Toxicol Appl Pharmacol 2022; 457:116294. [PMID: 36283442 PMCID: PMC10121970 DOI: 10.1016/j.taap.2022.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a well-known and widespread environmental contaminant associated with a variety of adverse health effects, in particular lung cancer. The primary route of exposure in humans is through inhalation. Particulate forms of Cr(VI) are the most potent but in vivo studies are difficult. Intratracheal instillation requires highly trained surgical procedures which also limits the number of repeated exposures possible and thus requires high doses. Inhalation studies can deliver lower more chronic doses but are expensive and generate dangerous aerosols. We evaluated an oropharyngeal aspiration exposure route for zinc chromate particles in Wistar rats. Animals were treated once per week for 90 days. We found chromium accumulated in the lungs, blood, and reproductive tissues of all treated animals. Additionally, we found inflammatory indicators in the lung were elevated and circulating lymphocytes had increased chromosomal damage. These results show oropharyngeal aspiration provides a practicable exposure route for chronic and sub-chronic exposures of Cr(VI) particles.
Collapse
Affiliation(s)
- Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America; Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, United States of America
| | - John Pierce Wise
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, United States of America
| | - Jamie Young
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Aaron Specht
- School of Health Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, United States of America
| | - Gary W Hoyle
- Department of Environmental and Occupational Health, School of Public Health and Information Sciences University of Louisville, Louisville, KY, United States of America
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America.
| |
Collapse
|
13
|
Ge X, Li M, Song G, Zhang Z, Yin J, Ge Z, Shi Z, Liu L, Jiang B, Qian X, Shen H. Chromium (VI)-induced ALDH1A1/EGF axis promotes lung cancer progression. Clin Transl Med 2022; 12:e1136. [PMID: 36504325 PMCID: PMC9742488 DOI: 10.1002/ctm2.1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Cr(VI) is broadly applied in industry. Cr(VI) exposure places a big burden on public health, thereby increasing the risk of lung squamous cell carcinoma (LUSC). The mechanisms underlying Cr(VI)-induced LUSC remain largely elusive. Here, we report that the cancer stem cell (CSC)/tumour-initiating cell (TIC)-like subgroup within Cr(VI)-transformed bronchial epithelial cells (CrT) promotes lung cancer tumourigenesis. Mechanistically, Cr(VI) exposure specifically increases the expression levels of aldehyde dehydrogenase 1A1 (ALDH1A1), a CSC marker, through KLF4-mediated transcription. ALDH1A1 maintains self-renewal of CrT/TICs and facilitates the expression and secretion of EGF from CrT/TICs, which subsequently promotes the activation of EGFR signalling in differentiated cancer cells and tumour growth of LUSC. In addition, the ALDH1A1 inhibitor A37 and gemcitabine synergistically suppress LUSC progression. Importantly, high ALDH1A1 expression levels are positively correlated with advanced clinical stages and predict poor survival in LUSC patients. These findings elucidate how ALDH1A1 modulates EGF secretion from TICs to facilitate LUSC tumourigenesis, highlighting new therapeutic strategies for malignant lung cancers.
Collapse
Affiliation(s)
- Xin Ge
- Department of Nutrition and Food HygieneCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuChina
- The Key Laboratory of Modern Toxicology of Ministry of EducationNanjing Medical UniversityNanjingJiangsuChina
| | - Mengdie Li
- Department of Nutrition and Food HygieneCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Guo‐Xin Song
- Department of PathologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhixiang Zhang
- Department of Nutrition and Food HygieneCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Jianxing Yin
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zehe Ge
- Department of Nutrition and Food HygieneCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Zhumei Shi
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Ling‐Zhi Liu
- Department of PathologyAnatomy and Cell BiologyDepartment of Medical OncologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Bing‐Hua Jiang
- The Academy of Medical ScienceZhengzhou UniversityZhengzhou450000China
| | - Xu Qian
- Department of Nutrition and Food HygieneCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuChina
- The Key Laboratory of Modern Toxicology of Ministry of EducationNanjing Medical UniversityNanjingJiangsuChina
| | - Hua Shen
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Department of OncologySir Run Run HospitalNanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
14
|
Zhang Z, Li J, Yan B, Tu H, Huang C, Costa M. Loss of MEG3 and upregulation of miR-145 play an important role in the invasion and migration of Cr(VI)-transformed cells. Heliyon 2022; 8:e10086. [PMID: 36046536 PMCID: PMC9421329 DOI: 10.1016/j.heliyon.2022.e10086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic exposure of human bronchial epithelial BEAS-2B cells to hexavalent chromium (Cr(VI)) causes malignant cell transformation. These transformed cells exhibit increases in migration and invasion. Neuronal precursor of developmentally downregulated protein 9 (NEDD9) is upregulated in Cr(VI)-transformed cells compared to that of passage-matched normal BEAS-2B cells. Knockdown of NEDD9 by its shRNA reduced invasion and migration of Cr(VI)-transformed cells. Maternally expressed gene 3 (MEG3), a long noncoding RNA, was lost and microRNA 145 (miR-145) was upregulated in Cr(VI)-transformed cells. MEG3 was bound to miR-145 and this binding reduced its activity. Overexpression of MEG3 or inhibition of miR-145 decreased invasion and migration of Cr(VI)-transformed cells. Overexpression of MEG3 was able to decrease miR-145 level and NEDD9 protein level in Cr(VI)-transformed cells. Ectopic expression of MEG3 was also shown to reduce β-catenin activation. Inhibition of miR-145 in Cr(VI)-transformed cells decreased Slug, an important transcription factor that regulates epithelial-to-mesenchymal transition (EMT). Inhibition of miR-145 was found to increase MEG3 in Cr(VI)-transformed cells. Further studies showed that mutation of MEG3 at the binding site for miR-145 did not change NEDD9 and failed to decrease invasion and migration. The present study demonstrated that loss of MEG3 and upregulation of miR-145 elevated NEDD9, resulting in activation of β-catenin and further upregulation of EMT, leading to increased invasion and migration of Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Jingxia Li
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Bo Yan
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Huailu Tu
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Chao Huang
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| |
Collapse
|
15
|
Li H, Shi J, Gao H, Yang X, Fu Y, Peng Y, Xia Y, Zhou D. Hexavalent Chromium Causes Apoptosis and Autophagy by Inducing Mitochondrial Dysfunction and Oxidative Stress in Broiler Cardiomyocytes. Biol Trace Elem Res 2022; 200:2866-2875. [PMID: 34390448 DOI: 10.1007/s12011-021-02877-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a common environmental pollutant, which has a strong toxic effect on humans and animals. However, the cardiac toxicity of Cr(VI) in broilers remains to be explored. The development of heart disease is often linked to mitochondrial dysfunction especially exposure to toxic substances. In order to investigate the role of mitochondrial dysfunction in apoptosis and autophagy of broiler cardiomyocytes induced by hexavalent chromium, broiler cardiomyocytes were cultured in potassium dichromate of 0 mM, 16 mM, and 32 mM medium for 24 h. The results showed that, compared with the control group, reactive oxygen species (ROS) and apoptosis rate in the Cr(VI) treatment group increased in a dose-dependent manner, the mRNA levels of apoptosis-related genes Bax and p53 were significantly increased, and the mRNA level of Bcl-2 was significantly decreased. Compared with the control group, the mRNA level of autophagy-related genes (LC3-I, LC3-II, and Beclin1) in the Cr(VI) treatment group was significantly increased, the mRNA level of mTOR was significantly decreased, and the protein level of p62/SQSTM1 was significantly decreased. The protein level of Beclin1 and the ratio of LC3-II/LC3-I significantly increased. In addition, compared with the control group, mitochondrial membrane potential decreased in a dose-dependent manner, and mitochondrial dynamics-related genes SIRT1, SIRT3, and Mfn2 mRNA decreased significantly in the Cr(VI) treatment group. In this study, we concluded that Cr(VI) could cause broiler myocardial apoptosis and autophagy by inducing mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Hao Li
- College of Veterinary Medicine, Veterinary clincal medicine laboratory, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, CA, 430070, People's Republic of China
| | - Jingjing Shi
- College of Veterinary Medicine, Veterinary clincal medicine laboratory, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, CA, 430070, People's Republic of China
| | - Haihang Gao
- College of Veterinary Medicine, Veterinary clincal medicine laboratory, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, CA, 430070, People's Republic of China
| | - Xiaoqi Yang
- College of Veterinary Medicine, Veterinary clincal medicine laboratory, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, CA, 430070, People's Republic of China
| | - Yang Fu
- College of Veterinary Medicine, Veterinary clincal medicine laboratory, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, CA, 430070, People's Republic of China
| | - Yuxuan Peng
- Hainan College of Vocation and Technique, No.95 Nanhai Avenue, Longhua District, Haikou City, 570105, Hainan, China
| | - Ying Xia
- College of Veterinary Medicine, Veterinary clincal medicine laboratory, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, CA, 430070, People's Republic of China
| | - Donghai Zhou
- College of Veterinary Medicine, Veterinary clincal medicine laboratory, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, CA, 430070, People's Republic of China.
| |
Collapse
|
16
|
Zhang Z, Costa M. p62 functions as a signal hub in metal carcinogenesis. Semin Cancer Biol 2021; 76:267-278. [PMID: 33894381 PMCID: PMC9161642 DOI: 10.1016/j.semcancer.2021.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
A number of metals are toxic and carcinogenic to humans. Reactive oxygen species (ROS) play an important role in metal carcinogenesis. Oxidative stress acts as the converging point among various stressors with ROS being the main intracellular signal transducer. In metal-transformed cells, persistent expression of p62 and erythroid 2-related factor 2 (Nrf2) result in apoptosis resistance, angiogenesis, inflammatory microenvironment, and metabolic reprogramming, contributing to overall mechanism of metal carcinogenesis. Autophagy, a conserved intracellular process, maintains cellular homeostasis by facilitating the turnover of protein aggregates, cellular debris, and damaged organelles. In addition to being a substrate of autophagy, p62 is also a crucial molecule in a myriad of cellular functions and in molecular events, which include oxidative stress, inflammation, apoptosis, cell proliferation, metabolic reprogramming, that modulate cell survival and tumor growth. The multiple functions of p62 are appreciated by its ability to interact with several key components involved in various oncogenic pathways. This review summarizes the current knowledge and progress in studies of p62 and metal carcinogenesis with emphasis on oncogenic pathways related to oxidative stress, inflammation, apoptosis, and metabolic reprogramming.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Max Costa
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY 10010, USA.
| |
Collapse
|
17
|
Liang Y, Liang N, Ma Y, Tang S, Ye S, Xiao F. Role of Clusterin/NF-κB in the secretion of senescence-associated secretory phenotype in Cr(VI)-induced premature senescent L-02 hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112343. [PMID: 34020271 DOI: 10.1016/j.ecoenv.2021.112343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium [Cr(VI)] and its compounds have caused serious environmental pollution and health damage. Senescent cells can actively change the surrounding environment by secreting some factors, which are called senescence associated secretory phenotype (SASP). Our previous work has confirmed that premature senescent hepatocytes induced by Cr(VI) expressed high level of Clusterin (CLU) and secrete interleukin-6 (IL-6) and IL-8. CLU is involved in the regulation of tumor development and drug resistance, but whether CLU regulates SASP components and participates in Cr(VI)-induced malignant transformation is unclear. In this study we demonstrated that Cr(VI) induced the secretion of tumor promoting components of SASP such as IL-6, IL-8, and granulocyte-macrophage colony stimulating factor (GM-CSF) in senescent L-02 hepatocytes, while the levels of the anti-tumor components of SASP such as chemokine (c-x-c motif) ligand-1 (CXCL-1) and monocyte chemoattractant protein-1 (MCP-1) were not altered. CLU shRNA interference significantly reduced the levels of IL-6, IL-8, and GM-CSF in the culture medium of senescent cells, suggesting CLU may regulate SASP. The NF-κB inhibitor PDTC significantly alleviated Cr(VI)-induced increase of IL-6, IL-8, and GM-CSF, confirming that NF-κB can regulate the tumor promoting components of SASP. CLU shRNA interference aggravated the inhibitory effect of PDTC on SASP secretion, indicating that CLU regulated the secretion of SASP in Cr(VI)-induced senescent hepatocytes through the NF-κB signaling. We speculated that SASP secreted by Cr(VI)-induced premature senescent hepatocytes was tightly related to the carcinogenic effect of Cr(VI). Therefore, elucidation of upstream regulatory mechanism of SASP is of great significance. In addition to further clarifying the carcinogenic mechanisms associated with Cr(VI), we could also seek out new targets for treatment of Cr(VI)-related cancer.
Collapse
Affiliation(s)
- Yuehui Liang
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Ningjuan Liang
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Yu Ma
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Sixuan Tang
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Shuzi Ye
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
18
|
Li S, Ma Y, Liang Y, Liang N, Ye S, Xiao F. The role of PKA/PP2B-mediated Drp1 phosphorylation and the subsequent EGFR inhibition in Cr(VI)-induced premature senescence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112300. [PMID: 33971394 DOI: 10.1016/j.ecoenv.2021.112300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
In recent years, frequent hexavalent chromium [Cr(VI)] pollution incidents have severely damaged the ecology and endangered the public health. It is well known that cell senescence could promote the carcinogenesis, thus the related research on the occurrence of premature senescence is of great significance to the elucidation of the carcinogenic mechanism of Cr(VI). We previously confirmed that long-term low-dose Cr(VI) exposure induced premature senescence, but the key molecular events that determine the occurrence of premature senescence are still unclear. In the present study, we found that Cr(VI) induced phosphorylation of dynamin-relatedprotein 1 (Drp1)-S637 site in premature senescent cells, which was accompanied with the decrease of mitochondrial fission. We also demonstrated that the phosphorylation status of Drp1-S637 after Cr(VI) exposure was related to the antagonism of PKA/PP2B, and continuous dephosphorylation of Drp1-S637 attenuated premature senescence caused by Cr(VI). The epidermal growth factor receptor (EGFR) overexpression significantly alleviated the occurrence of premature senescence, and the expressions of EFGR and its downstream molecules were related to the phosphorylation status of Drp1-S637. In brief, we revealed the role of PKA/PP2B-mediated Drp1 phosphorylation and the subsequent EGFR inhibition in Cr(VI)-induced premature senescence. This study is the first time to link the phosphorylation of Drp1 with Cr(VI)-induced premature senescence, in order to find the key molecular events that determine the occurrence of premature senescence and demonstrate the molecular mechanism of abnormal elongated mitochondria formation in the senescence process. The significance of this study is to explore the carcinogenesis of Cr(VI) and provide new ideas and strategies for the targeted treatment of Cr(VI)-related cancers.
Collapse
Affiliation(s)
- Siwen Li
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Yu Ma
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Yuehui Liang
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Ningjuan Liang
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Shuzi Ye
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
19
|
Saran U, Tyagi A, Chandrasekaran B, Ankem MK, Damodaran C. The role of autophagy in metal-induced urogenital carcinogenesis. Semin Cancer Biol 2021; 76:247-257. [PMID: 33798723 DOI: 10.1016/j.semcancer.2021.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Environmental and/or occupational exposure to metals such as Arsenic (As), Cadmium (Cd), and Chromium (Cr) have been shown to induce carcinogenesis in various organs, including the urogenital system. However, the mechanisms responsible for metal-induced carcinogenesis remain elusive. We and others have shown that metals are potent inducers of autophagy, which has been suggested to be an adaptive stress response to allow metal-exposed cells to survive in hostile environments. Albeit few, recent experimental studies have shown that As and Cd promote tumorigenesis via autophagy and that inhibition of autophagic signaling suppressed metal-induced carcinogenesis. In light of the newly emerging role of autophagic involvement in metal-induced carcinogenesis, the present review focuses explicitly on the mechanistic role of autophagy and potential signaling pathways involved in As-, Cd-, and Cr-induced urogenital carcinogenesis.
Collapse
Affiliation(s)
- Uttara Saran
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY, United States
| | | | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY, United States; College of Pharmacy, Department of Pharmaceutical Sciences, Texas A&M, College Station, TX, United States.
| |
Collapse
|
20
|
Yang D, Yang Q, Fu N, Li S, Han B, Liu Y, Tang Y, Guo X, Lv Z, Zhang Z. Hexavalent chromium induced heart dysfunction via Sesn2-mediated impairment of mitochondrial function and energy supply. CHEMOSPHERE 2021; 264:128547. [PMID: 33049514 DOI: 10.1016/j.chemosphere.2020.128547] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium (Cr(VI)), the most toxic valence state of chromium, is widely present in industrial effluents and wastes. Although previous study has reported that Cr(VI) can cause cytomembrane structure impairment by aggravating lipid peroxidation in the heart, the detailed mechanism of Cr(VI)-induced heart dysfunction is still unclear. Sesn2, a novel antioxidant and stress-inducible molecule, is evidenced to protect against various cardiometabolic diseases such as atherosclerosis and cardiomyopathy. To define the potential mechanism of heart dysfunction induced by chronic Cr(VI) exposure, Wistar rats were intraperitoneal injected with potassium dichromate (K2Cr2O7) for 35 d in the present study. The data showed that chronic K2Cr2O7 exposure caused dose-dependently hematological variations, oxidative stress, dysfunction, and disorganized structure of heart, cardiomyocyte apoptosis, ATP depletion, and mitochondria impairment in rats. In addition, the expressions of Drp1 and Bax were increased by K2Cr2O7. However, the suppression of Mfn2, PGC-1α, Sesn2, nuclear Nrf2, HO-1, and NQO1 protein levels was observed in K2Cr2O7-treated rat hearts. In conclusion, these results demonstrate that chronic K2Cr2O7 exposure dose-dependently causes heart dysfunction, and the molecular mechanism of this event is associated with the loss of Sesn2 mediated mitochondrial function and energy supply impairment.
Collapse
Affiliation(s)
- Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Ning Fu
- Chifeng Institute of Agricultural and Animal Husbandry Science, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Chifeng Institute of Agricultural and Animal Husbandry Science, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yuqing Tang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xinyu Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Chifeng Institute of Agricultural and Animal Husbandry Science, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
21
|
VonHandorf A, Zablon HA, Biesiada J, Zhang X, Medvedovic M, Puga A. Hexavalent chromium promotes differential binding of CTCF to its cognate sites in Euchromatin. Epigenetics 2021; 16:1361-1376. [PMID: 33319643 DOI: 10.1080/15592294.2020.1864168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hexavalent chromium compounds are well-established respiratory carcinogens to which humans are commonly exposed in industrial and occupational settings. In addition, natural and anthropogenic sources of these compounds contribute to the exposure of global populations through multiple routes, including dermal, ingestion and inhalation that elevate the risk of cancer by largely unresolved mechanisms. Cr(VI) has genotoxic properties that include ternary adduct formation with DNA, increases in DNA damage, mostly by double-strand break formation, and altered transcriptional responses. Our previous work using ATAC-seq showed that CTCF motifs were enriched in Cr(VI)-dependent differentially accessible chromatin, suggesting that CTCF, a key transcription factor responsible for the regulation of the transcriptome, might be a chromium target. To test this hypothesis, we investigated the effect of Cr(VI) treatment on the binding of CTCF to its cognate sites and ensuing changes in transcription-related histone modifications. Differentially bound CTCF sites were enriched by Cr(VI) treatment within transcription-related regions, specifically transcription start sites and upstream genic regions. Functional annotation of the affected genes highlighted biological processes previously associated with Cr(VI) exposure. Notably, we found that differentially bound CTCF sites proximal to the promoters of this subset of genes were frequently associated with the active histone marks H3K27ac, H3K4me3, and H3K36me3, in agreement with the concept that Cr(VI) targets CTCF in euchromatic regions of the genome. Our results support the conclusion that Cr(VI) treatment promotes the differential binding of CTCF to its cognate sites in genes near transcription-active boundaries, targeting these genes for dysregulation.
Collapse
Affiliation(s)
- Andrew VonHandorf
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hesbon A Zablon
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jacek Biesiada
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Shanmugapriya K, Kim H, Kang HW. Epidermal growth factor receptor conjugated fucoidan/alginates loaded hydrogel for activating EGFR/AKT signaling pathways in colon cancer cells during targeted photodynamic therapy. Int J Biol Macromol 2020; 158:S0141-8130(20)33150-0. [PMID: 32387601 DOI: 10.1016/j.ijbiomac.2020.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
In the present study, we developed epidermal growth factor receptor conjugated fucoidan/alginate loaded hydrogels for targeting the delivery of hydrogel through the signaling pathway of the epidermal growth factor receptor (EGFR) to treat colon cancer. We aim to develop a drug delivery system of chlorin e6 encapsulated in hydrogel and tag it with EFGR to target cancer cells with low toxicity and limited side effects by using photodynamic therapy (PDT). The characterization and in vitro studies were conducted to evaluate the efficiency of the EGFR-hydrogel in colon cancer cells. Also, western blot analysis was used to assess protein expression levels. The in vitro results confirmed significant cell viability, proliferation, and migration of hydrogel in colon cancer. The cellular effects of the EFGR/AKT pathway were cell proliferation, inhibition of apoptosis, cell cycle progression, and cell survival and migration of colon cancer because of significant protein expression levels. The data suggested that hydrogel appears to be a promising targeting approach-PDT for treating colon cancer. Further in vivo studies are needed to conclude the overexpression level of EGFR on cancer cells. The study concluded that EGFR-H improved the targeting efficiency of hydrogel in colon cancer.
Collapse
Affiliation(s)
- Karuppusamy Shanmugapriya
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, South Korea
| | - Hyejin Kim
- Interdisciplinary program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, South Korea
| | - Hyun Wook Kang
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, South Korea; Interdisciplinary program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, South Korea.
| |
Collapse
|
23
|
Clementino M, Kim D, Zhang Z. Constitutive Activation of NAD-Dependent Sirtuin 3 Plays an Important Role in Tumorigenesis of Chromium(VI)-Transformed Cells. Toxicol Sci 2020; 169:224-234. [PMID: 30715550 DOI: 10.1093/toxsci/kfz032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic exposure of human bronchial epithelial BEAS-2B cells to hexavalent chromium [Cr(VI)] causes malignant cell transformation. Sirtuin-3 (SIRT3) regulates mitochondrial adaptive response to stress, such as metabolic reprogramming and antioxidant defense mechanisms. In Cr(VI)-transformed cells, SIRT3 was upregulated and mitochondrial adenosine triphosphate (ATP) production and proton leak were reduced. Knockdown of SIRT3 by its shRNA further decreased mitochondrial ATP production, proton leak, mitochondrial mass, and mitochondrial membrane potential, indicating that SIRT3 positively regulates mitochondrial oxidative phosphorylation and maintenance of mitochondrial integrity. Mitophagy is critical to maintain proper cellular functions. In Cr(VI)-transformed cells expressions of Pink 1 and Parkin, two mitophagy proteins, were elevated, and mitophagy remained similar as that in passage-matched normal BEAS-2B cells, indicating that in -Cr(VI)-transformed cells mitophagy is suppressed. Knockdown of SIRT3 induced mitophagy, suggesting that SIRT3 plays an important role in mitophagy suppression of Cr(VI)-transformed cells. In Cr(VI)-transformed cells, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was constitutively activated, and protein levels of p62 and p-p62Ser349 were elevated. Knockdown of SIRT3 or treatment with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) decreased the binding of p-p62Ser349 to Keap1, resulting in increased binding of Keap1 to Nrf2 and consequently reduced Nrf2 activation. The results from CHIP assay showed that in Cr(VI)-transformed cells binding of Nrf2 to antioxidant response element (ARE) of SIRT3 gene promoter was dramatically increased. Knockdown of SIRT3 suppressed cell proliferation and tumorigenesis of Cr(VI)-transformed cells. Overexpression of SIRT3 in normal BEAS-2B cells exhibited mitophagy suppression phenotype and increased cell proliferation and tumorigenesis. The present study demonstrated that upregulation of SIRT3 causes mitophagy suppression and plays an important role in cell survival and tumorigenesis of Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- Marco Clementino
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY
| |
Collapse
|
24
|
Kim MJ, Choi WG, Ahn KJ, Chae IG, Yu R, Back SH. Reduced EGFR Level in eIF2α PhosphorylationDeficient Hepatocytes Is Responsible for Susceptibility to Oxidative Stress. Mol Cells 2020; 43:264-275. [PMID: 32150794 PMCID: PMC7103887 DOI: 10.14348/molcells.2020.2197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) play a significant role in intracellular signaling and regulation, particularly when they are maintained at physiologic levels. However, excess ROS can cause cell damage and induce cell death. We recently reported that eIF2α phosphorylation protects hepatocytes from oxidative stress and liver fibrosis induced by fructose metabolism. Here, we found that hepatocyte-specific eIF2α phosphorylation-deficient mice have significantly reduced expression of the epidermal growth factor receptor (EGFR) and altered EGFR-mediated signaling pathways. EGFR-mediated signaling pathways are important for cell proliferation, differentiation, and survival in many tissues and cell types. Therefore, we studied whether the reduced amount of EGFR is responsible for the eIF2α phosphorylationdeficient hepatocytes' vulnerability to oxidative stress. ROS such as hydrogen peroxide and superoxides induce both EGFR tyrosine phosphorylation and eIF2α phosphorylation. eIF2α phosphorylation-deficient primary hepatocytes, or EGFR knockdown cells, have decreased ROS scavenging ability compared to normal cells. Therefore, these cells are particularly susceptible to oxidative stress. However, overexpression of EGFR in these eIF2α phosphorylationdeficient primary hepatocytes increased ROS scavenging ability and alleviated ROS-mediated cell death. Therefore, we hypothesize that the reduced EGFR level in eIF2α phosphorylation-deficient hepatocytes is one of critical factors responsible for their susceptibility to oxidative stress.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan 4460, Korea
| | - Woo-Gyun Choi
- School of Biological Sciences, University of Ulsan, Ulsan 4460, Korea
| | - Kyung-Ju Ahn
- School of Biological Sciences, University of Ulsan, Ulsan 4460, Korea
| | - In Gyeong Chae
- School of Biological Sciences, University of Ulsan, Ulsan 4460, Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 4460, Korea
| |
Collapse
|
25
|
Zhang Y, Xiao Y, Ma Y, Liang N, Liang Y, Lu C, Xiao F. ROS-mediated miR-21-5p regulates the proliferation and apoptosis of Cr(VI)-exposed L02 hepatocytes via targeting PDCD4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110160. [PMID: 31951899 DOI: 10.1016/j.ecoenv.2019.110160] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 05/06/2023]
Abstract
Although much has been determined about the molecular mechanisms of hexavalent chromium [Cr(VI)]-induced hepatotoxicity, more remains to be explored. In particular, explicit epigenetic alterations of microRNAs (miRNAs) which can negatively regulate mRNAs at post transcriptional level remain understudied. In the present study, cell apoptosis was determined using Annexin V/propidium iodide (PI) staining, while proliferative growth was analyzed by colony formation assay and proliferating cell nuclear antigen (PCNA) detection. miRNA microarray was performed to compare the global miRNAs expression patterns. miR-21-5p mimics (mi)/inhibitor (in), and PDCD4-siRNAs were transfected into L02 hepatocytes. Our results revealed that Cr(VI) induced apoptosis and inhibited proliferation in L02 hepatocytes via reactive oxygen species (ROS), the formation of which is closely related to mitochondrial damage, especially the inhibition of mitochondrial respiratory chain complex (MRCC). We also confirmed that ROS-mediated miR-21-5p inhibition participated in cell apoptosis and proliferative inhibition induced by Cr(VI). Furthermore, programmed cell death protein 4 (PDCD4), the up-regulation of which was related to ROS over-production, was predicted and verified as a target of miR-21-5p. Transcription factor PDCD4 silencing suppressed apoptosis and stimulated cell proliferation. In conclusion, from the perspective of epigenetics, the present study revealed that ROS-mediated miR-21-5p regulated the proliferation and apoptosis of Cr(VI)-exposed L02 hepatocytes via targeting PDCD4, which provided the new targets for molecular intervention and treatment of liver damage in Cr(VI)-exposed population.
Collapse
Affiliation(s)
- Yujing Zhang
- School of Medicine, Hunan Normal University, Changsha, 410081, PR China; Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Yuanyuan Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Ningjuan Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Yuehui Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Chan Lu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China.
| |
Collapse
|
26
|
Yang D, Han B, Baiyun R, Lv Z, Wang X, Li S, Lv Y, Xue J, Liu Y, Zhang Z. Sulforaphane attenuates hexavalent chromium-induced cardiotoxicity via the activation of the Sesn2/AMPK/Nrf2 signaling pathway. Metallomics 2020; 12:2009-2020. [PMID: 33159781 DOI: 10.1039/d0mt00124d] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hexavalent chromium (Cr(vi)), the most toxic valence state of chromium, is widely present in industrial effluents and wastes. Sulforaphane (SFN), rich in Brassica genus plants, bears multiple biological activity. Wistar rats were used to explore the protective role of SFN against the cardiotoxicity of chronic potassium dichromate (K2Cr2O7) exposure and reveal the potential molecular mechanism. The data showed that SFN alleviated hematological variations, oxidative stress, heart dysfunction and structure disorder, and cardiomyocyte apoptosis induced by K2Cr2O7. Moreover, SFN reduced p53, cleaved caspase-3, Bcl2-associated X protein, nuclear factor kappa-B, and interleukin-1β levels, and increased Sesn2, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, NAD(P)H quinone oxidoreductase-1, and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) levels. This study demonstrates that SFN ameliorates Cr(vi)-induced cardiotoxicity via activation of the Sesn2/AMPK/Nrf2 signaling pathway. SFN may be a protector against Cr(vi)-induced heart injury and a novel therapy for chronic Cr(vi) exposure.
Collapse
Affiliation(s)
- Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Amphiregulin Regulates Phagocytosis-Induced Cell Death in Monocytes via EGFR and the Bcl-2 Protein Family. Mediators Inflamm 2019; 2019:1603131. [PMID: 32082070 PMCID: PMC7012211 DOI: 10.1155/2019/1603131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 01/24/2023] Open
Abstract
Neonates are extremely susceptible to bacterial infections, and evidences suggest that phagocytosis-induced cell death (PICD) is less frequently triggered in neonatal monocytes than in monocytes from adult donors. An insufficient termination of the inflammatory response, leading to a prolonged survival of neonatal monocytes with ongoing proinflammatory cytokine release, could be associated with the progression of various inflammatory diseases in neonates. Our previous data indicate that amphiregulin (AREG) is increasingly expressed on the cell surface of neonatal monocytes, resulting in remarkably higher soluble AREG levels after proteolytic shedding. In this study, we found that E. coli-infected neonatal monocytes show an increased phosphorylation of ERK, increased expression of Bcl-2 and Bcl-XL, and reduced levels of cleaved caspase-3 and caspase-9 compared to adult monocytes. In both cell types, additional stimulation with soluble AREG further increased ERK activation and expression of Bcl-2 and Bcl-XL and reduced levels of cleaved caspase-3 and caspase-9 in an EGFR-dependent manner. These data suggest that reduced PICD of neonatal monocytes could be due to reduced intrinsic apoptosis and that AREG can promote protection against PICD. This reduction of the intrinsic apoptosis pathway in neonatal monocytes could be relevant for severely prolonged inflammatory responses of neonates.
Collapse
|
28
|
Wise JTF, Wang L, Alstott MC, Ngalame NNO, Wang Y, Zhang Z, Shi X. Investigating the Role of Mitochondrial Respiratory Dysfunction during Hexavalent Chromium-Induced Lung Carcinogenesis. J Environ Pathol Toxicol Oncol 2019; 37:317-329. [PMID: 30806238 DOI: 10.1615/jenvironpatholtoxicoloncol.2018028689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a lung carcinogen and its complete mechanism of action remains to be investigated. Metabolic reprogramming of key energy metabolism pathways (e.g., increased anaerobic glycolysis in the presence of oxygen or "Warburg effect", dysregulated mitochondrial function, and lipogenesis) are important to cancer cell and tumor survival and growth. In our current understanding of Cr(VI)-induced carcinogenesis, the role for metabolic reprogramming remains unclear. In this study, we treated human lung epithelial cells (BEAS-2B) with Cr(VI) for 6 months and obtained malignantly transformed cells from an isolated colony grown in soft agar. We also used Cr(VI)-transformed cells from two other human lung cell lines (BEP2D and WTHBF-6 cells). Overall, we found that all the Cr(VI)-transformed cells had no changes in their mitochondrial respiratory functions (measured by the Seahorse Analyzer) compared with passaged-matched control cells. Using a xenograft tumor growth model, we generated tumors from these transformed cells in Nude mice. Using cells obtained from the xenograft tumor tissues, we observed that these cells had decreased maximal mitochondrial respiration, spare respiratory capacity, and coupling efficiency. These results provide evidence that, although mitochondrial dysfunction does not occur during Cr(VI)-induced transformation of lung cells, it does occur during tumor development.
Collapse
Affiliation(s)
- James T F Wise
- Division of Nutritional Sciences, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Michael C Alstott
- Markey Cancer Center, Redox Metabolism Shared Resource Facility, University of Kentucky, Lexington, KY
| | - Ntube N O Ngalame
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Yuting Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Zhuo Zhang
- Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY
| | - Xianglin Shi
- Division of Nutritional Sciences, Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY; Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
29
|
Abreu PL, Ferreira LMR, Cunha-Oliveira T, Alpoim MC, Urbano AM. HSP90: A Key Player in Metal-Induced Carcinogenesis? HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Lu J, Tang M, Liu Y, Wang J, Wu Z. Comparative Proteomics of Chromium-Transformed Beas-2B Cells by 2D-DIGE and MALDI-TOF/TOF MS. Biol Trace Elem Res 2018; 185:78-88. [PMID: 29340859 DOI: 10.1007/s12011-017-1222-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Chromium (Cr) is a highly toxic, common heavy metal used in industrial production. There are two types of Cr in nature: hexavalent chromium (Cr(VI)) and chromium trichloride (Cr(III)). Cr(III) is involved in the metabolism of sugars and lipids, whereas Cr(VI) is absorbed through the respiratory tract and skin and generates free radicals that result in secondary toxicity. Cr(VI) leads to cancer in the occupational population and is therefore recognized as a human carcinogen by the International Agency for Research on Cancer. The specific mechanism underlying Cr-induced carcinogenesis is complex. In this study, two-dimensional fluorescence difference gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry-based techniques were performed to analyze differentially expressed proteins between Beas-2B human bronchial epithelial cells and Cr(VI)-transformed Beas-2B cells. Many differentially expressed proteins were identified in the cells after malignant transformation, including serine/threonine kinase 11, endothelial nitric oxide synthase 3, apolipoprotein A1, vinculin, and lamin A/C. These proteins are involved in many signaling and metabolic pathways, including apoptosis, autophagy, the PI3K/Akt signaling pathway, focal adhesion, cell motility, and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Jian Lu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Miaomiao Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yi Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jin Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhanao Wu
- Nanjing Military Region Stomatological Center, No. 359 Hospital, the People's Liberation Army, Zhenjiang, China.
| |
Collapse
|
31
|
Xu J, Wise JTF, Wang L, Schumann K, Zhang Z, Shi X. Dual Roles of Oxidative Stress in Metal Carcinogenesis. J Environ Pathol Toxicol Oncol 2018; 36:345-376. [PMID: 29431065 DOI: 10.1615/jenvironpatholtoxicoloncol.2017025229] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It has been well established that environmental and occupational exposure to heavy metal causes cancer in several organs. Although the exact mechanism of heavy metal carcinogenesis remains elusive, metal-generated reactive oxygen species (ROS) are essential. ROS can play two roles in metal carcinogenesis; two stages in the process of metal carcinogenesis differ in the amounts of ROS activating a dual redox-mediated mechanism. In the early stage of metal carcinogenesis, ROS acts in an oncogenic role. However, in the late stage of metal carcinogenesis, ROS plays an antioncogenic role. Similarly, NF-E2-related factor 2 (Nrf2) also has two different roles, which makes it a key molecule for separating metal carcinogenesis into two different stages. In the early stage, inducible Nrf2 fights against elevated ROS to decrease cell transformation by its antioxidant protection property. In the late stage, constitutively activated Nrf2 manipulates reduced ROS to perform a comfortable environment for apoptosis resistance through an oncogenic role. Interestingly, a cunning carcinogenic mechanism takes advantage of the dual role of Nrf2 to implement the dual role of ROS through a series of redox adaption mechanisms. In this review, we discuss the paradox in the rationales behind the two opposite ROS roles and focus on their potential pharmacological application. The dual role of ROS represents a 'double-edged sword' with many possible novel ROS-mediated strategies in cancer therapy in metal carcinogenesis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Anesthesiology, Beijing Chao Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China
| | - James T F Wise
- Division of Nutritional Sciences, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kortney Schumann
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
32
|
Mesbahi Y, Zekri A, Ahmadian S, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Targeting of EGFR increase anti-cancer effects of arsenic trioxide: Promising treatment for glioblastoma multiform. Eur J Pharmacol 2018; 820:274-285. [DOI: 10.1016/j.ejphar.2017.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
33
|
Dai J, Ji Y, Wang W, Kim D, Fai LY, Wang L, Luo J, Zhang Z. Loss of fructose-1,6-bisphosphatase induces glycolysis and promotes apoptosis resistance of cancer stem-like cells: an important role in hexavalent chromium-induced carcinogenesis. Toxicol Appl Pharmacol 2017. [PMID: 28624442 DOI: 10.1016/j.taap.2017.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hexavalent chromium (Cr(VI)) compounds are confirmed human carcinogens for lung cancer. Our previous studies has demonstrated that chronic exposure of human bronchial epithelial BEAS-2B cells to low dose of Cr(VI) causes malignant cell transformation. The acquisition of cancer stem cell-like properties is involved in the initiation of cancers. The present study has observed that a small population of cancer stem-like cells (BEAS-2B-Cr-CSC) exists in the Cr(VI)-transformed cells (BEAS-2B-Cr). Those BEAS-2B-Cr-CSC exhibit extremely reduced capability of generating reactive oxygen species (ROS) and apoptosis resistance. BEAS-2B-Cr-CSC are metabolic inactive as evidenced by reductions in oxygen consumption, glucose uptake, ATP production, and lactate production. Most importantly, BEAS-2B-Cr-CSC are more tumorigenic with high levels of cell self-renewal genes, Notch1 and p21. Further study has found that fructose-1,6-bisphosphatase (FBP1), an rate-limiting enzyme driving glyconeogenesis, was lost in BEAS-2B-Cr-CSC. Forced expression of FBP1 in BEAS-2B-Cr-CSC restored ROS generation, resulting in increased apoptosis, leading to inhibition of tumorigenesis. In summary, the present study suggests that loss of FBP1 is a critical event in tumorigenesis of Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- Jin Dai
- Department of Toxicology and Cancer Biology, 1095 Veterans Drive, University of Kentucky, Lexington, KY 40536, USA
| | - Yanli Ji
- Department of Toxicology and Cancer Biology, 1095 Veterans Drive, University of Kentucky, Lexington, KY 40536, USA
| | - Wei Wang
- Department of Toxicology and Cancer Biology, 1095 Veterans Drive, University of Kentucky, Lexington, KY 40536, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, 1095 Veterans Drive, University of Kentucky, Lexington, KY 40536, USA
| | - Leonard Yenwong Fai
- Department of Toxicology and Cancer Biology, 1095 Veterans Drive, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Diseases, 1095 Veterans Drive, University of Kentucky, Lexington, KY 40536, USA
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, 1095 Veterans Drive, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, 1095 Veterans Drive, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
34
|
Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells. Oncotarget 2017; 7:8916-30. [PMID: 26760771 PMCID: PMC4891014 DOI: 10.18632/oncotarget.6866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/25/2015] [Indexed: 01/01/2023] Open
Abstract
Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI).
Collapse
|
35
|
Bruno M, Ross J, Ge Y. Proteomic responses of BEAS-2B cells to nontoxic and toxic chromium: Protein indicators of cytotoxicity conversion. Toxicol Lett 2016; 264:59-70. [PMID: 27592090 DOI: 10.1016/j.toxlet.2016.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/25/2022]
Abstract
Hexavalent chromium (Cr (VI)) is an environmental human carcinogen which primarily targets lungs. Among a variety of toxic mechanisms, disruption of biological pathways via translational and post-translational modifications represents a key mechanism through which Cr (VI) induces cytotoxicity and carcinogenesis. To identify those disruptions which are altered in response to cytotoxic Cr (VI) exposures, we measured and compared cytotoxicity and changes in expression and phosphorylation status of 15 critical biochemical pathway regulators in human BEAS-2B cells exposed for 48h to a non-toxic concentration (0.3μM) and a toxic concentration (1.8μM) of Cr (VI) by ELISA techniques. In addition, 43 functional proteins which may be altered in response to pathway signaling changes were identified using two dimensional electrophoresis (2-DE) and mass spectrometry. The proteins and fold changes observed in cells exposed to the non-toxic dose of Cr (VI) (0.3μM) were not necessarily the same as those found in the toxic one (1.8μM). A subset of signaling proteins that were correlated with the cytotoxic responses of human BEAS-2B cells to Cr (VI) treatments were identified. These proteins include regulators of glycolysis, glycogen synthase kinase 3 beta (GSK3β) and phosphoprotein 70 ribosomal protein s6 kinase (p70S6K), a signaling protein associated with oxidative stress and inflammation responses, JNK and metal regulatory transcription factor 1 (MTF-1), and a source of ubiquitin for signaling targeted protein degradation, polyubiquitin C (UBC). In addition, two dimensional gel electrophoresis (2-DE) was applied to identify key alterations in biochemical pathways differentiating between cytotoxic and non-cytotoxic exposures to Cr (VI), including glycolysis and gluconeogenesis, protein degradation, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Maribel Bruno
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jeffrey Ross
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Yue Ge
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
36
|
Pratheeshkumar P, Son YO, Divya SP, Turcios L, Roy RV, Hitron JA, Wang L, Kim D, Dai J, Asha P, Zhang Z, Shi X. Hexavalent chromium induces malignant transformation of human lung bronchial epithelial cells via ROS-dependent activation of miR-21-PDCD4 signaling. Oncotarget 2016; 7:51193-51210. [PMID: 27323401 PMCID: PMC5239469 DOI: 10.18632/oncotarget.9967] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with an increased risk of lung cancer. However, the mechanisms underlying Cr(VI)-induced carcinogenesis remain unclear. MicroRNA-21 (miR-21) is a key regulator of oncogenic processes. Studies have shown that miR-21 exerts its oncogenic activity by targeting the tumor suppressor gene programmed cell death 4 (PDCD4). The present study examined the role of miR-21-PDCD4 signaling in Cr(VI)-induced cell transformation and tumorigenesis. Results showed that Cr(VI) induces ROS generation in human bronchial epithelial (BEAS-2B) cells. Chronic exposure to Cr(VI) is able to cause malignant transformation in BEAS-2B cells. Cr(VI) caused a significant increase of miR-21 expression associated with an inhibition of PDCD4 expression. Notably, STAT3 transcriptional activation by IL-6 is crucial for the Cr(VI)-induced miR-21 elevation. Stable knockdown of miR-21 or overexpression of PDCD4 in BEAS-2B cells significantly reduced the Cr(VI)-induced cell transformation. Furthermore, the Cr(VI) induced inhibition of PDCD4 suppressed downstream E-cadherin protein expression, but promoted β-catenin/TCF-dependent transcription of uPAR and c-Myc. We also found an increased miR-21 level and decreased PDCD4 expression in xenograft tumors generated with chronic Cr(VI)-exposed BEAS-2B cells. In addition, stable knockdown of miR-21 and overexpression of PDCD4 reduced the tumorogenicity of chronic Cr(VI)-exposed BEAS-2B cells in nude mice. Taken together, these results demonstrate that the miR-21-PDCD4 signaling axis plays an important role in Cr(VI)-induced carcinogenesis.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Lilia Turcios
- Department of Surgery, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Jin Dai
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
37
|
Hoppe T, Kraus D, Novak N, Probstmeier R, Frentzen M, Wenghoefer M, Jepsen S, Winter J. Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins. Tumour Biol 2016; 37:13789-13798. [PMID: 27481514 DOI: 10.1007/s13277-016-5281-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
The impact of oral pathogens onto the generation and variability of oral tumors has only recently been investigated. To get further insights, oral cancer cells were treated with pathogens and additionally, as a result of this bacterial cellular infection, with human defensins, which are as anti-microbial peptide members of the innate immune system. After cell stimulation, proliferation behavior, expression analysis of oncogenic relevant defensin genes, and effects on EGFR signaling were investigated. The expression of oncogenic relevant anti-microbial peptides was analyzed with real-time PCR and immunohistochemistry. Cell culture experiments were performed to examine cellular impacts caused by stimulation, i.e., altered gene expression, proliferation rate, and EGF receptor-dependent signaling. Incubation of oral tumor cells with an oral pathogen (Porphyromonas gingivalis) and human α-defensins led to an increase in cell proliferation. In contrast, another oral bacterium used, Aggregatibacter actinomycetemcomitans, enhanced cell death. The bacteria and anti-microbial peptides exhibited diverse effects on the transcript levels of oncogenic relevant defensin genes and epidermal growth factor receptor signaling. These two oral pathogens exhibited opposite primary effects on the proliferation behavior of oral tumor cells. Nevertheless, both microbe species led to similar secondary impacts on the proliferation rate by modifying expression levels of oncogenic relevant α-defensin genes. In this respect, oral pathogens exerted multiplying effects on tumor cell proliferation. Additionally, human defensins were shown to differently influence epidermal growth factor receptor signaling, supporting the hypothesis that these anti-microbial peptides serve as ligands of EGFR, thus modifying the proliferation behavior of oral tumor cells.
Collapse
Affiliation(s)
- T Hoppe
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - D Kraus
- Department of Prosthodontics, Preclinical Education, and Material Science, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - N Novak
- Department of Dermatology and Allergy, University Hospital Bonn, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - R Probstmeier
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital Bonn, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - M Frentzen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - M Wenghoefer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Bonn, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - S Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - J Winter
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| |
Collapse
|
38
|
Kim D, Dai J, Park YH, Fai LY, Wang L, Pratheeshkumar P, Son YO, Kondo K, Xu M, Luo J, Shi X, Zhang Z. Activation of Epidermal Growth Factor Receptor/p38/Hypoxia-inducible Factor-1α Is Pivotal for Angiogenesis and Tumorigenesis of Malignantly Transformed Cells Induced by Hexavalent Chromium. J Biol Chem 2016; 291:16271-81. [PMID: 27226640 PMCID: PMC4965575 DOI: 10.1074/jbc.m116.715797] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/18/2016] [Indexed: 01/25/2023] Open
Abstract
Hexavalent chromium (Cr(VI))-containing compounds are well established environmental carcinogens. Most mechanistic investigations of Cr(VI)-induced carcinogenesis focus on oxidative stress and various cellular responses, leading to malignant cell transformation or the first stage of metal-induced carcinogenesis. The development of malignantly transformed cells into tumors that require angiogenesis is the second stage. This study focuses on the second stage, in particular, the role of EGF receptor (EGFR) signaling in angiogenesis and tumorigenesis of Cr(VI)-transformed cells. Our preliminary studies have shown that EGFR is constitutively activated in Cr(VI)-transformed cells, in lung tissue from Cr(VI)-exposed animals, and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. Using in vitro and in vivo models, the present study has investigated the role of EGFR in angiogenesis of Cr(VI)-transformed cells. The results show that Cr(VI)-transformed cells are angiogenic. Hypoxia-inducible factor-1α, pro-angiogenic protein matrix metalloproteinase 1, and VEGF are all highly expressed in Cr(VI)-transformed cells, in lung tissue from animals exposed to Cr(VI), and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. p38 MAPK is also activated in Cr(VI)-transformed cells and in human lung tumor tissue. Inhibition of EGFR reduces p38 MAPK, resulting in decreased expression of hypoxia-inducible factor-1α, metalloproteinase 1, and VEGF, leading to suppressions of angiogenesis and tumorigenesis. Overall, the present study has demonstrated that EGFR plays an important role in angiogenesis and tumorigenesis of Cr(VI)-transformed cells.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromium/toxicity
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Human Umbilical Vein Endothelial Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung Neoplasms/chemically induced
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Neovascularization, Pathologic/chemically induced
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Occupational Exposure/adverse effects
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Donghern Kim
- From the Department of Toxicology and Cancer Biology
| | - Jin Dai
- From the Department of Toxicology and Cancer Biology
| | - Youn-Hee Park
- From the Department of Toxicology and Cancer Biology
| | | | - Lei Wang
- the Center for Research on Environmental Disease, and
| | | | - Young-Ok Son
- the Center for Research on Environmental Disease, and
| | - Kazuya Kondo
- the Department of Oncological Medical Services, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8509, Japan
| | - Mei Xu
- the Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536 and
| | - Jia Luo
- the Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536 and
| | - Xianglin Shi
- the Center for Research on Environmental Disease, and
| | - Zhuo Zhang
- From the Department of Toxicology and Cancer Biology,
| |
Collapse
|
39
|
Roy RV, Pratheeshkumar P, Son YO, Wang L, Hitron JA, Divya SP, Zhang Z, Shi X. Different roles of ROS and Nrf2 in Cr(VI)-induced inflammatory responses in normal and Cr(VI)-transformed cells. Toxicol Appl Pharmacol 2016; 307:81-90. [PMID: 27470422 DOI: 10.1016/j.taap.2016.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022]
Abstract
Hexavalent chromium (Cr(VI)) is classified as a human carcinogen. Cr(VI) has been associated with adenocarcinomas and squamous cell carcinoma of the lung. The present study shows that acute Cr(VI) treatment in human bronchial epithelial cells (BEAS-2B) increased inflammatory responses (TNF-α, COX-2, and NF-кB/p65) and expression of Nrf2. Cr(VI)-induced generation of reactive oxygen species (ROS) are responsible for increased inflammation. Despite the fact that Nrf2 is a master regulator of response to oxidative stress, silencing of Nrf2 in the acute Cr(VI) treatment had no effect on Cr(VI)-induced inflammation. In contrast, in Cr(VI)-transformed (CrT) cells, Nrf2 is constitutively activated. Knock-down of this protein resulted in decreased inflammation, while silencing of SOD2 and CAT had no effect in the expression of these inflammatory proteins. Results obtained from the knock-down of Nrf2 in CrT cells are very different from the results obtained in the acute Cr(VI) treatment. In BEAS-2B cells, knock-down of Nrf2 had no effect in the inflammation levels, while in CrT cells a decrease in the expression of inflammation markers was observed. These results indicate that before transformation, ROS plays a critical role while Nrf2 not in Cr(VI)-induced inflammation, whereas after transformation (CrT cells), Nrf2 is constitutively activated and this protein maintains inflammation while ROS not. Constitutively high levels of Nrf2 in CrT binds to the promoter regions of COX-2 and TNF-α, leading to increased inflammation. Collectively, our results demonstrate that before cell transformation ROS are important in Cr(VI)-induced inflammation and after transformation a constitutively high level of Nrf2 is important.
Collapse
Affiliation(s)
- Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Yong-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Sasidharan Padmaja Divya
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA.
| |
Collapse
|
40
|
Wang L, Wise JTF, Zhang Z, Shi X. Progress and prospects of reactive oxygen species in metal carcinogenesis. ACTA ACUST UNITED AC 2016; 2:178-186. [PMID: 27617186 DOI: 10.1007/s40495-016-0061-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carcinogenesis induced by environmental metal exposure is a major public health concern. The exact mechanisms underlying metal carcinogenesis remain elusive. In the past few decades, the relationship between metal induced generation of reactive oxygen species (ROS) and the mechanism of metal carcinogenesis has been established. The carcinogenic process is a very complex one. In the early stage of metal carcinogenesis or cell transformation high levels of ROS are oncogenic by causing DNA damage, genetic instability, epigenetic alteration, and metabolic reprogramming, leading to malignant transformation. In the second stage of metal carcinogenesis or the cancer development of metal-transformed cells, low levels of ROS are carcinogenic by promoting apoptosis resistance. The metal-transformed cells have the property of autophagy deficiency, resulting in accumulation of p62 and constitutive activation of Nrf2, and leading to higher levels of antioxidants, decreased levels of ROS, apoptosis resistance, inflammation, and angiogenesis. This review summarizes the most recent development in the field of metal carcinogenesis with emphasis on the difference in cellular events between early (cell transformation) and late (after cell transformation) stages of metal carcinogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - James T F Wise
- Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
41
|
Grinman DY, Romorini L, Presman DM, Rocha-Viegas L, Coso OA, Davio C, Pecci A. Role of 3'-5'-cyclic adenosine monophosphate on the epidermal growth factor dependent survival in mammary epithelial cells. Mol Cell Endocrinol 2016; 419:259-67. [PMID: 26522133 DOI: 10.1016/j.mce.2015.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022]
Abstract
Epidermal growth factor (EGF) has been suggested to play a key role in the maintenance of epithelial cell survival during lactation. Previously, we demonstrated that EGF dependent activation of PI3K pathway prevents apoptosis in confluent murine HC11 cells cultured under low nutrient conditions. The EGF protective effect is associated with increased levels of the antiapoptotic protein Bcl-XL. Here, we identify the EGF-dependent mechanism involved in cell survival that converges in the regulation of bcl-X expression by activated CREB. EGF induces Bcl-XL expression through activation of a unique bcl-X promoter, the P1; being not only the PI3K/AKT signaling pathway but also the increase in cAMP levels and the concomitant PKA/CREB activation necessary for both bcl-XL upregulation and apoptosis avoidance. Results presented in this work suggest the existence of a novel connection between the EGF receptor and the adenylate cyclase that would have an impact in preventing apoptosis under low nutrient conditions.
Collapse
Affiliation(s)
- Diego Y Grinman
- Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina; IFIBYNE (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo Romorini
- LIAN-CONICET, Fundación para la Lucha contra las Enfermedades Neurodegenerativas de la Infancia, Ruta 9, Km. 52,5, Escobar, B1625XAF, Provincia de Buenos Aires, Argentina
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, B602, 41 Library Drive, Bethesda, MD, 20892, USA
| | - Luciana Rocha-Viegas
- Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina; IFIBYNE (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Omar A Coso
- Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina; IFIBYNE (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos Davio
- Cátedra de Química Medicinal, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas, ININFA-UBA-CONICET, Junin 954, C1113AAD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adali Pecci
- Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina; IFIBYNE (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
42
|
Liu YZ, Roy-Engel AM, Baddoo MC, Flemington EK, Wang G, Wang H. The impact of oil spill to lung health--Insights from an RNA-seq study of human airway epithelial cells. Gene 2015; 578:38-51. [PMID: 26692141 DOI: 10.1016/j.gene.2015.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
The Deepwater Horizon oil spill (BP oil spill) in the Gulf of Mexico was a unique disaster event, where a huge amount of oil spilled from the sea bed and a large volume of dispersants were applied to clean the spill. The operation lasted for almost 3 months and involved >50,000 workers. The potential health hazards to these workers may be significant as previous research suggested an association of persistent respiratory symptoms with exposure to oil and oil dispersants. To reveal the potential effects of oil and oil dispersants on the respiratory system at the molecular level, we evaluated the transcriptomic profile of human airway epithelial cells grown under treatment of crude oil, the dispersants Corexit 9500 and Corexit 9527, and oil-dispersant mixtures. We identified a very strong effect of Corexit 9500 treatment, with 84 genes (response genes) differentially expressed in treatment vs. control samples. We discovered an interactive effect of oil-dispersant mixtures; while no response gene was found for Corexit 9527 treatment alone, cells treated with Corexit 9527+oil mixture showed an increased number of response genes (46 response genes), suggesting a synergic effect of 9527 with oil on airway epithelial cells. Through GO (gene ontology) functional term and pathway-based analysis, we identified upregulation of gene sets involved in angiogenesis and immune responses and downregulation of gene sets involved in cell junctions and steroid synthesis as the prevailing transcriptomic signatures in the cells treated with Corexit 9500, oil, or Corexit 9500+oil mixture. Interestingly, these key molecular signatures coincide with important pathological features observed in common lung diseases, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Our study provides mechanistic insights into the detrimental effects of oil and oil dispersants to the respiratory system and suggests significant health impacts of the recent BP oil spill to those people involved in the cleaning operation.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Astrid M Roy-Engel
- Dept. of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Melody C Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA; Dept. of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA; Dept. of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Guangdi Wang
- Dept. of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - He Wang
- Dept. of Chronic Respiratory Diseases, School of Health Sciences, University of Newcastle, Callaghan, Australia.
| |
Collapse
|
43
|
Chemopreventive effect of leflunomide against Ehrlich's solid tumor grown in mice: Effect on EGF and EGFR expression and tumor proliferation. Life Sci 2015; 141:193-201. [DOI: 10.1016/j.lfs.2015.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/07/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
|