1
|
Mukhopadhyay A, Deshpande SN, Bhatia T, Thelma BK. Significance of an altered lncRNA landscape in schizophrenia and cognition: clues from a case-control association study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1677-1691. [PMID: 37009928 DOI: 10.1007/s00406-023-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Genetic etiology of schizophrenia is poorly understood despite large genome-wide association data. Long non-coding RNAs (lncRNAs) with a probable regulatory role are emerging as important players in neuro-psychiatric disorders including schizophrenia. Prioritising important lncRNAs and analyses of their holistic interaction with their target genes may provide insights into disease biology/etiology. Of the 3843 lncRNA SNPs reported in schizophrenia GWASs extracted using lincSNP 2.0, we prioritised n = 247 based on association strength, minor allele frequency and regulatory potential and mapped them to lncRNAs. lncRNAs were then prioritised based on their expression in brain using lncRBase, epigenetic role using 3D SNP and functional relevance to schizophrenia etiology. 18 SNPs were finally tested for association with schizophrenia (n = 930) and its endophenotypes-tardive dyskinesia (n = 176) and cognition (n = 565) using a case-control approach. Associated SNPs were characterised by ChIP seq, eQTL, and transcription factor binding site (TFBS) data using FeatSNP. Of the eight SNPs significantly associated, rs2072806 in lncRNA hsaLB_IO39983 with regulatory effect on BTN3A2 was associated with schizophrenia (p = 0.006); rs2710323 in hsaLB_IO_2331 with role in dysregulation of ITIH1 with tardive dyskinesia (p < 0.05); and four SNPs with significant cognition score reduction (p < 0.05) in cases. Two of these with two additional variants in eQTL were observed among controls (p < 0.05), acting likely as enhancer SNPs and/or altering TFBS of eQTL mapped downstream genes. This study highlights important lncRNAs in schizophrenia and provides a proof of concept of novel interactions of lncRNAs with protein-coding genes to elicit alterations in immune/inflammatory pathways of schizophrenia.
Collapse
Affiliation(s)
- Anirban Mukhopadhyay
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Smita N Deshpande
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Triptish Bhatia
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
2
|
Moreno IY, Parsaie A, Gesteira TF, Coulson-Thomas VJ. Characterization of the Limbal Epithelial Stem Cell Niche. Invest Ophthalmol Vis Sci 2023; 64:48. [PMID: 37906057 PMCID: PMC10619699 DOI: 10.1167/iovs.64.13.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose Limbal epithelial stem cells (LESCs) reside within a LSC niche (LSCN). We recently identified that hyaluronan (HA) is a major constituent of the LSCN, and that HA is necessary for maintaining LESCs in the "stem cell" state, both in vitro and in vivo. Herein, we characterized the LSCN to identify key components of the HA-specific LSCN. Methods The cornea and limbal rim were dissected from mouse corneas, subjected to mRNA extraction, and sequenced using a NextSeq 500 (Illumina) and data processed using CLC Genomics Workbench 20 (Qiagen) and the STRING database to identify key components of the LSCN. Their expression was confirmed by real-time PCR, Western blotting, and immunohistochemistry. Furthermore, the differential expression of key compounds in different corneal cell types were determined with single-cell RNA sequencing. Results We identified that the hyaladherins inter-alpha-inhibitor (IαI), TSG-6 and versican are highly expressed in the limbus. Specifically, HA/HC complexes are present in the LSCN, in the stroma underlying the limbal epithelium, and surrounding the limbal vasculature. For IαI, heavy chains 5 and 2 (HC5 and HC2) were found to be the most highly expressed HCs in the mouse and human limbus and were associate with HA-forming HA/HC-specific matrices. Conclusions The LSCN contains HA/HC complexes, which have been previously correlated with stem cell niches. The identification of HA/HC complexes in the LSCN could serve as a new therapeutic avenue for treating corneal pathology. Additionally, HA/HC complexes could be used as a substrate for culturing LESCs before LESC transplantation.
Collapse
Affiliation(s)
- Isabel Y. Moreno
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Arian Parsaie
- College of Optometry, University of Houston, Houston, Texas, United States
- College of Natural Science and Mathematics, University of Houston, Houston, Texas, United States
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
3
|
Sasson DC, Islam S, Duan K, Dash BC, Hsia HC. TNF-α Preconditioning Promotes a Proangiogenic Phenotype in hiPSC-Derived Vascular Smooth Muscle Cells. Cell Mol Bioeng 2023; 16:231-240. [PMID: 37456784 PMCID: PMC10338418 DOI: 10.1007/s12195-023-00764-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/29/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction hiPSC-VSMCs have been suggested as therapeutic agents for wound healing and revascularization through the secretion of proangiogenic factors. However, methods of increasing cell paracrine secretion and survivability have thus far yielded inconsistent results. This study investigates the effect of pre-conditioning of hiPSC-VSMCs with TNF-α and their integration into 3D collagen scaffolds on cellular viability and secretome. Methods hiPSC-VSMCs were dual-plated in a 2D environment. TNF-α was introduced to one plate. Following incubation, cells from each plate were divided and added to type-I collagen scaffolds. TNF-α was introduced to two sets of scaffolds, one from each 2D plate. Following incubation, scaffolds were harvested for their media, tested for cell survivability, cytotoxicity, and imaged. Intra-media VEGF and bFGF levels were evaluated using ELISA testing. Results hiPSC-VSMCs exposed to TNF-α during collagen scaffold proliferation and preconditioning showed an increase in cell viability and less cytotoxicity compared to non-exposed cells and solely-preconditioned cells. Significant increases in bFGF expression were found in pre-conditioned cell groups with further increases found in cells subsequently exposed during intra-scaffold conditioning. A significant increase in VEGF expression was found in cell groups exposed during both pre-conditioning and intra-scaffold conditioning. Fibroblasts treated with any conditioned media demonstrated increased migration potential. Conclusions Conditioning hiPSC-VSMCs embedded in scaffolds with TNF-α improves cellular viability and increases the secretion of paracrine factors necessary for wound healing mechanisms such as migration. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00764-0.
Collapse
Affiliation(s)
- Daniel C Sasson
- Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, 330 Cedar Street, Boardman Bldg, 3rd Floor, New Haven, CT 06510 USA
| | - Sara Islam
- Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, 330 Cedar Street, Boardman Bldg, 3rd Floor, New Haven, CT 06510 USA
| | - Kaiti Duan
- Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, 330 Cedar Street, Boardman Bldg, 3rd Floor, New Haven, CT 06510 USA
| | - Biraja C Dash
- Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, 330 Cedar Street, Boardman Bldg, 3rd Floor, New Haven, CT 06510 USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT USA
| | - Henry C Hsia
- Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, 330 Cedar Street, Boardman Bldg, 3rd Floor, New Haven, CT 06510 USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT USA
| |
Collapse
|
4
|
Nguyen L, Lin X, Verma S, Puri S, Hascall V, Gesteira TF, Coulson-Thomas VJ. Characterization of the Molecular Weight of Hyaluronan in Eye Products Using a Novel Method of Size Exclusion High-Pressure Liquid Chromatography. Transl Vis Sci Technol 2023; 12:13. [PMID: 37052911 PMCID: PMC10103721 DOI: 10.1167/tvst.12.4.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Purpose Hyaluronan (HA) exists in two forms, high molecular weight HA (HMWHA) and low molecular weight HA (LMWHA), which have distinct physiological functions. Therefore it is imperative to know the form of HA within pharmaceutical products, including eye products. This study developed an accurate, sensitive, and quantitative method to characterize the form of HA in eye products. Thereafter, the effects of the HA-containing eye products on corneal wound healing were investigated. Methods The MW distributions and concentrations of HA in over the counter eye products were determined by size exclusion chromatography (SEC) high-pressure liquid chromatography (HPLC). The effects of the eye products containing HA on corneal wound healing were characterized both in vitro and in vivo using the scratch assay and the debridement wound model, respectively. Results The concentrations and MWs of HA were successfully determined within a range of 0.014 to 0.25 mg/mL using SEC HPLC. The concentrations of HA in the ophthalmic products varied from 0.14 to 4.0 mg/mL and the MWs varied from ∼100 kDa to >2500 kDa. All but one HA-containing eye product had an inhibitory effect on corneal wound healing, whereas pure HA promoted corneal wound healing. Conclusions A novel SEC-HPLC method was developed for quantifying and characterizing the MW of HA in eye products. Although HA promoted corneal wound healing, HA-containing eye products inhibited corneal wound healing, likely caused by preservatives. Translational Relevance SEC-HPLC could be implemented as a routine method for determining the form of HA in commercially available ophthalmic products.
Collapse
Affiliation(s)
- Lawrence Nguyen
- College of Optometry, University of Houston, Houston, TX, USA
| | - Xiao Lin
- College of Optometry, University of Houston, Houston, TX, USA
| | - Sudhir Verma
- College of Optometry, University of Houston, Houston, TX, USA
- Department of Zoology, Deen Dayal Upadhyaya College (University of Delhi), Delhi, India
| | - Sudan Puri
- College of Optometry, University of Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
5
|
Ning Y, Zhang P, Zhang F, Chen S, Liu Y, Chen F, Wu Y, Li S, Wang C, Gong Y, Hu M, Huang R, Zhao H, Guo X, Wang X, Yang L. Abnormal expression of TSG-6 disturbs extracellular matrix homeostasis in chondrocytes from endemic osteoarthritis. Front Genet 2022; 13:1064565. [DOI: 10.3389/fgene.2022.1064565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Background and aims: Kashin-Beck disease (KBD) is a unique endemic osteochondropathy with unclear pathogenesis in China. T-2 toxin exposure has been identified as a significant risk factor of KBD. However, the mechanism of articular cartilage damage induced by T-2 toxin is a conundrum. We explored the role of the extracellular matrix-related gene TSG-6 in the articular chondrocyte damage process under the exposure of HT-2 toxin.Methods: TSG-6 was identified as a candidate gene by mining our previous gene expression profiling of KBD and verified by qRT-PCR and immunohistochemistry. Then, TSG-6 was silenced by RNA interference technology and overexpressed induction by TNF-α. Gradient concentrations of HT-2 toxin were added to intervene with C28/I2 chondrocytes. MTT was used to observe the proliferation and cell viability of chondrocytes, and qRT-PCR was utilized to detect the expression changes of MMP1, MMP3, MMP13, COL2A1, and proteoglycan before and after treatments for verification.Results: TSG-6 was upregulated in KBD chondrocytes at the mRNA level and upregulated in the superficial, middle, and deep zones of KBD cartilage. After TSG-6 silencing, the expression of MMP1, MMP3, MMP13, and proteoglycan was significantly decreased while COL2A1 expression was significantly increased, which was reversed after the overexpression of TSG-6 induced by TNF-α (p < 0.05). The survival rate of chondrocytes was correspondingly reduced with an increase in the HT-2 toxin concentration. Compared with the blank control group, the expression of MMPs was increased in the intervention group of HT-2 toxin, while the expression of proteoglycan and COL2A1 decreased (p < 0.05).Conclusion: The upregulation of the TSG-6 gene may play a role in promoting the damage and degradation of the extracellular matrix in KBD chondrocytes under the exposure of HT-2 toxin.
Collapse
|
6
|
Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7:92. [PMID: 35314676 PMCID: PMC8935608 DOI: 10.1038/s41392-022-00932-0] [Citation(s) in RCA: 300] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 11/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractMesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions. Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling, and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.
Collapse
|
7
|
Takenaka-Ninagawa N, Kim J, Zhao M, Sato M, Jonouchi T, Goto M, Yoshioka CKB, Ikeda R, Harada A, Sato T, Ikeya M, Uezumi A, Nakatani M, Noguchi S, Sakurai H. Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice. Stem Cell Res Ther 2021; 12:446. [PMID: 34372931 PMCID: PMC8351132 DOI: 10.1186/s13287-021-02514-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) function as supportive cells on skeletal muscle homeostasis through several secretory factors including type 6 collagen (COL6). Several mutations of COL6A1, 2, and 3 genes cause Ullrich congenital muscular dystrophy (UCMD). Skeletal muscle regeneration deficiency has been reported as a characteristic phenotype in muscle biopsy samples of human UCMD patients and UCMD model mice. However, little is known about the COL6-dependent mechanism for the occurrence and progression of the deficiency. The purpose of this study was to clarify the pathological mechanism of UCMD by supplementing COL6 through cell transplantation. Methods To test whether COL6 supplementation has a therapeutic effect for UCMD, in vivo and in vitro experiments were conducted using four types of MSCs: (1) healthy donors derived-primary MSCs (pMSCs), (2) MSCs derived from healthy donor induced pluripotent stem cell (iMSCs), (3) COL6-knockout iMSCs (COL6KO-iMSCs), and (4) UCMD patient-derived iMSCs (UCMD-iMSCs). Results All four MSC types could engraft for at least 12 weeks when transplanted into the tibialis anterior muscles of immunodeficient UCMD model (Col6a1KO) mice. COL6 protein was restored by the MSC transplantation if the MSCs were not COL6-deficient (types 1 and 2). Moreover, muscle regeneration and maturation in Col6a1KO mice were promoted with the transplantation of the COL6-producing MSCs only in the region supplemented with COL6. Skeletal muscle satellite cells derived from UCMD model mice (Col6a1KO-MuSCs) co-cultured with type 1 or 2 MSCs showed improved proliferation, differentiation, and maturation, whereas those co-cultured with type 3 or 4 MSCs did not. Conclusions These findings indicate that COL6 supplementation improves muscle regeneration and maturation in UCMD model mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02514-3.
Collapse
Affiliation(s)
- Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Jinsol Kim
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mingming Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masae Sato
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuya Jonouchi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Megumi Goto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Clémence Kiho Bourgeois Yoshioka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Rukia Ikeda
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Aya Harada
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takahiko Sato
- Department of Anatomy, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, Department of Clinical Development, Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8551, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
8
|
Protective Effects of a Hyaluronan-Binding Peptide (P15-1) on Mesenchymal Stem Cells in an Inflammatory Environment. Int J Mol Sci 2021; 22:ijms22137058. [PMID: 34209086 PMCID: PMC8269309 DOI: 10.3390/ijms22137058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) obtained from various sources, including bone marrow, have been proposed as a therapeutic strategy for the improvement of tissue repair/regeneration, including the repair of cartilage defects or lesions. Often the highly inflammatory environment after injury or during diseases, however, greatly diminishes the therapeutic and reparative effectiveness of MSCs. Therefore, the identification of novel factors that can protect MSCs against an inflammatory environment may enhance the effectiveness of these cells in repairing tissues, such as articular cartilage. In this study, we investigated whether a peptide (P15-1) that binds to hyaluronan (HA), a major component of the extracellular matrix of cartilage, protects bone-marrow-derived MSCs (BMSCs) in an inflammatory environment. The results showed that P15-1 reduced the mRNA levels of catabolic and inflammatory markers in interleukin-1beta (IL-1β)-treated human BMSCs. In addition, P15-1 enhanced the attachment of BMSCs to HA-coated tissue culture dishes and stimulated the chondrogenic differentiation of the multipotential murine C3H/10T1/2 MSC line in a micromass culture. In conclusion, our findings suggest that P15-1 may increase the capacity of BMSCs to repair cartilage via the protection of these cells in an inflammatory environment and the stimulation of their attachment to an HA-containing matrix and chondrogenic differentiation.
Collapse
|
9
|
Jauković A, Abadjieva D, Trivanović D, Stoyanova E, Kostadinova M, Pashova S, Kestendjieva S, Kukolj T, Jeseta M, Kistanova E, Mourdjeva M. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Rev Rep 2021; 16:853-875. [PMID: 32681232 DOI: 10.1007/s12015-020-10006-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSC) have been considered the promising candidates for the regenerative and personalized medicine due to their self-renewal potential, multilineage differentiation and immunomodulatory capacity. Although these properties have encouraged profound MSC studies in recent years, the majority of research has been based on standard 2D culture utilization. The opportunity to resemble in vivo characteristics of cells native niche has been provided by implementation of 3D culturing models such as MSC spheroid formation assesed through cells self-assembling. In this review, we address the current literature on physical and biochemical features of 3D MSC spheroid microenvironment and their impact on MSC properties and behaviors. Starting with the reduction in the cells' dimensions and volume due to the changes in adhesion molecules expression and cytoskeletal proteins rearrangement resembling native conditions, through the microenvironment shifts in oxygen, nutrients and metabolites gradients and demands, we focus on distinctive and beneficial features of MSC in spheroids compared to cells cultured in 2D conditions. By summarizing the data for 3D MSC spheroids regarding cell survival, pluripotency, differentiation, immunomodulatory activities and potential to affect tumor cells growth we highlighted advantages and perspectives of MSC spheroids use in regenerative medicine. Further detailed analyses are needed to deepen our understanding of mechanisms responsible for modified MSC behavior in spheroids and to set future directions for MSC clinical application.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia.,IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Röntgenring 11, D-97070, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Germany
| | - Elena Stoyanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Kostadinova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Shina Pashova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Snejana Kestendjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Obilní trh 11, 602 00, Brno, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 00, Suchdol, Praha 6, Czech Republic
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Mourdjeva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria.
| |
Collapse
|
10
|
Shortt C, Luyt LG, Turley EA, Cowman MK, Kirsch T. A Hyaluronan-binding Peptide (P15-1) Reduces Inflammatory and Catabolic Events in IL-1β-treated Human Articular Chondrocytes. Sci Rep 2020; 10:1441. [PMID: 31996703 PMCID: PMC6989647 DOI: 10.1038/s41598-020-57586-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023] Open
Abstract
Inflammation plays a critical role in osteoarthritis (OA). It stimulates catabolic events in articular chondrocytes and prevents chondrogenic precursor cells from repairing cartilage lesions, leading to accelerated cartilage degradation. Therefore, the identification of novel factors that reduce catabolic events in chondrocytes and enhances chondrogenic differentiation of precursor cells in an inflammatory environment may provide novel therapeutic strategies for the treatment of OA. The goal of this study was to determine whether a hyaluronan (HA)-binding peptide (P15-1), via interacting with high molecular weight (HMW)HA can enhance the anti-inflammatory properties of HMWHA and decrease catabolic events in interleukin-1beta (IL-1β)-treated human articular chondrocytes. Treatment with P15-1 decreased catabolic events and stimulated anabolic events in articular chondrocytes cultured in an inflammatory environment. P15-1 pre-mixed with HMWHA was more effective in inhibiting catabolic events and stimulating anabolic events than P15-1 or HMWHA alone. Our findings suggest that P15-1 together with HMWHA inhibits catabolic events in articular chondrocytes via the inhibition of p38 mitogen-activated protein kinases (MAPK) and increasing the thickness of the pericellular matrix (PCM) around chondrocytes thereby decreasing catabolic signaling. Finally, conditioned medium from IL-1β and P15-1-treated human articular chondrocytes was less inhibitory for chondrogenic differentiation of precursor cells than conditioned medium from chondrocytes treated with IL-1β alone. In conclusion, P15-1 is proposed to function synergistically with HMWHA to enhance the protective microenvironment for chondrocytes and mesenchymal stem cells during inflammation and regeneration.
Collapse
Affiliation(s)
- Claire Shortt
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA
- FoodMarble Digestive Health, Dublin, 2, Ireland
| | - Leonard G Luyt
- The University of Western Ontario, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Eva A Turley
- The University of Western Ontario, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Mary K Cowman
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Thorsten Kirsch
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, USA.
| |
Collapse
|
11
|
Mueller AL, Bloch RJ. Skeletal muscle cell transplantation: models and methods. J Muscle Res Cell Motil 2019; 41:297-311. [PMID: 31392564 DOI: 10.1007/s10974-019-09550-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Xenografts of skeletal muscle are used to study muscle repair and regeneration, mechanisms of muscular dystrophies, and potential cell therapies for musculoskeletal disorders. Typically, xenografting involves using an immunodeficient host that is pre-injured to create a niche for human cell engraftment. Cell type and method of delivery to muscle depend on the specific application, but can include myoblasts, satellite cells, induced pluripotent stem cells, mesangioblasts, immortalized muscle precursor cells, and other multipotent cell lines delivered locally or systemically. Some studies follow cell engraftment with interventions to enhance cell proliferation, migration, and differentiation into mature muscle fibers. Recently, several advances in xenografting human-derived muscle cells have been applied to study and treat Duchenne muscular dystrophy and Facioscapulohumeral muscular dystrophy. Here, we review the vast array of techniques available to aid researchers in designing future experiments aimed at creating robust muscle xenografts in rodent hosts.
Collapse
Affiliation(s)
- Amber L Mueller
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Mesure B, Menu P, Venkatesan JK, Cucchiarini M, Velot É. Biomaterials and Gene Therapy: A Smart Combination for MSC Musculoskeletal Engineering. Curr Stem Cell Res Ther 2019; 14:337-343. [DOI: 10.2174/1574888x14666181205121658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022]
Abstract
Musculoskeletal pathologies, especially those affecting bones and joints, remain a challenge
for regenerative medicine. The main difficulties affecting bone tissue engineering are the size of the
defects, the need for blood vessels and the synthesis of appropriate matrix elements in the engineered
tissue. Indeed, the cartilage is an avascular tissue and consequently has limited regenerative abilities.
Thanks to their self-renewal, plasticity and immunomodulatory properties, mesenchymal stem cells
(MSCs) became a central player in tissue engineering, and have already been shown to be able to differentiate
towards chondrogenic or osteogenic phenotypes. Whether synthetic (e.g. tricalcium phosphate)
or from natural sources (e.g. hyaluronic acid), biomaterials can be shaped to fit into bone and
cartilage defects to ensure mechanical resistance and may also be designed to control cell spatial distribution
or differentiation. Soluble factors are classically used to promote cell differentiation and to
stimulate extracellular matrix synthesis to achieve the desired tissue production. But as they have a
limited lifetime, transfection using plasmid DNA or transduction via a viral vector of therapeutic genes
to induce the cell secretion of these factors allows to have more lasting effects. Also, the chondrocyte
phenotype may be difficult to control over time, with for example the production of hypertrophic or
osteogenic markers that is undesirable in hyaline cartilage. Thus, tissue regeneration strategies became
more elaborate, with an attempt at associating the benefits of MSCs, biomaterials, and gene therapy to
achieve a proper tissue repair. This minireview focuses on in vitro and in vivo studies combining biomaterials
and gene therapy associated with MSCs for bone and cartilage engineering.
Collapse
Affiliation(s)
- Benjamin Mesure
- UMR 7365 CNRS-UL IMoPA, Universite de Lorraine, Nancy, France
| | - Patrick Menu
- UMR 7365 CNRS-UL IMoPA, Universite de Lorraine, Nancy, France
| | | | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Émilie Velot
- UMR 7365 CNRS-UL IMoPA, Universite de Lorraine, Nancy, France
| |
Collapse
|
13
|
Chamberlain CS, Clements AEB, Kink JA, Choi U, Baer GS, Halanski MA, Hematti P, Vanderby R. Extracellular Vesicle-Educated Macrophages Promote Early Achilles Tendon Healing. Stem Cells 2019; 37:652-662. [PMID: 30720911 PMCID: PMC6850358 DOI: 10.1002/stem.2988] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
Tendon healing follows a complex series of coordinated events, which ultimately produces a mechanically inferior tissue more scar‐like than native tendon. More regenerative healing occurs when anti‐inflammatory M2 macrophages play a more dominant role. Mesenchymal stromal/stem cells (MSCs) are able to polarize macrophages to an M2 immunophenotype via paracrine mechanisms. We previously reported that coculture of CD14+ macrophages (MQs) with MSCs resulted in a unique M2‐like macrophage. More recently, we generated M2‐like macrophages using only extracellular vesicles (EVs) isolated from MSCs creating “EV‐educated macrophages” (also called exosome‐educated macrophages [EEMs]), thereby foregoing direct use of MSCs. For the current study, we hypothesized that cell therapy with EEMs would improve in vivo tendon healing by modulating tissue inflammation and endogenous macrophage immunophenotypes. We evaluated effects of EEMs using a mouse Achilles tendon rupture model and compared results to normal tendon healing (without any biologic intervention), MSCs, MQs, or EVs. We found that exogenous administration of EEMs directly into the wound promoted a healing response that was significantly more functional and more regenerative. Injured tendons treated with exogenous EEMs exhibited (a) improved mechanical properties, (b) reduced inflammation, and (c) earlier angiogenesis. Treatment with MSC‐derived EVs alone were less effective functionally but stimulated a biological response as evidenced by an increased number of endothelial cells and decreased M1/M2 ratio. Because of their regenerative and immunomodulatory effects, EEM treament could provide a novel strategy to promote wound healing in this and various other musculoskeletal injuries or pathologies where inflammation and inadequate healing is problematic. Stem Cells2019;37:652–662
Collapse
Affiliation(s)
- Connie S Chamberlain
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Anna E B Clements
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - John A Kink
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Ugeun Choi
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Geoffrey S Baer
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Matthew A Halanski
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Ray Vanderby
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Smith SM, Melrose J. A Retrospective Analysis of the Cartilage Kunitz Protease Inhibitory Proteins Identifies These as Members of the Inter-α-Trypsin Inhibitor Superfamily with Potential Roles in the Protection of the Articulatory Surface. Int J Mol Sci 2019; 20:ijms20030497. [PMID: 30678366 PMCID: PMC6387120 DOI: 10.3390/ijms20030497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Aim: The aim of this study was to assess if the ovine articular cartilage serine proteinase inhibitors (SPIs) were related to the Kunitz inter-α-trypsin inhibitor (ITI) family. Methods: Ovine articular cartilage was finely diced and extracted in 6 M urea and SPIs isolated by sequential anion exchange, HA affinity and Sephadex G100 gel permeation chromatography. Selected samples were also subjected to chymotrypsin and concanavalin-A affinity chromatography. Eluant fractions from these isolation steps were monitored for protein and trypsin inhibitory activity. Inhibitory fractions were assessed by affinity blotting using biotinylated trypsin to detect SPIs and by Western blotting using antibodies to α1-microglobulin, bikunin, TSG-6 and 2-B-6 (+) CS epitope generated by chondroitinase-ABC digestion. Results: 2-B-6 (+) positive 250, 220,120, 58 and 36 kDa SPIs were detected. The 58 kDa SPI contained α1-microglobulin, bikunin and chondroitin-4-sulfate stub epitope consistent with an identity of α1-microglobulin-bikunin (AMBP) precursor and was also isolated by concanavalin-A lectin affinity chromatography indicating it had N-glycosylation. Kunitz protease inhibitor (KPI) species of 36, 26, 12 and 6 kDa were autolytically generated by prolonged storage of the 120 and 58 kDa SPIs; chymotrypsin affinity chromatography generated the 6 kDa SPI. KPI domain 1 and 2 SPIs were separated by concanavalin lectin affinity chromatography, domain 1 displayed affinity for this lectin indicating it had N-glycosylation. KPI 1 and 2 displayed potent inhibitory activity against trypsin, chymotrypsin, kallikrein, leucocyte elastase and cathepsin G. Localisation of versican, lubricin and hyaluronan (HA) in the surface regions of articular cartilage represented probable binding sites for the ITI serine proteinase inhibitors (SPIs) which may preserve articulatory properties and joint function. Discussion/Conclusions: The Kunitz SPI proteins synthesised by articular chondrocytes are members of the ITI superfamily. By analogy with other tissues in which these proteins occur we deduce that the cartilage Kunitz SPIs may be multifunctional proteins. Binding of the cartilage Kunitz SPIs to HA may protect this polymer from depolymerisation by free radical damage and may also protect other components in the cartilage surface from proteolytic degradation preserving joint function.
Collapse
Affiliation(s)
- Susan M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
15
|
Tellier LE, Treviño EA, Brimeyer AL, Reece DS, Willett NJ, Guldberg RE, Temenoff JS. Intra-articular TSG-6 delivery from heparin-based microparticles reduces cartilage damage in a rat model of osteoarthritis. Biomater Sci 2018; 6:1159-1167. [DOI: 10.1039/c8bm00010g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a potential treatment for osteoarthritis (OA), we have developed hydrolytically degradable heparin-based biomaterials for the intra-articular delivery of tumor necrosis factor-alpha stimulated gene-6 (TSG-6).
Collapse
Affiliation(s)
- Liane E. Tellier
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - Elda A. Treviño
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - Alexandra L. Brimeyer
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - David S. Reece
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - Nick J. Willett
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
- Department of Orthopedics
| | - Robert E. Guldberg
- Petit Institute for Bioengineering and Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
- Department of Mechanical Engineering
| | - Johnna S. Temenoff
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
- Petit Institute for Bioengineering and Bioscience
| |
Collapse
|
16
|
Abstract
The glycosaminoglycan hyaluronan (HA) is a key component of the microenvironment surrounding cells. In healthy tissues, HA molecules have extremely high molecular mass and consequently large hydrodynamic volumes. Tethered to the cell surface by clustered receptor proteins, HA molecules crowd each other, as well as other macromolecular species. This leads to severe nonideality in physical properties of the biomatrix, because steric exclusion leads to an increase in effective concentration of the macromolecules. The excluded volume depends on both polymer concentration and hydrodynamic volume/molecular mass. The biomechanical properties of the extracellular matrix, tissue hydration, receptor clustering, and receptor-ligand interactions are strongly affected by the presence of HA and by its molecular mass. In inflammation, reactive oxygen and nitrogen species fragment the HA chains. Depending on the rate of chain degradation relative to the rates of new synthesis and removal of damaged chains, short fragments of the HA molecules can be present at significant levels. Not only are the physical properties of the extracellular matrix affected, but the HA fragments decluster their primary receptors and act as endogenous danger signals. Bioanalytical methods to isolate and quantify HA fragments have been developed to determine profiles of HA content and size in healthy and diseased biological fluids and tissues. These methods have potential use in medical diagnostic tests. Therapeutic agents that modulate signaling by HA fragments show promise in wound healing and tissue repair without fibrosis.
Collapse
Affiliation(s)
- Mary K Cowman
- Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
17
|
Gesteira TF, Sun M, Coulson-Thomas YM, Yamaguchi Y, Yeh LK, Hascall V, Coulson-Thomas VJ. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Invest Ophthalmol Vis Sci 2017; 58:4407-4421. [PMID: 28863216 PMCID: PMC5584473 DOI: 10.1167/iovs.17-22326] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023] Open
Abstract
Purpose Limbal epithelial stem cells (LSCs), located in the basal layer of the corneal epithelium in the corneal limbus, are vital for maintaining the corneal epithelium. LSCs have a high capacity of self-renewal with increased potential for error-free proliferation and poor differentiation. To date, limited research has focused on unveiling the composition of the limbal stem cell niche, and, more important, on the role the specific stem cell niche may have in LSC differentiation and function. Our work investigates the composition of the extracellular matrix in the LSC niche and how it regulates LSC differentiation and function. Methods Hyaluronan (HA) is naturally synthesized by hyaluronan synthases (HASs), and vertebrates have the following three types: HAS1, HAS2, and HAS3. Wild-type and HAS and TSG-6 knockout mice-HAS1-/-;HAS3-/-, HAS2Δ/ΔCorEpi, TSG-6-/--were used to determine the importance of the HA niche in LSC differentiation and specification. Results Our data demonstrate that the LSC niche is composed of a HA rich extracellular matrix. HAS1-/-;HAS3-/-, HAS2Δ/ΔCorEpi, and TSG-6-/- mice have delayed wound healing and increased inflammation after injury. Interestingly, upon insult the HAS knock-out mice up-regulate HA throughout the cornea through a compensatory mechanism, and in turn this alters LSC and epithelial cell specification. Conclusions The LSC niche is composed of a specialized HA matrix that differs from that present in the rest of the corneal epithelium, and the disruption of this specific HA matrix within the LSC niche leads to compromised corneal epithelial regeneration. Finally, our findings suggest that HA has a major role in maintaining the LSC phenotype.
Collapse
MESH Headings
- Animals
- Burns, Chemical/metabolism
- Cell Differentiation/physiology
- Cellular Microenvironment/physiology
- Disease Models, Animal
- Epithelium, Corneal/metabolism
- Eye Burns/chemically induced
- Glucuronosyltransferase/metabolism
- Hyaluronan Synthases
- Hyaluronic Acid/genetics
- Hyaluronic Acid/metabolism
- Immunohistochemistry
- Limbus Corneae/cytology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Sodium Hydroxide
- Stem Cell Niche/physiology
- Stem Cells/metabolism
- Wound Healing/physiology
Collapse
Affiliation(s)
| | - Mingxia Sun
- College of Optometry, University of Houston, Houston, Texas, United States
| | | | - Yu Yamaguchi
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Linko, Taiwan
| | | | | |
Collapse
|
18
|
Luz-Crawford P, Jorgensen C, Djouad F. Mesenchymal Stem Cells Direct the Immunological Fate of Macrophages. Results Probl Cell Differ 2017; 62:61-72. [PMID: 28455706 DOI: 10.1007/978-3-319-54090-0_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) are multipotent stem cells with a broad well-described immunosuppressive potential. They are able to modulate both the innate and the adaptive immune response. Particularly, MSC are able to regulate the phenotype and function of macrophages that are critical for different biological processes including wound healing, inflammation, pathogenesis of several autoimmune diseases, and tumor growth. These multifunctional roles of macrophages are due to their high plasticity, which enable them to adopt different phenotypes such as a pro-inflammatory M1 and anti-inflammatory M2 phenotype. MSC promote macrophage differentiation toward an M2-like phenotype with a high tissue remodeling potential and anti-inflammatory activity but also a pro-tumorigenic function. MSC regulatory effect on macrophages is mediated through the secretion of different immunomodulatory molecules such as PGE2, IL1RA, and IL-6. Moreover, the presence of macrophages in damaged tissue and inflammation is essential for MSC to exert their therapeutic function. In this chapter, we discuss how the interplay between macrophages and MSC mutually modulates their phenotypes and functions, orchestrates tissue repair, and controls inflammation during autoimmunity and tumor growth.
Collapse
Affiliation(s)
- Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| | - Christian Jorgensen
- Inserm U1183, IRMB, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier Cedex 5, France.,Université de Montpellier, Montpellier, 34000, France.,Service d'Immuno-Rhumatologie, Hôpital Lapeyronie, Montpellier, 34295, France
| | - Farida Djouad
- Inserm U1183, IRMB, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier Cedex 5, France. .,Université de Montpellier, Montpellier, 34000, France.
| |
Collapse
|
19
|
Dothel G, Raschi E, Rimondini R, De Ponti F. Mesenchymal stromal cell-based therapy: Regulatory and translational aspects in gastroenterology. World J Gastroenterol 2016; 22:9057-9068. [PMID: 27895395 PMCID: PMC5107589 DOI: 10.3748/wjg.v22.i41.9057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
The past decade has witnessed an outstanding scientific production focused towards the possible clinical applications of mesenchymal stromal cells (MSCs) in autoimmune and chronic inflammatory diseases. This raised the need of novel standards to adequately address quality, efficacy and safety issues of this advanced therapy. The development of a streamlined regulation is currently hampered by the complexity of analyzing dynamic biological entities rather than chemicals. Although numerous pieces of evidence show efficacy in reducing intestinal inflammation, some inconsistencies between the mechanisms of action of rodent vs human MSCs suggest caution before assigning translational value to preclinical studies. Preliminary evidence from clinical trials showed efficacy of MSCs in the treatment of fistulizing Crohn's disease (CD), and preparations of heterologous MSCs for CD treatment are currently tested in ongoing clinical trials. However, safety issues, especially in long-term treatment, still require solid clinical data. In this regard, standardized guidelines for appropriate dosing and methods of infusion could enhance the likelihood to predict more accurately the number of responders and the duration of remission periods. In addition, elucidating MSC mechanisms of action could lead to novel and more reliable formulations such as those derived from the MSCs themselves (e.g., supernatants).
Collapse
|
20
|
Ishizuka S, Askew EB, Ishizuka N, Knudson CB, Knudson W. 4-Methylumbelliferone Diminishes Catabolically Activated Articular Chondrocytes and Cartilage Explants via a Mechanism Independent of Hyaluronan Inhibition. J Biol Chem 2016; 291:12087-104. [PMID: 27129266 DOI: 10.1074/jbc.m115.709683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 01/12/2023] Open
Abstract
Depletion of the cartilage proteoglycan aggrecan is one of the earliest events that occurs in association with osteoarthritis. This loss is often accompanied by a coordinate loss in another glycosaminoglycan, hyaluronan. Chondrocytes experimentally depleted of cell-associated hyaluronan respond by switching to a pro-catabolic metabolism that includes enhanced production of endogenous inflammatory mediators and increased synthesis of matrix metalloproteinases. Hyaluronan turnover is also increased. Together, such a response provides for possible establishment of a self-perpetuating spiral of events that maintains or prolongs the pro-catabolic state. Chondrocytes or cartilage can also be activated by treatment with pro-inflammatory cytokines and mediators such as IL-1β, TNFα, LPS, fibronectin fragments, and hyaluronan oligosaccharides. To determine the mechanism of chondrocyte activation due to hyaluronan loss, a depletion method was required that did not include degrading the hyaluronan. In recent years, several laboratories have used the coumarin derivative, 4-methylumbelliferone, as a potent inhibitor of hyaluronan biosynthesis, due in part to its ability to sequester intracellular UDP-glucuronic acid and inhibition of hyaluronan synthase transcription. However, contrary to our expectation, although 4-methylumbelliferone was indeed an inhibitor of hyaluronan biosynthesis, this depletion did not give rise to an activation of chondrocytes or cartilage. Rather, 4-methylumbelliferone directly and selectively blocked gene products associated with the pro-catabolic metabolic state of chondrocytes and did so through a mechanism preceding and independent of hyaluronan inhibition. These data suggest that 4-methylumbelliferone has additional useful applications to block pro-inflammatory cell activation events but complicates how it is used for defining functions related to hyaluronan.
Collapse
Affiliation(s)
- Shinya Ishizuka
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Emily B Askew
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Naoko Ishizuka
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Cheryl B Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
21
|
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Kao WWY. Extrinsic and Intrinsic Mechanisms by Which Mesenchymal Stem Cells Suppress the Immune System. Ocul Surf 2016; 14:121-34. [PMID: 26804815 DOI: 10.1016/j.jtos.2015.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are a group of fibroblast-like multipotent mesenchymal stromal cells that have the ability to differentiate into osteoblasts, adipocytes, and chondrocytes. Recent studies have demonstrated that MSCs possess a unique ability to exert suppressive and regulatory effects on both adaptive and innate immunity in an autologous and allogeneic manner. A vital step in stem cell transplantation is overcoming the potential graft-versus-host disease, which is a limiting factor to transplantation success. Given that MSCs attain powerful differentiation capabilities and also present immunosuppressive properties, which enable them to survive host immune rejection, MSCs are of great interest. Due to their ability to differentiate into different cell types and to suppress and modulate the immune system, MSCs are being developed for treating a plethora of diseases, including immune disorders. Moreover, in recent years, MSCs have been genetically engineered to treat and sometimes even cure some diseases, and the use of MSCs for cell therapy presents new perspectives for overcoming tissue rejection. In this review, we discuss the potential extrinsic and intrinsic mechanisms that underlie MSCs' unique ability to modulate inflammation, and both innate and adaptive immunity.
Collapse
Affiliation(s)
- Vivien J Coulson-Thomas
- Department of Ophthalmology, University of Cincinnati, Ohio, USA; John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | | | | | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Ohio, USA.
| |
Collapse
|
22
|
Cowman MK, Schmidt TA, Raghavan P, Stecco A. Viscoelastic Properties of Hyaluronan in Physiological Conditions. F1000Res 2015; 4:622. [PMID: 26594344 PMCID: PMC4648226 DOI: 10.12688/f1000research.6885.1] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 02/01/2023] Open
Abstract
Hyaluronan (HA) is a high molecular weight glycosaminoglycan of the extracellular matrix (ECM), which is particularly abundant in soft connective tissues. Solutions of HA can be highly viscous with non-Newtonian flow properties. These properties affect the movement of HA-containing fluid layers within and underlying the deep fascia. Changes in the concentration, molecular weight, or even covalent modification of HA in inflammatory conditions, as well as changes in binding interactions with other macromolecules, can have dramatic effects on the sliding movement of fascia. The high molecular weight and the semi-flexible chain of HA are key factors leading to the high viscosity of dilute solutions, and real HA solutions show additional nonideality and greatly increased viscosity due to mutual macromolecular crowding. The shear rate dependence of the viscosity, and the viscoelasticity of HA solutions, depend on the relaxation time of the molecule, which in turn depends on the HA concentration and molecular weight. Temperature can also have an effect on these properties. High viscosity can additionally affect the lubricating function of HA solutions. Immobility can increase the concentration of HA, increase the viscosity, and reduce lubrication and gliding of the layers of connective tissue and muscle. Over time, these changes can alter both muscle structure and function. Inflammation can further increase the viscosity of HA-containing fluids if the HA is modified via covalent attachment of heavy chains derived from Inter-α-Inhibitor. Hyaluronidase hydrolyzes HA, thus reducing its molecular weight, lowering the viscosity of the extracellular matrix fluid and making outflow easier. It can also disrupt any aggregates or gel-like structures that result from HA being modified. Hyaluronidase is used medically primarily as a dispersion agent, but may also be useful in conditions where altered viscosity of the fascia is desired, such as in the treatment of muscle stiffness.
Collapse
Affiliation(s)
- Mary K Cowman
- Biomatrix Research Center, Department of Chemical and Biomolecular Engineering, Polytechnic School of Engineering, New York University, New York, NY, 10010, USA
| | - Tannin A Schmidt
- Faculty of Kinesiology & Schulich School of Engineering - Centre for Bioengineering Research & Education, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Preeti Raghavan
- Department of Rehabilitation Medicine, Rusk Rehabilitation, New York University School of Medicine, New York, NY, 10016, USA
| | - Antonio Stecco
- Department of Internal Medicine, University of Padova, Padua, 35100, Italy
| |
Collapse
|