1
|
Hensbergen PJ, van Huijkelom L, van Angeren J, de Ru AH, Claushuis B, van Veelen PA, Smits WK, Corver J. Elucidation of the Glycan Structure of the b-type Flagellin of Pseudomonas aeruginosa PAO1. ACS Infect Dis 2025; 11:518-528. [PMID: 39854051 PMCID: PMC11833859 DOI: 10.1021/acsinfecdis.4c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025]
Abstract
Flagella are essential for motility and pathogenicity in many bacteria. The main component of the flagellar filament, flagellin (FliC), often undergoes post-translational modifications, with glycosylation being a common occurrence. In Pseudomonas aeruginosa PAO1, the b-type flagellin is O-glycosylated with a structure that includes a deoxyhexose, a phospho-group, and a previous unknown moiety. This structure resembles the well-characterized glycan (Type A) in Clostridioides difficile strain 630, which features an N-acetylglucosamine linked to an N-methylthreonine via a phosphodiester bond. This study aimed to characterize the b-type glycan structure in Pseudomonas aeruginosa PAO1 using a set of mass spectrometry experiments. For this purpose, we used wild-type P. aeruginosa PAO1 and several gene mutants from the b-type glycan biosynthetic cluster. Moreover, we compared the mass spectrometry characteristics of the b-type glycan with those of in vitro modified Type A-peptides from C. difficile strain 630Δerm. Our results demonstrate that the thus far unknown moiety of the b-type glycan in P. aeruginosa consists of an N,N-dimethylthreonine. These data allowed us to refine our model of the flagellin glycan biosynthetic pathway in both P. aeruginosa PAO1 and C. difficile strain 630.
Collapse
Affiliation(s)
- Paul J. Hensbergen
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Loes van Huijkelom
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jordy van Angeren
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Arnoud H. de Ru
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Bart Claushuis
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Peter A. van Veelen
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Wiep Klaas Smits
- Leiden
University Center for Infectious Diseases, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jeroen Corver
- Leiden
University Center for Infectious Diseases, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| |
Collapse
|
2
|
Meng Y, Huang R. Decoding the protein methylome: Identification, validation, and functional insights. Bioorg Med Chem 2025; 118:118056. [PMID: 39754853 PMCID: PMC11735303 DOI: 10.1016/j.bmc.2024.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Protein methylation regulates diverse cellular processes including gene expression and DNA repair. This review discusses the methods of identifying and validating substrates for protein methyltransferases (MTases), as well as the biological roles of methylation. Meanwhile, we outline continued efforts necessary to fully map MTase-substrate pairs and uncover the complex regulatory roles of protein methylation in cellular function.
Collapse
Affiliation(s)
- Ying Meng
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Rong Huang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
3
|
Meng Y, Li Z, He M, Zhang Q, Deng Y, Wang Y, Huang R. Characterizations of Protein Arginine Deiminase 1 as a Substrate of NTMT1: Implications of Nα-Methylation in Protein Stability and Interaction. J Proteome Res 2024; 23:4589-4600. [PMID: 39287128 PMCID: PMC11452276 DOI: 10.1021/acs.jproteome.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
α-N-Methylation (Nα-methylation), catalyzed by protein N-terminal methyltransferases (NTMTs), constitutes a crucial post-translational modification involving the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to the Nα-terminal amino group of substrate proteins. NTMT1/2 are known to methylate canonical Nα sequences, such as X-P-K/R. With over 300 potential human protein substrates, only a small fraction has been validated, and even less is known about the functions of Nα-methylation. This study delves into the characterizations of protein arginine deiminase 1 (PAD1) as a substrate of NTMT1. By employing biochemical and cellular assays, we demonstrated NTMT1-mediated Nα-methylation of PAD1, leading to an increase in protein half-life and the modulation of protein-protein interactions in HEK293T cells. The methylation of PAD1 appears nonessential to its enzymatic activity or cellular localization. Proteomic studies revealed differential protein interactions between unmethylated and Nα-methylated PAD1, suggesting a regulatory role for Nα-methylation in modulating PAD1's protein-protein interactions. These findings shed light on the intricate molecular mechanisms governing PAD1 function and expand our knowledge of Nα-methylation in regulating protein function.
Collapse
Affiliation(s)
- Ying Meng
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| | - Zhouxian Li
- Department of Chemistry, University of California
Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Ming He
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| | - Quanqing Zhang
- Department of Chemistry, University of California
Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Youchao Deng
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| | - Yinsheng Wang
- Department of Chemistry, University of California
Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Rong Huang
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| |
Collapse
|
4
|
Deng Y, Song X, Iyamu ID, Dong A, Min J, Huang R. A unique binding pocket induced by a noncanonical SAH mimic to develop potent and selective PRMT inhibitors. Acta Pharm Sin B 2023; 13:4893-4905. [PMID: 38045046 PMCID: PMC10692381 DOI: 10.1016/j.apsb.2023.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 12/05/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are attractive targets for developing therapeutic agents, but selective PRMT inhibitors targeting the cofactor SAM binding site are limited. Herein, we report the discovery of a noncanonical but less polar SAH surrogate YD1113 by replacing the benzyl guanidine of a pan-PRMT inhibitor with a benzyl urea, potently and selectively inhibiting PRMT3/4/5. Importantly, crystal structures reveal that the benzyl urea moiety of YD1113 induces a unique and novel hydrophobic binding pocket in PRMT3/4, providing a structural basis for the selectivity. In addition, YD1113 can be modified by introducing a substrate mimic to form a "T-shaped" bisubstrate analogue YD1290 to engage both the SAM and substrate binding pockets, exhibiting potent and selective inhibition to type I PRMTs (IC50 < 5 nmol/L). In summary, we demonstrated the promise of YD1113 as a general SAH mimic to build potent and selective PRMT inhibitors.
Collapse
Affiliation(s)
- Youchao Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaosheng Song
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Iredia D. Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Aiping Dong
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Chen P, Huang R, Hazbun TR. Unlocking the Mysteries of Alpha-N-Terminal Methylation and its Diverse Regulatory Functions. J Biol Chem 2023:104843. [PMID: 37209820 PMCID: PMC10293735 DOI: 10.1016/j.jbc.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Protein post-translation modifications (PTMs) are a critical regulatory mechanism of protein function. Protein α-N-terminal (Nα) methylation is a conserved PTM across prokaryotes and eukaryotes. Studies of the Nα methyltransferases responsible for Να methylation and their substrate proteins have shown that the PTM involves diverse biological processes, including protein synthesis and degradation, cell division, DNA damage response, and transcription regulation. This review provides an overview of the progress toward the regulatory function of Να methyltransferases and their substrate landscape. More than 200 proteins in humans and 45 in yeast are potential substrates for protein Nα methylation based on the canonical recognition motif, XP[KR]. Based on recent evidence for a less stringent motif requirement, the number of substrates might be increased, but further validation is needed to solidify this concept. A comparison of the motif in substrate orthologs in selected eukaryotic species indicates intriguing gain and loss of the motif across the evolutionary landscape. We discuss the state of knowledge in the field that has provided insights into the regulation of protein Να methyltransferases and their role in cellular physiology and disease. We also outline the current research tools that are key to understanding Να methylation. Finally, challenges are identified and discussed that would aid in unlocking a system-level view of the roles of Να methylation in diverse cellular pathways.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
6
|
Zhou J, Deng Y, Iyamu ID, Horton JR, Yu D, Hajian T, Vedadi M, Rotili D, Mai A, Blumenthal RM, Zhang X, Huang R, Cheng X. Comparative Study of Adenosine Analogs as Inhibitors of Protein Arginine Methyltransferases and a Clostridioides difficile-Specific DNA Adenine Methyltransferase. ACS Chem Biol 2023; 18:734-745. [PMID: 37082867 PMCID: PMC10127221 DOI: 10.1021/acschembio.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
S-Adenosyl-l-methionine (SAM) analogs are adaptable tools for studying and therapeutically inhibiting SAM-dependent methyltransferases (MTases). Some MTases play significant roles in host-pathogen interactions, one of which is Clostridioides difficile-specific DNA adenine MTase (CamA). CamA is needed for efficient sporulation and alters persistence in the colon. To discover potent and selective CamA inhibitors, we explored modifications of the solvent-exposed edge of the SAM adenosine moiety. Starting from the two parental compounds (6e and 7), we designed an adenosine analog (11a) carrying a 3-phenylpropyl moiety at the adenine N6-amino group, and a 3-(cyclohexylmethyl guanidine)-ethyl moiety at the sulfur atom off the ribose ring. Compound 11a (IC50 = 0.15 μM) is 10× and 5× more potent against CamA than 6e and 7, respectively. The structure of the CamA-DNA-inhibitor complex revealed that 11a adopts a U-shaped conformation, with the two branches folded toward each other, and the aliphatic and aromatic rings at the two ends interacting with one another. 11a occupies the entire hydrophobic surface (apparently unique to CamA) next to the adenosine binding site. Our work presents a hybrid knowledge-based and fragment-based approach to generating CamA inhibitors that would be chemical agents to examine the mechanism(s) of action and therapeutic potentials of CamA in C. difficile infection.
Collapse
Affiliation(s)
- Jujun Zhou
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Youchao Deng
- Department
of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug
Discovery, Center for Cancer Research, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Iredia D. Iyamu
- Department
of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug
Discovery, Center for Cancer Research, Purdue
University, West Lafayette, Indiana 47907, United States
| | - John R. Horton
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Dan Yu
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Taraneh Hajian
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Masoud Vedadi
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8, Canada
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Pasteur Institute,
Cenci-Bolognetti Foundation, Sapienza University
of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Robert M. Blumenthal
- Department
of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life
Sciences, Toledo, Ohio 43614, United States
| | - Xing Zhang
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rong Huang
- Department
of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug
Discovery, Center for Cancer Research, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Xiaodong Cheng
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
7
|
Ho YH, Huang R. Effects of Oncohistone Mutations and PTM Crosstalk on the N-Terminal Acetylation Activities of NatD. ACS Chem Biol 2023; 18:693-700. [PMID: 35044762 PMCID: PMC9294072 DOI: 10.1021/acschembio.1c00840] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acetylation at the α-N-terminus (Nα) is the most abundant modification detected on histone H4 and H2A, which is catalyzed by N-terminal acetyltransferase D (NatD or NAA40). Histone H4 and H2A contain an identical N-terminal SGRGK sequence that is enriched with post-translational modifications (PTMs) and frequently occurred oncogenic mutations known as "oncohistone" mutations. However, there is a lack of information on how oncohistone mutations and other PTMs affect NatD-catalyzed acetylation. Herein, we determined how the local chemical environment on the N-terminal SGRGK sequence impacts NatD-catalyzed Nα-acetylation on histone H4/H2A. Our studies indicate that all oncohistone mutations at SGRG suppressed NatD-catalyzed acetylation. Meanwhile, H4 Ser1 phosphorylation and Arg3 methylation negatively impact the NatD-mediated acetylation, but the Lys5 acetylation only has a marginal effect. This work reveals the impacts of oncohistone mutations on NatD activity and unravels the crosstalk between NatD and PTMs, implying potential regulatory mechanism of NatD and highlighting different avenues to interrogate the NatD-mediated pathway in the future.
Collapse
Affiliation(s)
- Yi-Hsun Ho
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Meng Y, Huang R. Site-specific methylation on α-N-terminus of peptides through chemical and enzymatic methods. Methods Enzymol 2023; 684:113-133. [PMID: 37230586 PMCID: PMC10525076 DOI: 10.1016/bs.mie.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein α-N-terminal (Nα) methylation is a post-translational modification catalyzed by N-terminal methyltransferase 1/2 (NTMT1/2) and METTL13. Nα methylation affects protein stability, protein-protein interaction, and protein-DNA interaction. Thus, Nα methylated peptides are essential tools to study the function of Nα methylation, generate specific antibodies for different states of Nα methylation, and characterize the enzyme kinetics and activity. Here, we describe chemical methods of site-specific synthesis of Nα mono-, di-, and trimethylated peptides in the solid phase. In addition, we describethe preparation of trimethylation peptides by recombinant NTMT1 catalysis.
Collapse
Affiliation(s)
- Ying Meng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
9
|
Parker HV, Tooley JG, Schaner Tooley CE. Optimizing purification and activity assays of N-terminal methyltransferase complexes. Methods Enzymol 2023; 684:71-111. [PMID: 37230594 PMCID: PMC10619428 DOI: 10.1016/bs.mie.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In vitro methyltransferase assays have traditionally been carried out with tritiated S-adenosyl-methionine (SAM) as the methyl donor, as site-specific methylation antibodies are not always available for Western or dot blots and structural requirements of many methyltransferases prohibit the use of peptide substrates in luminescent or colorimetric assays. The discovery of the first N-terminal methyltransferase, METTL11A, has allowed for a second look at non-radioactive in vitro methyltransferase assays, as N-terminal methylation is amenable to antibody production and the limited structural requirements of METTL11A allow for its methylation of peptide substrates. We have used a combination of Western blots and luminescent assays to verify substrates of METTL11A and the two other known N-terminal methyltransferases, METTL11B and METTL13. We have also developed these assays for use beyond substrate identification, showing that METTL11A activity is opposingly regulated by METTL11B and METTL13. Here we provide two methods for non-radioactive characterization of N-terminal methylation, Western blots with full-length recombinant protein substrates and luminescent assays with peptide substrates, and describe how each can be additionally adapted to look at regulatory complexes. We will review the advantages and disadvantages of each method in context with the other types of in vitro methyltransferase assays and discuss why these types of assays could be of general use to the N-terminal modification field.
Collapse
Affiliation(s)
- Haley V Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
10
|
Conner MM, Schaner Tooley CE. Three's a crowd - why did three N-terminal methyltransferases evolve for one job? J Cell Sci 2023; 136:jcs260424. [PMID: 36647772 PMCID: PMC10022744 DOI: 10.1242/jcs.260424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
N-terminal methylation of the α-amine group (Nα-methylation) is a post-translational modification (PTM) that was discovered over 40 years ago. Although it is not the most abundant of the Nα-PTMs, there are more than 300 predicted substrates of the three known mammalian Nα-methyltransferases, METTL11A and METTL11B (also known as NTMT1 and NTMT2, respectively) and METTL13. Of these ∼300 targets, the bulk are acted upon by METTL11A. Only one substrate is known to be Nα-methylated by METTL13, and METTL11B has no proven in vivo targets or predicted targets that are not also methylated by METTL11A. Given that METTL11A could clearly handle the entire substrate burden of Nα-methylation, it is unclear why three distinct Nα-methyltransferases have evolved. However, recent evidence suggests that many methyltransferases perform important biological functions outside of their catalytic activity, and the Nα-methyltransferases might be part of this emerging group. Here, we describe the distinct expression, localization and physiological roles of each Nα-methyltransferase, and compare these characteristics to other methyltransferases with non-catalytic functions, as well as to methyltransferases with both catalytic and non-catalytic functions, to give a better understanding of the global roles of these proteins. Based on these comparisons, we hypothesize that these three enzymes do not just have one common function but are actually performing three unique jobs in the cell.
Collapse
Affiliation(s)
- Meghan M. Conner
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
11
|
Diamanti E, Méndez M, Ross T, Kuttruff CA, Lefranc J, Klingler FM, von Nussbaum F, Jung M, Gehringer M. Frontiers in Medicinal Chemistry 2022 Goes Virtual. ChemMedChem 2022; 17:e202200419. [PMID: 36198574 DOI: 10.1002/cmdc.202200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/09/2022]
Abstract
The Frontiers in Medicinal Chemistry (FiMC) meeting, which represents the largest international medicinal chemistry conference in Germany, took place from March 14th to 16th 2022 in a fully virtual format. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh) together with the Division of Pharmaceutical & Medicinal Chemistry of the German Pharmaceutical Society (DPhG) and a "local" organization committee from the University of Freiburg headed by Manfred Jung, the meeting brought together 271 participants from around 20 countries. The program included 33 lectures by leading scientists from industry and academia as well as early career investigators. 67 posters were presented in two poster sessions and with over 20.000 poster abstract downloads. The general organization and the time-shift function were very much appreciated as demonstrated by almost 600 on-demand contents retrieved. The online format fitted perfectly to bring together medicinal chemists from academia and industry across the globe.
Collapse
Affiliation(s)
- Eleonora Diamanti
- HIPS - Helmholtz-Institut für Pharmazeutische Forschung Saarland, Campus E8 1, 66123, Saarbrücken, Germany
| | - María Méndez
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Blg. G838, 65926, Frankfurt am Main, Germany
| | - Tatjana Ross
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Christian A Kuttruff
- Boehringer Ingelheim International GmbH, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Julien Lefranc
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | | | - Franz von Nussbaum
- NUVISAN Innovation Campus Berlin, NUVISAN ICB GmbH, Muellerstr. 178, 13353, Berlin, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg im Breisgau, Germany
| | - Matthias Gehringer
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical/Medicinal Chemistry Department, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| |
Collapse
|
12
|
Dong G, Deng Y, Yasgar A, Yadav R, Talley D, Zakharov AV, Jain S, Rai G, Noinaj N, Simeonov A, Huang R. Venglustat Inhibits Protein N-Terminal Methyltransferase 1 in a Substrate-Competitive Manner. J Med Chem 2022; 65:12334-12345. [PMID: 36074125 PMCID: PMC9813856 DOI: 10.1021/acs.jmedchem.2c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Venglustat is a known allosteric inhibitor for ceramide glycosyltransferase, investigated in diseases caused by lysosomal dysfunction. Here, we identified venglustat as a potent inhibitor (IC50 = 0.42 μM) of protein N-terminal methyltransferase 1 (NTMT1) by screening 58,130 compounds. Furthermore, venglustat exhibited selectivity for NTMT1 over 36 other methyltransferases. The crystal structure of NTMT1-venglustat and inhibition mechanism revealed that venglustat competitively binds at the peptide substrate site. Meanwhile, venglustat potently inhibited protein N-terminal methylation levels in cells (IC50 = 0.5 μM). Preliminary structure-activity relationships indicated that the quinuclidine and fluorophenyl parts of venglustat are important for NTMT1 inhibition. In summary, we confirmed that venglustat is a bona fide NTMT1 inhibitor, which would advance the study on the biological roles of NTMT1. Additionally, this is the first disclosure of NTMT1 as a new molecular target of venglustat, which would cast light on its mechanism of action to guide the clinical investigations.
Collapse
Affiliation(s)
- Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- These authors contributed equally
| | - Youchao Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- These authors contributed equally
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ravi Yadav
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, United States
| | - Daniel Talley
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Sankalp Jain
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Unraveling the Role of the Tyrosine Tetrad from the Binding Site of the Epigenetic Writer MLL3 in the Catalytic Mechanism and Methylation Multiplicity. Int J Mol Sci 2022; 23:ijms231810339. [PMID: 36142254 PMCID: PMC9499395 DOI: 10.3390/ijms231810339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
MLL3, also known as KMT2C, is a lysine mono-methyltransferase in charge of the writing of an epigenetic mark on lysine 4 from histone 3. The catalytic site of MLL3 is composed of four tyrosines, namely, Y44, Y69, Y128, and Y130. Tyrosine residues are highly conserved among lysine methyltransferases’ catalytic sites, although their complete function is still unclear. The exploration of how modifications on these residues from the enzymatic machinery impact the enzymatic activity of MLL3 could shed light transversally into the inner functioning of enzymes with similar characteristics. Through the use of QMMM calculations, we focus on the effect of the mutation of each tyrosine from the catalytic site on the enzymatic activity and the product specificity in the current study. While we found that the mutations of Y44 and Y128 by phenylalanine inactivated the enzyme, the mutation of Y128 by alanine reactivated the enzymatic activity of MLL3. Moreover, according to our models, the Y128A mutant was even found to be capable of di- and tri-methylate lysine 4 from histone 3, what would represent a gain of function mutation, and could be responsible for the development of diseases. Finally, we were able to establish the inactivation mechanism, which involved the use of Y130 as a water occlusion structure, whose conformation, once perturbed by its mutation or Y128 mutant, allows the access of water molecules that sequester the electron pair from lysine 4 avoiding its methylation process and, thus, increasing the barrier height.
Collapse
|
14
|
Li Z, Zhang L, Liu D, Yang Z, Xuan D, Zhang Y. Knockdown of NRMT enhances sensitivity of retinoblastoma cells to cisplatin through upregulation of the CENPA/Myc/Bcl2 axis. Cell Death Dis 2022; 8:14. [PMID: 35013138 PMCID: PMC8748520 DOI: 10.1038/s41420-021-00622-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
Abstract
Chemotherapy resistance of tumor cells causes failure in anti-tumor therapies. Recently, N-terminal regulator of chromatin condensation 1 methyltransferase (NRMT) is abnormally expressed in different cancers. Hence, we speculate that NRMT may pay a crucial role in the development of chemosensitivity in retinoblastoma. We characterized the upregulation of NRMT in the developed cisplatin (CDDP)-resistant retinoblastoma cell line relative to parental cells. Loss-of-function experiments demonstrated that NRMT silencing enhanced chemosensitivity of retinoblastoma cells to CDDP. Next, NRMT was identified to enrich histone-H3 lysine 4 trimethylation in the promoter of centromere protein A (CENPA) by chromatin immunoprecipitation assay. Rescue experiments suggested that CENPA reduced chemosensitivity by increasing the viability and proliferation and reducing apoptosis of CDDP-resistant retinoblastoma cells, which was reversed by NRMT. Subsequently, CENPA was witnessed to induce the transcription of Myc and to elevate the expression of B cell lymphoma-2. At last, in vivo experiments confirmed the promotive effect of NRMT knockdown on chemosensitivity of retinoblastoma cells to CDDP in tumor-bearing mice. Taken together, NRMT is an inhibitor of chemosensitivity in retinoblastoma. Those findings shed new light on NRMT-targeted therapies for retinoblastoma.
Collapse
Affiliation(s)
- Zhongrui Li
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Lan Zhang
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Dongrui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Zhanghui Yang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Di Xuan
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Yi Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China.
| |
Collapse
|
15
|
Zhang H, Kuang Z, Xue L, Yue J, Khan MH, Zhu Z, Niu L. Structural Basis for Peptide Binding of α-N Terminal Methyltransferase from Saccharomyces cerevisiae. CRYSTALLOGR REP+ 2021; 66:1316-1321. [DOI: 10.1134/s1063774521070257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/18/2020] [Accepted: 11/22/2020] [Indexed: 10/11/2024]
|
16
|
Al-Hamashi AA, Chen D, Deng Y, Dong G, Huang R. Discovery of a potent and dual-selective bisubstrate inhibitor for protein arginine methyltransferase 4/5. Acta Pharm Sin B 2021; 11:2709-2718. [PMID: 34589391 PMCID: PMC8463262 DOI: 10.1016/j.apsb.2020.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) have been implicated in the progression of many diseases. Understanding substrate recognition and specificity of individual PRMT would facilitate the discovery of selective inhibitors towards future drug discovery. Herein, we reported the design and synthesis of bisubstrate analogues for PRMTs that incorporate a S-adenosylmethionine (SAM) analogue moiety and a tripeptide through an alkyl substituted guanidino group. Compound AH237 is a potent and selective inhibitor for PRMT4 and PRMT5 with a half-maximal inhibition concentration (IC50) of 2.8 and 0.42 nmol/L, respectively. Computational studies provided a plausible explanation for the high potency and selectivity of AH237 for PRMT4/5 over other 40 methyltransferases. This proof-of-principle study outlines an applicable strategy to develop potent and selective bisubstrate inhibitors for PRMTs, providing valuable probes for future structural studies.
Collapse
Affiliation(s)
- Ayad A. Al-Hamashi
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-almoadham, Baghdad 10047, Iraq
| | - Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Youchao Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Iyamu ID, Huang R. Mechanisms and inhibitors of nicotinamide N-methyltransferase. RSC Med Chem 2021; 12:1254-1261. [PMID: 34458733 PMCID: PMC8372200 DOI: 10.1039/d1md00016k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) plays an important role in diverse biological processes by regulating methylation potential and the degradation of nicotinamide. Meanwhile, the aberrant expression of NNMT has been implicated in multiple cancers, metabolic and liver diseases. Therefore, there has been an emerging interest in assessing NNMT as a potential therapeutic target and discovering NNMT inhibitors over the past 5 years. Herein, we focus on the recognition, mechanism, and inhibitors of NNMT with emphasis on key advancements in the field. We also discuss future directions for the development of NNMT inhibitors.
Collapse
Affiliation(s)
- Iredia D Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University West Lafayette Indiana 47907 USA +1 765 494 3426
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University West Lafayette Indiana 47907 USA +1 765 494 3426
| |
Collapse
|
18
|
Chen D, Meng Y, Yu D, Noinaj N, Cheng X, Huang R. Chemoproteomic Study Uncovers HemK2/KMT9 As a New Target for NTMT1 Bisubstrate Inhibitors. ACS Chem Biol 2021; 16:1234-1242. [PMID: 34192867 DOI: 10.1021/acschembio.1c00279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Understanding the selectivity of methyltransferase inhibitors is important to dissecting the functions of each methyltransferase target. From this perspective, we report a chemoproteomic study to profile the selectivity of a potent protein N-terminal methyltransferase 1 (NTMT1) bisubstrate inhibitor NAH-C3-GPKK (Ki, app = 7 ± 1 nM) in endogenous proteomes. First, we describe the rational design, synthesis, and biochemical characterization of a new chemical probe 6, a biotinylated analogue of NAH-C3-GPKK. Next, we systematically analyze protein networks that may selectively interact with the biotinylated probe 6 in concert with the competitor NAH-C3-GPKK. Besides NTMT1, the designated NTMT1 bisubstrate inhibitor NAH-C3-GPKK was found to also potently inhibit a methyltransferase complex HemK2-Trm112 (also known as KMT9-Trm112), highlighting the importance of systematic selectivity profiling. Furthermore, this is the first potent inhibitor for HemK2/KMT9 reported until now. Thus, our studies lay the foundation for future efforts to develop selective inhibitors for either methyltransferase.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ying Meng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Past, present, and perspectives of protein N-terminal methylation. Curr Opin Chem Biol 2021; 63:115-122. [PMID: 33839647 DOI: 10.1016/j.cbpa.2021.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 01/16/2023]
Abstract
The posttranslational methylation of the α-N-terminal amino group of proteins was first documented over 40 years ago, but the functional significance of this modification has been underexplored relative to lysine and arginine methylation. Increasing reports implicates α-N-terminal methylation as a widespread and critical regulator of mitosis, chromatin interactions, DNA repair, and translation fidelity. Here, we summarize advances in the current understanding of protein α-N-terminal methylation biological functions and mechanisms across eukaryotic organisms. Also, we describe the recent literature on substrate recognition and the discovery of potent and selective inhibitors for protein N-terminal methyltransferases. Finally, we summarize the emergent crosstalk between α-N-terminal methylation and other N-terminal modifications.
Collapse
|
20
|
Chen D, Dong G, Deng Y, Noinaj N, Huang R. Structure-based Discovery of Cell-Potent Peptidomimetic Inhibitors for Protein N-Terminal Methyltransferase 1. ACS Med Chem Lett 2021; 12:485-493. [PMID: 33738076 DOI: 10.1021/acsmedchemlett.1c00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Protein N-terminal methyltransferases (NTMTs) catalyze the methylation of the α-N-terminal amines of proteins starting with an X-P-K/R motif. NTMT1 has been implicated in various cancers and in aging, implying its role as a potential therapeutic target. Through structural modifications of a lead NTMT1 inhibitor, BM30, we designed and synthesized a diverse set of inhibitors to probe the NTMT1 active site. The incorporation of a naphthyl group at the N-terminal region and an ortho-aminobenzoic amide at the C-terminal region of BM30 generates the top cell-potent inhibitor DC541, demonstrating increased activity on both purified NTMT1 (IC50 of 0.34 ± 0.02 μM) and the cellular α-N-terminal methylation level of regulator of chromosome condensation 1 (RCC1, IC50 value of 30 μM) in human colorectal cancer HT29 cells. Furthermore, DC541 exhibits over 300-fold selectivity to several methyltransferases. This study points out the direction for the development of more cell-potent inhibitors for NTMT1.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Youchao Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Ho YH, Chen L, Huang R. Development of A Continuous Fluorescence-Based Assay for N-Terminal Acetyltransferase D. Int J Mol Sci 2021; 22:E594. [PMID: 33435607 PMCID: PMC7827481 DOI: 10.3390/ijms22020594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
N-terminal acetylation catalyzed by N-terminal acetyltransferases (NATs) has various biological functions in protein regulation. N-terminal acetyltransferase D (NatD) is one of the most specific NAT with only histone H4 and H2A proteins as the known substrates. Dysregulation of NatD has been implicated in colorectal and lung cancer progression, implying its therapeutic potential in cancers. However, there is no reported inhibitor for NatD yet. To facilitate the discovery of small-molecule NatD inhibitors, we report the development of a fluorescence-based acetyltransferase assay in 384-well high-throughput screening (HTS) format through monitoring the formation of coenzyme A. The fluorescent signal is generated from the adduct in the reaction between coenzyme A and fluorescent probe ThioGlo4. The assay exhibited a Z'-factor of 0.77 and a coefficient of variation of 6%, indicating it is a robust assay for HTS. A pilot screen of 1280 pharmacologically active compounds and subsequent validation identified two hits, confirming the application of this fluorescence assay in HTS.
Collapse
Affiliation(s)
- Yi-Hsun Ho
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
| | - Lan Chen
- Chemical Genomics Facility, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA;
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
22
|
Chen D, Dong C, Dong G, Srinivasan K, Min J, Noinaj N, Huang R. Probing the Plasticity in the Active Site of Protein N-terminal Methyltransferase 1 Using Bisubstrate Analogues. J Med Chem 2020; 63:8419-8431. [PMID: 32605369 PMCID: PMC7429357 DOI: 10.1021/acs.jmedchem.0c00770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bisubstrate analogue strategy is a promising approach to develop potent and selective inhibitors for protein methyltransferases. Herein, the interactions of a series of bisubstrate analogues with protein N-terminal methyltransferase 1 (NTMT1) were examined to probe the molecular properties of the active site of NTMT1. Our results indicate that a 2-C to 4-C atom linker enables its respective bisubstrate analogue to occupy both substrate- and cofactor-binding sites of NTMT1, but the bisubstrate analogue with a 5-C atom linker only interacts with the substrate-binding site and functions as a substrate. Furthermore, the 4-C atom linker is the optimal and produces the most potent inhibitor (Ki,app = 130 ± 40 pM) for NTMT1 to date, displaying more than 3000-fold selectivity for other methyltransferases and even for its homologue NTMT2. This study reveals the molecular basis for the plasticity of the active site of NTMT1. Additionally, our study outlines general guidance on the development of bisubstrate inhibitors for any methyltransferases.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Cheng Dong
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Karthik Srinivasan
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinrong Min
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Dong G, Yasgar A, Peterson DL, Zakharov A, Talley D, Cheng KCC, Jadhav A, Simeonov A, Huang R. Optimization of High-Throughput Methyltransferase Assays for the Discovery of Small Molecule Inhibitors. ACS COMBINATORIAL SCIENCE 2020; 22:422-432. [PMID: 32525297 PMCID: PMC7429283 DOI: 10.1021/acscombsci.0c00077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methyltransferases (MTases) play diverse roles in cellular processes. Aberrant methylation levels have been implicated in many diseases, indicating the need for the identification and development of small molecule inhibitors for each MTase. Specific inhibitors can serve as probes to investigate the function and validate therapeutic potential for the respective MTase. High-throughput screening (HTS) is a powerful method to identify initial hits for further optimization. Here, we report the development of a fluorescence-based MTase assay and compare this format with the recently developed MTase-Glo luminescence assay for application in HTS. Using protein N-terminal methyltransferase 1 (NTMT1) as a model system, we miniaturized to 1536-well quantitative HTS format. Through a pilot screen of 1428 pharmacologically active compounds and subsequent validation, we discovered that MTase-Glo produced lower false positive rates than the fluorescence-based MTase assay. Nevertheless, both assays displayed robust performance along with low reagent requirements and can potentially be employed as general HTS formats for the discovery of inhibitors for any MTase.
Collapse
Affiliation(s)
- Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Darrell L. Peterson
- Department of Biochemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Daniel Talley
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Ken Chih-Chien Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
24
|
Mackie BD, Chen D, Dong G, Dong C, Parker H, Schaner Tooley CE, Noinaj N, Min J, Huang R. Selective Peptidomimetic Inhibitors of NTMT1/2: Rational Design, Synthesis, Characterization, and Crystallographic Studies. J Med Chem 2020; 63:9512-9522. [PMID: 32689795 DOI: 10.1021/acs.jmedchem.0c00689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein N-terminal methyltransferases (NTMTs) methylate the α-N-terminal amines of proteins starting with the canonical X-P-K/R motif. Genetic studies imply that NTMT1 regulates cell mitosis and DNA damage repair. Herein, we report the rational design and development of the first potent peptidomimetic inhibitor for NTMT1/2. Biochemical and cocrystallization studies manifest that BM30 (with a half-maximal inhibitory concentration of 0.89 ± 0.10 μM) is a competitive inhibitor to the peptide substrate and noncompetitive to the cofactor S-adenosylmethionine. BM30 exhibits over 100-fold selectivity to NTMT1/2 among a panel of 41 MTs, indicating its potential to achieve high selectivity when targeting the peptide substrate binding site of NTMT1/2. Its cell-permeable analogue DC432 (IC50 of 54 ± 4 nM) decreases the N-terminal methylation level of the regulator of chromosome condensation 1 and SET proteins in HCT116 cells. This proof-of principle study provides valuable probes for NTMT1/2 and highlights the opportunity to develop more cell-potent inhibitors to elucidate the function of NTMTs in the future.
Collapse
Affiliation(s)
- Brianna D Mackie
- Department of Medicinal Chemistry, Institute of Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Cheng Dong
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Haley Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinrong Min
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Rong Huang
- Department of Medicinal Chemistry, Institute of Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Iyamu ID, Huang R. Development of fluorescence polarization-based competition assay for nicotinamide N-methyltransferase. Anal Biochem 2020; 604:113833. [PMID: 32622979 DOI: 10.1016/j.ab.2020.113833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Methylation-mediated pathways play important roles in the progression of various diseases. Thus, targeting methyltransferases has proven to be a promising strategy for developing novel therapies. Nicotinamide N-methyltransferase (NNMT) is a major metabolic enzyme involved in epigenetic regulation through catalysis of methyl transfer from the cofactor S-adenosyl-l-methionine onto nicotinamide and other pyridines. Accumulating evidence infers that NNMT is a novel therapeutic target for a variety of diseases such as cancer, diabetes, obesity, cardiovascular and neurodegenerative diseases. Therefore, there is an urgent need to discover potent and specific inhibitors for NNMT to assess its therapeutical potential. Herein, we reported the design and synthesis of a fluorescent probe II138, exhibiting a Kd value of 369 ± 14 nM for NNMT. We also established a fluorescence polarization (FP)-based competition assay for evaluation of NNMT inhibitors. Importantly, the unique feature of this FP competition assay is its capability to identify inhibitors that interfere with the interaction of the NNMT active site directly or allosterically. In addition, this assay performance is robust with a Z'factor of 0.76, indicating its applicability in high-throughput screening for NNMT inhibitors.
Collapse
Affiliation(s)
- Iredia D Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
26
|
Chen D, Li L, Diaz K, Iyamu ID, Yadav R, Noinaj N, Huang R. Novel Propargyl-Linked Bisubstrate Analogues as Tight-Binding Inhibitors for Nicotinamide N-Methyltransferase. J Med Chem 2019; 62:10783-10797. [PMID: 31724854 PMCID: PMC7296983 DOI: 10.1021/acs.jmedchem.9b01255] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyzes the methyl transfer from the cofactor S-adenosylmethionine to nicotinamide and other pyridine-containing compounds. NNMT is an important regulator for nicotinamide metabolism and methylation potential. Aberrant expression levels of NNMT have been implicated in cancer, metabolic, and neurodegenerative diseases, which makes NNMT a potential therapeutic target. Therefore, potent and selective NNMT inhibitors can serve as valuable tools to investigate the roles of NNMT in its mediated diseases. Here, we applied a rational strategy to design and synthesize the tight-binding bisubstrate inhibitor LL320 through a novel propargyl linker. LL320 demonstrates a Ki value of 1.6 ± 0.3 nM, which is the most potent inhibitor to date. The cocrystal structure of LL320 confirms its interaction with both the substrate and cofactor binding sites on NNMT. Importantly, this is the first example of using the propargyl linker to construct potent methyltransferase inhibitors, which will expand our understanding of the transition state of methyl transfer.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular
Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Linjie Li
- Department of Medicinal Chemistry and Molecular
Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Krystal Diaz
- Department of Medicinal Chemistry and Molecular
Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Iredia D. Iyamu
- Department of Medicinal Chemistry and Molecular
Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Ravi Yadav
- Markey Center for Structural Biology, Department of
Biological Sciences and the Purdue Institute of Inflammation, Immunology and
Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United
States
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of
Biological Sciences and the Purdue Institute of Inflammation, Immunology and
Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United
States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular
Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Chen D, Dong G, Noinaj N, Huang R. Discovery of Bisubstrate Inhibitors for Protein N-Terminal Methyltransferase 1. J Med Chem 2019; 62:3773-3779. [PMID: 30883119 DOI: 10.1021/acs.jmedchem.9b00206] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein N-terminal methyltransferase 1 (NTMT1) plays an important role in regulating mitosis and DNA repair. Here, we describe the discovery of a potent NTMT1 bisubstrate inhibitor 4 (IC50 = 35 ± 2 nM) that exhibits greater than 100-fold selectivity against a panel of methyltransferases. We also report the first crystal structure of NTMT1 in complex with an inhibitor, which revealed that 4 occupies substrate and cofactor binding sites of NTMT1.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute of Inflammation, Immunology and Infectious Disease , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
28
|
Abstract
Protein α‐N‐terminal methylation is catalyzed by protein N‐terminal methyltransferases. The prevalent occurrence of this methylation in ribosomes, myosin, and histones implies its function in protein–protein interactions. Although its full spectrum of function has not yet been outlined, recent discoveries have revealed the emerging roles of α‐N‐terminal methylation in protein–chromatin interactions, DNA damage repair, and chromosome segregation. Herein, an overview of the discovery of protein N‐terminal methyltransferases and functions of α‐N‐terminal methylation is presented. In addition, substrate recognition, mechanisms, and inhibition of N‐terminal methyltransferases are reviewed. Opportunities and gaps in protein α‐N‐terminal methylation are also discussed.
Collapse
Affiliation(s)
- Rong Huang
- Department of Medicinal Chemistry and Molecular PharmacologyCenter for Cancer Research, Institute for Drug DiscoveryPurdue University West Lafayette IN 47907 USA
| |
Collapse
|
29
|
Dong C, Dong G, Li L, Zhu L, Tempel W, Liu Y, Huang R, Min J. An asparagine/glycine switch governs product specificity of human N-terminal methyltransferase NTMT2. Commun Biol 2018; 1:183. [PMID: 30417120 PMCID: PMC6214909 DOI: 10.1038/s42003-018-0196-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023] Open
Abstract
α-N-terminal methylation of proteins is an important post-translational modification that is catalyzed by two different N-terminal methyltransferases, namely NTMT1 and NTMT2. Previous studies have suggested that NTMT1 is a tri-methyltransferase, whereas NTMT2 is a mono-methyltransferase. Here, we report the first crystal structures, to our knowledge, of NTMT2 in binary complex with S-adenosyl-L-methionine as well as in ternary complex with S-adenosyl-L-homocysteine and a substrate peptide. Our structural observations combined with biochemical studies reveal that NTMT2 is also able to di-/tri-methylate the GPKRIA peptide and di-methylate the PPKRIA peptide, otherwise it is predominantly a mono-methyltransferase. The residue N89 of NTMT2 serves as a gatekeeper residue that regulates the binding of unmethylated versus monomethylated substrate peptide. Structural comparison of NTMT1 and NTMT2 prompts us to design a N89G mutant of NTMT2 that can profoundly alter its catalytic activities and product specificities. Cheng Dong et al. resolve the crystal structure of NTMT2, presenting the molecular basis for substrate recognition. Using structural and biochemical studies, they identified a specific residue within NTMT2 that controls its binding affinity to unmethylated or monomethylated substrates.
Collapse
Affiliation(s)
- Cheng Dong
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Li Li
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Licheng Zhu
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada.,School of Life Sciences, Jinggangshan University, 343009, Ji'an, Jiangxi, China
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Yanli Liu
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada. .,Department of Physiology, University of Toronto, Toronto, M5S 1A8, ON, Canada.
| |
Collapse
|
30
|
Clarke SG. The ribosome: A hot spot for the identification of new types of protein methyltransferases. J Biol Chem 2018; 293:10438-10446. [PMID: 29743234 DOI: 10.1074/jbc.aw118.003235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular physiology depends on the alteration of protein structures by covalent modification reactions. Using a combination of bioinformatic, genetic, biochemical, and mass spectrometric approaches, it has been possible to probe ribosomal proteins from the yeast Saccharomyces cerevisiae for post-translationally methylated amino acid residues and for the enzymes that catalyze these modifications. These efforts have resulted in the identification and characterization of the first protein histidine methyltransferase, the first N-terminal protein methyltransferase, two unusual types of protein arginine methyltransferases, and a new type of cysteine methylation. Two of these enzymes may modify their substrates during ribosomal assembly because the final methylated histidine and arginine residues are buried deep within the ribosome with contacts only with RNA. Two of these modifications occur broadly in eukaryotes, including humans, whereas the others demonstrate a more limited phylogenetic range. Analysis of strains where the methyltransferase genes are deleted has given insight into the physiological roles of these modifications. These reactions described here add diversity to the modifications that generate the typical methylated lysine and arginine residues previously described in histones and other proteins.
Collapse
Affiliation(s)
- Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
31
|
Shields KM, Tooley JG, Petkowski JJ, Wilkey DW, Garbett NC, Merchant ML, Cheng A, Schaner Tooley CE. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation. Protein Sci 2017; 26:1639-1652. [PMID: 28556566 DOI: 10.1002/pro.3202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
A subset of B-cell lymphoma patients have dominant mutations in the histone H3 lysine 27 (H3K27) methyltransferase EZH2, which change it from a monomethylase to a trimethylase. These mutations occur in aromatic resides surrounding the active site and increase growth and alter transcription. We study the N-terminal trimethylase NRMT1 and the N-terminal monomethylase NRMT2. They are 50% identical, but differ in key aromatic residues in their active site. Given how these residues affect EZH2 activity, we tested whether they are responsible for the distinct catalytic activities of NRMT1/2. Additionally, NRMT1 acts as a tumor suppressor in breast cancer cells. Its loss promotes oncogenic phenotypes but sensitizes cells to DNA damage. Mutations of NRMT1 naturally occur in human cancers, and we tested a select group for altered activity. While directed mutation of the aromatic residues had minimal catalytic effect, NRMT1 mutants N209I (endometrial cancer) and P211S (lung cancer) displayed decreased trimethylase and increased monomethylase/dimethylase activity. Both mutations are located in the peptide-binding channel and indicate a second structural region impacting enzyme specificity. The NRMT1 mutants demonstrated a slower rate of trimethylation and a requirement for higher substrate concentration. Expression of the mutants in wild type NRMT backgrounds showed no change in N-terminal methylation levels or growth rates, demonstrating they are not acting as dominant negatives. Expression of the mutants in cells lacking endogenous NRMT1 resulted in minimal accumulation of N-terminal trimethylation, indicating homozygosity could help drive oncogenesis or serve as a marker for sensitivity to DNA damaging chemotherapeutics or γ-irradiation.
Collapse
Affiliation(s)
- Kaitlyn M Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Daniel W Wilkey
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Nichola C Garbett
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Alan Cheng
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214
| |
Collapse
|
32
|
Kuriki Y, Komatsu T, Ycas PD, Coulup SK, Carlson EJ, Pomerantz WCK. Meeting Proceedings ICBS2016-Translating the Power of Chemical Biology to Clinical Advances. ACS Chem Biol 2017; 12:869-877. [PMID: 28303709 DOI: 10.1021/acschembio.7b00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yugo Kuriki
- Graduate School
of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School
of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Peter D. Ycas
- Department of Chemistry, University of Minnesota, 312 Smith
Hall, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Sara K. Coulup
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - Erick J. Carlson
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, 312 Smith
Hall, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
33
|
Abstract
S-Adenosyl-L-methionine (SAM) is a sulfonium molecule with a structural hybrid of methionine and adenosine. As the second largest cofactor in the human body, its major function is to serve as methyl donor for SAM-dependent methyltransferases (MTases). The resultant transmethylation of biomolecules constitutes a significant biochemical mechanism in epigenetic regulation, cellular signaling, and metabolite degradation. Recently, numerous SAM analogs have been developed as synthetic cofactors to transfer the activated groups on MTase substrates for downstream ligation and identification. Meanwhile, new compounds built upon or derived from the SAM scaffold have been designed and tested as selective inhibitors for important MTase targets. Here, we summarized the recent development and application of SAM analogs as chemical biology tools for MTases.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia 30602, United States
| | - Yujun George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
34
|
Zhang G, Huang R. Facile synthesis of SAM-peptide conjugates through alkyl linkers targeting protein N-terminal methyltransferase 1. RSC Adv 2016; 6:6768-6771. [PMID: 27588169 DOI: 10.1039/c5ra20625a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report the first chemical synthesis of SAM-peptide conjugates through alkyl linkers to prepare bisubstrate analogs for protein methyltransferases. We demonstrate its application by developing a series of bisubstrate inhibitors for protein N-terminal methyltransferase 1 and the most potent one exhibits a Ki value of 310 ± 55 nM.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery & Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery & Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| |
Collapse
|
35
|
Dong C, Mao Y, Tempel W, Qin S, Li L, Loppnau P, Huang R, Min J. Structural basis for substrate recognition by the human N-terminal methyltransferase 1. Genes Dev 2015; 29:2343-8. [PMID: 26543161 PMCID: PMC4691889 DOI: 10.1101/gad.270611.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/14/2015] [Indexed: 01/17/2023]
Abstract
α-N-terminal methylation represents a highly conserved and prevalent post-translational modification, yet its biological function has remained largely speculative. The recent discovery of α-N-terminal methyltransferase 1 (NTMT1) and its physiological substrates propels the elucidation of a general role of α-N-terminal methylation in mediating DNA-binding ability of the modified proteins. The phenotypes, observed from both NTMT1 knockdown in breast cancer cell lines and knockout mouse models, suggest the potential involvement of α-N-terminal methylation in DNA damage response and cancer development. In this study, we report the first crystal structures of human NTMT1 in complex with cofactor S-adenosyl-L-homocysteine (SAH) and six substrate peptides, respectively, and reveal that NTMT1 contains two characteristic structural elements (a β hairpin and an N-terminal extension) that contribute to its substrate specificity. Our complex structures, coupled with mutagenesis, binding, and enzymatic studies, also present the key elements involved in locking the consensus substrate motif XPK (X indicates any residue type other than D/E) into the catalytic pocket for α-N-terminal methylation and explain why NTMT1 prefers an XPK sequence motif. We propose a catalytic mechanism for α-N-terminal methylation. Overall, this study gives us the first glimpse of the molecular mechanism of α-N-terminal methylation and potentially contributes to the advent of therapeutic agents for human diseases associated with deregulated α-N-terminal methylation.
Collapse
Affiliation(s)
- Cheng Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada
| | - Yunfei Mao
- Department of Medicinal Chemistry, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, USA; The Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada
| | - Li Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada
| | - Rong Huang
- Department of Medicinal Chemistry, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, USA; The Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontaria M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
36
|
Richardson SL, Hanjra P, Zhang G, Mackie BD, Peterson DL, Huang R. A direct, ratiometric, and quantitative MALDI-MS assay for protein methyltransferases and acetyltransferases. Anal Biochem 2015; 478:59-64. [PMID: 25778392 DOI: 10.1016/j.ab.2015.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
Abstract
Protein methylation and acetylation play important roles in biological processes, and misregulation of these modifications is involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI-MS by direct spotting of enzymatic methylation and acetylation reaction mixtures without tedious purification procedures. The quantifiable detection limit for peptides with our method is approximately 10 fmol. This is achieved by increasing the signal-to-noise ratio through the addition of NH4H2PO4 to the matrix solution and reduction of the matrix α-cyanohydroxycinnamic acid concentration to 2 mg/ml. We have demonstrated the application of this method in enzyme kinetic analysis and inhibition studies. The unique feature of this method is the simultaneous quantification of multiple peptide species for investigation of processivity mechanisms. Its wide buffer compatibility makes it possible to be adapted to investigate the activity of any protein methyltransferase or acetyltransferase.
Collapse
Affiliation(s)
- Stacie L Richardson
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Pahul Hanjra
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Gang Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Brianna D Mackie
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Darrell L Peterson
- Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|