1
|
Huffer K, Denley MCS, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. eLife 2024; 13:RP99643. [PMID: 39485376 PMCID: PMC11530238 DOI: 10.7554/elife.99643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Matthew CS Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Elisabeth V Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
2
|
Huffer K, Denley MC, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595003. [PMID: 38826484 PMCID: PMC11142142 DOI: 10.1101/2024.05.20.595003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transient Receptor Potential (TRP) channels are a large and diverse family of tetrameric cation selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4 and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew C.S. Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Elisabeth V. Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Present Address: Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
3
|
The human TRPA1 intrinsic cold and heat sensitivity involves separate channel structures beyond the N-ARD domain. Nat Commun 2022; 13:6113. [PMID: 36253390 PMCID: PMC9576766 DOI: 10.1038/s41467-022-33876-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1. In patch-clamp bilayer recordings, ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1, also lacking the S1-S4 voltage sensing-like domain (VSLD), gained sensitivity to cold but lost its heat sensitivity. In hTRPA1 intrinsic tryptophan fluorescence studies, cold and heat evoked rearrangement of VSLD and the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD). In whole-cell electrophysiology experiments, replacement of the CTD located cysteines 1021 and 1025 with alanine modulated hTRPA1 cold responses. It is proposed that hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.
Collapse
|
4
|
Transient Receptor Potential Vanilloid 3 (TRPV3) in the Cerebellum of Rat and Its Role in Motor Coordination. Neuroscience 2020; 424:121-132. [DOI: 10.1016/j.neuroscience.2019.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/11/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
|
5
|
Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF, Vásquez V, Laver DR, Martinac B. Mammalian TRP ion channels are insensitive to membrane stretch. J Cell Sci 2019; 132:jcs238360. [PMID: 31722978 PMCID: PMC6918743 DOI: 10.1242/jcs.238360] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022] Open
Abstract
TRP channels of the transient receptor potential ion channel superfamily are involved in a wide variety of mechanosensory processes, including touch sensation, pain, blood pressure regulation, bone loading and detection of cerebrospinal fluid flow. However, in many instances it is unclear whether TRP channels are the primary transducers of mechanical force in these processes. In this study, we tested stretch activation of eleven TRP channels from six mammalian subfamilies. We found that these TRP channels were insensitive to short membrane stretches in cellular systems. Furthermore, we purified TRPC6 and demonstrated its insensitivity to stretch in liposomes, an artificial bilayer system free from cellular components. Additionally, we demonstrated that, when expressed in C. elegans neurons, mouse TRPC6 restores the mechanoresponse of a touch insensitive mutant but requires diacylglycerol for activation. These results strongly suggest that the mammalian members of the TRP ion channel family are insensitive to tension induced by cell membrane stretching and, thus, are more likely to be activated by cytoplasmic tethers or downstream components and to act as amplifiers of cellular mechanosensory signaling cascades.
Collapse
Affiliation(s)
- Yury A Nikolaev
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
- Human Physiology, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle 2308, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Pietro Ridone
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Paul R Rohde
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Julio F Cordero-Morales
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis 38163, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis 38163, USA
| | - Derek R Laver
- Human Physiology, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle 2308, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
6
|
Schrapers KT, Sponder G, Liebe F, Liebe H, Stumpff F. The bovine TRPV3 as a pathway for the uptake of Na +, Ca 2+, and NH 4+. PLoS One 2018; 13:e0193519. [PMID: 29494673 PMCID: PMC5832270 DOI: 10.1371/journal.pone.0193519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/13/2018] [Indexed: 12/22/2022] Open
Abstract
Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia.
Collapse
Affiliation(s)
- Katharina T. Schrapers
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Franziska Liebe
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Liebe
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Friederike Stumpff
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
7
|
Vyklicka L, Boukalova S, Macikova L, Chvojka S, Vlachova V. The human transient receptor potential vanilloid 3 channel is sensitized via the ERK pathway. J Biol Chem 2017; 292:21083-21091. [PMID: 29084846 DOI: 10.1074/jbc.m117.801167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/26/2017] [Indexed: 11/06/2022] Open
Abstract
The transient receptor potential vanilloid 3 (TRPV3) channel is a Ca2+-permeable thermosensitive ion channel widely expressed in keratinocytes, where together with epidermal growth factor receptor (EGFR) forms a signaling complex regulating epidermal homeostasis. Proper signaling through this complex is achieved and maintained via several pathways in which TRPV3 activation is absolutely required. Results of recent studies have suggested that low-level constitutive activity of TRPV3 induces EGFR-dependent signaling that, in turn, amplifies TRPV3 via activation of the mitogen-activated protein kinase ERK in a positive feedback loop. Here, we explored the molecular mechanism that increases TRPV3 activity through EGFR activation. We used mutagenesis and whole-cell patch clamp experiments on TRPV3 channels endogenously expressed in an immortalized human keratinocyte cell line (HaCaT) and in transiently transfected HEK293T cells and found that the sensitizing effect of EGFR on TRPV3 is mediated by ERK. We observed that ERK-mediated phosphorylation of TRPV3 alters its responsiveness to repeated chemical stimuli. Among several putative ERK phosphorylation sites, we identified threonine 264 in the N-terminal ankyrin repeat domain as the most critical site for the ERK-dependent modulation of TRPV3 channel activity. Of note, Thr264 is in close vicinity to a structurally and functionally important TRPV3 region comprising an atypical finger 3 and oxygen-dependent hydroxylation site. In summary, our findings indicate that Thr264 in TRPV3 is a key ERK phosphorylation site mediating EGFR-induced sensitization of the channel to stimulate signaling pathways involved in regulating skin homeostasis.
Collapse
Affiliation(s)
- Lenka Vyklicka
- From the Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Stepana Boukalova
- From the Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Lucie Macikova
- From the Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Stepan Chvojka
- From the Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Viktorie Vlachova
- From the Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| |
Collapse
|
8
|
Spyra S, Meisner A, Schaefer M, Hill K. COX-2-selective inhibitors celecoxib and deracoxib modulate transient receptor potential vanilloid 3 channels. Br J Pharmacol 2017; 174:2696-2705. [PMID: 28567799 DOI: 10.1111/bph.13893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The transient receptor potential vanilloid 3 (TRPV3) channel is a heat-sensitive ion channel, which is predominantly expressed in keratinocytes. TRPV3 channels are involved in numerous physiological and pathophysiological processes within the skin, including cutaneous nociception, temperature sensation and development of itch. The role of TRPV3 channels in such processes is poorly understood; therefore, the establishment of selective modulators of TRPV3 channels is highly desirable. EXPERIMENTAL APPROACH Novel TRPV3-modulating compounds were identified using fluorometric intracellular Ca2+ assays and further evaluated with electrophysiological techniques. KEY RESULTS TRPV3 activity, elicited by 2-aminoethoxydiphenyl borate (2-APB), was efficaciously enhanced by deracoxib and celecoxib, two COX-2-selective inhibitors. They exerted their potentiating effect via a direct interaction with TRPV3 as evident from excised inside-out recordings. Structurally-related COX-2 inhibitors affected TRPV3 channel gating to a much lesser degree. Similar results were obtained in HEK293 cells stably expressing cyan fluorescent protein-tagged mouse TRPV3 channels and in a mouse keratinocyte cell line, endogenously expressing TRPV3. The effects of celecoxib and deracoxib on TRPV3 were dependent on the stimulus used to activate TRPV3. While 2-APB and heat-activated TRPV3 channels were potentiated by celecoxib, carvacrol-activated channels were inhibited by celecoxib. CONCLUSIONS AND IMPLICATIONS We identified a new class of drugs that modulate TRPV3 channels. The most potent compound celecoxib is an approved analgesic and anti-inflammatory drug, which is currently being investigated for its topical application in the treatment of skin cancer. As TRPV3 is highly expressed in skin, celecoxib might affect TRPV3 activity in vivo when used at high local concentrations.
Collapse
Affiliation(s)
- Stefan Spyra
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Anne Meisner
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Kerstin Hill
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
4-isopropylcyclohexanol has potential analgesic effects through the inhibition of anoctamin 1, TRPV1 and TRPA1 channel activities. Sci Rep 2017; 7:43132. [PMID: 28225032 PMCID: PMC5320485 DOI: 10.1038/srep43132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/19/2017] [Indexed: 12/31/2022] Open
Abstract
Interactions between calcium-activated chloride channel anoctamin 1 (ANO1) and transient receptor potential vanilloid 1 (TRPV1) enhance pain sensations in mice, suggesting that ANO1 inhibition could have analgesic effects. Here we show that menthol and the menthol analogue isopropylcyclohexane (iPr-CyH) inhibited ANO1 channels in mice. The iPr-CyH derivative 4-isopropylcyclohexanol (4-iPr-CyH-OH) inhibited mouse ANO1 currents more potently than iPr-CyH. Moreover, 4-iPr-CyH-OH inhibited the activities of TRPV1, TRP ankyrin 1 (TRPA1), TRP melastatin 8 (TRPM8) and TRPV4. Single-channel analysis revealed that 4-iPr-CyH-OH reduced TRPV1 and TRPA1 current open-times without affecting unitary amplitude or closed-time, suggesting that it affected gating rather than blocking the channel pore. The ability of 4-iPr-CyH-OH to inhibit action potential generation and reduce pain-related behaviors induced by capsaicin in mice suggests that 4-iPr-CyH-OH could have analgesic applications. Thus, 4-iPr-CyH-OH is a promising base chemical to develop novel analgesics that target ANO1 and TRP channels.
Collapse
|