1
|
Chen Y, Johnson SM, Burr SD, Povero D, Anderson AM, McMahon CE, Liu J. Absence of the intracellular lipolytic inhibitor G0S2 enhances intravascular triglyceride clearance and abolishes diet-induced hypertriglyceridemia. J Clin Invest 2025; 135:e181754. [PMID: 40100923 PMCID: PMC12077901 DOI: 10.1172/jci181754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
The interplay between intracellular and intravascular lipolysis is crucial for maintaining circulating lipid levels and systemic energy homeostasis. Adipose triglyceride lipase (ATGL) and lipoprotein lipase (LPL), the primary triglyceride (TG) lipases responsible for these two spatially separate processes, are highly expressed in adipose tissue. Yet the mechanisms underlying their coordinated regulation remain undetermined. Here, we demonstrate that genetic ablation of G0S2, a specific inhibitory protein of ATGL, completely abolished diet-induced hypertriglyceridemia and significantly attenuated atherogenesis in mice. These effects were attributable to enhanced whole-body TG clearance, not altered hepatic TG secretion. Specifically, G0S2 deletion increased circulating LPL concentration and activity, predominantly through LPL production from white adipose tissue (WAT). Strikingly, transplantation of G0S2-deficient WAT normalized plasma TG levels in mice with hypertriglyceridemia. In conjunction with improved insulin sensitivity and decreased ANGPTL4 expression, the absence of G0S2 enhanced the stability of LPL protein in adipocytes, a phenomenon that could be reversed upon ATGL inhibition. Collectively, these findings highlight the pivotal role of adipocyte G0S2 in regulating both intracellular and intravascular lipolysis, and the possibility of targeting G0S2 as a viable pharmacological approach to reducing levels of circulating TGs.
Collapse
Affiliation(s)
- Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Scott M. Johnson
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stephanie D. Burr
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, and
| | - Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic in Rochester, Rochester, Minnesota, USA
| | - Aaron M. Anderson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Cailin E. McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Molecular Biology and Genetics Department, Cornell College of Agriculture and Life Sciences, Ithaca, New York, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, and
| |
Collapse
|
2
|
Wu W, Huynh K, Du JC, She G, Duong T, Ziemann M, Zhao WB, Deng XL, Meikle PJ, Du XJ. Hippo pathway activation causes multiple lipid derangements in a murine model of cardiomyopathy. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159590. [PMID: 39709046 DOI: 10.1016/j.bbalip.2024.159590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Metabolic reprogramming occurs in cardiomyopathy and heart failure contributing to progression of the disease. Activation of cardiac Hippo pathway signaling has been implicated in mediating mitochondrial dysfunction and metabolic reprogramming in cardiomyopathy, albeit influence of Hippo pathway on lipid profile is unclear. Using a dual-omics approach, we determined alterations of cardiac lipids in a mouse model of cardiomyopathy due to enhanced Hippo signaling and explored molecular mechanisms. Lipidomic profiling discovered multiple alterations in lipid classes, notably reduction of triacylglycerol, diacylglycerol, phospholipids and ether lipids, and elevation of sphingolipids and lysophosphatidylcholine. Mechanistically, we found downregulated expression of PPARα and PGC-1α at mRNA and protein levels, and downregulated expression of PPARα-target genes, indicating attenuated transcriptional activity of PPARα/PGC-1α. Lipidomics-guided transcriptomic analysis revealed dysregulated expression of gene sets that were responsible for enhanced biosynthesis of ceramides, suppression of TG biosynthesis, storage, hydrolysis and mitochondrial fatty acid oxidation, and reduction of peroxisome-localized biosynthesis of ether lipids. Collectively, Hippo pathway activation with attenuated PPARα/PGC-1α signaling is the underlying mechanism for alterations in cardiac lipids in cardiomyopathy and failing heart.
Collapse
Affiliation(s)
- Wei Wu
- Department of Cardiology, Shaanxi Provincial Hospital, Xi'an, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jin-Chan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Thy Duong
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Bioinformatics Working Group, Burnet Institute, Melbourne, Victoria, Australia
| | - Wei-Bo Zhao
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Endocrinology, The Ninth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Xiao-Jun Du
- Department of Cardiology, Shaanxi Provincial Hospital, Xi'an, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Perumal SK, Day LZ, Arumugam MK, Chava S, Kumar V, Osna NA, Jacobs J, Rasineni K, Kharbanda KK. Lipid droplet-associated proteins in alcohol-associated fatty liver disease: A proteomic approach. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:2010-2021. [PMID: 39414381 PMCID: PMC11778054 DOI: 10.1111/acer.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND The earliest manifestation of alcohol-associated liver disease (ALD) is steatosis characterized by deposition of fat in specialized organelles called lipid droplets (LDs). While alcohol administration causes a rise in LD numbers in the hepatocytes, little is known regarding their characteristics that allow their accumulation and size to increase. The aim of the present study is to gain insights into underlying pathophysiological mechanisms by investigating the ethanol-induced changes in hepatic LD proteome as a function of LD size. METHODS Adult male Wistar rats (180-200 g BW) were fed with ethanol liquid diet for 6 weeks. At sacrifice, large-, medium-, and small-sized hepatic LD subpopulations (LD1, LD2, and LD3, respectively) were isolated and subjected to morphological and proteomic analyses. RESULTS Morphological analysis of LD1-LD3 fractions of ethanol-fed rats clearly demonstrated that LD1 contained larger LDs compared with LD2 and LD3 fractions. Our preliminary results from principal component analysis showed that the proteome of different-sized hepatic LD fractions was distinctly different. Proteomic data analysis identified over 2000 proteins in each LD fraction with significant alterations in protein abundance among the three LD fractions. Among the altered proteins, several were related to fat metabolism, including synthesis, incorporation of fatty acid, and lipolysis. Ingenuity pathway analysis revealed increased fatty acid synthesis, fatty acid incorporation, LD fusion, and reduced lipolysis in LD1 compared to LD3. Overall, the proteomic findings indicate that the increased level of protein that facilitates fusion of LDs combined with an increased association of negative regulators of lipolysis dictates the generation of large-sized LDs during the development of alcohol-associated hepatic steatosis. CONCLUSION Several significantly altered proteins were identified in different-sized LDs isolated from livers of ethanol-fed rats. Ethanol-induced increases in specific proteins that hinder LD lipid metabolism led to the accumulation and persistence of large-sized LDs in the liver.
Collapse
Affiliation(s)
- Sathish Kumar Perumal
- Research ServiceVeterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Le Z. Day
- Biological Sciences Division and Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | - Madan Kumar Arumugam
- Research ServiceVeterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Centre for Molecular and Nanomedical SciencesSathyabama Institute of Science and TechnologyChennaiTamil NaduIndia
| | - Srinivas Chava
- Research ServiceVeterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Vikas Kumar
- Department of Genetics Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Mass Spectrometry and Proteomics Core FacilityUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Natalia A. Osna
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jon Jacobs
- Biological Sciences Division and Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | - Karuna Rasineni
- Research ServiceVeterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Biochemistry & Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kusum K. Kharbanda
- Research ServiceVeterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Biochemistry & Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
4
|
Wolosiewicz M, Balatskyi VV, Duda MK, Filip A, Ntambi JM, Navrulin VO, Dobrzyn P. SCD4 deficiency decreases cardiac steatosis and prevents cardiac remodeling in mice fed a high-fat diet. J Lipid Res 2024; 65:100612. [PMID: 39094772 PMCID: PMC11402454 DOI: 10.1016/j.jlr.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Stearoyl-CoA desaturase (SCD) is a lipogenic enzyme that catalyzes formation of the first double bond in the carbon chain of saturated fatty acids. Four isoforms of SCD have been identified in mice, the most poorly characterized of which is SCD4, which is cardiac-specific. In the present study, we investigated the role of SCD4 in systemic and cardiac metabolism. We used WT and global SCD4 KO mice that were fed standard laboratory chow or a high-fat diet (HFD). SCD4 deficiency reduced body adiposity and decreased hyperinsulinemia and hypercholesterolemia in HFD-fed mice. The loss of SCD4 preserved heart morphology in the HFD condition. Lipid accumulation decreased in the myocardium in SCD4-deficient mice and in HL-1 cardiomyocytes with knocked out Scd4 expression. This was associated with an increase in the rate of lipolysis and, more specifically, adipose triglyceride lipase (ATGL) activity. Possible mechanisms of ATGL activation by SCD4 deficiency include lower protein levels of the ATGL inhibitor G0/G1 switch protein 2 and greater activation by protein kinase A under lipid overload conditions. Moreover, we observed higher intracellular Ca2+ levels in HL-1 cells with silenced Scd4 expression. This may explain the activation of protein kinase A in response to higher Ca2+ levels. Additionally, the loss of SCD4 inhibited mitochondrial enlargement, NADH overactivation, and reactive oxygen species overproduction in the heart in HFD-fed mice. In conclusion, SCD4 deficiency activated lipolysis, resulting in a reduction of cardiac steatosis, prevented the induction of left ventricular hypertrophy, and reduced reactive oxygen species levels in the heart in HFD-fed mice.
Collapse
Affiliation(s)
- Marcin Wolosiewicz
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Monika K Duda
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Filip
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Viktor O Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
5
|
Campbell LE, Anderson AM, Chen Y, Johnson SM, McMahon CE, Liu J. Identification of motifs and mechanisms for lipid droplet targeting of the lipolytic inhibitors G0S2 and HIG2. J Cell Sci 2022; 135:285951. [PMID: 36420951 PMCID: PMC10112975 DOI: 10.1242/jcs.260236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
G0S2 and HIG2 are two selective inhibitors of ATGL (also known as PNPLA2), the key enzyme for intracellular lipolysis. Whereas G0S2 regulates triglyceride (TG) mobilization in adipocytes and hepatocytes, HIG2 functions to enhance intracellular TG accumulation under hypoxic conditions. A homologous hydrophobic domain (HD) is shared by G0S2 and HIG2 (also known as HILPDA) for binding to ATGL. However, the determinants of their lipid droplet (LD) localization are unknown. Here, we study how G0S2 and HIG2 are targeted to LDs, and identify both ATGL-independent and -dependent mechanisms. Structural prediction and studies in cells reveal that ATGL-independent localization of G0S2 to both the endoplasmic reticulum (ER) and LDs is mediated by a hairpin structure consisting of two hydrophobic sequences. Positively charged residues in the hinge region play a crucial role in sorting G0S2, which initially localizes to ER, to LDs. Interestingly, the role of these positive charges becomes dispensable when ATGL is co-expressed. In comparison, HIG2, which lacks a similar hairpin structure, is dependent on ATGL for its full LD targeting. Thus, our studies identify specific structural features and mechanisms for mediating accumulation of these two ATGL inhibitors on LDs.
Collapse
Affiliation(s)
- Latoya E Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,College of Health Solutions, Arizona State University, Tempe, AZ 85281, USA
| | - Aaron M Anderson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA
| | - Scott M Johnson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Cailin E McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Liang Z, Diao W, Jiang Y, Zhang Y. G0S2 ameliorates oxidized low-density lipoprotein-induced vascular endothelial cell injury by regulating mitochondrial apoptosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1383. [PMID: 36660674 PMCID: PMC9843419 DOI: 10.21037/atm-22-5618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
Background Oxidative low-density lipoprotein (ox-LDL)-induced endothelial cell damage is a major risk factor for atherosclerosis and its related cardiovascular diseases. The G0/G1 switch gene 2 (G0S2) is a multifunctional protein which has been poorly studied in atherosclerosis. Methods In this study, ox-LDL was utilized to construct a human aortic endothelial cell (HAEC) injury model. Results It was found that ox-LDL impaired cell viability, augmented lactate dehydrogenase (LDH) release, and reduced G0S2 levels in HAECs in a dose-dependent manner. Further, G0S2 overexpression improved the viability and restrained apoptosis of HAECs treated by ox-LDL. Conversely, G0S2 depletion decreased the viability and aggravated apoptosis of HAECs treated by ox-LDL. At the molecular level, G0S2 overexpression significantly increased the secretion of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPH-Px), promoted intracellular reactive oxygen species (ROS) production and malondialdehyde (MDA) content in HAECs under either normal or ox-LDL conditions. Meanwhile, the ox-LDL-induced mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential, translocation of mitochondrial cytochrome c (Cyt-c) to the cytoplasm, and activation of caspase-3 and caspase-9, was significantly reversed by G0S2 overexpression. In addition, G0S2 overexpression promoted the activation of AMP-activated protein kinase (AMPK) and increased the expression of nuclear factor erythroid-2-related factor-2 (Nrf2), sirtuin 1 (SIRT1) and heme oxygenase 1 (HO-1) under normal and ox-LDL conditions. Conclusions This study demonstrated that G0S2 protects against ox-LDL-induced vascular endothelial cell injury by regulating oxidative damage and mitochondrial homeostasis and may be a promising target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Zenghui Liang
- Department of Vascular Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjie Diao
- Department of Cardiac Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yiyao Jiang
- Department of Cardiac Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yanrong Zhang
- Department of Vascular Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Chen S, Huang X. Cytosolic lipolysis in non-adipose tissues: energy provision and beyond. FEBS J 2022; 289:7385-7398. [PMID: 34407292 DOI: 10.1111/febs.16161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/18/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Cytosolic lipolysis is a well-defined biochemical process that plays important roles in the mobilization of stored neutral lipids. Lipid turnover, regulated by cytosolic lipolysis, has been extensively studied in adipose tissue, liver, and muscle. The storage and utilization of neutral lipids is a basic function of most, if not all, tissues and cells. In this review, we focus on the functions of cytosolic lipolysis mainly in non-adipose tissues and in several physiological processes, including cancer, longevity, and pathogen infection. The mechanisms underlying the impact of cytosolic lipolysis on these events will be discussed. Detailed understanding of cytosolic lipolysis in both adipose and non-adipose tissues will have implications for future clinical translation.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Bednarski TK, Duda MK, Dobrzyn P. Alterations of Lipid Metabolism in the Heart in Spontaneously Hypertensive Rats Precedes Left Ventricular Hypertrophy and Cardiac Dysfunction. Cells 2022; 11:cells11193032. [PMID: 36230994 PMCID: PMC9563594 DOI: 10.3390/cells11193032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Disturbances in cardiac lipid metabolism are associated with the development of cardiac hypertrophy and heart failure. Spontaneously hypertensive rats (SHRs), a genetic model of primary hypertension and pathological left ventricular (LV) hypertrophy, have high levels of diacylglycerols in cardiomyocytes early in development. However, the exact effect of lipids and pathways that are involved in their metabolism on the development of cardiac dysfunction in SHRs is unknown. Therefore, we used SHRs and Wistar Kyoto (WKY) rats at 6 and 18 weeks of age to analyze the impact of perturbations of processes that are involved in lipid synthesis and degradation in the development of LV hypertrophy in SHRs with age. Triglyceride levels were higher, whereas free fatty acid (FA) content was lower in the LV in SHRs compared with WKY rats. The expression of de novo FA synthesis proteins was lower in cardiomyocytes in SHRs compared with corresponding WKY controls. The higher expression of genes that are involved in TG synthesis in 6-week-old SHRs may explain the higher TG content in these rats. Adenosine monophosphate-activated protein kinase phosphorylation and peroxisome proliferator-activated receptor α protein content were lower in cardiomyocytes in 18-week-old SHRs, suggesting a lower rate of β-oxidation. The decreased protein content of α/β-hydrolase domain-containing 5, adipose triglyceride lipase (ATGL) activator, and increased content of G0/G1 switch protein 2, ATGL inhibitor, indicating a lower rate of lipolysis in the heart in SHRs. In conclusion, the present study showed that the development of LV hypertrophy and myocardial dysfunction in SHRs is associated with triglyceride accumulation, attributable to a lower rate of lipolysis and β-oxidation in cardiomyocytes.
Collapse
Affiliation(s)
- Tomasz K. Bednarski
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Monika K. Duda
- Centre of Postgraduate Medical Education, Department of Clinical Physiology, 01-813 Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
9
|
Riegler-Berket L, Wechselberger L, Cerk IK, Padmanabha Das KM, Viertlmayr R, Kulminskaya N, Rodriguez Gamez CF, Schweiger M, Zechner R, Zimmermann R, Oberer M. Residues of the minimal sequence of G0S2 collectively contribute to ATGL inhibition while C-and N-terminal extensions promote binding to ATGL. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159105. [PMID: 35026402 DOI: 10.1016/j.bbalip.2021.159105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022]
Abstract
The protein encoded by the G0/G1 switch gene 2 (G0S2) is a potent inhibitor of adipose triglyceride lipase (ATGL) and thus an important regulator of intracellular lipolysis. Since dysfunction of lipolysis is associated with metabolic diseases including diabetes and obesity, inhibition of ATGL is considered a therapeutic strategy. G0S2 interacts with ATGL's patatin-domain to mediate non-competitive inhibition, however atomic details of the inhibition mechanism are incompletely understood. Sequences of G0S2 from higher organisms show a highly conserved N-terminal part, including a hydrophobic region covering amino acids 27 to 42. We show that predicted G0S2 orthologs from platypus, chicken and Japanese rice-fish are able to inhibit human and mouse ATGL, emphasizing the contribution of conserved amino acid to ATGL inhibition. Our site directed mutagenesis and truncation studies give insights in the protein-protein interaction on a per-residue level. We determine that the minimal sequence required for ATGL inhibition ranges from amino acids 20 to 44. Residues Y27, V28, G30, A34 G37, V39 or L42 within this sequence play a substantial role in ATGL inhibition. Furthermore, we show that unspecific interactions of the N-terminal part (amino acids 20-27) of the minimal sequence facilitate the interaction to ATGL. Our studies also demonstrate that full-length G0S2 shows higher tolerance to specific single amino acid exchanges in the hydrophobic region due to the stronger contributions of unspecific interactions. However, exchanges of more than one amino-acid in the hydrophobic region also result in the loss of function as ATGL inhibitor even in the full-length protein.
Collapse
Affiliation(s)
- L Riegler-Berket
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - L Wechselberger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - I K Cerk
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - K M Padmanabha Das
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - R Viertlmayr
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - N Kulminskaya
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - M Schweiger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria
| | - R Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| | - R Zimmermann
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| | - M Oberer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria.
| |
Collapse
|
10
|
Exploring the Pattern of Metabolic Alterations Causing Energy Imbalance via PPARα Dysregulation in Cardiac Muscle During Doxorubicin Treatment. Cardiovasc Toxicol 2022; 22:436-461. [PMID: 35157213 DOI: 10.1007/s12012-022-09725-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Cardiotoxicity by anthracycline antineoplastic drug doxorubicin is one of the systemic toxicity of the cardiovascular system. The mechanism responsible for doxorubicin cardiotoxicity and lipid metabolism remains elusive. The current study tested the hypotheses that the role of peroxisome proliferator-activated receptor α (PPARα) in the progress of doxorubicin-induced cardiomyopathy and its mechanism behind lipid metabolism. In the present study, male rats were subjected to intraperitoneal injection (5-week period) of doxorubicin with different dosages such as low dosage (1.5 mg/kg body weight) and high dosage (15 mg/kg body weight) to induce doxorubicin cardiomyopathy. Myocardial PPARα was impaired in both low dosage and high dosage of doxorubicin-treated rats in a dose-dependent manner. The attenuated level of PPARα impairs the expression of the genes involved in mitochondrial transporter, fatty acid transportation, lipolysis, lipid metabolism, and fatty acid oxidation. Moreover, it disturbs the reverse triacylglycerol transporter apolipoprotein B-100 (APOB) in the myocardium. Doxorubicin elevates the circulatory lipid profile and glucose. Further aggravated lipid profile in circulation impedes the metabolism of lipid in cardiac tissue, which causes a lipotoxic condition in the heart and subsequently associated disease for the period of doxorubicin treatment. Elevated lipids in the circulation translocate into the heart dysregulates lipid metabolism in the heart, which causes augmented oxidative stress and necro-apoptosis and mediates lipotoxic conditions. This finding determines the mechanistic role of doxorubicin-disturbed lipid metabolism via PPARα, which leads to cardiac dysfunction.
Collapse
|
11
|
Adipose Triglyceride Lipase in Hepatic Physiology and Pathophysiology. Biomolecules 2021; 12:biom12010057. [PMID: 35053204 PMCID: PMC8773762 DOI: 10.3390/biom12010057] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
The liver is extremely active in oxidizing triglycerides (TG) for energy production. An imbalance between TG synthesis and hydrolysis leads to metabolic disorders in the liver, including excessive lipid accumulation, oxidative stress, and ultimately liver damage. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme that catalyzes the first step of TG breakdown to glycerol and fatty acids. Although its role in controlling lipid homeostasis has been relatively well-studied in the adipose tissue, heart, and skeletal muscle, it remains largely unknown how and to what extent ATGL is regulated in the liver, responds to stimuli and regulators, and mediates disease progression. Therefore, in this review, we describe the current understanding of the structure–function relationship of ATGL, the molecular mechanisms of ATGL regulation at translational and post-translational levels, and—most importantly—its role in lipid and glucose homeostasis in health and disease with a focus on the liver. Advances in understanding the molecular mechanisms underlying hepatic lipid accumulation are crucial to the development of targeted therapies for treating hepatic metabolic disorders.
Collapse
|
12
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 363] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
13
|
Heier C, Knittelfelder O, Hofbauer HF, Mende W, Pörnbacher I, Schiller L, Schoiswohl G, Xie H, Grönke S, Shevchenko A, Kühnlein RP. Hormone-sensitive lipase couples intergenerational sterol metabolism to reproductive success. eLife 2021; 10:63252. [PMID: 33538247 PMCID: PMC7880688 DOI: 10.7554/elife.63252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Triacylglycerol (TG) and steryl ester (SE) lipid storage is a universal strategy to maintain organismal energy and membrane homeostasis. Cycles of building and mobilizing storage fat are fundamental in (re)distributing lipid substrates between tissues or to progress ontogenetic transitions. In this study, we show that Hormone-sensitive lipase (Hsl) specifically controls SE mobilization to initiate intergenerational sterol transfer in Drosophila melanogaster. Tissue-autonomous Hsl functions in the maternal fat body and germline coordinately prevent adult SE overstorage and maximize sterol allocation to embryos. While Hsl-deficiency is largely dispensable for normal development on sterol-rich diets, animals depend on adipocyte Hsl for optimal fecundity when dietary sterol becomes limiting. Notably, accumulation of SE but not of TG is a characteristic of Hsl-deficient cells across phyla including murine white adipocytes. In summary, we identified Hsl as an ancestral regulator of SE degradation, which improves intergenerational sterol transfer and reproductive success in flies.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Harald F Hofbauer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Wolfgang Mende
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Ingrid Pörnbacher
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Laura Schiller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Sebastian Grönke
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ronald P Kühnlein
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth - University of Graz, Graz, Austria.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
14
|
Olichwier A, Balatskyi VV, Wolosiewicz M, Ntambi JM, Dobrzyn P. Interplay between Thyroid Hormones and Stearoyl-CoA Desaturase 1 in the Regulation of Lipid Metabolism in the Heart. Int J Mol Sci 2020; 22:ijms22010109. [PMID: 33374300 PMCID: PMC7796080 DOI: 10.3390/ijms22010109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1), an enzyme that is involved in the biosynthesis of monounsaturated fatty acids, induces the reprogramming of cardiomyocyte metabolism. Thyroid hormones (THs) activate both lipolysis and lipogenesis. Many genes that are involved in lipid metabolism, including Scd1, are regulated by THs. The present study used SCD1 knockout (SCD1−/−) mice to test the hypothesis that THs are important factors that mediate the anti-steatotic effect of SCD1 downregulation in the heart. SCD1 deficiency decreased plasma levels of thyroid-stimulating hormone and thyroxine and the expression of genes that regulate intracellular TH levels (i.e., Slc16a2 and Dio1-3) in cardiomyocytes. Both hypothyroidism and SCD1 deficiency affected genomic and non-genomic TH pathways in the heart. SCD1 deficiency is known to protect mice from genetic- or diet-induced obesity and decrease lipid content in the heart. Interestingly, hypothyroidism increased body adiposity and triglyceride and diacylglycerol levels in the heart in SCD1−/− mice. The accumulation of triglycerides in cardiomyocytes in SCD1−/− hypothyroid mice was caused by the activation of lipogenesis, which likely exceeded the upregulation of lipolysis and fatty acid oxidation. Lipid accumulation was also observed in the heart in wildtype hypothyroid mice compared with wildtype control mice, but this process was related to a reduction of triglyceride lipolysis and fatty acid oxidation. We also found that simultaneous SCD1 and deiodinase inhibition increased triglyceride content in HL-1 cardiomyocytes, and this process was related to the downregulation of lipolysis. Altogether, the present results suggest that THs are an important part of the mechanism of SCD1 in cardiac lipid utilization and may be involved in the upregulation of energetic metabolism that is associated with SCD1 deficiency.
Collapse
Affiliation(s)
- Adam Olichwier
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - Volodymyr V. Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - Marcin Wolosiewicz
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
- Correspondence:
| |
Collapse
|
15
|
Povero D, Johnson SM, Liu J. Hypoxia, hypoxia-inducible gene 2 (HIG2)/HILPDA, and intracellular lipolysis in cancer. Cancer Lett 2020; 493:71-79. [PMID: 32818550 PMCID: PMC11218043 DOI: 10.1016/j.canlet.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
Tumor tissues are chronically exposed to hypoxia owing to aberrant vascularity. Hypoxia induces metabolic alterations in cancer, thereby promoting aggressive malignancy and metastasis. While previous efforts largely focused on adaptive responses in glucose and glutamine metabolism, recent studies have begun to yield important insight into the hypoxic regulation of lipid metabolic reprogramming in cancer. Emerging evidence points to lipid droplet (LD) accumulation as a hallmark of hypoxic cancer cells. One critical underlying mechanism involves the inhibition of adipose triglyceride lipase (ATGL)-mediated intracellular lipolysis by a small protein encoded by hypoxia-inducible gene 2 (HIG2), also known as hypoxia inducible lipid droplet associated (HILPDA). In this review we summarize and discuss recent key findings on hypoxia-dependent regulation of metabolic adaptations especially lipolysis in cancer. We also pose several questions and hypotheses pertaining to the metabolic impact of lipolytic regulation in cancer under hypoxia and during hypoxia-reoxygenation transition.
Collapse
Affiliation(s)
- Davide Povero
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Division of Endocrinology, Rochester, MN, 55905, USA
| | - Scott M Johnson
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jun Liu
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Division of Endocrinology, Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Hofer P, Taschler U, Schreiber R, Kotzbeck P, Schoiswohl G. The Lipolysome-A Highly Complex and Dynamic Protein Network Orchestrating Cytoplasmic Triacylglycerol Degradation. Metabolites 2020; 10:E147. [PMID: 32290093 PMCID: PMC7240967 DOI: 10.3390/metabo10040147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
The catabolism of intracellular triacylglycerols (TAGs) involves the activity of cytoplasmic and lysosomal enzymes. Cytoplasmic TAG hydrolysis, commonly termed lipolysis, is catalyzed by the sequential action of three major hydrolases, namely adipose triglyceride lipase, hormone-sensitive lipase, and monoacylglycerol lipase. All three enzymes interact with numerous protein binding partners that modulate their activity, cellular localization, or stability. Deficiencies of these auxiliary proteins can lead to derangements in neutral lipid metabolism and energy homeostasis. In this review, we summarize the composition and the dynamics of the complex lipolytic machinery we like to call "lipolysome".
Collapse
Affiliation(s)
- Peter Hofer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Petra Kotzbeck
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| |
Collapse
|
17
|
Kintscher U, Foryst-Ludwig A, Haemmerle G, Zechner R. The Role of Adipose Triglyceride Lipase and Cytosolic Lipolysis in Cardiac Function and Heart Failure. CELL REPORTS MEDICINE 2020; 1:100001. [PMID: 33205054 PMCID: PMC7659492 DOI: 10.1016/j.xcrm.2020.100001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heart failure is one of the leading causes of death worldwide. New therapeutic concepts are urgently required to lower the burden of heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF), the two major forms of heart failure. Lipolytic processes are induced during the development of heart failure and occur in adipose tissue and multiple organs, including the heart. Increasing evidence suggests that cellular lipolysis, in particular, adipose triglyceride lipase (ATGL) activity, has an important function in cardiac (patho)physiology. This review summarizes the crucial role of cellular lipolysis for normal cardiac function and for the development of HFrEF and HFpEF. We discuss the most relevant pre-clinical studies and elaborate on the cardiac consequences of non-myocardial and myocardial lipolysis modulation. Finally, we critically analyze the therapeutic importance of pharmacological ATGL inhibition as a potential treatment option for HFrEF and/or HFpEF in the future.
Collapse
Affiliation(s)
- Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Corresponding author
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Einstein BIH Visiting Fellow, Berlin Institute of Health, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
Knapp M, Górski J, Lewkowicz J, Lisowska A, Gil M, Wójcik B, Hirnle T, Chabowski A, Mikłosz A. The Gene and Protein Expression of the Main Components of the Lipolytic System in Human Myocardium and Heart Perivascular Adipose Tissue. Effect of Coronary Atherosclerosis. Int J Mol Sci 2020; 21:ijms21030737. [PMID: 31979197 PMCID: PMC7037202 DOI: 10.3390/ijms21030737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of our study was to examine the regulation of triacylglycerols (TG) metabolism in myocardium and heart perivascular adipose tissue in coronary atherosclerosis. Adipose triglyceride lipase (ATGL) is the major TG-hydrolase. The enzyme is activated by a protein called comparative gene identification 58 (CGI-58) and inhibited by a protein called G0/G1 switch protein 2 (G0S2). Samples of the right atrial appendage and perivascular adipose tissue were obtained from two groups of patients: 1—with multivessel coronary artery disease qualified for coronary artery bypass grafting (CAD), 2—patients with no atherosclerosis qualified for a valve replacement (NCAD). The mRNA and protein analysis of ATGL, HSL, CGI-58, G0S2, FABP4, FAT/CD36, LPL, β-HAD, CS, COX4/1, FAS, SREBP-1c, GPAT1, COX-2, 15-LO, and NFκβ were determined by using real-time PCR and Western Blot. The level of lipids (i.e., TG, diacylglycerol (DG), and FFA) was examined by GLC. We demonstrated that in myocardium coronary atherosclerosis increases only the transcript level of G0S2 and FABP4. Most importantly, ATGL, β-HAD, and COX4/1 protein expression was reduced and it was accompanied by over double the elevation in TG content in the CAD group. The fatty acid synthesis and their cellular uptake were stable in the myocardium of patients with CAD. Additionally, the expression of proteins contributing to inflammation was increased in the myocardium of patients with coronary stenosis. Finally, in the perivascular adipose tissue, the mRNA of G0S2 was elevated, whereas the protein content of FABP-4 was increased and for COX4/1 diminished. These data suggest that a reduction in ATGL protein expression leads to myocardial steatosis in patients with CAD.
Collapse
Affiliation(s)
- Małgorzata Knapp
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (M.G.)
| | - Jan Górski
- Department of Medical Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland;
| | - Janina Lewkowicz
- Department of Cardiosurgery, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.L.); (T.H.)
| | - Anna Lisowska
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (M.G.)
| | - Monika Gil
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (M.G.)
| | - Beata Wójcik
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (B.W.); (A.C.)
| | - Tomasz Hirnle
- Department of Cardiosurgery, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.L.); (T.H.)
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (B.W.); (A.C.)
| | - Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (B.W.); (A.C.)
- Correspondence: ; Tel.: +48-85-746-55-85
| |
Collapse
|
19
|
Kioka H, Kato H, Fujita T, Asano Y, Shintani Y, Yamazaki S, Tsukamoto O, Imamura H, Kogo M, Kitakaze M, Sakata Y, Takashima S. In vivo real-time ATP imaging in zebrafish hearts reveals G0s2 induces ischemic tolerance. FASEB J 2020; 34:2041-2054. [PMID: 31916304 DOI: 10.1096/fj.201901686r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/19/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022]
Abstract
Most eukaryotic cells generate adenosine triphosphate (ATP) through the oxidative phosphorylation system (OXPHOS) to support cellular activities. In cultured cell-based experiments, we recently identified the hypoxia-inducible protein G0/G1 switch gene 2 (G0s2) as a positive regulator of OXPHOS, and showed that G0s2 protects cultured cardiomyocytes from hypoxia. In this study, we examined the in vivo protective role of G0s2 against hypoxia by generating both loss-of-function and gain-of-function models of g0s2 in zebrafish. Zebrafish harboring transcription activator-like effector nuclease (TALEN)-mediated knockout of g0s2 lost hypoxic tolerance. Conversely, cardiomyocyte-specific transgenic zebrafish hearts exhibited strong tolerance against hypoxia. To clarify the mechanism by which G0s2 protects cardiac function under hypoxia, we introduced a mitochondrially targeted FRET-based ATP biosensor into zebrafish heart to visualize ATP dynamics in in vivo beating hearts. In addition, we employed a mosaic overexpression model of g0s2 to compare the contraction and ATP dynamics between g0s2-expressing and non-expressing cardiomyocytes, side-by-side within the same heart. These techniques revealed that g0s2-expressing cardiomyocyte populations exhibited preserved contractility coupled with maintained intra-mitochondrial ATP concentrations even under hypoxic condition. Collectively, these results demonstrate that G0s2 provides ischemic tolerance in vivo by maintaining ATP production, and therefore represents a promising therapeutic target for hypoxia-related diseases.
Collapse
Affiliation(s)
- Hidetaka Kioka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Frontier Bioscience, Suita, Japan
| | - Takeshi Fujita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasunori Shintani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Satoru Yamazaki
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Frontier Bioscience, Suita, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Frontier Bioscience, Suita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan
| |
Collapse
|
20
|
Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:880-899. [PMID: 30367950 PMCID: PMC6439276 DOI: 10.1016/j.bbalip.2018.10.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
Adipose triglyceride lipase (ATGL) has been discovered 14 years ago and revised our view on intracellular triglyceride (TG) mobilization – a process termed lipolysis. ATGL initiates the hydrolysis of TGs to release fatty acids (FAs) that are crucial energy substrates, precursors for the synthesis of membrane lipids, and ligands of nuclear receptors. Thus, ATGL is a key enzyme in whole-body energy homeostasis. In this review, we give an update on how ATGL is regulated on the transcriptional and post-transcriptional level and how this affects the enzymes' activity in the context of neutral lipid catabolism. In depth, we highlight and discuss the numerous physiological functions of ATGL in lipid and energy metabolism. Over more than a decade, different genetic mouse models lacking or overexpressing ATGL in a cell- or tissue-specific manner have been generated and characterized. Moreover, pharmacological studies became available due to the development of a specific murine ATGL inhibitor (Atglistatin®). The identification of patients with mutations in the human gene encoding ATGL and their disease spectrum has underpinned the importance of ATGL in humans. Together, mouse models and human data have advanced our understanding of the physiological role of ATGL in lipid and energy metabolism in adipose and non-adipose tissues, and of the pathophysiological consequences of ATGL dysfunction in mice and men. Summary of mouse models with genetic or pharmacological manipulation of ATGL. Summary of patients with mutations in the human gene encoding ATGL. In depth discussion of the role of ATGL in numerous physiological processes in mice and men.
Collapse
|
21
|
Heier C, Kien B, Huang F, Eichmann TO, Xie H, Zechner R, Chang PA. The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain. J Biol Chem 2017; 292:19087-19098. [PMID: 28887301 PMCID: PMC5704489 DOI: 10.1074/jbc.m117.792978] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/31/2017] [Indexed: 01/04/2023] Open
Abstract
Mammalian patatin-like phospholipase domain-containing proteins (PNPLAs) are lipid-metabolizing enzymes with essential roles in energy metabolism, skin barrier development, and brain function. A detailed annotation of enzymatic activities and structure-function relationships remains an important prerequisite to understand PNPLA functions in (patho-)physiology, for example, in disorders such as neutral lipid storage disease, non-alcoholic fatty liver disease, and neurodegenerative syndromes. In this study, we characterized the structural features controlling the subcellular localization and enzymatic activity of PNPLA7, a poorly annotated phospholipase linked to insulin signaling and energy metabolism. We show that PNPLA7 is an endoplasmic reticulum (ER) transmembrane protein that specifically promotes hydrolysis of lysophosphatidylcholine in mammalian cells. We found that transmembrane and regulatory domains in the PNPLA7 N-terminal region cooperate to regulate ER targeting but are dispensable for substrate hydrolysis. Enzymatic activity is instead mediated by the C-terminal domain, which maintains full catalytic competence even in the absence of N-terminal regions. Upon elevated fatty acid flux, the catalytic domain targets cellular lipid droplets and promotes interactions of PNPLA7 with these organelles in response to increased cAMP levels. We conclude that PNPLA7 acts as an ER-anchored lysophosphatidylcholine hydrolase that is composed of specific functional domains mediating catalytic activity, subcellular positioning, and interactions with cellular organelles. Our study provides critical structural insights into an evolutionarily conserved class of phospholipid-metabolizing enzymes.
Collapse
Affiliation(s)
- Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Benedikt Kien
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Feifei Huang
- Key Laboratory of Molecular Biology, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Thomas O Eichmann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Hao Xie
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria, and
| | - Ping-An Chang
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria,
- Key Laboratory of Molecular Biology, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
22
|
Zechner R, Madeo F, Kratky D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 2017; 18:671-684. [PMID: 28852221 DOI: 10.1038/nrm.2017.76] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fatty acids are the most efficient substrates for energy production in vertebrates and are essential components of the lipids that form biological membranes. Synthesis of triacylglycerols from non-esterified free fatty acids (FFAs) combined with triacylglycerol storage represents a highly efficient strategy to stockpile FFAs in cells and prevent FFA-induced lipotoxicity. Although essentially all vertebrate cells have some capacity to store and utilize triacylglycerols, white adipose tissue is by far the largest triacylglycerol depot and is uniquely able to supply FFAs to other tissues. The release of FFAs from triacylglycerols requires their enzymatic hydrolysis by a process called lipolysis. Recent discoveries thoroughly altered and extended our understanding of lipolysis. This Review discusses how cytosolic 'neutral' lipolysis and lipophagy, which utilizes 'acid' lipolysis in lysosomes, degrade cellular triacylglycerols as well as how these pathways communicate, how they affect lipid metabolism and energy homeostasis and how their dysfunction affects the pathogenesis of metabolic diseases. Answers to these questions will likely uncover novel strategies for the treatment of prevalent metabolic diseases.
Collapse
Affiliation(s)
- Rudolf Zechner
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| | - Frank Madeo
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| | - Dagmar Kratky
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010 Graz, Austria
| |
Collapse
|
23
|
Zhang X, Heckmann BL, Campbell LE, Liu J. G0S2: A small giant controller of lipolysis and adipose-liver fatty acid flux. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28645852 DOI: 10.1016/j.bbalip.2017.06.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The discovery of adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) provided a major paradigm shift in the understanding of intracellular lipolysis in both adipocytes and nonadipocyte cells. The subsequent discovery of G0/G1 switch gene 2 (G0S2) as a potent endogenous inhibitor of ATGL revealed a unique mechanism governing lipolysis and fatty acid (FA) availability. G0S2 is highly conserved in vertebrates, and exhibits cyclical expression pattern between adipose tissue and liver that is critical to lipid flux and energy homeostasis in these two tissues. Biochemical and cell biological studies have demonstrated that a direct interaction with ATGL mediates G0S2's inhibitory effects on lipolysis and lipid droplet degradation. In this review we examine evidence obtained from recent in vitro and in vivo studies that lends support to the proof-of-principle concept that G0S2 functions as a master regulator of tissue-specific balance of TG storage vs. mobilization, partitioning of metabolic fuels between adipose and liver, and the whole-body adaptive energy response. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, AZ, United States; HEAL(th) Program, Mayo Clinic, Scottsdale, AZ, United States
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Latoya E Campbell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Jun Liu
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, AZ, United States; HEAL(th) Program, Mayo Clinic, Scottsdale, AZ, United States; Division of Endocrinology, Mayo Clinic, Scottsdale, AZ, United States.
| |
Collapse
|
24
|
Heckmann BL, Zhang X, Saarinen AM, Schoiswohl G, Kershaw EE, Zechner R, Liu J. Liver X receptor α mediates hepatic triglyceride accumulation through upregulation of G0/G1 Switch Gene 2 expression. JCI Insight 2017; 2:e88735. [PMID: 28239648 DOI: 10.1172/jci.insight.88735] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Liver X receptors (LXRs) are transcription factors essential for cholesterol homeostasis and lipogenesis. LXRα has been implicated in regulating hepatic triglyceride (TG) accumulation upon both influx of adipose-derived fatty acids (FAs) during fasting and stimulation of de novo FA synthesis by chemical agonism of LXR. However, whether or not a convergent mechanism is employed to drive deposition of FAs from these 2 different sources in TGs is undetermined. Here, we report that the G0/G1 Switch Gene 2 (G0S2), a selective inhibitor of intracellular TG hydrolysis/lipolysis, is a direct target gene of LXRα. Transcriptional activation is conferred by LXRα binding to a direct repeat 4 (DR4) motif in the G0S2 promoter. While LXRα-/- mice exhibited decreased hepatic G0S2 expression, adenoviral expression of G0S2 was sufficient to restore fasting-induced TG storage and glycogen depletion in the liver of these mice. In response to LXR agonist T0901317, G0S2 ablation prevented hepatic steatosis and hypertriglyceridemia without affecting the beneficial effects on HDL. Thus, the LXRα-G0S2 axis plays a distinct role in regulating hepatic TG during both fasting and pharmacological activation of LXR.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Biochemistry and Molecular Biology.,HEALth Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA.,Mayo Graduate School, Rochester, Minnesota, USA
| | - Xiaodong Zhang
- Department of Biochemistry and Molecular Biology.,HEALth Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA
| | - Alicia M Saarinen
- Department of Biochemistry and Molecular Biology.,HEALth Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA
| | - Gabriele Schoiswohl
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erin E Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Jun Liu
- Department of Biochemistry and Molecular Biology.,HEALth Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA.,Division of Endocrinology, Mayo Clinic in Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
25
|
Stearoyl-CoA desaturase 1 deficiency reduces lipid accumulation in the heart by activating lipolysis independently of peroxisome proliferator-activated receptor α. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2029-2037. [PMID: 27751891 DOI: 10.1016/j.bbalip.2016.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/19/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) has recently been shown to be a critical control point in the regulation of cardiac metabolism and function. Peroxisome proliferator-activated receptor α (PPARα) is an important regulator of myocardial fatty acid uptake and utilization. The present study used SCD1 and PPARα double knockout (SCD1-/-/PPARα-/-) mice to test the hypothesis that PPARα is involved in metabolic changes in the heart that are caused by SCD1 downregulation/inhibition. SCD1 deficiency decreased the intracellular content of free fatty acids, triglycerides, and ceramide in the heart of SCD1-/- and SCD1-/-/PPARα-/- mice. SCD1 ablation in PPARα-/- mice decreased diacylglycerol content in cardiomyocytes. These results indicate that the reduction of fat accumulation in the heart associated with SCD1 deficiency occurs independently of the PPARα pathway. To elucidate the mechanism of the observed changes, we treated HL-1 cardiomyocytes with the SCD1 inhibitor A939572 and/or PPARα inhibitor GW6471. SCD1 inhibition decreased the level of lipogenic proteins and increased lipolysis, reflected by a decrease in the content of adipose triglyceride lipase inhibitor G0S2 and a decrease in the ratio of phosphorylated hormone-sensitive lipase (HSL) at Ser565 to HSL (pHSL[Ser565]/HSL). PPARα inhibition alone did not affect the aforementioned protein levels. Finally, PPARα inhibition decreased the phosphorylation level of 5'-adenosine monophosphate-activated protein kinase, indicating lower mitochondrial fatty acid oxidation. In summary, SCD1 ablation/inhibition decreased cardiac lipid content independently of the action of PPARα by reducing lipogenesis and activating lipolysis. The present data suggest that SCD1 is an important component in maintaining proper cardiac lipid metabolism.
Collapse
|
26
|
Zlobine I, Gopal K, Ussher JR. Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1555-68. [DOI: 10.1016/j.bbalip.2016.02.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
|
27
|
Heier C, Haemmerle G. Fat in the heart: The enzymatic machinery regulating cardiac triacylglycerol metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1500-12. [PMID: 26924251 DOI: 10.1016/j.bbalip.2016.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 01/22/2023]
Abstract
The heart predominantly utilizes fatty acids (FAs) as energy substrate. FAs that enter cardiomyocytes can be activated and directly oxidized within mitochondria (and peroxisomes) or they can be esterified and intracellularly deposited as triacylglycerol (TAG) often simply referred to as fat. An increase in cardiac TAG can be a signature of the diseased heart and may implicate a minor role of TAG synthesis and breakdown in normal cardiac energy metabolism. Often overlooked, the heart has an extremely high TAG turnover and the transient deposition of FAs within the cardiac TAG pool critically determines the availability of FAs as energy substrate and signaling molecules. We herein review the recent literature regarding the enzymes and co-regulators involved in cardiomyocyte TAG synthesis and catabolism and discuss the interconnection of these metabolic pathways in the normal and diseased heart. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Austria
| | | |
Collapse
|
28
|
Osumi T, Kuramoto K. Heart lipid droplets and lipid droplet-binding proteins: Biochemistry, physiology, and pathology. Exp Cell Res 2015; 340:198-204. [PMID: 26524506 DOI: 10.1016/j.yexcr.2015.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Takashi Osumi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan.
| | - Kenta Kuramoto
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan
| |
Collapse
|