1
|
Akter R, Hogan MF, Esser N, Barrow BM, Castillo JJ, Boyko EJ, Templin AT, Hull RL, Zraika S, Kahn SE. Increased Steroidogenic Acute Regulatory Protein Contributes to Cholesterol-induced β-Cell Dysfunction. Endocrinology 2025; 166:bqaf027. [PMID: 39928527 PMCID: PMC11833471 DOI: 10.1210/endocr/bqaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 02/12/2025]
Abstract
Hypercholesterolemia is often observed in individuals with type 2 diabetes. Cholesterol accumulation in subcellular compartments within islet β-cells can result in insulin secretory dysfunction, which is a key pathological feature of diabetes. Previously, we demonstrated that expression of the mitochondrial cholesterol transport protein, steroidogenic acute regulatory protein (StAR), is induced in islets under conditions of β-cell dysfunction. However, whether it contributes to mitochondrial cholesterol accumulation in β-cells and cholesterol-induced β-cell dysfunction has not been determined. Thus, we sought to examine the role of StAR in isolated mouse islets under conditions of excess exogenous cholesterol. Cholesterol treatment of islets upregulated StAR expression, which was associated with cholesterol accumulation in mitochondria, decreased mitochondrial membrane potential and impaired mitochondrial oxidative phosphorylation. Impaired insulin secretion and reduced islet insulin content were also observed in cholesterol-laden islets. To determine the impact of StAR overexpression in β-cells per se, a lentivirus was used to increase StAR expression in INS-1 cells. Under these conditions, StAR overexpression was sufficient to increase mitochondrial cholesterol content, impair mitochondrial oxidative phosphorylation, and reduce insulin secretion. These findings suggest that elevated cholesterol in diabetes may contribute to β-cell dysfunction via increases in StAR-mediated mitochondrial cholesterol transport and accumulation.
Collapse
Affiliation(s)
- Rehana Akter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Meghan F Hogan
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, CHU Liège, University of Liège, Liège 4000, Belgium
| | - Breanne M Barrow
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Joseph J Castillo
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Edward J Boyko
- Epidemiologic Research and Information Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Andrew T Templin
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, Roudebush Veterans Affairs Medical Center and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rebecca L Hull
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
2
|
Esser N, Hogan MF, Templin AT, Akter R, Fountaine BS, Castillo JJ, El-Osta A, Manathunga L, Zhyvoloup A, Raleigh DP, Zraika S, Hull RL, Kahn SE. The islet tissue plasminogen activator/plasmin system is upregulated with human islet amyloid polypeptide aggregation and protects beta cells from aggregation-induced toxicity. Diabetologia 2024; 67:1897-1911. [PMID: 39245780 PMCID: PMC11410534 DOI: 10.1007/s00125-024-06161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 09/10/2024]
Abstract
AIMS/HYPOTHESIS Apart from its fibrinolytic activity, the tissue plasminogen activator (tPA)/plasmin system has been reported to cleave the peptide amyloid beta, attenuating brain amyloid deposition in Alzheimer's disease. As aggregation of human islet amyloid polypeptide (hIAPP) is toxic to beta cells, we sought to determine whether activation of the fibrinolytic system can also reduce islet amyloid deposition and its cytotoxic effects, which are both observed in type 2 diabetes. METHODS The expression of Plat (encoding tPA) and plasmin activity were measured in isolated islets from amyloid-prone hIAPP transgenic mice or non-transgenic control islets expressing non-amyloidogenic mouse islet amyloid polypeptide cultured in the absence or presence of the amyloid inhibitor Congo Red. Plat expression was also determined in hIAPP-treated primary islet endothelial cells, bone marrow-derived macrophages (BMDM) and INS-1 cells, in order to determine the islet cell type(s) producing tPA in response to hIAPP aggregation. Cell-free thioflavin-T assays and MS were used to respectively monitor hIAPP aggregation kinetics and investigate plasmin cleavage of hIAPP. Cell viability was assessed in INS-1 beta cells treated with hIAPP with or without plasmin. Finally, to confirm the findings in human samples, PLAT expression was measured in freshly isolated islets from donors with and without type 2 diabetes. RESULTS In isolated islets from transgenic mice, islet Plat expression and plasmin activity increased significantly with the process of amyloid deposition (p≤0.01, n=5); these effects were not observed in islets from non-transgenic mice and were blocked by Congo Red (p≤0.01, n=4). In response to hIAPP exposure, Plat expression increased in BMDM and INS-1 cells vs vehicle-treated cells (p≤0.05, n=4), but not in islet endothelial cells. Plasmin reduced hIAPP fibril formation in a dose-dependent manner in a cell-free system, and restored hIAPP-induced loss of cell viability in INS-1 beta cells (p≤0.01, n=5). Plasmin cleaved monomeric hIAPP, inducing a rapid decrease in the abundance of full-length hIAPP and the appearance of hIAPP 1-11 and 12-37 fragments. hIAPP 12-37, which contains the critical amyloidogenic region, was not toxic to INS-1 cells. Finally, PLAT expression was significantly increased by 2.4-fold in islets from donors with type 2 diabetes (n=4) vs islets from donors without type 2 diabetes (n=7) (p≤0.05). CONCLUSIONS/INTERPRETATION The fibrinolytic system is upregulated in islets with hIAPP aggregation. Plasmin rapidly degrades hIAPP, limiting its aggregation into amyloid and thus protecting beta cells from hIAPP-induced toxicity. Thus, increasing islet plasmin activity might be a strategy to limit beta cell loss in type 2 diabetes.
Collapse
Affiliation(s)
- Nathalie Esser
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Laboratory of Immunometabolism and Nutrition, GIGA, University of Liège, CHU of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Meghan F Hogan
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew T Templin
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rehana Akter
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Joseph J Castillo
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Lakshan Manathunga
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Alexander Zhyvoloup
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
- Research Department of Structural and Molecular Biology, University College London, London, UK.
| | - Sakeneh Zraika
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rebecca L Hull
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Li J, Zhu J, Deng Y, Reck EC, Walker EM, Sidarala V, Hubers DL, Pasmooij MB, Shin CS, Bandesh K, Motakis E, Nargund S, Kursawe R, Basrur V, Nesvizhskii AI, Stitzel ML, Chan DC, Soleimanpour SA. LONP1 regulation of mitochondrial protein folding provides insight into beta cell failure in type 2 diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597215. [PMID: 38895283 PMCID: PMC11185607 DOI: 10.1101/2024.06.03.597215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Proteotoxicity is a contributor to the development of type 2 diabetes (T2D), but it is unknown whether protein misfolding in T2D is generalized or has special features. Here, we report a robust accumulation of misfolded proteins within the mitochondria of human pancreatic islets in T2D and elucidate its impact on β cell viability. Surprisingly, quantitative proteomics studies of protein aggregates reveal that human islets from donors with T2D have a signature more closely resembling mitochondrial rather than ER protein misfolding. The matrix protease LonP1 and its chaperone partner mtHSP70 were among the proteins enriched in protein aggregates. Deletion of LONP1 in mice yields mitochondrial protein misfolding and reduced respiratory function, ultimately leading to β cell apoptosis and hyperglycemia. Intriguingly, LONP1 gain of function ameliorates mitochondrial protein misfolding and restores human β cell survival following glucolipotoxicity via a protease-independent effect requiring LONP1-mtHSP70 chaperone activity. Thus, LONP1 promotes β cell survival and prevents hyperglycemia by facilitating mitochondrial protein folding. These observations may open novel insights into the nature of impaired proteostasis on β cell loss in the pathogenesis of T2D that could be considered as future therapeutic targets.
Collapse
|
4
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Rao A, Gollapalli P, Shetty NP. Gene expression profile analysis unravelled the systems level association of renal cell carcinoma with diabetic nephropathy and Matrix-metalloproteinase-9 as a potential therapeutic target. J Biomol Struct Dyn 2023; 41:7535-7550. [PMID: 36106961 DOI: 10.1080/07391102.2022.2122567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
Abstract
Type 2 diabetes (T2D) and cancer share many common risk factors. However, the potential biological link that connects the two at the molecular level is still unclear. The experimental evidence suggests that several genes and their pathways may be involved in developing cancerous conditions associated with diabetes. In this study, we identified the protein-protein interaction (PPI) networks and the hub protein(s) that interlink T2D and cancer using genome-scale differential gene expression profiles. Further, the PPI network of AMP-activated protein kinase (AMPK) in cancer was analyzed to explore novel insights into the molecular association between the two conditions. The densely connected regions were analyzed by constructing the backbone and subnetworks with key nodes and shortest pathways, respectively. The PPI network studies identified Matrix-metalloproteinase-9 (MMP-9) as a hub protein playing a vital role in glomerulonephritis tubular diseases and some genetic kidney diseases. MMP-9 was also associated with different growth factors, like tumor necrosis factor (TNF-α), transforming growth factor 1 (TGF-1), and pathways like chemokine signaling, NOD-like receptor signaling, etc. Further, the molecular docking and molecular dynamic simulation studies supported the druggability of MMP-9, suggesting it as a potential therapeutic target in treating renal cell carcinoma linked with diabetic kidney disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Rao
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Nandini Prasad Shetty
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| |
Collapse
|
6
|
Yang Y, Wang Q, Li G, Guo W, Yang Z, Liu H, Deng X. Cysteine-Derived Chiral Carbon Quantum Dots: A Fibrinolytic Activity Regulator for Plasmin to Target the Human Islet Amyloid Polypeptide for Type 2 Diabetes Mellitus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2617-2629. [PMID: 36596222 DOI: 10.1021/acsami.2c17975] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fibrillization and deposition of the human islet amyloid polypeptide (hIAPP) are the pathological hallmark of type 2 diabetes mellitus (T2DM), and these insoluble fibrotic depositions of hIAPP are considered to strongly affect insulin secretion by inducing toxicity toward pancreatic islet β-cells. The current strategy of preventing amyloid aggregation by nanoparticle-assisted inhibitors can only disassemble fibrotic amyloids into more toxic oligomers and/or protofibrils. Herein, for the first time, we propose a type of cysteine-derived chiral carbon quantum dot (CQD) that targets plasmin, a core natural fibrinolytic protease in humans. These CQDs can serve as fibrinolytic activity regulators for plasmin to cleave hIAPP into nontoxic polypeptides or into even smaller amino acid fragments, thus alleviating hIAPP's fibrotic amyloid-induced cytotoxicity. Our experiments indicate that chiral CQDs have opposing effects on plasmin activity. The l-CQDs promote the cleavage of hIAPP by enhancing plasmin activity at a promotion ratio of 23.2%, thus protecting β-cells from amyloid-induced toxicity. In contrast, the resultant d-CQDs significantly inhibit proteolysis, decreasing plasmin activity by 31.5% under the same reaction conditions. Second harmonic generation (SHG) microscopic imaging is initially used to dynamically characterize hIAPP before and after proteolysis. The l-CQD promotion of plasmin activity thus provides a promising avenue for the hIAPP-targeted treatment of T2DM to treat low fibrinolytic activity, while the d-CQDs, as inhibitors of plasmin activity, may improve patient survival for hyperfibrinolytic conditions, such as those existing during surgeries and traumas.
Collapse
Affiliation(s)
- Yongzhen Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Qin Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Gongjian Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Wenjing Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou510530, China
| | - Zuojun Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Hao Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| |
Collapse
|
7
|
Castillo JJ, Aplin AC, Hackney DJ, Hogan MF, Esser N, Templin AT, Akter R, Kahn SE, Raleigh DP, Zraika S, Hull RL. Islet amyloid polypeptide aggregation exerts cytotoxic and proinflammatory effects on the islet vasculature in mice. Diabetologia 2022; 65:1687-1700. [PMID: 35871651 PMCID: PMC10208275 DOI: 10.1007/s00125-022-05756-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/28/2022] [Indexed: 01/29/2023]
Abstract
AIMS/HYPOTHESIS The islet vasculature, including its constituent islet endothelial cells, is a key contributor to the microenvironment necessary for normal beta cell health and function. In type 2 diabetes, islet amyloid polypeptide (IAPP) aggregates, forming amyloid deposits that accumulate between beta cells and islet capillaries. This process is known to be toxic to beta cells but its impact on the islet vasculature has not previously been studied. Here, we report the first characterisation of the effects of IAPP aggregation on islet endothelial cells/capillaries using cell-based and animal models. METHODS Primary and immortalised islet endothelial cells were treated with amyloidogenic human IAPP (hIAPP) alone or in the presence of the amyloid blocker Congo Red or the Toll-like receptor (TLR) 2/4 antagonist OxPAPc. Cell viability was determined0 along with mRNA and protein levels of inflammatory markers. Islet capillary abundance, morphology and pericyte coverage were determined in pancreases from transgenic mice with beta cell expression of hIAPP using conventional and confocal microscopy. RESULTS Aggregated hIAPP decreased endothelial cell viability in immortalised and primary islet endothelial cells (by 78% and 60%, respectively) and significantly increased expression of inflammatory markers Il6, Vcam1 and Edn1 mRNA relative to vehicle treatment in both cell types (p<0.05; n=4). Both cytotoxicity and the proinflammatory response were ameliorated by Congo Red (p<0.05; n=4); whereas TLR2/4-inhibition blocked inflammatory gene expression (p<0.05; n=6) without improving viability. Islets from high-fat-diet-fed amyloid-laden hIAPP transgenic mice also exhibited significantly increased expression of most markers of endothelial inflammation (p<0.05; n=5) along with decreased capillary density compared with non-transgenic littermates fed the same diet (p<0.01). Moreover, a 16% increase in capillary diameter was observed in amyloid-adjacent capillaries (p<0.01), accompanied by a doubling in pericyte structures positive for neuron-glial antigen 2 (p<0.001). CONCLUSIONS/INTERPRETATION Islet endothelial cells are susceptible to hIAPP-induced cytotoxicity and exhibit a TLR2/4-dependent proinflammatory response to aggregated hIAPP. Additionally, we observed amyloid-selective effects that decreased islet capillary density, accompanied by increased capillary diameter and increased pericyte number. Together, these data demonstrate that the islet vasculature is a target of the cytotoxic and proinflammatory effects of aggregated hIAPP that likely contribute to the detrimental effects of hIAPP aggregation on beta cell function and survival in type 2 diabetes.
Collapse
Affiliation(s)
- Joseph J Castillo
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alfred C Aplin
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Daryl J Hackney
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Meghan F Hogan
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nathalie Esser
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew T Templin
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rehana Akter
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Sakeneh Zraika
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rebecca L Hull
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Cui XY, Wu X, Lu D, Wang D. Network pharmacology-based strategy for predicting therapy targets of Sanqi and Huangjing in diabetes mellitus. World J Clin Cases 2022; 10:6900-6914. [PMID: 36051114 PMCID: PMC9297423 DOI: 10.12998/wjcc.v10.i20.6900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A comprehensive literature search shows that Sanqi and Huangjing (SQHJ) can improve diabetes treatment in vivo and in vitro, respectively. However, the combined effects of SQHJ on diabetes mellitus (DM) are still unclear.
AIM To explore the potential mechanism of Panax notoginseng (Sanqi in Chinese) and Polygonati Rhizoma (Huangjing in Chinese) for the treatment of DM using network pharmacology.
METHODS The active components of SQHJ and targets were predicted and screened by network pharmacology through oral bioavailability and drug-likeness filtration using the Traditional Chinese Medicine Systems Pharmacology Analysis Platform database. The potential targets for the treatment of DM were identified according to the DisGeNET database. A comparative analysis was performed to investigate the overlapping genes between active component targets and DM treatment-related targets. We constructed networks of the active component-target and target pathways of SQHJ using Cytoscape software and then analyzed the gene functions. Using the STRING database to perform an interaction analysis among overlapping genes and a topological analysis, the interactions between potential targets were identified. Gene Ontology (GO) function analyses and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted in DAVID.
RESULTS We screened 18 active components from 157 SQHJ components, 187 potential targets for active components and 115 overlapping genes for active components and DM. The network pharmacology analysis revealed that quercetin, beta-sitosterol, baicalein, etc. were the major active components. The mechanism underlying the SQHJ intervention effects in DM may involve nine core targets (TP53, AKT1, CASP3, TNF, interleukin-6, PTGS2, MMP9, JUN, and MAPK1). The screening and enrichment analysis revealed that the treatment of DM using SQHJ primarily involved 16 GO enriched terms and 13 related pathways.
CONCLUSION SQHJ treatment for DM targets TP53, AKT1, CASP3, and TNF and participates in pathways in leishmaniasis and cancer.
Collapse
Affiliation(s)
- Xiao-Yan Cui
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050011, Hebei Province, China
| | - Xiao Wu
- Department of Basic Medical, HE’s University, Shenyang 110163, Liaoning Province, China
| | - Dan Lu
- College of Clinical, HE’s University, Shenyang 110163, Liaoning Province, China
| | - Dan Wang
- College of Human Kinesiology, Shenyang Sport University, Shenyang 110102, Liaoning Province, China
| |
Collapse
|
9
|
Bloch DN, Ben Zichri S, Kolusheva S, Jelinek R. Tyrosine carbon dots inhibit fibrillation and toxicity of the human islet amyloid polypeptide. NANOSCALE ADVANCES 2020; 2:5866-5873. [PMID: 36133854 PMCID: PMC9419576 DOI: 10.1039/d0na00870b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Misfolding and aggregation of the human islet amyloid polypeptide (hIAPP) are believed to play key roles in the pathophysiology of type-II diabetes. Here, we demonstrate that carbon dots (C-dots) prepared from the amino acid tyrosine inhibit fibrillation of hIAPP, reduce hIAPP-induced cell toxicity and block membrane disruption by the peptide. The pronounced inhibitory effect is traced to the display of ubiquitous aromatic residues upon the C-dots' surface, mimicking the anti-fibril and anti-toxic activity of natural polyphenolic compounds. Notably, spectroscopy and thermodynamics analysis demonstrated different hIAPP interactions and fibril inhibition effects induced by tyrosine-C-dots displaying phenolic residues and C-dots prepared from phenylalanine which exhibited phenyl units on their surface, underscoring the significance of hydrogen bonding mediated by the phenolic hydroxide moieties for the fibril modulation activity. The presented experiments attest to the potential of tyrosine-C-dots as a therapeutic vehicle for protein misfolding diseases, interfering in both π-π interactions as well as hydrogen bonding involving aromatic residues of amyloidogenic peptides.
Collapse
Affiliation(s)
- Daniel Nir Bloch
- Department of Chemistry, Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Shani Ben Zichri
- Department of Chemistry, Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nano-Science and Technology (IKI), Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev Beer Sheva 84105 Israel
- Ilse Katz Institute for Nano-Science and Technology (IKI), Ben Gurion University of the Negev Beer Sheva 84105 Israel
| |
Collapse
|
10
|
Weitz JR, Jacques-Silva C, Qadir MMF, Umland O, Pereira E, Qureshi F, Tamayo A, Dominguez-Bendala J, Rodriguez-Diaz R, Almaça J, Caicedo A. Secretory Functions of Macrophages in the Human Pancreatic Islet Are Regulated by Endogenous Purinergic Signaling. Diabetes 2020; 69:1206-1218. [PMID: 32245801 PMCID: PMC7243286 DOI: 10.2337/db19-0687] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Endocrine cells of the pancreatic islet interact with their microenvironment to maintain tissue homeostasis. Communication with local macrophages is particularly important in this context, but the homeostatic functions of human islet macrophages are not known. In this study, we show that the human islet contains macrophages in perivascular regions that are the main local source of the anti-inflammatory cytokine interleukin-10 (IL-10) and the metalloproteinase MMP9. Macrophage production and secretion of these homeostatic factors are controlled by endogenous purinergic signals. In obese and diabetic states, macrophage expression of purinergic receptors MMP9 and IL-10 is reduced. We propose that in those states, exacerbated β-cell activity due to increased insulin demand and increased cell death produce high levels of ATP that downregulate purinergic receptor expression. Loss of ATP sensing in macrophages may reduce their secretory capacity.
Collapse
Affiliation(s)
- Jonathan R Weitz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Carol Jacques-Silva
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Mirza Muhammed Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Farhan Qureshi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Tamayo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
11
|
Lee KH, Zhyvoloup A, Raleigh D. Amyloidogenicity and cytotoxicity of des-Lys-1 human amylin provides insight into amylin self-assembly and highlights the difficulties of defining amyloidogenicity. Protein Eng Des Sel 2019; 32:87-93. [PMID: 31768548 PMCID: PMC6908818 DOI: 10.1093/protein/gzz036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/11/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022] Open
Abstract
The polypeptide amylin is responsible for islet amyloid in type 2 diabetes, a process which contributes to β-cell death in the disease. The role of the N-terminal region of amylin in amyloid formation is relatively unexplored, although removal of the disulfide bridged loop between Cys-2 and Cys-7 accelerates amyloid formation. We examine the des Lys-1 variant of human amylin (h-amylin), a variant which is likely produced in vivo. Lys-1 is a region of high charge density in the h-amylin amyloid fiber. The des Lys-1 polypeptide forms amyloid on the same time scale as wild-type amylin in phosphate buffered saline, but does so more rapidly in Tris. The des Lys-1 variant is somewhat less toxic to cultured INS cells than wild type. The implications for the in vitro mechanism of amyloid formation and for comparative analysis of amyloidogenicity are discussed.
Collapse
Affiliation(s)
- Kyung-Hoon Lee
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11790-3400, USA
| | - Alexander Zhyvoloup
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E6BT, UK, and
| | - Daniel Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11790-3400, USA
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E6BT, UK, and
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11790-3400, USA
| |
Collapse
|
12
|
Kaminari A, Tsilibary EC, Tzinia A. A New Perspective in Utilizing MMP-9 as a Therapeutic Target for Alzheimer's Disease and Type 2 Diabetes Mellitus. J Alzheimers Dis 2019; 64:1-16. [PMID: 29865065 DOI: 10.3233/jad-180035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Matrix metalloprotease 9 (MMP-9) is a 92 kDa type IV collagenase and a member of the family of endopeptidases. MMP-9 is involved in the degradation of extracellular matrix components, tissue remodeling, cellular receptor stripping, and processing of various signaling molecules. In the CNS, the effects of MMP-9 are quite complex, since it exerts beneficial effects including neurogenesis, angiogenesis, myelogenesis, axonal growth, and inhibition of apoptosis, or destructive effects including apoptosis, blood-brain barrier disorder, and demyelination. Likewise, in the periphery, physiological events, as the involvement of MMP-9 in angiogenesis, for instance in wound healing, can be turned into pathological, such as in tumor metastasis, depending on the state of the organism. Alzheimer's disease is a neurodegenerative disorder, characterized by amyloid accumulation and deposition in the brain. Amyloidogenesis, however, also occurs in diseases of the periphery, such as type II diabetes mellitus, where an analogous type of amyloid, is deposited in the pancreas. Interestingly, both diseases exhibit similar pathology and disease progression, with insulin resistance being a major common denominator. Hence, combinatorial strategies searching new or existing molecules to apply for therapeutic use for both diseases are gaining momentum. MMP-9 is extensively studied due to its association with a variety of physiological and pathological processes. Consequently, meticulous design could render MMP-9 into a potential therapeutic target for Alzheimer's disease and type 2 diabetes mellitus; two seemingly unrelated diseases.
Collapse
Affiliation(s)
- Archontia Kaminari
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Effie C Tsilibary
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Athina Tzinia
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
13
|
Xiang C, Xie QP. Protection of mouse pancreatic islet function by co‑culture with hypoxia pre‑treated mesenchymal stromal cells. Mol Med Rep 2018; 18:2589-2598. [PMID: 30015882 DOI: 10.3892/mmr.2018.9235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 04/19/2018] [Indexed: 11/05/2022] Open
Abstract
Ectogenic pancreatic islet transplantation has long been discussed as having the potential to reverse diabetes. The aim of the present study was to evaluate the therapeutic efficacy of co‑transplantation with hypoxia pretreated mesenchymal stem cells (MSCs) and islets in a diabetic mouse model. MSCs were isolated from femoral and tibial bone marrow aspirates from female BALB/c donor mice. MSC proliferation rates and the expression levels of vascular endothelial growth factor A (VEGFA), interleukin (IL)‑6, monocyte chemoattractant protein (MCP)‑1 and matrix metalloproteinase (MMP)‑9 were measured in hypoxic conditions. Subsequently, a streptozotocin‑induced diabetic model was established in BALB/c mice. Glucose tolerance and diabetes reversal rate following co‑transplantation of hypoxia pre‑cultured MSCs and islets were demonstrated at different conditions during transplantation. The present study results demonstrated that MSCs increased their proliferation rate and the secretion of growth‑related cytokines, including VEGFA, IL‑6, MCP‑1 and MMP‑9 in a hypoxic environment. In the diabetes animal model, fewer islets (~250) were required to reverse the impaired glucose tolerance condition in Islets + Hypoxia cultured MSCs transplant group compared with the Islets‑only group (~400 islets) and the Islets + Normal cultured MSCs group (~300 islets). Hypoxia‑cultured MSC co‑transplantation accelerated glycemic utilization following glucose intake. In subjects with hyperglycemia control for islet only transplantation group, MSCs pre‑cultured in hypoxic condition prior to co‑transplantation may potentially improve islet tissue regeneration.
Collapse
Affiliation(s)
- Cheng Xiang
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Qiu-Ping Xie
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
14
|
IAPP/amylin and β-cell failure: implication of the risk factors of type 2 diabetes. Diabetol Int 2018; 9:143-157. [PMID: 30603362 DOI: 10.1007/s13340-018-0347-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/21/2018] [Indexed: 12/12/2022]
Abstract
In type 2 diabetes (T2D), the most significant pathological change in pancreatic islets is amyloid deposits, of which a major component is islet amyloid polypeptide (IAPP), also called amylin. IAPP is expressed in β-cells and co-secreted with insulin. Together with the inhibitory effects of synthetic human IAPP (hIAPP) on insulin secretion, our studies, using hIAPP transgenic mice, in which glucose-stimulated insulin secretion was moderately reduced without amyloid deposit, and hIAPP gene-transfected β-cell lines, in which insulin secretion was markedly impaired without amyloid, predicted that soluble hIAPP-related molecules would exert cytotoxicity on β-cells. Human IAPP is one of the most aggregation-prone peptides that interact with cell membranes. While it is widely reported that soluble hIAPP oligomers promote cytotoxicity, this is still a hypothesis since the mechanisms are not yet fully defined. Several hIAPP transgenic mouse models did not develop diabetes; however, in models with backgrounds characterized for diabetic phenotypes, β-cell function and glucose tolerance did worsen, compared to those in non-transgenic models with similar backgrounds. Together with these findings, many studies on metabolic and molecular disorders induced by risk factors of T2D suggest that in T2D subjects, toxic IAPP oligomers accumulate in β-cells, impair their function, and reduce mass through disruption of cell membranes, resulting in β-cell failure. IAPP might be central to β-cell failure in T2D. Anti-amyloid aggregation therapeutics will be developed to create treatments with more durable and beneficial effects on β-cell function.
Collapse
|
15
|
Zhang D, Wang F, Lal N, Chiu APL, Wan A, Jia J, Bierende D, Flibotte S, Sinha S, Asadi A, Hu X, Taghizadeh F, Pulinilkunnil T, Nislow C, Vlodavsky I, Johnson JD, Kieffer TJ, Hussein B, Rodrigues B. Heparanase Overexpression Induces Glucagon Resistance and Protects Animals From Chemically Induced Diabetes. Diabetes 2017; 66:45-57. [PMID: 27999107 DOI: 10.2337/db16-0761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/01/2016] [Indexed: 11/13/2022]
Abstract
Heparanase, a protein with enzymatic and nonenzymatic properties, contributes toward disease progression and prevention. In the current study, a fortuitous observation in transgenic mice globally overexpressing heparanase (hep-tg) was the discovery of improved glucose homeostasis. We examined the mechanisms that contribute toward this improved glucose metabolism. Heparanase overexpression was associated with enhanced glucose-stimulated insulin secretion and hyperglucagonemia, in addition to changes in islet composition and structure. Strikingly, the pancreatic islet transcriptome was greatly altered in hep-tg mice, with >2,000 genes differentially expressed versus control. The upregulated genes were enriched for diverse functions including cell death regulation, extracellular matrix component synthesis, and pancreatic hormone production. The downregulated genes were tightly linked to regulation of the cell cycle. In response to multiple low-dose streptozotocin (STZ), hep-tg animals developed less severe hyperglycemia compared with wild-type, an effect likely related to their β-cells being more functionally efficient. In animals given a single high dose of STZ causing severe and rapid development of hyperglycemia related to the catastrophic loss of insulin, hep-tg mice continued to have significantly lower blood glucose. In these mice, protective pathways were uncovered for managing hyperglycemia and include augmentation of fibroblast growth factor 21 and glucagon-like peptide 1. This study uncovers the opportunity to use properties of heparanase in management of diabetes.
Collapse
Affiliation(s)
- Dahai Zhang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Pei-Ling Chiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn Jia
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Denise Bierende
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Asadi
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Farnaz Taghizadeh
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas Pulinilkunnil
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, Dalhousie University, Saint John, New Brunswick, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Israel Vlodavsky
- Rappaport Faculty of Medicine, Cancer and Vascular Biology Research Center, Technion, Haifa, Israel
| | - James D Johnson
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|