1
|
Sohail A, Waqas FH, Braubach P, Czichon L, Samir M, Iqbal A, de Araujo L, Pleschka S, Steinert M, Geffers R, Pessler F. Differential transcriptomic host responses in the early phase of viral and bacterial infections in human lung tissue explants ex vivo. Respir Res 2024; 25:369. [PMID: 39395995 PMCID: PMC11471021 DOI: 10.1186/s12931-024-02988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND The first 24 h of infection represent a critical time window in interactions between pathogens and host tissue. However, it is not possible to study such early events in human lung during natural infection due to lack of clinical access to tissue this early in infection. We, therefore, applied RNA sequencing to ex vivo cultured human lung tissue explants (HLTE) from patients with emphysema to study global changes in small noncoding RNA, mRNA, and long noncoding RNA (lncRNA, lincRNA) populations during the first 24 h of infection with influenza A virus (IAV), Mycobacterium bovis Bacille Calmette-Guerin (BCG), and Pseudomonas aeruginosa. RESULTS Pseudomonas aeruginosa caused the strongest expression changes and was the only pathogen that notably affected expression of microRNA and PIWI-associated RNA. The major classes of long RNAs (> 100 nt) were represented similarly among the RNAs that were differentially expressed upon infection with the three pathogens (mRNA 77-82%; lncRNA 15-17%; pseudogenes 4-5%), but lnc-DDX60-1, RP11-202G18.1, and lnc-THOC3-2 were part of an RNA signature (additionally containing SNX10 and SLC8A1) specifically associated with IAV infection. IAV infection induced brisk interferon responses, CCL8 being the most strongly upregulated mRNA. Single-cell RNA sequencing identified airway epithelial cells and macrophages as the predominant IAV host cells, but inflammatory responses were also detected in cell types expressing few or no IAV transcripts. Combined analysis of bulk and single-cell RNAseq data identified a set of 6 mRNAs (IFI6, IFI44L, IRF7, ISG15, MX1, MX2) as the core transcriptomic response to IAV infection. The two bacterial pathogens induced qualitatively very similar changes in mRNA expression and predicted signaling pathways, but the magnitude of change was greater in P. aeruginosa infection. Upregulation of GJB2, VNN1, DUSP4, SerpinB7, and IL10, and downregulation of PKMYT1, S100A4, GGTA1P, and SLC22A31 were most strongly associated with bacterial infection. CONCLUSIONS Human lung tissue mounted substantially different transcriptomic responses to infection by IAV than by BCG and P. aeruginosa, whereas responses to these two divergent bacterial pathogens were surprisingly similar. This HLTE model should prove useful for RNA-directed pathogenesis research and tissue biomarker discovery during the early phase of infections, both at the tissue and single-cell level.
Collapse
Affiliation(s)
- Aaqib Sohail
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Fakhar H Waqas
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Laurien Czichon
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Mohamed Samir
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Azeem Iqbal
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Leonardo de Araujo
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Centre for Individualised Infection Medicine, Hannover, Germany
- Molecular and Experimental Mycobacteriology Group, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus-Liebig-Universität, 35390, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| | - Michael Steinert
- Institute for Microbiology, Technical University Braunschweig, Brunswick, Germany
| | - Robert Geffers
- Genome Analysis, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.
- Centre for Individualised Infection Medicine, Hannover, Germany.
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Brunswick, Germany.
| |
Collapse
|
2
|
Sun R, Feng J, Wang J. Underlying Mechanisms and Treatment of Cellular Senescence-Induced Biological Barrier Interruption and Related Diseases. Aging Dis 2024; 15:612-639. [PMID: 37450933 PMCID: PMC10917536 DOI: 10.14336/ad.2023.0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Given its increasing prevalence, aging is of great concern to researchers worldwide. Cellular senescence is a physiological or pathological cellular state caused by aging and a prominent risk factor for the interruption of the integrity and functionality of human biological barriers. Health barriers play an important role in maintaining microenvironmental homeostasis within the body. The senescence of barrier cells leads to barrier dysfunction and age-related diseases. Cellular senescence has been reported to be a key target for the prevention of age-related barrier diseases, including Alzheimer's disease, Parkinson's disease, age-related macular degeneration, diabetic retinopathy, and preeclampsia. Drugs such as metformin, dasatinib, quercetin, BCL-2 inhibitors, and rapamycin have been shown to intervene in cellular senescence and age-related diseases. In this review, we conclude that cellular senescence is involved in age-related biological barrier impairment. We further outline the cellular pathways and mechanisms underlying barrier impairment caused by cellular senescence and describe age-related barrier diseases associated with senescent cells. Finally, we summarize the currently used anti-senescence pharmacological interventions and discuss their therapeutic potential for preventing age-related barrier diseases.
Collapse
Affiliation(s)
- Ruize Sun
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Andrikopoulos P, Aron-Wisnewsky J, Chakaroun R, Myridakis A, Forslund SK, Nielsen T, Adriouch S, Holmes B, Chilloux J, Vieira-Silva S, Falony G, Salem JE, Andreelli F, Belda E, Kieswich J, Chechi K, Puig-Castellvi F, Chevalier M, Le Chatelier E, Olanipekun MT, Hoyles L, Alves R, Helft G, Isnard R, Køber L, Coelho LP, Rouault C, Gauguier D, Gøtze JP, Prifti E, Froguel P, Zucker JD, Bäckhed F, Vestergaard H, Hansen T, Oppert JM, Blüher M, Nielsen J, Raes J, Bork P, Yaqoob MM, Stumvoll M, Pedersen O, Ehrlich SD, Clément K, Dumas ME. Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide. Nat Commun 2023; 14:5843. [PMID: 37730687 PMCID: PMC10511707 DOI: 10.1038/s41467-023-39824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/30/2023] [Indexed: 09/22/2023] Open
Abstract
The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk.
Collapse
Affiliation(s)
- Petros Andrikopoulos
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Section of Genomic & Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK.
| | - Judith Aron-Wisnewsky
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Rima Chakaroun
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antonis Myridakis
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK
| | - Sofia K Forslund
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin and the Max-Delbrück Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité University Hospital, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Solia Adriouch
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
| | | | - Julien Chilloux
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sara Vieira-Silva
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Joe-Elie Salem
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Fabrizio Andreelli
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Eugeni Belda
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, F-93143, Bondy, France
| | - Julius Kieswich
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kanta Chechi
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Genomic & Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - Francesc Puig-Castellvi
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France
| | - Mickael Chevalier
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France
| | | | - Michael T Olanipekun
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Renato Alves
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gerard Helft
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
- Institute of Cardiometabolism and Nutrition, ICAN, INSERM, 1166, Paris, France
| | - Richard Isnard
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Luis Pedro Coelho
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christine Rouault
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
| | - Dominique Gauguier
- INSERM UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
- McGill Genome Centre, McGill University, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Jens Peter Gøtze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Edi Prifti
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, F-93143, Bondy, France
| | - Philippe Froguel
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Jean-Daniel Zucker
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, F-93143, Bondy, France
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-Michel Oppert
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, 03722, South Korea
| | - Muhammad M Yaqoob
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte University Hospital, Copenhagen, Denmark
| | - S Dusko Ehrlich
- Department of Clinical and Movement Neurosciences, University College London, London, NW3 2PF, UK
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France.
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France.
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Section of Genomic & Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK.
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France.
- McGill Genome Centre, McGill University, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
4
|
Zhang XM, Song Y, Zhu XY, Wang WJ, Fan XL, El-Aziz TMA. MITOCHONDRIA: The dual function of the transient receptor potential melastatin 2 channels from cytomembrane to mitochondria. Int J Biochem Cell Biol 2023; 157:106374. [PMID: 36708986 DOI: 10.1016/j.biocel.2023.106374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Mitochondria are closely related to oxidative stress and play an important role in maintaining cell functional homeostasis and meeting cell energy demand. The transient receptor potential melastatin 2 (TRPM2) channel affects the occurrence and progression of diseases by regulating mitochondrial function. TRPM2 channel promotes Ca2+ influx to affect 18 kDa translocator protein (TSPO), mitochondrial membrane potential (MMP), reactive oxygen species (ROS), adenosine triphosphate (ATP) production, and mitochondrial autophagy. The mechanism of Ca2+ influx into the mitochondria by TRPM2 is abundant. Interestingly, the TRPM2 channel inhibits the production of mitochondrial ROS in cancer cells and promotes the production of mitochondrial ROS in normal cells, which induces cell death in normal cells but proliferation in cancer cells. TRPM2 can be a potential target for the treatment of various diseases due to its role as a molecular link between mitochondria and Ca2+ signals.
Collapse
Affiliation(s)
- Xiao-Min Zhang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Xin-Yi Zhu
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wen-Jun Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xu-Li Fan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| |
Collapse
|
5
|
Gu S, Li Y, Jiang Y, Huang JH, Wang F. Glymphatic Dysfunction Induced Oxidative Stress and Neuro-Inflammation in Major Depression Disorders. Antioxidants (Basel) 2022; 11:2296. [PMID: 36421482 PMCID: PMC9687220 DOI: 10.3390/antiox11112296] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
Major Depression disorder (MDD) is a potentially life-threatening mental illness, however, many patients have a poor response to current treatments. Recent studies have suggested that stress- or trauma-induced oxidative stress and inflammation could be important factors involved in the development of MDD, but the mechanisms remain unclear. We showed that the glymphatic system is a recently discovered structure in the brain that may be involved in the clearance of large molecular and cell debris in extracellular space. In addition, the glymphatic system can help with the removal of reactive oxygen species (ROS) and cytokines such as IL-1β and HIF-1α. Glymphatic impairment can lead to ROS accumulation in the microenvironment, inducing cellular injury signaling and activating NLRP3 in microglia to induce inflammation and, thus, many brain diseases, including psychiatric disorders. Therefore, trauma-induced glymphatic impairment could induce oxidative stress and inflammation, and thus MDD. This paper will review recent advances with regard to stress-induced glymphatic system impairment and ROS-mediated inflammation in MDD.
Collapse
Affiliation(s)
- Simeng Gu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang 210023, China
| | - Yumeng Li
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang 210023, China
| | - Yao Jiang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 79409, USA
- Department of Surgery, College of Medicine, Texas A & M University, Temple, TX 79409, USA
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
6
|
Transient Receptor Potential (TRP) Channels in Tumor Vascularization. Int J Mol Sci 2022; 23:ijms232214253. [PMID: 36430727 PMCID: PMC9692925 DOI: 10.3390/ijms232214253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tumor diseases are unfortunately quick spreading, even though numerous studies are under way to improve early diagnosis and targeted treatments that take into account both the different characteristics associated with the various tumor types and the conditions of individual patients. In recent years, studies have focused on the role of ion channels in tumor development, as these proteins are involved in several cellular processes relevant to neoplastic transformation. Among all ion channels, many studies have focused on the superfamily of Transient Receptor Potential (TRP) channels, which are non-selective cation channels mediating extracellular Ca2+ influx. In this review, we examined the role of different endothelial TRP channel isoforms in tumor vessel formation, a process that is essential in tumor growth and metastasis.
Collapse
|
7
|
Teichert V, Große S, Multhaup A, Müller J, Gutierrez-Samudio RN, Morales-Prieto DM, Groten T. PETN-Induced Antioxidative Properties in Endothelial Cells as a Target for Secondary Prevention of Endothelial Dysfunction in Pregnancy. Front Physiol 2022; 13:882544. [PMID: 35707005 PMCID: PMC9189364 DOI: 10.3389/fphys.2022.882544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
The NO-donor Pentaerytrithyltetranitrate (PETN) has vasodilatative properties and direct protective effects on endothelial cells. We formerly demonstrated that PETN, given to pregnant women during the second and third trimester, influences endothelial dysfunction related pregnancy complications like preeclampsia (PE) and fetal growth restriction (FGR). PETN treatment showed to delay PE to late pregnancy and achieved a profound risk reduction for FGR and/or perinatal death of 40%. The aim of this study was to confirm the effect of PETN on endothelial cell dysfunction at molecular level in an experimental approach. To induce endothelial dysfunction HUVEC were treated with 10 U/l of thrombin in the presence or absence of PETN. qRT-PCR analysis showed that PETN induced the expression of heme-oxygenase-1 and superoxide dismutase two but not endothelial NO-synthase under basal conditions. The induction of antioxidant proteins did not change basal reactive oxygen species (ROS) levels as measured by MitoSOX™ staining. PETN treatment significantly delayed the thrombin-induced disruption of the endothelial monolayer, determined using the xCELLigence® and attenuated the disrupting effect of thrombin on tubular junctions as seen in a tube-forming assay on Matrigel™. In western-blot-analysis we could show that PETN significantly reduced thrombin-induced extracellular signal-regulated kinase activation which correlates with reduction of thrombin-induced ROS. These experimental results establish the concept of how PETN treatment could stabilize endothelial resistance and angiogenic properties in pregnancy-induced stress. Thus, our results underscore the assumption, that the shown clinical effects of PETN are associated to its endothelial cell protection.
Collapse
Affiliation(s)
- Veronika Teichert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Jena, Germany
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | - Silke Große
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Jena, Germany
| | - Anna Multhaup
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Jena, Germany
| | - Jasmin Müller
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Jena, Germany
| | | | | | - Tanja Groten
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Jena, Germany
- *Correspondence: Tanja Groten,
| |
Collapse
|
8
|
Different Contribution of Monocyte- and Platelet-Derived Microvesicles to Endothelial Behavior. Int J Mol Sci 2022; 23:ijms23094811. [PMID: 35563201 PMCID: PMC9105732 DOI: 10.3390/ijms23094811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
Several contributions of circulating microvesicles (MVs) to the endothelial dysfunction have been reported in the past; a head-to-head comparison of platelet- and monocyte–derived MVs has however never been performed. To this aim, we assessed the involvement of these MVs in vessel damage related processes, i.e., oxidative stress, inflammation, and leukocyte-endothelial adhesion. Platelets and monocytes isolated from healthy subjects (HS, n = 15) were stimulated with TRAP-6 and LPS to release MVs that were added to human vascular endothelial cell (hECV) culture to evaluate superoxide anion production, inflammatory markers (IL-6, TNFα, NF-κB mRNA expression), and hECV adhesiveness. The effects of the MVs-induced from HS were compared to those induced by MVs spontaneously released from cells of patients with ST-segment elevation myocardial infarction (STEMI, n = 7). MVs released by HS-activated cells triggered a threefold increase in oxidative burst in a concentration-dependent manner. Only MVs released from monocytes doubled IL-6, TNFα, and NF-κB mRNA expression and monocyte-endothelial adhesion. Interestingly, the effects of the MVs isolated from STEMI-monocytes were not superimposable to previous ones except for adhesion to hECV. Conversely, MVs released from STEMI-platelets sustained both redox state and inflammatory phenotype. These data provide evidence that MVs released from activated and/or pathologic platelets and monocytes differently affect endothelial behavior, highlighting platelet-MVs as causative factors of impaired endothelial function in the acute phase of STEMI.
Collapse
|
9
|
Discovering the Triad between Nav1.5, Breast Cancer, and the Immune System: A Fundamental Review and Future Perspectives. Biomolecules 2022; 12:biom12020310. [PMID: 35204811 PMCID: PMC8869595 DOI: 10.3390/biom12020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Nav1.5 is one of the nine voltage-gated sodium channel-alpha subunit (VGSC-α) family members. The Nav1.5 channel typically carries an inward sodium ion current that depolarises the membrane potential during the upstroke of the cardiac action potential. The neonatal isoform of Nav1.5, nNav1.5, is produced via VGSC-α alternative splicing. nNav1.5 is known to potentiate breast cancer metastasis. Despite their well-known biological functions, the immunological perspectives of these channels are poorly explored. The current review has attempted to summarise the triad between Nav1.5 (nNav1.5), breast cancer, and the immune system. To date, there is no such review available that encompasses these three components as most reviews focus on the molecular and pharmacological prospects of Nav1.5. This review is divided into three major subsections: (1) the review highlights the roles of Nav1.5 and nNav1.5 in potentiating the progression of breast cancer, (2) focuses on the general connection between breast cancer and the immune system, and finally (3) the review emphasises the involvements of Nav1.5 and nNav1.5 in the functionality of the immune system and the immunogenicity. Compared to the other subsections, section three is pretty unexploited; it would be interesting to study this subsection as it completes the triad.
Collapse
|
10
|
Li X, Miao S, Li F, Ye F, Yue G, Lu R, Shen H, Ye Y. Cellular Calcium Signals in Cancer Chemoprevention and Chemotherapy by Phytochemicals. Nutr Cancer 2022; 74:2671-2685. [PMID: 35876249 DOI: 10.1080/01635581.2021.2020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Ye
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guang Yue
- Department of Internal Medicine, The Third Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Experimental Research, Affiliated Kunshan Hospital, Jiangsu University, Kunshan, Suzhou, China
| | - Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Piccialli I, Ciccone R, Secondo A, Boscia F, Tedeschi V, de Rosa V, Cepparulo P, Annunziato L, Pannaccione A. The Na +/Ca 2+ Exchanger 3 Is Functionally Coupled With the Na V1.6 Voltage-Gated Channel and Promotes an Endoplasmic Reticulum Ca 2+ Refilling in a Transgenic Model of Alzheimer's Disease. Front Pharmacol 2021; 12:775271. [PMID: 34955845 PMCID: PMC8692738 DOI: 10.3389/fphar.2021.775271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 01/15/2023] Open
Abstract
The remodelling of neuronal ionic homeostasis by altered channels and transporters is a critical feature of the Alzheimer's disease (AD) pathogenesis. Different reports converge on the concept that the Na+/Ca2+ exchanger (NCX), as one of the main regulators of Na+ and Ca2+ concentrations and signalling, could exert a neuroprotective role in AD. The activity of NCX has been found to be increased in AD brains, where it seemed to correlate with an increased neuronal survival. Moreover, the enhancement of the NCX3 currents (INCX) in primary neurons treated with the neurotoxic amyloid β 1-42 (Aβ1-42) oligomers prevented the endoplasmic reticulum (ER) stress and neuronal death. The present study has been designed to investigate any possible modulation of the INCX, the functional interaction between NCX and the NaV1.6 channel, and their impact on the Ca2+ homeostasis in a transgenic in vitro model of AD, the primary hippocampal neurons from the Tg2576 mouse, which overproduce the Aβ1-42 peptide. Electrophysiological studies, carried in the presence of siRNA and the isoform-selective NCX inhibitor KB-R7943, showed that the activity of a specific NCX isoform, NCX3, was upregulated in its reverse, Ca2+ influx mode of operation in the Tg2576 neurons. The enhanced NCX activity contributed, in turn, to increase the ER Ca2+ content, without affecting the cytosolic Ca2+ concentrations of the Tg2576 neurons. Interestingly, our experiments have also uncovered a functional coupling between NCX3 and the voltage-gated NaV1.6 channels. In particular, the increased NaV1.6 currents appeared to be responsible for the upregulation of the reverse mode of NCX3, since both TTX and the Streptomyces griseolus antibiotic anisomycin, by reducing the NaV1.6 currents, counteracted the increase of the INCX in the Tg2576 neurons. In agreement, our immunofluorescence analyses revealed that the NCX3/NaV1.6 co-expression was increased in the Tg2576 hippocampal neurons in comparison with the WT neurons. Collectively, these findings indicate that NCX3 might intervene in the Ca2+ remodelling occurring in the Tg2576 primary neurons thus emerging as a molecular target with a neuroprotective potential, and provide a new outcome of the NaV1.6 upregulation related to the modulation of the intracellular Ca2+ concentrations in AD neurons.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
12
|
Kij A, Bar A, Przyborowski K, Proniewski B, Mateuszuk L, Jasztal A, Kieronska-Rudek A, Marczyk B, Matyjaszczyk-Gwarda K, Tworzydlo A, Enggaard C, Hansen PBL, Jensen B, Walczak M, Chlopicki S. Thrombin Inhibition Prevents Endothelial Dysfunction and Reverses 20-HETE Overproduction without Affecting Blood Pressure in Angiotensin II-Induced Hypertension in Mice. Int J Mol Sci 2021; 22:ijms22168664. [PMID: 34445374 PMCID: PMC8395447 DOI: 10.3390/ijms22168664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 02/02/2023] Open
Abstract
Angiotensin II (Ang II) induces hypertension and endothelial dysfunction, but the involvement of thrombin in these responses is not clear. Here, we assessed the effects of the inhibition of thrombin activity by dabigatran on Ang II-induced hypertension and endothelial dysfunction in mice with a particular focus on NO- and 20-HETE-dependent pathways. As expected, dabigatran administration significantly delayed thrombin generation (CAT assay) in Ang II-treated hypertensive mice, and interestingly, it prevented endothelial dysfunction development, but it did not affect elevated blood pressure nor excessive aortic wall thickening. Dabigatran’s effects on endothelial function in Ang II-treated mice were evidenced by improved NO-dependent relaxation in the aorta in response to acetylcholine in vivo (MRI measurements) and increased systemic NO bioavailability (NO2− quantification) with a concomitant increased ex vivo production of endothelium-derived NO (EPR analysis). Dabigatran treatment also contributed to the reduction in the endothelial expression of pro-inflammatory vWF and ICAM-1. Interestingly, the fall in systemic NO bioavailability in Ang II-treated mice was associated with increased 20-HETE concentration in plasma (UPLC-MS/MS analysis), which was normalised by dabigatran treatment. Taking together, the inhibition of thrombin activity in Ang II-induced hypertension in mice improves the NO-dependent function of vascular endothelium and normalises the 20-HETE-depedent pathway without affecting the blood pressure and vascular remodelling.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Karolina Matyjaszczyk-Gwarda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Anna Tworzydlo
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Camilla Enggaard
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsløws Vej 21, 5000 Odense, Denmark; (C.E.); (P.B.L.H.); (B.J.)
| | - Pernille B. Lærkegaard Hansen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsløws Vej 21, 5000 Odense, Denmark; (C.E.); (P.B.L.H.); (B.J.)
| | - Boye Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsløws Vej 21, 5000 Odense, Denmark; (C.E.); (P.B.L.H.); (B.J.)
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
- Chair and Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
- Chair of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
- Correspondence:
| |
Collapse
|
13
|
Li X, Römer G, Kerindongo RP, Hermanides J, Albrecht M, Hollmann MW, Zuurbier CJ, Preckel B, Weber NC. Sodium Glucose Co-Transporter 2 Inhibitors Ameliorate Endothelium Barrier Dysfunction Induced by Cyclic Stretch through Inhibition of Reactive Oxygen Species. Int J Mol Sci 2021; 22:ijms22116044. [PMID: 34205045 PMCID: PMC8199893 DOI: 10.3390/ijms22116044] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 02/08/2023] Open
Abstract
SGLT-2i's exert direct anti-inflammatory and anti-oxidative effects on resting endothelial cells. However, endothelial cells are constantly exposed to mechanical forces such as cyclic stretch. Enhanced stretch increases the production of reactive oxygen species (ROS) and thereby impairs endothelial barrier function. We hypothesized that the SGLT-2i's empagliflozin (EMPA), dapagliflozin (DAPA) and canagliflozin (CANA) exert an anti-oxidative effect and alleviate cyclic stretch-induced endothelial permeability in human coronary artery endothelial cells (HCAECs). HCAECs were pre-incubated with one of the SGLT-2i's (1 µM EMPA, 1 µM DAPA and 3 µM CANA) for 2 h, followed by 10% stretch for 24 h. HCAECs exposed to 5% stretch were considered as control. Involvement of ROS was measured using N-acetyl-l-cysteine (NAC). The sodium-hydrogen exchanger 1 (NHE1) and NADPH oxidases (NOXs) were inhibited by cariporide, or GKT136901, respectively. Cell permeability and ROS were investigated by fluorescence intensity imaging. Cell permeability and ROS production were increased by 10% stretch; EMPA, DAPA and CANA decreased this effect significantly. Cariporide and GKT136901 inhibited stretch-induced ROS production but neither of them further reduced ROS production when combined with EMPA. SGLT-2i's improve the barrier dysfunction of HCAECs under enhanced stretch and this effect might be mediated through scavenging of ROS. Anti-oxidative effect of SGLT-2i's might be partially mediated by inhibition of NHE1 and NOXs.
Collapse
Affiliation(s)
- Xiaoling Li
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Gregor Römer
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany;
| | - Raphaela P. Kerindongo
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Jeroen Hermanides
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany;
| | - Markus W. Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Coert J. Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Benedikt Preckel
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Nina C. Weber
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
- Correspondence: ; Tel.: +31-20-566-8215
| |
Collapse
|
14
|
Wenzel J, Spyropoulos D, Assmann JC, Khan MA, Stölting I, Lembrich B, Kreißig S, Ridder DA, Isermann B, Schwaninger M. Endogenous THBD (Thrombomodulin) Mediates Angiogenesis in the Ischemic Brain—Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:2837-2844. [DOI: 10.1161/atvbaha.120.315061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
THBD (thrombomodulin) is part of the anticoagulant protein C-system that acts at the endothelium and is involved in anti-inflammatory and barrier-stabilizing processes. A recombinant soluble form of THBD was shown to have protective effects in different organs, but how the endogenous THBD is regulated during ischemia, particularly in the brain is not known to date. The aim of this study was to investigate the role of THBD, especially in brain endothelial cells, during ischemic stroke.
Approach and Results:
To induce ischemic brain damage, we occluded the middle cerebral artery of mice. We found an increased endothelial expression of
Thbd
in the peri-infarct area, whereas in the core of the ischemic tissue
Thbd
expression was decreased compared with the contralateral side. We generated a novel Cre/loxP-based mouse line that allows for the inducible deletion of
Thbd
specifically in brain endothelial cells, which worsened stroke outcome 48 hours after middle cerebral artery occlusion. Unexpectedly, we found no signs of increased coagulation, thrombosis, or inflammation in the brain but decreased vessel diameters and impaired angiogenesis in the peri-infarct area that led to a reduced overall vessel length 1 week after stroke induction.
Conclusions:
Endogenous THBD acts as a protective factor in the brain during ischemic stroke and enhances vessel diameter and proliferation. These previously unknown properties of THBD could offer new opportunities to affect vessel function after ischemia and thereby improve stroke outcome.
Collapse
Affiliation(s)
- Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (J.W., D.S., M.S.)
| | - Dimitrios Spyropoulos
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (J.W., D.S., M.S.)
| | - Julian Christopher Assmann
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Mahtab Ahmad Khan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Ines Stölting
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Beate Lembrich
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Sara Kreißig
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | | | - Berend Isermann
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany (B.I.)
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (J.W., D.S., M.S.)
| |
Collapse
|
15
|
Huang ZS, Xie DQ, Xu LJ, Huang CS, Zheng M, Chen YJ, Cao Y. Tetramethylpyrazine Ameliorates Lipopolysaccharide-Induced Sepsis in Rats via Protecting Blood-Brain Barrier, Impairing Inflammation and Nitrous Oxide Systems. Front Pharmacol 2020; 11:562084. [PMID: 33123008 PMCID: PMC7566283 DOI: 10.3389/fphar.2020.562084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to assess the underlying impact of Tetramethylpyrazine (TMP), which is the main activity compound of Ligusticum chuanxiong Hort, on the blood–brain barrier, inflammatory and nitrous oxide systems in a rat model of lipopolysaccharide (LPS)-induced sepsis. The SD rats were divided into control group, LPS treatment group, and LPS + TMP treatment group. TMP administered by tail vein injection. The mortality of experimental rats was recorded during the experiment. Rats were sacrificed after 14 days. Peripheral blood was collected and the expression levels of inflammatory factors TNF-α, IL-1β, and IL-6 were detected by ELISA. The integrity of blood-brain barrier was detected by sodium fluorescein staining. Lung and brain tissues were taken to detect the infiltration of immune cells. Immunohistochemistry was performed to detect the expression of tight junctions related proteins and oxidative stress-related proteins. The results showed that TMP treatment for 14 days significantly decreased the weight loss and increased the survival rate of the septic rats significantly. TMP decreased the infiltration of inflammatory cells and alleviated the sepsis-induced damage in both the lung and brain tissues. The inflammatory cytokines TNF-α, IL-1β, and IL-6, were significantly decreased post-TMP treatment. Histopathological analysis with sodium fluorescein staining density showed that TMP had a protective effect on the basal lamina and cerebral cortex. Also, TMP significantly increased expression of the tight junction-related proteins claudin-5 and occludin in the brain tissue and increased the expression of the ZO-1, Occludin, and Claudin-5 genes, indicating alleviated the degree of blood–brain barrier destruction. Furthermore, immunohistochemistry (IHC) and immunoblotting confirmed that TMP could inhibit the indicators of the nitrous oxide system, iNOS and eNOS; in addition, TMP significantly decreased the levels of MDA and NO. The findings showed that TMP treatment during sepsis was associated with the protection of the blood–brain barrier and the suppression of inflammatory reactions and the nitrous oxide system. This study reveals a promising protective role of TMP in septic encephalopathy and may suggest a therapeutic approach for fighting the deadly disease of sepsis in the clinic.
Collapse
Affiliation(s)
- Zi-Sheng Huang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Da-Qi Xie
- Department of Cardiology, Ningbo Ninth Hospital, Ningbo, China
| | - Li-Jun Xu
- Ophthalmology Operating Room, Ningbo First Hospital, Ningbo, China
| | - Chang-Shun Huang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Min Zheng
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yi-Jun Chen
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yin Cao
- Department of Anesthesiology, Ningbo Ninth Hospital, Ningbo, China
| |
Collapse
|
16
|
Chovancova B, Liskova V, Babula P, Krizanova O. Role of Sodium/Calcium Exchangers in Tumors. Biomolecules 2020; 10:biom10091257. [PMID: 32878087 PMCID: PMC7563772 DOI: 10.3390/biom10091257] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022] Open
Abstract
The sodium/calcium exchanger (NCX) is a unique calcium transport system, generally transporting calcium ions out of the cell in exchange for sodium ions. Nevertheless, under special conditions this transporter can also work in a reverse mode, in which direction of the ion transport is inverted—calcium ions are transported inside the cell and sodium ions are transported out of the cell. To date, three isoforms of the NCX have been identified and characterized in humans. Majority of information about the NCX function comes from isoform 1 (NCX1). Although knowledge about NCX function has evolved rapidly in recent years, little is known about these transport systems in cancer cells. This review aims to summarize current knowledge about NCX functions in individual types of cancer cells.
Collapse
Affiliation(s)
- Barbora Chovancova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 45 Bratislava, Slovakia; (B.C.); (V.L.)
| | - Veronika Liskova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 45 Bratislava, Slovakia; (B.C.); (V.L.)
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 45 Bratislava, Slovakia; (B.C.); (V.L.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
- Correspondence: ; Tel.: +4212-3229-5312
| |
Collapse
|
17
|
Alves-Lopes R, Neves KB, Anagnostopoulou A, Rios FJ, Lacchini S, Montezano AC, Touyz RM. Crosstalk Between Vascular Redox and Calcium Signaling in Hypertension Involves TRPM2 (Transient Receptor Potential Melastatin 2) Cation Channel. Hypertension 2019; 75:139-149. [PMID: 31735084 DOI: 10.1161/hypertensionaha.119.13861] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Increased generation of reactive oxygen species (ROS) and altered Ca2+ handling cause vascular damage in hypertension. Mechanisms linking these systems are unclear, but TRPM2 (transient receptor potential melastatin 2) could be important because TRPM2 is a ROS sensor and a regulator of Ca2+ and Na+ transport. We hypothesized that TRPM2 is a point of cross-talk between redox and Ca2+ signaling in vascular smooth muscle cells (VSMC) and that in hypertension ROS mediated-TRPM2 activation increases [Ca2+]i through processes involving NCX (Na+/Ca2+ exchanger). VSMCs from hypertensive and normotensive individuals and isolated arteries from wild type and hypertensive mice (LinA3) were studied. Generation of superoxide anion and hydrogen peroxide (H2O2) was increased in hypertensive VSMCs, effects associated with activation of redox-sensitive PARP1 (poly [ADP-ribose] polymerase 1), a TRPM2 regulator. Ang II (angiotensin II) increased Ca2+ and Na+ influx with exaggerated responses in hypertension. These effects were attenuated by catalase-polyethylene glycol -catalase and TRPM2 inhibitors (2-APB, 8-Br-cADPR olaparib). TRPM2 siRNA decreased Ca2+ in hypertensive VSMCs. NCX inhibitors (Benzamil, KB-R7943, YM244769) normalized Ca2+ hyper-responsiveness and MLC20 phosphorylation in hypertensive VSMCs. In arteries from LinA3 mice, exaggerated agonist (U46619, Ang II, phenylephrine)-induced vasoconstriction was decreased by TRPM2 and NCX inhibitors. In conclusion, activation of ROS-dependent PARP1-regulated TRPM2 contributes to vascular Ca2+ and Na+ influx in part through NCX. We identify a novel pathway linking ROS to Ca2+ signaling through TRPM2/NCX in human VSMCs and suggest that oxidative stress-induced upregulation of this pathway may be a new player in hypertension-associated vascular dysfunction.
Collapse
Affiliation(s)
- Rhéure Alves-Lopes
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| | - Karla B Neves
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| | - Aikaterini Anagnostopoulou
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| | - Francisco J Rios
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| | - Silvia Lacchini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo Medical School, Brazil (S.L.)
| | - Augusto C Montezano
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| | - Rhian M Touyz
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| |
Collapse
|
18
|
Meng C, Sun Y, Hu Z, Wang H, Jiang W, Song J, Yu Y, Hu D. Effects of hypoxia inducible factor-1α on expression levels of MLCK, p-MLC and ZO-1 of rat endothelial cells. Biochem Biophys Res Commun 2019; 519:591-596. [PMID: 31540688 DOI: 10.1016/j.bbrc.2019.08.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To examine the aberrant expression of endothelial permeability associated proteins including MLCK, p-MLC and ZO-1 in presence of different levels of hypoxia-inducible factor 1 alpha (HIF-1α). METHODS We established monolayer vascular endothelial cell model with the primary rat endothelial cells. Over-expressed or under-expressed HIF-1α cell lines were made by endothelial cells transfected with plasmid vector constructed with HIF-1α gene or HIF-1α-specific short hairpin RNA (shRNA). Levels of mRNA and protein of MLCK, p-MLC and ZO-1 were determined using Real-Time PCR and Western blot. All data were analyzed using by One-Way ANOVA method and LSD. RESULTS We successfully cultured the rat endothelial primary cells for four days. The mRNA and protein levels of MLCK and p-MLC were significantly increased in the HIF-1α over-expression group than that in the blank control group and the empty plasmid GV230 group (P<0.05). ZO-1 was significantly lower in the HIF-1α over-expression group than that in the blank control group and the GV230 group. On the contrary, the mRNA and protein levels of MLCK and p-MLC were significantly lower in the HIF-1α under-expression group than that in the blank control group and the shRNA-NC group (P<0.05). ZO-1 was significantly higher in the HIF-1α low-expression group than that in the blank control group and the shRNA-NC group. CONCLUSION HIF-1α positively regulates the expression of MLCK and p-MLC and negatively regulates the expression of ZO-1 in rat monolayer endothelial cells.
Collapse
Affiliation(s)
- Chengying Meng
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Youjun Sun
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zijian Hu
- 2018 Class of Clinical Medicine (No.1813010207), The First Clinical College of Anhui Medical University, Hefei, 230022, China
| | - Huan Wang
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei Jiang
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Junhui Song
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Youxin Yu
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Delin Hu
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
19
|
López E, Lee-Rivera I, Alvarez-Arce A, López-Colomé AM. Thrombin induces Ca 2+-dependent glutamate release from RPE cells mediated by PLC/PKC and reverse Na +/Ca 2+ exchange. Mol Vis 2019; 25:546-558. [PMID: 31673221 PMCID: PMC6798708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/03/2019] [Indexed: 11/01/2022] Open
Abstract
Purpose We analyzed the molecular mechanisms leading to glutamate release from rat primary cultures of RPE cells, under isosmotic conditions. Thrombin has been shown to stimulate glutamate release from astrocytes and retinal glia; however, the effect of thrombin on glutamate release from RPE cells has not been examined. Our previous work showed that upon the alteration of the blood-retina barrier, the serine protease thrombin could contribute to the transformation, proliferation, and migration of RPE cells. In this condition, elevated extracellular glutamate causes neuronal loss in many retinal disorders, including glaucoma, ischemia, diabetic retinopathy, and inherited photoreceptor degeneration. Methods Primary cultures of rat RPE cells were preloaded with 1 µCi/ml 3H-glutamate in Krebs Ringer Bicarbonate (KRB) buffer for 30 min at 37 °C. Cells were rinsed and super-perfused with 1 ml/min KRB for 15 min. Stable release was reached at the 7th minute, and on the 8th minute, fresh KRB containing stimuli was added. Results This study showed for the first time that thrombin promotes specific, dose-dependent glutamate release from RPE cells, induced by the activation of protease-activated receptor 1 (PAR-1). This effect was found to depend on the Ca2+ increase mediated by the phospholipase C-β (PLC-β) and protein kinase C (PKC) pathways, as well as by the reverse activity of the Na+/Ca2+ exchanger. Conclusions Given the intimate contact of the RPE with the photoreceptor outer segments, diffusion of RPE-released glutamate could contribute to the excitotoxic death of retinal neurons, and the development of thrombin-induced eye pathologies.
Collapse
|
20
|
Endothelial Ca 2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel. Int J Mol Sci 2019; 20:ijms20163962. [PMID: 31416282 PMCID: PMC6721072 DOI: 10.3390/ijms20163962] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
It has long been known that endothelial Ca2+ signals drive angiogenesis by recruiting multiple Ca2+-sensitive decoders in response to pro-angiogenic cues, such as vascular endothelial growth factor, basic fibroblast growth factor, stromal derived factor-1α and angiopoietins. Recently, it was shown that intracellular Ca2+ signaling also drives vasculogenesis by stimulation proliferation, tube formation and neovessel formation in endothelial progenitor cells. Herein, we survey how growth factors, chemokines and angiogenic modulators use endothelial Ca2+ signaling to regulate angiogenesis and vasculogenesis. The endothelial Ca2+ response to pro-angiogenic cues may adopt different waveforms, ranging from Ca2+ transients or biphasic Ca2+ signals to repetitive Ca2+ oscillations, and is mainly driven by endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors and by store-operated Ca2+ entry through Orai1 channels. Lysosomal Ca2+ release through nicotinic acid adenine dinucleotide phosphate-gated two-pore channels is, however, emerging as a crucial pro-angiogenic pathway, which sustains intracellular Ca2+ mobilization. Understanding how endothelial Ca2+ signaling regulates angiogenesis and vasculogenesis could shed light on alternative strategies to induce therapeutic angiogenesis or interfere with the aberrant vascularization featuring cancer and intraocular disorders.
Collapse
|
21
|
Tang B, Wu J, Zhu MX, Sun X, Liu J, Xie R, Dong TX, Xiao Y, Carethers JM, Yang S, Dong H. VPAC1 couples with TRPV4 channel to promote calcium-dependent gastric cancer progression via a novel autocrine mechanism. Oncogene 2019; 38:3946-3961. [PMID: 30692637 DOI: 10.1038/s41388-019-0709-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 01/20/2023]
Abstract
Although VPAC1 and its ligand vasoactive intestinal peptide (VIP) are important in gastrointestinal physiology, their involvements in progression of gastrointestinal tumor have not been explored. Here, we found that higher expression of VIP/VPAC1 was observed in gastric cancer compared to the adjacent normal tissues. The increased expression of VIP/VPAC1 in gastric cancer correlated positively with invasion, tumor stage, lymph node, distant metastases, and poor survival. Moreover, high expression of VIP and VPAC1, advanced tumor stage and distant metastasis were independent prognostic factors. VPAC1 activation by VIP markedly induced TRPV4-mediated Ca2+ entry, and eventually promoted gastric cancer progression in a Ca2+ signaling-dependent manner. Inhibition of VPAC1 and its signaling pathway could block the progressive responses. VPAC1/TRPV4/Ca2+ signaling in turn enhanced the expression and secretion of VIP in gastric cancer cells, enforcing a positive feedback regulation mechanism. Taken together, our study demonstrate that VPAC1 is significantly overexpressed in gastric cancer and VPAC1/TRPV4/Ca2+ signaling axis could enforce a positive feedback regulation in gastric cancer progression. VIP/VPAC1 may serve as potential prognostic markers and therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Jilin Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Michael X Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xuemei Sun
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi, China
| | - Tobias Xiao Dong
- Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - John M Carethers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China. .,Department of Medicine, School of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
22
|
Andrikopoulos P, Kieswich J, Pacheco S, Nadarajah L, Harwood SM, O'Riordan CE, Thiemermann C, Yaqoob MM. The MEK Inhibitor Trametinib Ameliorates Kidney Fibrosis by Suppressing ERK1/2 and mTORC1 Signaling. J Am Soc Nephrol 2018; 30:33-49. [PMID: 30530834 DOI: 10.1681/asn.2018020209] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During kidney fibrosis, a hallmark and promoter of CKD (regardless of the underlying renal disorder leading to CKD), the extracellular-regulated kinase 1/2 (ERK1/2) pathway, is activated and has been implicated in the detrimental differentiation and expansion of kidney fibroblasts. An ERK1/2 pathway inhibitor, trametinib, is currently used in the treatment of melanoma, but its efficacy in the setting of CKD and renal fibrosis has not been explored. METHODS We investigated whether trametinib has antifibrotic effects in two mouse models of renal fibrosis-mice subjected to unilateral ureteral obstruction (UUO) or fed an adenine-rich diet-as well as in cultured primary human fibroblasts. We also used immunoblot analysis, immunohistochemical staining, and other tools to study underlying molecular mechanisms for antifibrotic effects. RESULTS Trametinib significantly attenuated collagen deposition and myofibroblast differentiation and expansion in UUO and adenine-fed mice. We also discovered that in injured kidneys, inhibition of the ERK1/2 pathway by trametinib ameliorated mammalian target of rapamycin complex 1 (mTORC1) activation, another key profibrotic signaling pathway. Trametinib also inhibited the ERK1/2 pathway in cultured primary human renal fibroblasts stimulated by application of TGF-β1, the major profibrotic cytokine, thereby suppressing downstream mTORC1 pathway activation. Additionally, trametinib reduced the expression of myofibroblast marker α-smooth muscle actin and the proliferation of renal fibroblasts, corroborating our in vivo data. Crucially, trametinib also significantly ameliorated renal fibrosis progression when administered to animals subsequent to myofibroblast activation. CONCLUSIONS Further study of trametinib as a potential candidate for the treatment of chronic renal fibrotic diseases of diverse etiologies is warranted.
Collapse
Affiliation(s)
- Petros Andrikopoulos
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and .,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julius Kieswich
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sabrina Pacheco
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luxme Nadarajah
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Steven Michael Harwood
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Caroline E O'Riordan
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christoph Thiemermann
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Muhammad M Yaqoob
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Covic L, Kuliopulos A. Protease-Activated Receptor 1 as Therapeutic Target in Breast, Lung, and Ovarian Cancer: Pepducin Approach. Int J Mol Sci 2018; 19:ijms19082237. [PMID: 30065181 PMCID: PMC6121574 DOI: 10.3390/ijms19082237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
The G-protein coupled receptors (GPCRs) belong to a large family of diverse receptors that are well recognized as pharmacological targets. However, very few of these receptors have been pursued as oncology drug targets. The Protease-activated receptor 1 (PAR1), which is a G-protein coupled receptor, has been shown to act as an oncogene and is an emerging anti-cancer drug target. In this paper, we provide an overview of PAR1’s biased signaling role in metastatic cancers of the breast, lungs, and ovaries and describe the development of PAR1 inhibitors that are currently in clinical use to treat acute coronary syndromes. PAR1 inhibitor PZ-128 is in a Phase II clinical trial and is being developed to prevent ischemic and thrombotic complication of patients undergoing cardiac catheterization. PZ-128 belongs to a new class of cell-penetrating, membrane-tethered peptides named pepducins that are based on the intracellular loops of receptors targeting the receptor G-protein interface. Application of PZ-128 as an anti-metastatic and anti-angiogenic therapeutic agent in breast, lung, and ovarian cancer is being reviewed.
Collapse
Affiliation(s)
- Lidija Covic
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, USA.
- Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA.
- Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA 02111, USA.
| | - Athan Kuliopulos
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, USA.
- Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA.
- Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
24
|
Pulmonary Arterial Hypertension and Endothelial Dysfunction Is Linked to NADPH Oxidase-Derived Superoxide Formation in Venous Thrombosis and Pulmonary Embolism in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1860513. [PMID: 29983855 PMCID: PMC6015670 DOI: 10.1155/2018/1860513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/11/2018] [Accepted: 02/28/2018] [Indexed: 12/30/2022]
Abstract
Pulmonary embolism (PE) results from deep vein thrombosis (DVT) and can lead to chronic thromboembolic pulmonary hypertension (CTEPH) involving vascular dysfunction. Mechanisms are incompletely understood, in part due to lack of mouse models. We induced PE in C57BL/6 mice by intravenous injection of thrombin (166 U/kg BW), confirmed by a sudden bradycardia, bradypnea, and an increase in pulmonary artery (PA) pressure observed by high-frequency ultrasound. While symptoms resolved rapidly after single thrombin application, repeated PEs resulted in sustained PA-pressure increase, increased PA superoxide formation assessed by oxidative fluorescent microtopography, increased PA gp91phox expression, and endothelial dysfunction assessed by isometric tension studies of isolated PA segments after 24 hours. DVT was modeled in C57BL/6 mice by ligation of the inferior vena cava (IVC). Importantly, small pulmonary emboli could be detected along with a mild phenotype of PA endothelial dysfunction and oxidative stress in the absence of PA-pressure elevation. mRNA expression of plasminogen activator inhibitor-1 was increased in PAs of mice with recurrent PE after repetitive thrombin injections and to a lesser extent in DVT mice. In summary, our data suggest that PA endothelial dysfunction, induced by gp91phox-derived ROS, is an early event upon repetitive PE. This phenomenon might help to elucidate the mechanisms of PA dysfunction in the pathogenesis of CTEPH.
Collapse
|
25
|
Zhu D, Su Y, Zheng Y, Fu B, Tang L, Qin YX. Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39. Am J Physiol Cell Physiol 2018; 314:C404-C414. [PMID: 29351417 PMCID: PMC5966790 DOI: 10.1152/ajpcell.00279.2017] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023]
Abstract
Zn2+ is an essential element for cell survival/growth, and its deficiency is linked to many disorders. Extracellular Zn2+ concentration changes participate in modulating fundamental cellular processes such as proliferation, secretion, ion transport, and cell signal transduction in a mechanism that is not well understood. Here, we hypothesize that the Zn2+-sensing receptor ZnR/G protein-coupled receptor 39 (GPR39), found in tissues where dynamic Zn2+ homeostasis takes place, enables extracellular Zn2+ to trigger intracellular signaling pathways regulating key cell functions in vascular cells. Thus, we investigated how extracellular Zn2+ regulates cell viability, proliferation, motility, angiogenesis, vascular tone, and inflammation through ZnR/GPR39 in endothelial cells. Knockdown of GPR39 through siRNA largely abolished Zn2+-triggered cellular activity changes, Ca2+ responses, as well as the downstream activation of Gαq-PLC pathways. Extracellular Zn2+ promoted vascular cell survival/growth through activation of cAMP and Akt as well as overexpressing of platelet-derived growth factor-α receptor and vascular endothelial growth factor A. It also enhanced cell adhesion and mobility, endothelial tubule formation, and cytoskeletal reorganization. Such effects from extracellular Zn2+ were not observed in GPR39-/- endothelial cells. Zn2+ also regulated inflammation-related key molecules such as heme oxygenase-1, selectin L, IL-10, and platelet endothelial cell adhesion molecule 1, as well as vascular tone-related prostaglandin I2 synthase and nitric oxide synthase-3. In sum, extracellular Zn2+ regulates endothelial cell activity in a ZnR/GPR39-dependent manner and through the downstream Gαq-PLC pathways. Thus, ZnR/GPR39 may be a therapeutic target for regulating endothelial activity.
Collapse
Affiliation(s)
- Donghui Zhu
- Department of Biomedical Engineering, University of North Texas , Denton, Texas
| | - Yingchao Su
- Department of Biomedical Engineering, University of North Texas , Denton, Texas
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University , Beijing , China
| | - Bingmei Fu
- Department of Biomedical Engineering, The City College of the City University of New York , New York, New York
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington , Arlington, Texas
| | - Yi-Xian Qin
- Department of Biomedical Engineering, State University of New York at Stony Brook , Stony Brook, New York
| |
Collapse
|
26
|
Coupling between the TRPC3 ion channel and the NCX1 transporter contributed to VEGF-induced ERK1/2 activation and angiogenesis in human primary endothelial cells. Cell Signal 2017; 37:12-30. [DOI: 10.1016/j.cellsig.2017.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022]
|
27
|
Li M, Jiang C, Ye L, Wang S, Zhang H, Liu J, Hong H. The Role of Na+/Ca2+ Exchanger 1 in Maintaining Ductus Arteriosus Patency. Sci Rep 2017; 7:9826. [PMID: 28852106 PMCID: PMC5575298 DOI: 10.1038/s41598-017-10377-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/08/2017] [Indexed: 01/24/2023] Open
Abstract
Patency of the ductus arteriosus (DA) is crucial for both fetal circulation and patients with DA-dependent congenital heart diseases (CHD). The Na+/Ca2+ exchanger 1 (NCX1) protein has been shown to play a key role in the regulation of vascular tone and is elevated in DA-dependent CHD. This current study was conducted to investigate the mechanisms underpinning the role of NCX1 in DA patency. Our data showed NCX1 expression was up-regulated in the DA of fetal mice. Up-regulation of NCX1 expression resulted in a concomitant decrease in cytosolic Ca2+ levels in human DA smooth muscle cells (DASMCs) and an inhibition of the proliferation and migration capacities of human DASMCs. Furthermore, treatment of DASMCs with KB-R7943, which can reduce Ca2+ influx, resulted in the inhibition of both cell proliferation and migration. These findings indicate that NCX1 may play a role in maintaining patent DA not only by preventing DA functional closure through reducing cytosolic Ca2+ level in DASMC but also by delaying the anatomical closure process. The latter delay is facilitated by the down-regulation of human DASMC proliferation and migration. It is also likely that a reduction in cytosolic Ca2+ levels inhibits the proliferation and migration capacities of human DASMCs in vitro.
Collapse
Affiliation(s)
- Minghui Li
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Chuan Jiang
- Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Shoubao Wang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Haibo Zhang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Jinfen Liu
- Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Haifa Hong
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
28
|
Proximate Mediators of Microvascular Dysfunction at the Blood-Brain Barrier: Neuroinflammatory Pathways to Neurodegeneration. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1549194. [PMID: 28890893 PMCID: PMC5584365 DOI: 10.1155/2017/1549194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/09/2017] [Indexed: 12/14/2022]
Abstract
Current projections are that by 2050 the numbers of people aged 65 and older with Alzheimer's disease (AD) in the US may increase threefold while dementia is projected to double every 20 years reaching ~115 million by 2050. AD is clinically characterized by progressive dementia and neuropathologically by neuronal and synapse loss, accumulation of amyloid plaques, and neurofibrillary tangles (NFTs) in specific brain regions. The preclinical or presymptomatic stage of AD-related brain changes may begin over 20 years before symptoms occur, making development of noninvasive biomarkers essential. Distinct from neuroimaging and cerebrospinal fluid biomarkers, plasma or serum biomarkers can be analyzed to assess (i) the presence/absence of AD, (ii) the risk of developing AD, (iii) the progression of AD, or (iv) AD response to treatment. No unifying theory fully explains the neurodegenerative brain lesions but neuroinflammation (a lethal stressor for healthy neurons) is universally present. Current consensus is that the earlier the diagnosis, the better the chance to develop treatments that influence disease progression. In this article we provide a detailed review and analysis of the role of the blood-brain barrier (BBB) and damage-associated molecular patterns (DAMPs) as well as coagulation molecules in the onset and progression of these neurodegenerative disorders.
Collapse
|
29
|
Zhang Y, Yu L, Jin W, Fan H, Li M, Zhou T, Wan H, Yang J. REDUCING TOXICITY AND INCREASING EFFICIENCY: ACONITINE WITH LIQUIRITIN AND GLYCYRRHETINIC ACID REGULATE CALCIUM REGULATORY PROTEINS IN RAT MYOCARDIAL CELL. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638869 PMCID: PMC5471484 DOI: 10.21010/ajtcam.v14i4.9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Compatibility of Radix Aconiti Carmichaeli and Liquorice is known to treat heart diseases such as heart failure and cardiac arrhythmias. This work answers the question that whether the active components (Aconitine, Liquiritin and Glycyrrhetinic Acid) of Radix Aconiti Carmichaeli and Liquorice could result in regulating intracellular calcium homeostasis and calcium cycling, and thereby verifies the therapeutic material basis. MATERIALS AND METHODS The myocardial cells were divided into twelve groups randomly as control group, Aconitine group, nine different dose groups that orthogonal combined with Aconitine, Liquiritin and Glycyrrhetinic Acid, and Verapamil group. The myocardial cellular survival rate and morphology were assessed. The expression of calcium regulation protein(RyR2, NCX1, DHPR-a1) in the myocardial cell by Western-blotting. RESULTS The results exhibited that Aconitine (120 uM) significantly damaged on myocardial cell, decreased the survival rate and expression of Na+/Ca2+ exchangers (NCX1) and dihydropteridine reducta-α1 (DHPR-a1), and increased the expression of ryanodine receptor type2 (RyR2) obviously. The compatibility groups (Aconitine, Liquiritin and Glycyrrhetinic Acid) all could against the damage on the myocardial cell by Aconitine at different levels. CONCLUSION Aconitine with Liquiritin and Glycyrrhetinic Acid may regulate the expression of calcium-regulated proteins to protect myocardial cells from damage.
Collapse
Affiliation(s)
- Yuyan Zhang
- Zhejiang Chinese Medical University, Hangzhou 310053, P.R. China
| | - Li Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, P.R. China
| | - Weifeng Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, P.R. China
| | - Hongjing Fan
- Zhejiang Chinese Medical University, Hangzhou 310053, P.R. China
| | - Min Li
- Zhejiang Chinese Medical University, Hangzhou 310053, P.R. China
| | - Tianmei Zhou
- The Accessory Guangxing Hospital of Zhejiang Chinese Medical University, Hangzhou 310007, P.R. China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, P.R. China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, P.R. China
| |
Collapse
|
30
|
Zhao M, Jia HH, Liu LZ, Bi XY, Xu M, Yu XJ, He X, Zang WJ. Acetylcholine attenuated TNF-α-induced intracellular Ca 2+ overload by inhibiting the formation of the NCX1-TRPC3-IP3R1 complex in human umbilical vein endothelial cells. J Mol Cell Cardiol 2017; 107:1-12. [PMID: 28395930 DOI: 10.1016/j.yjmcc.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/16/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) forms discrete junctions with the plasma membrane (PM) that play a critical role in the regulation of Ca2+ signaling during cellular bioenergetics, apoptosis and autophagy. We have previously confirmed that acetylcholine can inhibit ER stress and apoptosis after inflammatory injury. However, limited research has focused on the effects of acetylcholine on ER-PM junctions. In this work, we evaluated the structure and function of the supramolecular sodium-calcium exchanger 1 (NCX1)-transient receptor potential canonical 3 (TRPC3)-inositol 1,4,5-trisphosphate receptor 1 (IP3R1) complex, which is involved in regulating Ca2+ homeostasis during inflammatory injury. The width of the ER-PM junctions of human umbilical vein endothelial cells (HUVECs) was measured in nanometres using transmission electron microscopy and a fluorescent probe for Ca2+. Protein-protein interactions were assessed by immunoprecipitation. Ca2+ concentration was measured using a confocal microscope. An siRNA assay was employed to silence specific proteins. Our results demonstrated that the peripheral ER was translocated to PM junction sites when induced by tumour necrosis factor-alpha (TNF-α) and that NCX1-TRPC3-IP3R1 complexes formed at these sites. After down-regulating the protein expression of NCX1 or IP3R1, we found that the NCX1-mediated inflow of Ca2+ and the release of intracellular Ca2+ stores were reduced in TNF-α-treated cells. We also observed that acetylcholine attenuated the formation of NCX1-TRPC3-IP3R1 complexes and maintained calcium homeostasis in cells treated with TNF-α. Interestingly, the positive effects of acetylcholine were abolished by the selective M3AChR antagonist darifenacin and by AMPK siRNAs. These results indicate that acetylcholine protects endothelial cells from TNF-alpha-induced injury, [Ca2+]cyt overload and ER-PM interactions, which depend on the muscarinic 3 receptor/AMPK pathway, and that acetylcholine may be a new inhibitor for suppressing [Ca2+]cyt overload.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Hang-Huan Jia
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Long-Zhu Liu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xue-Yuan Bi
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Man Xu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xiao-Jiang Yu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xi He
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Wei-Jin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China.
| |
Collapse
|
31
|
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Thrombin-unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer Metastasis Rev 2017; 35:213-33. [PMID: 27189210 DOI: 10.1007/s10555-016-9626-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association between blood coagulation and cancer development is well recognized. Thrombin, the pleiotropic enzyme best known for its contribution to fibrin formation and platelet aggregation during vascular hemostasis, may also trigger cellular events through protease-activated receptors, PAR-1 and PAR-4, leading to cancer progression. Our pioneering findings provided evidence that thrombin contributes to cancer metastasis by increasing adhesive potential of malignant cells. However, there is evidence that thrombin regulates every step of cancer dissemination: (1) cancer cell invasion, detachment from primary tumor, migration; (2) entering the blood vessel; (3) surviving in vasculature; (4) extravasation; (5) implantation in host organs. Recent studies have provided new molecular data about thrombin generation in cancer patients and the mechanisms by which thrombin contributes to transendothelial migration, platelet/tumor cell interactions, angiogenesis, and other processes. Though a great deal is known regarding the role of thrombin in cancer dissemination, there are new data for multiple thrombin-mediated events that justify devoting focus to this topic with a comprehensive approach.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland. .,Department of Clinical Oncology, Comprehensive Cancer Center in Bialystok, Bialystok, Poland.
| | - Dominika Hempel
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.,Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.,Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Stephanie C Tucker
- Bioactive Lipids Research Program, Department of Pathology-School of Medicine, Wayne State University, Detroit, MI, USA
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology-School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Chemistry, Wayne State University, Detroit, MI, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
32
|
Cinobufagin enhances the protective efficacy of formalin-inactivated Salmonella typhimurium vaccine through Th1 immune response. Microb Pathog 2016; 99:264-270. [PMID: 27574776 DOI: 10.1016/j.micpath.2016.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/23/2022]
Abstract
Cinobufagin (CBG), one active ingredient isolated from Venenum Bufonis, has been demonstrated to have immunoregulatory effect. The aim of this study was to investigate whether CBG can enhance the protective efficacy of formalin-inactivated Salmonella typhimurium (FIST) in mice. ICR mice were immunized with FIST (106 CFU/mouse) alone or mixed with CBG (10, 20, and 40 μg) or alum (200 μg) on day 1 and day 15. Two weeks after the second immunization, serum and spleen were sampled for measuring FIST-specific antibody levels, cytokine levels, and splenocyte proliferation. The results showed that CBG enhanced FIST-specific IgG and IgG2a, the levels of interferon-gamma (IFNγ) and nitric oxide (NO), and the splenocyte proliferation response induced by concanavalin A, lipopolysaccharide, and FIST. In vivo protection studies showed that CBG significantly decreased the bacterial burdens in the spleen and prolonged the survival time of FIST-immunized mice challenged with live Salmonella typhimurium. In vivo IFNγ neutralization led to a significant reduction in FIST-specific IgG2a and IFNγ levels, and in the protective efficacy in CBG/FIST-immunized mice. In conclusion, CBG enhances the protective efficacy of formalin-inactivated Salmonella typhimurium vaccine by promoting the Th1 immune response.
Collapse
|
33
|
Thum T. Novel models and mechanisms of heart failure with preserved ejection fraction. Eur J Heart Fail 2016; 18:998-9. [DOI: 10.1002/ejhf.596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx; Hannover Medical School; Hannover Germany
- National Heart and Lung Institute; Imperial College London; U.K
| |
Collapse
|
34
|
Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Na+, K+-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures. Brain Res 2016; 1644:249-57. [DOI: 10.1016/j.brainres.2016.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/17/2023]
|