1
|
Nieto-Panqueva F, Vázquez-Acevedo M, Barrera-Gómez DF, Gavilanes-Ruiz M, Hamel PP, González-Halphen D. A high copy suppressor screen identifies factors enhancing the allotopic production of subunit II of cytochrome c oxidase. G3 (BETHESDA, MD.) 2025; 15:jkae295. [PMID: 39671566 PMCID: PMC11917479 DOI: 10.1093/g3journal/jkae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Allotopic expression refers to the artificial relocation of an organellar gene to the nucleus. Subunit 2 (Cox2) of cytochrome c oxidase, a subunit with 2 transmembrane domains (TMS1 and TMS2) residing in the inner mitochondrial membrane with a Nout-Cout topology, is typically encoded in the mitochondrial cox2 gene. In the yeast Saccharomyces cerevisiae, the cox2 gene can be allotopically expressed in the nucleus, yielding a functional protein that restores respiratory growth to a Δcox2 null mutant. In addition to a mitochondrial targeting sequence followed by its natural 15-residue leader peptide, the cytosol synthesized Cox2 precursor must carry one or several amino acid substitutions that decrease the mean hydrophobicity of TMS1 and facilitate its import into the matrix by the TIM23 translocase. Here, using a yeast strain that contains a COX2W56R gene construct inserted in a nuclear chromosome, we searched for genes whose overexpression could facilitate import into mitochondria of the Cox2W56R precursor and increase respiratory growth of the corresponding mutant strain. A COX2W56R expressing strain was transformed with a multicopy plasmid genomic library, and transformants exhibiting enhanced respiratory growth on nonfermentable carbon sources were selected. We identified 3 genes whose overexpression facilitates the internalization of the Cox2W56R subunit into mitochondria, namely: TYE7, RAS2, and COX12. TYE7 encodes a transcriptional factor, RAS2, a GTP-binding protein, and COX12, a non-core subunit of cytochrome c oxidase. We discuss potential mechanisms by which the TYE7, RAS2, and COX12 gene products could facilitate the import and assembly of the Cox2W56R subunit produced allotopically.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Miriam Vázquez-Acevedo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - David F Barrera-Gómez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Marina Gavilanes-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Patrice P Hamel
- Department of Molecular Genetics, The Ohio State University, 43210 Columbus, OH, USA
- School of BioScience and Technology, Vellore Institute of Technology, 632014 Vellore, Tamil Nadu, India
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| |
Collapse
|
2
|
Chen K, Zhuang Y, Chen H, Lei T, Li M, Wang S, Wang L, Fu H, Lu W, Bohra A, Lai Q, Xu X, Garg V, Barmukh R, Ji B, Zhang C, Pandey MK, Tang R, Varshney RK, Zhuang W. A Ralstonia effector RipAU impairs peanut AhSBT1.7 immunity for pathogenicity via AhPME-mediated cell wall degradation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17210. [PMID: 39866050 DOI: 10.1111/tpj.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 01/28/2025]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting a great many crops including peanut. The pathogen damages plants via secreting type Ш effector proteins (T3Es) into hosts for pathogenicity. Here, we characterized RipAU was among the most toxic effectors as ΔRipAU completely lost its pathogenicity to peanuts. A serine residue of RipAU is the critical site for cell death. The RipAU targeted a subtilisin-like protease (AhSBT1.7) in peanut and both protein moved into nucleus. Heterotic expression of AhSBT1.7 in transgenic tobacco and Arabidopsis thaliana significantly improved the resistance to R. solanacearum. The enhanced resistance was linked with the upregulating ERF1 defense marker genes and decreasing pectin methylesterase (PME) activity like PME2&4 in cell wall pathways. The RipAU played toxic effect by repressing R-gene, defense hormone signaling, and AhSBTs metabolic pathways but increasing PMEs expressions. Furthermore, we discovered AhSBT1.7 interacted with AhPME4 and was colocalized at nucleus. The AhPME speeded plants susceptibility to pathogen via mediated cell wall degradation, which inhibited by AhSBT1.7 but upregulated by RipAU. Collectively, RipAU impaired AhSBT1.7 defense for pathogenicity by using PME-mediated cell wall degradation. This study reveals the mechanism of RipAU pathogenicity and AhSBT1.7 resistance, highlighting peanut immunity to bacterial wilt for future improvement.
Collapse
Affiliation(s)
- Kun Chen
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhui Zhuang
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hua Chen
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Taijie Lei
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengke Li
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanshan Wang
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihui Wang
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiwen Fu
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenzhi Lu
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Qiaoqiao Lai
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolin Xu
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Vanika Garg
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, 6150, Australia
| | - Rutwik Barmukh
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, 6150, Australia
| | - Biaojun Ji
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chong Zhang
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, Telangana, India
| | - Ronghua Tang
- Guangxi Academy of Agriculture Science, Nanning, 530007, China
| | - Rajeev K Varshney
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, 6150, Australia
| | - Weijian Zhuang
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
3
|
Jeon H, Kim W, Segonzac C. The disordered effector RipAO of Ralstonia solanacearum destabilizes microtubule networks in Nicotiana benthamiana cells. Mol Cells 2025; 48:100167. [PMID: 39645148 PMCID: PMC11730531 DOI: 10.1016/j.mocell.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Ralstonia solanacearum causes bacterial wilt, a devastating disease in solanaceous crops. The pathogenicity of R. solanacearum depends on its type III secretion system, which delivers a suite of type III effectors into plant cells. The disordered core effector RipAO is conserved across R. solanacearum species and affects plant immune responses when transiently expressed in Nicotiana benthamiana. Specifically, RipAO impairs pathogen-associated molecular pattern-triggered reactive oxygen species production, an essential plant defense mechanism. RipAO fused to yellow fluorescent protein initially localizes to filamentous structures, resembling the cytoskeleton, before forming large punctate aggregates around the nucleus. Consistent with these findings, tubulin alpha 6 (TUA6) and tubulin beta-1, building blocks of microtubules, were identified as putative targets of RipAO in immunoprecipitation and mass spectrometry analyses. In the presence of RipAO, TUA6-labeled microtubules fragmented into puncta, mimicking the effects of oryzalin, a microtubule polymerization inhibitor. These effects were corroborated in a N. benthamiana transgenic line constitutively expressing green fluorescent protein-labeled TUA6, where RipAO reduced microtubule density and stability at an accumulation level that did not induce aggregation. Moreover, oryzalin treatment further enhanced RipAO's impairment of reactive oxygen species production, suggesting that RipAO disrupts microtubule networks via its association with tubulins, leading to immune suppression. Further research into RipAO's interaction with the microtubule network will enhance our understanding of bacterial strategies to subvert plant immunity.
Collapse
Affiliation(s)
- Hyelim Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Wanhui Kim
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Cécile Segonzac
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Yu W, Li M, Wang W, Zhuang H, Luo J, Sang Y, Segonzac C, Macho AP. A bacterial type III effector hijacks plant ubiquitin proteases to evade degradation. PLoS Pathog 2025; 21:e1012882. [PMID: 39841799 PMCID: PMC11771917 DOI: 10.1371/journal.ppat.1012882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/27/2025] [Accepted: 01/04/2025] [Indexed: 01/24/2025] Open
Abstract
Gram-negative bacterial pathogens inject effector proteins inside plant cells using a type III secretion system. These effectors manipulate plant cellular functions and suppress the plant immune system in order to promote bacterial proliferation. Despite the fact that bacterial effectors are exogenous threatening proteins potentially exposed to the protein degradation systems inside plant cells, effectors are relative stable and able to perform their virulence functions. In this work, we found that RipE1, an effector protein secreted by the bacterial wilt pathogen, Ralstonia solanacearum, undergoes phosphorylation of specific residues inside plant cells, and this promotes its stability. Moreover, RipE1 associates with plant ubiquitin proteases, which contribute to RipE1 deubiquitination and stabilization. The absence of those specific phosphorylation sites or specific host ubiquitin proteases leads to a substantial decrease in RipE1 protein accumulation, indicating that RipE1 hijacks plant post-translational modification regulators in order to promote its own stability. These results suggest that effector stability or degradation in plant cells constitute another molecular event subject to co-evolution between plants and pathogens.
Collapse
Affiliation(s)
- Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wenjun Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiamin Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cecile Segonzac
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
6
|
Nieto-Panqueva F, Vázquez-Acevedo M, Hamel PP, González-Halphen D. Identification of factors limiting the allotopic production of the Cox2 subunit of yeast cytochrome c oxidase. Genetics 2024; 227:iyae058. [PMID: 38626319 PMCID: PMC11492495 DOI: 10.1093/genetics/iyae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Mitochondrial genes can be artificially relocalized in the nuclear genome in a process known as allotopic expression, such is the case of the mitochondrial cox2 gene, encoding subunit II of cytochrome c oxidase (CcO). In yeast, cox2 can be allotopically expressed and is able to restore respiratory growth of a cox2-null mutant if the Cox2 subunit carries the W56R substitution within the first transmembrane stretch. However, the COX2W56R strain exhibits reduced growth rates and lower steady-state CcO levels when compared to wild-type yeast. Here, we investigated the impact of overexpressing selected candidate genes predicted to enhance internalization of the allotopic Cox2W56R precursor into mitochondria. The overproduction of Cox20, Oxa1, and Pse1 facilitated Cox2W56R precursor internalization, improving the respiratory growth of the COX2W56R strain. Overproducing TIM22 components had a limited effect on Cox2W56R import, while overproducing TIM23-related components showed a negative effect. We further explored the role of the Mgr2 subunit within the TIM23 translocator in the import process by deleting and overexpressing the MGR2 gene. Our findings indicate that Mgr2 is instrumental in modulating the TIM23 translocon to correctly sort Cox2W56R. We propose a biogenesis pathway followed by the allotopically produced Cox2 subunit based on the participation of the 2 different structural/functional forms of the TIM23 translocon, TIM23MOTOR and TIM23SORT, that must follow a concerted and sequential mode of action to insert Cox2W56R into the inner mitochondrial membrane in the correct Nout-Cout topology.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, 582 Aronoff laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
- School of BioScience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| |
Collapse
|
7
|
Qiu H, Wang B, Huang M, Sun X, Yu L, Cheng D, He W, Zhou D, Wu X, Song B, Tang N, Chen H. A novel effector RipBT contributes to Ralstonia solanacearum virulence on potato. MOLECULAR PLANT PATHOLOGY 2023; 24:947-960. [PMID: 37154802 PMCID: PMC10346376 DOI: 10.1111/mpp.13342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
Ralstonia solanacearum is one of the most destructive plant-pathogenic bacteria, infecting more than 200 plant species, including potato (Solanum tuberosum) and many other solanaceous crops. R. solanacearum has numerous pathogenicity factors, and type III effectors secreted through type III secretion system (T3SS) are key factors to counteract host immunity. Here, we show that RipBT is a novel T3SS-secreted effector by using a cyaA reporter system. Transient expression of RipBT in Nicotiania benthamiana induced strong cell death in a plasma membrane-localization dependent manner. Notably, mutation of RipBT in R. solanacearum showed attenuated virulence on potato, while RipBT transgenic potato plants exhibited enhanced susceptibility to R. solanacearum. Interestingly, transcriptomic analyses suggest that RipBT may interfere with plant reactive oxygen species (ROS) metabolism during the R. solanacearum infection of potato roots. In addition, the expression of RipBT remarkably suppressed the flg22-induced pathogen-associated molecular pattern-triggered immunity responses, such as the ROS burst. Taken together, RipBT acts as a T3SS effector, promoting R. solanacearum infection on potato and presumably disturbing ROS homeostasis.
Collapse
Affiliation(s)
- Huishan Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Bingsen Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Xiaohu Sun
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Dong Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Wenfeng He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Dan Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
8
|
Ito T, Ohkama-Ohtsu N. Degradation of glutathione and glutathione conjugates in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3313-3327. [PMID: 36651789 DOI: 10.1093/jxb/erad018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/12/2023] [Indexed: 06/08/2023]
Abstract
Glutathione (GSH) is a ubiquitous, abundant, and indispensable thiol for plants that participates in various biological processes, such as scavenging reactive oxygen species, redox signaling, storage and transport of sulfur, detoxification of harmful substances, and metabolism of several compounds. Therefore knowledge of GSH metabolism is essential for plant science. Nevertheless, GSH degradation has been insufficiently elucidated, and this has hampered our understanding of plant life. Over the last five decades, the γ-glutamyl cycle has been dominant in GSH studies, and the exoenzyme γ-glutamyl transpeptidase has been regarded as the major GSH degradation enzyme. However, recent studies have shown that GSH is degraded in cells by cytosolic enzymes such as γ-glutamyl cyclotransferase or γ-glutamyl peptidase. Meanwhile, a portion of GSH is degraded after conjugation with other molecules, which has also been found to be carried out by vacuolar γ-glutamyl transpeptidase, γ-glutamyl peptidase, or phytochelatin synthase. These findings highlight the need to re-assess previous assumptions concerning the γ-glutamyl cycle, and a novel overview of the plant GSH degradation pathway is essential. This review aims to build a foundation for future studies by summarizing current understanding of GSH/glutathione conjugate degradation.
Collapse
Affiliation(s)
- Takehiro Ito
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
9
|
De Ryck J, Van Damme P, Goormachtig S. From prediction to function: Current practices and challenges towards the functional characterization of type III effectors. Front Microbiol 2023; 14:1113442. [PMID: 36846751 PMCID: PMC9945535 DOI: 10.3389/fmicb.2023.1113442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
The type III secretion system (T3SS) is a well-studied pathogenicity determinant of many bacteria through which effectors (T3Es) are translocated into the host cell, where they exercise a wide range of functions to deceive the host cell's immunity and to establish a niche. Here we look at the different approaches that are used to functionally characterize a T3E. Such approaches include host localization studies, virulence screenings, biochemical activity assays, and large-scale omics, such as transcriptomics, interactomics, and metabolomics, among others. By means of the phytopathogenic Ralstonia solanacearum species complex (RSSC) as a case study, the current advances of these methods will be explored, alongside the progress made in understanding effector biology. Data obtained by such complementary methods provide crucial information to comprehend the entire function of the effectome and will eventually lead to a better understanding of the phytopathogen, opening opportunities to tackle it.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
10
|
Host-specific activation of a pathogen effector Aave_4606 from Acidovorax citrulli, the causal agent for bacterial fruit blotch. Biochem Biophys Res Commun 2022; 616:41-48. [DOI: 10.1016/j.bbrc.2022.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
|
11
|
Niu Y, Fu S, Chen G, Wang H, Wang Y, Hu J, Jin X, Zhang M, Lu M, He Y, Wang D, Chen Y, Zhang Y, Coll NS, Valls M, Zhao C, Chen Q, Lu H. Different epitopes of Ralstonia solanacearum effector RipAW are recognized by two Nicotiana species and trigger immune responses. MOLECULAR PLANT PATHOLOGY 2022; 23:188-203. [PMID: 34719088 PMCID: PMC8743020 DOI: 10.1111/mpp.13153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/17/2023]
Abstract
Diverse pathogen effectors convergently target conserved components in plant immunity guarded by intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) and activate effector-triggered immunity (ETI), often causing cell death. Little is known of the differences underlying ETI in different plants triggered by the same effector. In this study, we demonstrated that effector RipAW triggers ETI on Nicotiana benthamiana and Nicotiana tabacum. Both the first 107 amino acids (N1-107 ) and RipAW E3-ligase activity are required but not sufficient for triggering ETI on N. benthamiana. However, on N. tabacum, the N1-107 fragment is essential and sufficient for inducing cell death. The first 60 amino acids of the protein are not essential for RipAW-triggered cell death on either N. benthamiana or N. tabacum. Furthermore, simultaneous mutation of both R75 and R78 disrupts RipAW-triggered ETI on N. tabacum, but not on N. benthamiana. In addition, N. tabacum recognizes more RipAW orthologs than N. benthamiana. These data showcase the commonalities and specificities of RipAW-activated ETI in two evolutionally related species, suggesting Nicotiana species have acquired different abilities to perceive RipAW and activate plant defences during plant-pathogen co-evolution.
Collapse
Affiliation(s)
- Yang Niu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Shouyang Fu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Gong Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Huijuan Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yisa Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - JinXue Hu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xin Jin
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Mancang Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Mingxia Lu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yizhe He
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Dongdong Wang
- Shaanxi Key State Laboratory of Crop HeterosisNorthwest A&F UniversityYanglingChina
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yong Zhang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Núria S. Coll
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSoutheast UniversityChongqingChina
| | - Marc Valls
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSoutheast UniversityChongqingChina
- Centre for Research in Agricultural GenomicsCSIC‐IRTA‐UAB‐UBBellaterraCataloniaSpain
| | - Cuizhu Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Qin Chen
- Shaanxi Key State Laboratory of Crop HeterosisNorthwest A&F UniversityYanglingChina
| | - Haibin Lu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
- Department of GeneticsUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
12
|
Eastman S, Smith T, Zaydman MA, Kim P, Martinez S, Damaraju N, DiAntonio A, Milbrandt J, Clemente TE, Alfano JR, Guo M. A phytobacterial TIR domain effector manipulates NAD + to promote virulence. THE NEW PHYTOLOGIST 2022; 233:890-904. [PMID: 34657283 PMCID: PMC9298051 DOI: 10.1111/nph.17805] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/15/2021] [Indexed: 05/06/2023]
Abstract
The Pseudomonas syringae DC3000 type III effector HopAM1 suppresses plant immunity and contains a Toll/interleukin-1 receptor (TIR) domain homologous to immunity-related TIR domains of plant nucleotide-binding leucine-rich repeat receptors that hydrolyze nicotinamide adenine dinucleotide (NAD+ ) and activate immunity. In vitro and in vivo assays were conducted to determine if HopAM1 hydrolyzes NAD+ and if the activity is essential for HopAM1's suppression of plant immunity and contribution to virulence. HPLC and LC-MS were utilized to analyze metabolites produced from NAD+ by HopAM1 in vitro and in both yeast and plants. Agrobacterium-mediated transient expression and in planta inoculation assays were performed to determine HopAM1's intrinsic enzymatic activity and virulence contribution. HopAM1 is catalytically active and hydrolyzes NAD+ to produce nicotinamide and a novel cADPR variant (v2-cADPR). Expression of HopAM1 triggers cell death in yeast and plants dependent on the putative catalytic residue glutamic acid 191 (E191) within the TIR domain. Furthermore, HopAM1's E191 residue is required to suppress both pattern-triggered immunity and effector-triggered immunity and promote P. syringae virulence. HopAM1 manipulates endogenous NAD+ to produce v2-cADPR and promote pathogenesis. This work suggests that HopAM1's TIR domain possesses different catalytic specificity than other TIR domain-containing NAD+ hydrolases and that pathogens exploit this activity to sabotage NAD+ metabolism for immune suppression and virulence.
Collapse
Affiliation(s)
- Samuel Eastman
- Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNE68583USA
| | - Thomas Smith
- Department of ChemistryUniversity of Nebraska‐LincolnLincolnNE68583USA
| | - Mark A. Zaydman
- Department of Pathology and ImmunologyWashington University School of MedicineSt LouisMO63110USA
| | - Panya Kim
- The Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNE68588USA
| | - Samuel Martinez
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNE68583USA
| | - Neha Damaraju
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMO63130USA
| | - Aaron DiAntonio
- Department of Developmental BiologyWashington University School of MedicineSt LouisMO63110USA
| | - Jeffrey Milbrandt
- Department of GeneticsWashington University School of MedicineSt LouisMO63110USA
| | - Thomas E. Clemente
- Department of Agriculture and HorticultureUniversity of Nebraska‐LincolnLincolnNE68583USA
| | - James R. Alfano
- Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNE68583USA
- The Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNE68588USA
| | - Ming Guo
- Department of Agriculture and HorticultureUniversity of Nebraska‐LincolnLincolnNE68583USA
| |
Collapse
|
13
|
Dorion S, Ouellet JC, Rivoal J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021; 11:metabo11090641. [PMID: 34564457 PMCID: PMC8464934 DOI: 10.3390/metabo11090641] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Collapse
|
14
|
Pandey A, Moon H, Choi S, Yoon H, Prokchorchik M, Jayaraman J, Sujeevan R, Kang YM, McCann HC, Segonzac C, Kim CM, Park SJ, Sohn KH. Ralstonia solanacearum Type III Effector RipJ Triggers Bacterial Wilt Resistance in Solanum pimpinellifolium. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:962-972. [PMID: 33881922 DOI: 10.1094/mpmi-09-20-0256-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ralstonia solanacearum causes bacterial wilt disease in solanaceous crops. Identification of avirulence type III-secreted effectors recognized by specific disease resistance proteins in host plant species is an important step toward developing durable resistance in crops. In the present study, we show that R. solanacearum effector RipJ functions as an avirulence determinant in Solanum pimpinellifolium LA2093. In all, 10 candidate avirulence effectors were shortlisted based on the effector repertoire comparison between avirulent Pe_9 and virulent Pe_1 strains. Infection assays with transgenic strain Pe_1 individually carrying a candidate avirulence effector from Pe_9 revealed that only RipJ elicits strong bacterial wilt resistance in S. pimpinellifolium LA2093. Furthermore, we identified that several RipJ natural variants do not induce bacterial wilt resistance in S. pimpinellifolium LA2093. RipJ belongs to the YopJ family of acetyltransferases. Our sequence analysis indicated the presence of partially conserved putative catalytic residues. Interestingly, the conserved amino acid residues in the acetyltransferase catalytic triad are not required for effector-triggered immunity. In addition, we show that RipJ does not autoacetylate its lysine residues. Our study reports the identification of the first R. solanacearum avirulence protein that triggers bacterial wilt resistance in tomato. We expect that our discovery of RipJ as an avirulence protein will accelerate the development of bacterial wilt-resistant tomato varieties in the future.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ankita Pandey
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hayoung Moon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hayeon Yoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Germany
| | - Jay Jayaraman
- New Zealand Institute for Plant & Food Research Limited (PFR), Mt Albert Auckland 1025, New Zealand
| | - Rajendran Sujeevan
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan 54538, Republic of Korea
| | - Yu Mi Kang
- Division of Horticulture Industry, Wonkwang University, Iksan 554438, Republic of Korea
| | - Honour C McCann
- Institute of Advanced Studies, Massey University, Auckland 0745, New Zealand
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cécile Segonzac
- Department of Plant Science, Plant Genome and Breeding Institute, Agricultural Life Science Research Institute, Seoul National University, 08826, Seoul, Republic of Korea
- Plant Immunity Research Center, Seoul National University, 08826, Seoul, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 08826, Seoul, Republic of Korea
| | - Chul Min Kim
- Division of Horticulture Industry, Wonkwang University, Iksan 554438, Republic of Korea
| | - Soon Ju Park
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan 54538, Republic of Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- School of Interdisciplinary Biosciences and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
15
|
Bleau JR, Spoel SH. Selective redox signaling shapes plant-pathogen interactions. PLANT PHYSIOLOGY 2021; 186:53-65. [PMID: 33793940 PMCID: PMC8154045 DOI: 10.1093/plphys/kiaa088] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
A review of recent progress in understanding the mechanisms whereby plants utilize selective and reversible redox signaling to establish immunity.
Collapse
Affiliation(s)
- Jade R Bleau
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Author for communication:
| |
Collapse
|
16
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
17
|
de Pedro-Jové R, Puigvert M, Sebastià P, Macho AP, Monteiro JS, Coll NS, Setúbal JC, Valls M. Dynamic expression of Ralstonia solanacearum virulence factors and metabolism-controlling genes during plant infection. BMC Genomics 2021; 22:170. [PMID: 33750302 PMCID: PMC7941725 DOI: 10.1186/s12864-021-07457-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/19/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ralstonia solanacearum is the causal agent of bacterial wilt, a devastating plant disease responsible for serious economic losses especially on potato, tomato, and other solanaceous plant species in temperate countries. In R. solanacearum, gene expression analysis has been key to unravel many virulence determinants as well as their regulatory networks. However, most of these assays have been performed using either bacteria grown in minimal medium or in planta, after symptom onset, which occurs at late stages of colonization. Thus, little is known about the genetic program that coordinates virulence gene expression and metabolic adaptation along the different stages of plant infection by R. solanacearum. RESULTS We performed an RNA-sequencing analysis of the transcriptome of bacteria recovered from potato apoplast and from the xylem of asymptomatic or wilted potato plants, which correspond to three different conditions (Apoplast, Early and Late xylem). Our results show dynamic expression of metabolism-controlling genes and virulence factors during parasitic growth inside the plant. Flagellar motility genes were especially up-regulated in the apoplast and twitching motility genes showed a more sustained expression in planta regardless of the condition. Xylem-induced genes included virulence genes, such as the type III secretion system (T3SS) and most of its related effectors and nitrogen utilisation genes. The upstream regulators of the T3SS were exclusively up-regulated in the apoplast, preceding the induction of their downstream targets. Finally, a large subset of genes involved in central metabolism was exclusively down-regulated in the xylem at late infection stages. CONCLUSIONS This is the first report describing R. solanacearum dynamic transcriptional changes within the plant during infection. Our data define four main genetic programmes that define gene pathogen physiology during plant colonisation. The described expression of virulence genes, which might reflect bacterial states in different infection stages, provides key information on the R. solanacearum potato infection process.
Collapse
Affiliation(s)
- R de Pedro-Jové
- Department of Genetics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - M Puigvert
- Department of Genetics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - P Sebastià
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - A P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - J S Monteiro
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - N S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - J C Setúbal
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - M Valls
- Department of Genetics, University of Barcelona, Barcelona, Catalonia, Spain.
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain.
| |
Collapse
|
18
|
Ralstonia solanacearum type III effector RipV2 encoding a novel E3 ubiquitin ligase (NEL) is required for full virulence by suppressing plant PAMP-triggered immunity. Biochem Biophys Res Commun 2021; 550:120-126. [PMID: 33691198 DOI: 10.1016/j.bbrc.2021.02.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023]
Abstract
Ralstonia solanacearum causes bacterial wilt disease in a broad range of plants, primarily through type Ⅲ secreted effectors. However, the R. solanacearum effectors promoting susceptibility in host plants remain limited. In this study, we determined that the R. solanacearum effector RipV2 functions as a novel E3 ubiquitin ligase (NEL). RipV2 was observed to be locali in the plasma membrane after translocatio into plant cells. Transient expression of RipV2 in Nicotiana benthamiana could induce cell death and suppress the flg22-induced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, mediating such effects as attenuation of the expression of several PTI-related genes and ROS bursts. Furthermore, we demonstrated that the conserved catalytic residue is highly important for RipV2. Transient expression of the E3 ubiquitin ligase catalytic mutant RipV2 C403A alleviated the PTI suppression ability and cell death induction, indicating that RipV2 requires its E3 ubiquitin ligase activity for its role in plant-microbe interactions. More importantly, mutation of RipV2 in R. solanacearum reduces the virulence of R. solanacearum on potato. In conclusion, we identified a NEL effector that is required for full virulence of R. solanacearum by suppressing plant PTI.
Collapse
|
19
|
Landry D, González‐Fuente M, Deslandes L, Peeters N. The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. MOLECULAR PLANT PATHOLOGY 2020; 21:1377-1388. [PMID: 32770627 PMCID: PMC7488467 DOI: 10.1111/mpp.12977] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 05/25/2023]
Abstract
The type III secretion system with its delivered type III effectors (T3Es) is one of the main virulence determinants of Ralstonia solanacearum, a worldwide devastating plant pathogenic bacterium affecting many crop species. The pan-effectome of the R. solanacearum species complex has been exhaustively identified and is composed of more than 100 different T3Es. Among the reported strains, their content ranges from 45 to 76 T3Es. This considerably large and varied effectome could be considered one of the factors contributing to the wide host range of R. solanacearum. In order to understand how R. solanacearum uses its T3Es to subvert the host cellular processes, many functional studies have been conducted over the last three decades. It has been shown that R. solanacearum effectors, as those from other plant pathogens, can suppress plant defence mechanisms, modulate the host metabolism, or avoid bacterial recognition through a wide variety of molecular mechanisms. R. solanacearum T3Es can also be perceived by the plant and trigger immune responses. To date, the molecular mechanisms employed by R. solanacearum T3Es to modulate these host processes have been described for a growing number of T3Es, although they remain unknown for the majority of them. In this microreview, we summarize and discuss the current knowledge on the characterized R. solanacearum species complex T3Es.
Collapse
Affiliation(s)
- David Landry
- Laboratoire des Interactions Plantes Micro‐organismes (LIPM)INRAE, CNRS, Université de ToulouseCastanet‐TolosanFrance
| | - Manuel González‐Fuente
- Laboratoire des Interactions Plantes Micro‐organismes (LIPM)INRAE, CNRS, Université de ToulouseCastanet‐TolosanFrance
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes Micro‐organismes (LIPM)INRAE, CNRS, Université de ToulouseCastanet‐TolosanFrance
| | - Nemo Peeters
- Laboratoire des Interactions Plantes Micro‐organismes (LIPM)INRAE, CNRS, Université de ToulouseCastanet‐TolosanFrance
| |
Collapse
|
20
|
Sang Y, Yu W, Zhuang H, Wei Y, Derevnina L, Yu G, Luo J, Macho AP. Intra-strain Elicitation and Suppression of Plant Immunity by Ralstonia solanacearum Type-III Effectors in Nicotiana benthamiana. PLANT COMMUNICATIONS 2020; 1:100025. [PMID: 33367244 PMCID: PMC7747989 DOI: 10.1016/j.xplc.2020.100025] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 05/11/2023]
Abstract
Effector proteins delivered inside plant cells are powerful weapons for bacterial pathogens, but this exposes the pathogen to potential recognition by the plant immune system. Therefore, the effector repertoire of a given pathogen must be balanced for a successful infection. Ralstonia solanacearum is an aggressive pathogen with a large repertoire of secreted effectors. One of these effectors, RipE1, is conserved in most R. solanacearum strains sequenced to date. In this work, we found that RipE1 triggers immunity in N. benthamiana, which requires the immune regulator SGT1, but not EDS1 or NRCs. Interestingly, RipE1-triggered immunity induces the accumulation of salicylic acid (SA) and the overexpression of several genes encoding phenylalanine-ammonia lyases (PALs), suggesting that the unconventional PAL-mediated pathway is responsible for the observed SA biosynthesis. Surprisingly, RipE1 recognition also induces the expression of jasmonic acid (JA)-responsive genes and JA biosynthesis, suggesting that both SA and JA may act cooperatively in response to RipE1. We further found that RipE1 expression leads to the accumulation of glutathione in plant cells, which precedes the activation of immune responses. R. solanacearum secretes another effector, RipAY, which is known to inhibit immune responses by degrading cellular glutathione. Accordingly, RipAY inhibits RipE1-triggered immune responses. This work shows a strategy employed by R. solanacearum to counteract the perception of its effector proteins by plant immune system.
Collapse
Affiliation(s)
- Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jiamin Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
21
|
Ramsey KM, Ledvina HE, Tresko TM, Wandzilak JM, Tower CA, Tallo T, Schramm CE, Peterson SB, Skerrett SJ, Mougous JD, Dove SL. Tn-Seq reveals hidden complexity in the utilization of host-derived glutathione in Francisella tularensis. PLoS Pathog 2020; 16:e1008566. [PMID: 32492066 PMCID: PMC7340319 DOI: 10.1371/journal.ppat.1008566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/07/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Host-derived glutathione (GSH) is an essential source of cysteine for the intracellular pathogen Francisella tularensis. In a comprehensive transposon insertion sequencing screen, we identified several F. tularensis genes that play central and previously unappreciated roles in the utilization of GSH during the growth of the bacterium in macrophages. We show that one of these, a gene we named dptA, encodes a proton-dependent oligopeptide transporter that enables growth of the organism on the dipeptide Cys-Gly, a key breakdown product of GSH generated by the enzyme γ-glutamyltranspeptidase (GGT). Although GGT was thought to be the principal enzyme involved in GSH breakdown in F. tularensis, our screen identified a second enzyme, referred to as ChaC, that is also involved in the utilization of exogenous GSH. However, unlike GGT and DptA, we show that the importance of ChaC in supporting intramacrophage growth extends beyond cysteine acquisition. Taken together, our findings provide a compendium of F. tularensis genes required for intracellular growth and identify new players in the metabolism of GSH that could be attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kathryn M. Ramsey
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Departments of Cell and Molecular Biology and Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Hannah E. Ledvina
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Tenayaann M. Tresko
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jamie M. Wandzilak
- Departments of Cell and Molecular Biology and Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Catherine A. Tower
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Thomas Tallo
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Caroline E. Schramm
- Division of Pulmonary, Critical Care and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, United States of America
| | - S. Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Shawn J. Skerrett
- Division of Pulmonary, Critical Care and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, United States of America
| | - Joseph D. Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Song YR, Hwang IS, Oh CS. Natural Variation in Virulence of Acidovorax citrulli Isolates That Cause Bacterial Fruit Blotch in Watermelon, Depending on Infection Routes. THE PLANT PATHOLOGY JOURNAL 2020; 36:29-42. [PMID: 32089659 PMCID: PMC7012574 DOI: 10.5423/ppj.oa.10.2019.0254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 05/21/2023]
Abstract
Acidovorax citrulli causes bacterial fruit blotch in Cucurbitaceae, including watermelon. Although A. citrulli is a seed-borne pathogen, it can cause diverse symptoms in other plant organs like leaves, stems and fruits. To determine the infection routes of A. citrulli, we examined the virulence of six isolates (Ac0, Ac1, Ac2, Ac4, Ac8, and Ac11) on watermelon using several inoculation methods. Among six isolates, DNA polymorphism reveals that three isolates Ac0, Ac1, and Ac4 belong to Clonal Complex (CC) group II and the others do CC group I. Ac0, Ac4, and Ac8 isolates efficiently infected seeds during germination in soil, and Ac0 and Ac4 also infected the roots of watermelon seedlings wounded prior to inoculation. Infection through leaves was successful only by three isolates belonging to CC group II, and two of these also infected the mature watermelon fruits. Ac2 did not cause the disease in all assays. Interestingly, three putative type III effectors (Aave_2166, Aave_2708, and Aave_3062) with intact forms were only found in CC group II. Overall, our results indicate that A. citrulli can infect watermelons through diverse routes, and the CC grouping of A. citrulli was only correlated with virulence in leaf infection assays.
Collapse
Affiliation(s)
| | | | - Chang-Sik Oh
- Corresponding author: Phone) +82-31-201-2678, FAX) +82-31-204-8116, E-mail)
| |
Collapse
|
23
|
Jeon H, Kim W, Kim B, Lee S, Jayaraman J, Jung G, Choi S, Sohn KH, Segonzac C. Ralstonia solanacearum Type III Effectors with Predicted Nuclear Localization Signal Localize to Various Cell Compartments and Modulate Immune Responses in Nicotiana spp. THE PLANT PATHOLOGY JOURNAL 2020; 36:43-53. [PMID: 32089660 PMCID: PMC7012579 DOI: 10.5423/ppj.oa.08.2019.0227] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 05/11/2023]
Abstract
Ralstonia solanacearum (Rso) is a causal agent of bacterial wilt in Solanaceae crops worldwide including Republic of Korea. Rso virulence predominantly relies on type III secreted effectors (T3Es). However, only a handful of Rso T3Es have been characterized. In this study, we investigated subcellular localization of and manipulation of plant immunity by 8 Rso T3Es predicted to harbor a nuclear localization signal (NLS). While 2 of these T3Es elicited cell death in both Nicotiana benthamiana and N. tabacum, only one was dependent on suppressor of G2 allele of skp1 (SGT1), a molecular chaperone of nucleotide-binding and leucine-rich repeat immune receptors. We also identified T3Es that differentially regulate flg22-induced reactive oxygen species production and gene expression. Interestingly, several of the NLS-containing T3Es translationally fused with yellow fluorescent protein accumulated in subcellular compartments other than the cell nucleus. Our findings bring new clues to decipher Rso T3E function in planta.
Collapse
Affiliation(s)
- Hyelim Jeon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Wanhui Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826,
Korea
| | - Boyoung Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Sookyeong Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Jay Jayaraman
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
- New Zealand Institute for Plant & Food Research Limited (PFR), Mt Albert Auckland 1025,
New Zealand
| | - Gayoung Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Cécile Segonzac
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826,
Korea
- Corresponding author: Phone) +82-2-880-2229, FAX) +82-2-873-2056, E-mail)
| |
Collapse
|
24
|
Characterization of the mechanism of thioredoxin-dependent activation of γ-glutamylcyclotransferase, RipAY, from Ralstonia solanacearum. Biochem Biophys Res Commun 2020; 523:759-765. [PMID: 31948763 DOI: 10.1016/j.bbrc.2019.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
A class II ChaC protein, RipAY, from phytopathogenic bacterium, Ralstonia solanacearum exhibits γ-glutamylcyclotransferase (GGCT) activity to degrade intracellular glutathione in host cells upon its interaction with host thioredoxins (Trxs). To understand the Trx-dependent activation of RipAY, we constructed various deletion mutants of RipAY and found the determinant region for GGCT activation in the N- and C-terminal sequences of RipAY by analyzing their yeast growth inhibition activity and the interaction with Trxs. Mutational analysis of the active site cysteine residues of Arabidopsis thaliana Trx-h5 (AtTrx-h5), one of the most efficiently stimulating Trxs, revealed that each active site cysteine residue of AtTrx-h5 contributes to efficient RipAY-binding and -activation activity. We also estimated that RipAY and AtTrx-h5 form a complex at a 1:2 M ratio. Furthermore, we found that the constitutive GGCT activity of Gcg1, a yeast class I ChaC protein, is also stimulated by yeast Trx1. These results indicate that class I ChaC proteins can sense the intracellular redox state and interact with Trxs to promote more efficient degradation of glutathione and regulate intracellular redox homeostasis. We hypothesize that RipAY acquired a more efficient and specific Trx-dependent activation mechanism to activate its GGCT activity only in the host eukaryotic cells during the evolution.
Collapse
|
25
|
Zheng X, Li X, Wang B, Cheng D, Li Y, Li W, Huang M, Tan X, Zhao G, Song B, Macho AP, Chen H, Xie C. A systematic screen of conserved Ralstonia solanacearum effectors reveals the role of RipAB, a nuclear-localized effector that suppresses immune responses in potato. MOLECULAR PLANT PATHOLOGY 2019; 20:547-561. [PMID: 30499228 PMCID: PMC6637881 DOI: 10.1111/mpp.12774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Both Solanum tuberosum and Ralstonia solanacearum phylotype IIB originated in South America and share a long-term co-evolutionary history. However, our knowledge of potato bacterial wilt pathogenesis is scarce as a result of the technical difficulties of potato plant manipulation. Thus, we established a multiple screening system (virulence screen of effector mutants in potato, growth inhibition of yeast and transient expression in Nicotiana benthamiana) of core type III effectors (T3Es) of a major potato pathovar of phylotype IIB, to provide more research perspectives and biological tools. Using this system, we identified four effectors contributing to virulence during potato infection, with two exhibiting multiple phenotypes in two other systems, including RipAB. Further study showed that RipAB is an unknown protein with a nuclear localization signal (NLS). Furthermore, we generated a ripAB complementation strain and transgenic ripAB-expressing potato plants, and subsequent virulence assays confirmed that R. solanacearum requires RipAB for full virulence. Compared with wild-type potato, transcriptomic analysis of transgenic ripAB-expressing potato plants showed a significant down-regulation of Ca2+ signalling-related genes in the enriched Plant-Pathogen Interaction (PPI) gene ontology (GO) term. We further verified that, during infection, RipAB is required for the down-regulation of four Ca2+ sensors, Stcml5, Stcml23, Stcml-cast and Stcdpk2, and a Ca2+ transporter, Stcngc1. Further evidence showed that the immune-associated reactive oxygen species (ROS) burst is attenuated in ripAB transgenic potato plants. In conclusion, a systematic screen of conserved R. solanacearum effectors revealed an important role for RipAB, which interferes with Ca2+ -dependent gene expression to promote disease development in potato.
Collapse
Affiliation(s)
- Xueao Zheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Xiaojing Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijing100093China
| | - Bingsen Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Dong Cheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Yanping Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Wenhao Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Mengshu Huang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Xiaodan Tan
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Guozhen Zhao
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological SciencesChinese Academy of SciencesShanghai201602China
| | - Huilan Chen
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
26
|
Sun Y, Li P, Shen D, Wei Q, He J, Lu Y. The Ralstonia solanacearum effector RipN suppresses plant PAMP-triggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD + ratio in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2019; 20:533-546. [PMID: 30499216 PMCID: PMC6637912 DOI: 10.1111/mpp.12773] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ralstonia solanacearum, one of the most destructive plant bacterial pathogens, delivers an array of effector proteins via its type III secretion system for pathogenesis. However, the biochemical functions of most of these proteins remain unclear. RipN is a type III effector with unknown function(s) from the pathogen R. solanacearum. Here, we demonstrate that RipN is a conserved type III effector found within the R. solanacearum species complex that contains a putative Nudix hydrolase domain and has ADP-ribose/NADH pyrophosphorylase activity in vitro. Further analysis shows that RipN localizes to the endoplasmic reticulum (ER) and nucleus in Nicotiana tabacum leaf cells and Arabidopsis protoplasts, and truncation of the C-terminus of RipN results in a loss of nuclear and ER targeting. Furthermore, the expression of RipN in Arabidopsis suppresses callose deposition and the transcription of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes under flg22 treatment, and promotes bacterial growth in planta. In addition, the expression of RipN in plant cells alters NADH/NAD+ , but not GSH/GSSG, ratios, and its Nudix hydrolase activity is indispensable for such biochemical function. These results suggest that RipN acts as a Nudix hydrolase, alters the NADH/NAD+ ratio of the plant and contributes to R. solanacearum virulence by suppression of PTI of the host.
Collapse
Affiliation(s)
- Yunhao Sun
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Pai Li
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Dong Shen
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Qiaoling Wei
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Jianguo He
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Yongjun Lu
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
27
|
Zhang W, Li J, Shi X, Hikichi Y, Zhang Y, Ohnishi K. Functional Characterization of Two Putative DAHP Synthases of AroG1 and AroG2 and Their Links With Type III Secretion System in Ralstonia solanacearum. Front Microbiol 2019; 10:183. [PMID: 30809210 PMCID: PMC6379268 DOI: 10.3389/fmicb.2019.00183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
Type three secretion system (T3SS) is essential for Ralstonia solanacearum to cause disease in host plants and we previously screened AroG1 as a candidate with impact on the T3SS expression. Here, we focused on two putative DAHP synthases of AroG1 and AroG2, which control the first step of the shikimate pathway, a common route for biosynthesis of aromatic amino acids (AAA), to characterize their functional roles and possible links with virulence in R. solanacearum. Deletion of aroG1/2 or aroG1, but not aroG2, significantly impaired the T3SS expression both in vitro and in planta, and the impact of AroG1 on T3SS was mediated with a well-characterized PrhA signaling cascade. Virulence of the aroG1/2 or aroG1 mutants was completely diminished or significantly impaired in tomato and tobacco plants, but not the aroG2 mutants. The aroG1/2 mutants failed to grow in limited medium, but grew slowly in planta. This significantly impaired growth was also observed in the aroG1 mutants both in planta and limited medium, but not in aroG2 mutants. Complementary aroG1 significantly restored the impaired or diminished bacterial growth, T3SS expression and virulence. Supplementary AAA or shikimic acid, an important intermediate of the shikimate pathway, significantly restored diminished growth in limited medium. The promoter activity assay showed that expression of aroG1 and aroG2 was greatly increased to 10-20-folder higher levels with deletion of the other. All these results demonstrated that both AroG1 and AroG2 are involved in the shikimate pathway and cooperatively essential for AAA biosynthesis in R. solanacearum. The AroG1 plays a major role on bacterial growth, T3SS expression and pathogenicity, while the AroG2 is capable to partially carry out the function of AroG1 in the absence of AroG1.
Collapse
Affiliation(s)
- Weiqi Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jing Li
- The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Kochi, Japan
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Kochi, Japan
| |
Collapse
|
28
|
Lilley CJ, Maqbool A, Wu D, Yusup HB, Jones LM, Birch PRJ, Banfield MJ, Urwin PE, Eves-van den Akker S. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene. PLoS Genet 2018; 14:e1007310. [PMID: 29641602 PMCID: PMC5919673 DOI: 10.1371/journal.pgen.1007310] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/26/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to "GS-like effectors". Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function.
Collapse
Affiliation(s)
- Catherine J. Lilley
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Abbas Maqbool
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Duqing Wu
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hazijah B. Yusup
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Laura M. Jones
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul R. J. Birch
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark J. Banfield
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sebastian Eves-van den Akker
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
29
|
Khan M, Seto D, Subramaniam R, Desveaux D. Oh, the places they'll go! A survey of phytopathogen effectors and their host targets. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:651-663. [PMID: 29160935 DOI: 10.1111/tpj.13780] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 05/09/2023]
Abstract
Phytopathogens translocate effector proteins into plant cells where they sabotage the host cellular machinery to promote infection. An individual pathogen can translocate numerous distinct effectors during the infection process to target an array of host macromolecules (proteins, metabolites, DNA, etc.) and manipulate them using a variety of enzymatic activities. In this review, we have surveyed the literature for effector targets and curated them to convey the range of functions carried out by phytopathogenic proteins inside host cells. In particular, we have curated the locations of effector targets, as well as their biological and molecular functions and compared these properties across diverse phytopathogens. This analysis validates previous observations about effector functions (e.g. immunosuppression), and also highlights some interesting features regarding effector specificity as well as functional diversification of phytopathogen virulence strategies.
Collapse
Affiliation(s)
- Madiha Khan
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Derek Seto
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Rajagopal Subramaniam
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, KW Neatby bldg, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Centre for the Analysis of Genome Function and Evolution, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
30
|
Zhang Y, Li J, Zhang W, Shi H, Luo F, Hikichi Y, Shi X, Ohnishi K. A putative LysR-type transcriptional regulator PrhO positively regulates the type III secretion system and contributes to the virulence of Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2018; 19:1808-1819. [PMID: 29363870 PMCID: PMC6638147 DOI: 10.1111/mpp.12660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/21/2017] [Accepted: 01/20/2018] [Indexed: 06/01/2023]
Abstract
LysR-type transcriptional regulators (LTTRs) are ubiquitous and abundant amongst bacteria and control a variety of cellular processes. Here, we investigated the effect of Rsc1880 (a putative LTTR, hereafter designated as PrhO) on the pathogenicity of Ralstonia solanacearum. Deletion of prhO substantially reduced the expression of the type III secretion system (T3SS) both in vitro and in planta, and resulted in significantly impaired virulence in tomato and tobacco plants. Complementary prhO completely restored the reduced virulence and T3SS expression to that of the wild-type. Moreover, PrhO-dependent T3SS and virulence were conserved amongst R. solanacearum species. However, deletion of prhO did not alter biofilm formation, swimming mobility and in planta growth. The expression of some type III effectors was significantly reduced in prhO mutants, but the hypersensitive response was not affected in tobacco leaves. Consistent with the key regulatory role of HrpB on T3SS, PrhO positively regulated the T3SS through HrpB. Furthermore, PrhO regulated hrpB expression via two close paralogues, HrpG and PrhG, which are two-component response regulators and positively regulate hrpB expression in a parallel manner. However, deletion of prhO did not alter the expression of phcA, prhJ and prhN, which are also involved in hrpB regulation. In addition, PrhO was expressed in a cell density-dependent manner, but negatively repressed by itself. No regulation was observed for HrpB, PhcA and PrhN on prhO expression. Taken together, we genetically demonstrated that PrhO is a novel virulence regulator of R. solanacearum, which positively regulates T3SS expression through HrpG, PrhG and HrpB and contributes to virulence.
Collapse
Affiliation(s)
- Yong Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Jiaman Li
- College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Weiqi Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Hualei Shi
- College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Feng Luo
- Research Center of Bioenergy and Bioremediation, College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityKochi783‐8502Japan
| | - Xiaojun Shi
- College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Kouhei Ohnishi
- Research Institute of Molecular GeneticsKochi UniversityKochi783‐8502Japan
| |
Collapse
|
31
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
32
|
Sang Y, Wang Y, Ni H, Cazalé A, She Y, Peeters N, Macho AP. The Ralstonia solanacearum type III effector RipAY targets plant redox regulators to suppress immune responses. MOLECULAR PLANT PATHOLOGY 2018; 19:129-142. [PMID: 27768829 PMCID: PMC6638004 DOI: 10.1111/mpp.12504] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/28/2016] [Accepted: 10/17/2016] [Indexed: 05/07/2023]
Abstract
The subversion of plant cellular functions is essential for bacterial pathogens to proliferate in host plants and cause disease. Most bacterial plant pathogens employ a type III secretion system to inject type III effector (T3E) proteins inside plant cells, where they contribute to the pathogen-induced alteration of plant physiology. In this work, we found that the Ralstonia solanacearum T3E RipAY suppresses plant immune responses triggered by bacterial elicitors and by the phytohormone salicylic acid. Further biochemical analysis indicated that RipAY associates in planta with thioredoxins from Nicotiana benthamiana and Arabidopsis. Interestingly, RipAY displays γ-glutamyl cyclotransferase (GGCT) activity to degrade glutathione in plant cells, which is required for the reported suppression of immune responses. Given the importance of thioredoxins and glutathione as major redox regulators in eukaryotic cells, RipAY activity may constitute a novel and powerful virulence strategy employed by R. solanacearum to suppress immune responses and potentially alter general redox signalling in host cells.
Collapse
Affiliation(s)
- Yuying Sang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai 201602China
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai 200031China
| | - Yaru Wang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai 201602China
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai 200031China
| | - Hong Ni
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai 201602China
| | | | - Yi‐Min She
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai 201602China
| | - Nemo Peeters
- LIPM, Université de Toulouse, INRA, CNRSCastanet‐Tolosan 31326France
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai 201602China
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai 200031China
| |
Collapse
|
33
|
Abstract
SIGNIFICANCE Glutathione degradation has for long been thought to occur only on noncytosolic pools. This is because there has been only one enzyme known to degrade glutathione (γ-glutamyl transpeptidase) and this localizes to either the plasma membrane (mammals, bacteria) or the vacuolar membrane (yeast, plants) and acts on extracellular or vacuolar pools. The last few years have seen the discovery of several new enzymes of glutathione degradation that function in the cytosol, throwing new light on glutathione degradation. Recent Advances: The new enzymes that have been identified in the last few years that can initiate glutathione degradation include the Dug enzyme found in yeast and fungi, the ChaC1 enzyme found among higher eukaryotes, the ChaC2 enzyme found from bacteria to man, and the RipAY enzyme found in some bacteria. These enzymes play roles ranging from housekeeping functions to stress responses and are involved in processes such as embryonic neural development and pathogenesis. CRITICAL ISSUES In addition to delineating the pathways of glutathione degradation in detail, a critical issue is to find how these new enzymes impact cellular physiology and homeostasis. FUTURE DIRECTIONS Glutathione degradation plays a far greater role in cellular physiology than previously envisaged. The differential regulation and differential specificities of various enzymes, each acting on distinct pools, can lead to different consequences to the cell. It is likely that the coming years will see these downstream effects being unraveled in greater detail and will lead to a better understanding and appreciation of glutathione degradation. Antioxid. Redox Signal. 27, 1200-1216.
Collapse
Affiliation(s)
- Anand Kumar Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research , Mohali, Mohali, India
| | - Amandeep Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research , Mohali, Mohali, India
| |
Collapse
|
34
|
Liu S, Fei W, Shi Q, Li Q, Kuang Y, Wang C, He C, Hu X. CHAC2, downregulated in gastric and colorectal cancers, acted as a tumor suppressor inducing apoptosis and autophagy through unfolded protein response. Cell Death Dis 2017; 8:e3009. [PMID: 28837156 PMCID: PMC5596586 DOI: 10.1038/cddis.2017.405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 12/13/2022]
Abstract
Tumor suppressor genes play a key role in cancer pathogenesis. Through massive expression profiling we identified CHAC2 as a frequently downregulated gene in gastric and colorectal cancers. Immunohistochemistry and western blot revealed that CHAC2 was downregulated in most tumor tissues, and 3-year survival rate of patients with high CHAC2 expression was significantly higher than that of patients with low CHAC2 expression (P<0.001 and P=0.001, respectively). The data of univariate analysis and multivariate analysis suggested that CHAC2 could serve as an independent prognostic marker. Our results showed for the first time that CHAC2 was degraded by the ubiquitin-proteasome pathway and CHAC2 expression inhibited tumor cell growth, proliferation, migration in vitro and in vivo. Mechanistic study showed that CHAC2 induced mitochondrial apoptosis and autophagy through unfolded protein response. So in gastric and colorectal cancer CHAC2 acted as a tumor suppressor and might have therapeutic implication for patients.
Collapse
Affiliation(s)
- Shuiping Liu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Weiqiang Fei
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinglan Shi
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qiang Li
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yeye Kuang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chan Wang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chao He
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Sun Y, Li P, Deng M, Shen D, Dai G, Yao N, Lu Y. The Ralstonia solanacearum effector RipAK suppresses plant hypersensitive response by inhibiting the activity of host catalases. Cell Microbiol 2017; 19:e12736. [PMID: 28252830 DOI: 10.1111/cmi.12736] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/11/2017] [Accepted: 02/28/2017] [Indexed: 11/27/2022]
Abstract
The destructive bacterial pathogen Ralstonia solanacearum delivers effector proteins via a type-III secretion system for its pathogenesis of plant hosts. However, the biochemical functions of most of these effectors remain unclear. RipAK of R. solanacearum GMI1000 is a type-III effector with unknown functions. Functional analysis demonstrated that in tobacco leaves, ripAK knockout bacteria produced an obvious hypersensitive response; also, infected tissues accumulated reactive oxygen species in a shorter period postinfection, compared with wild type. This strongly indicates that RipAK can inhibit hypersensitive response during infection. Further analysis showed that RipAK localizes to peroxisomes and interacts with host catalases (CATs) in plant cells. Truncation of 2 putative domains of RipAK caused it to fail to target the peroxisome and fail to interact with AtCATs, suggesting that RipAK localization depends on its interaction with CATs. Furthermore, heterologous expression of RipAK inhibited CAT activity in vivo and in vitro. Finally, compared with the ripAK mutant, infection with a bacterial strain overexpressing RipAK inhibited the transcription of many immunity-associated genes in infected tobacco leaves at 2- and 4-hr postinfection, although mRNA levels of NtCAT1 were upregulated. These data indicate that GMI1000 suppresses hypersensitive response by inhibiting host CATs through RipAK at early stages of infection.
Collapse
Affiliation(s)
- Yunhao Sun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Pai Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mengying Deng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dong Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guangyi Dai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Nan Yao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
36
|
Shidore T, Broeckling CD, Kirkwood JS, Long JJ, Miao J, Zhao B, Leach JE, Triplett LR. The effector AvrRxo1 phosphorylates NAD in planta. PLoS Pathog 2017; 13:e1006442. [PMID: 28628666 PMCID: PMC5491322 DOI: 10.1371/journal.ppat.1006442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/29/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Gram-negative bacterial pathogens of plants and animals employ type III secreted effectors to suppress innate immunity. Most characterized effectors work through modification of host proteins or transcriptional regulators, although a few are known to modify small molecule targets. The Xanthomonas type III secreted avirulence factor AvrRxo1 is a structural homolog of the zeta toxin family of sugar-nucleotide kinases that suppresses bacterial growth. AvrRxo1 was recently reported to phosphorylate the central metabolite and signaling molecule NAD in vitro, suggesting that the effector might enhance bacterial virulence on plants through manipulation of primary metabolic pathways. In this study, we determine that AvrRxo1 phosphorylates NAD in planta, and that its kinase catalytic sites are necessary for its toxic and resistance-triggering phenotypes. A global metabolomics approach was used to independently identify 3'-NADP as the sole detectable product of AvrRxo1 expression in yeast and bacteria, and NAD kinase activity was confirmed in vitro. 3'-NADP accumulated upon transient expression of AvrRxo1 in Nicotiana benthamiana and in rice leaves infected with avrRxo1-expressing strains of X. oryzae. Mutation of the catalytic aspartic acid residue D193 abolished AvrRxo1 kinase activity and several phenotypes of AvrRxo1, including toxicity in yeast, bacteria, and plants, suppression of the flg22-triggered ROS burst, and ability to trigger an R gene-mediated hypersensitive response. A mutation in the Walker A ATP-binding motif abolished the toxicity of AvrRxo1, but did not abolish the 3'-NADP production, virulence enhancement, ROS suppression, or HR-triggering phenotypes of AvrRxo1. These results demonstrate that a type III effector targets the central metabolite and redox carrier NAD in planta, and that this catalytic activity is required for toxicity and suppression of the ROS burst.
Collapse
Affiliation(s)
- Teja Shidore
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States of America
| | - Corey D. Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, United States of America
| | - Jay S. Kirkwood
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, United States of America
| | - John J. Long
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Jiamin Miao
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | - Bingyu Zhao
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Lindsay R. Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States of America
| |
Collapse
|
37
|
Marden JH, Mangan SA, Peterson MP, Wafula E, Fescemyer HW, Der JP, dePamphilis CW, Comita LS. Ecological genomics of tropical trees: how local population size and allelic diversity of resistance genes relate to immune responses, cosusceptibility to pathogens, and negative density dependence. Mol Ecol 2017; 26:2498-2513. [PMID: 28042895 DOI: 10.1111/mec.13999] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 01/04/2023]
Abstract
In tropical forests, rarer species show increased sensitivity to species-specific soil pathogens and more negative effects of conspecific density on seedling survival (NDD). These patterns suggest a connection between ecology and immunity, perhaps because small population size disproportionately reduces genetic diversity of hyperdiverse loci such as immunity genes. In an experiment examining seedling roots from six species in one tropical tree community, we found that smaller populations have reduced amino acid diversity in pathogen resistance (R) genes but not the transcriptome in general. Normalized R gene amino acid diversity varied with local abundance and prior measures of differences in sensitivity to conspecific soil and NDD. After exposure to live soil, species with lower R gene diversity had reduced defence gene induction, more cosusceptibility of maternal cohorts to colonization by potentially pathogenic fungi, reduced root growth arrest (an R gene-mediated response) and their root-associated fungi showed lower induction of self-defence (antioxidants). Local abundance was not related to the ability to induce immune responses when pathogen recognition was bypassed by application of salicylic acid, a phytohormone that activates defence responses downstream of R gene signalling. These initial results support the hypothesis that smaller local tree populations have reduced R gene diversity and recognition-dependent immune responses, along with greater cosusceptibility to species-specific pathogens that may facilitate disease transmission and NDD. Locally rare species may be less able to increase their equilibrium abundance without genetic boosts to defence via immigration of novel R gene alleles from a larger and more diverse regional population.
Collapse
Affiliation(s)
- J H Marden
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - S A Mangan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Smithsonian Tropical Research Institute, República de Panamá, 0843-03092, Panama, Panama
| | - M P Peterson
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - E Wafula
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - H W Fescemyer
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - J P Der
- Department of Biological Science, California State University, Fullerton, CA, 92834, USA
| | - C W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - L S Comita
- Smithsonian Tropical Research Institute, República de Panamá, 0843-03092, Panama, Panama.,School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
38
|
Wei Y, Sang Y, Macho AP. The Ralstonia solanacearum Type III Effector RipAY Is Phosphorylated in Plant Cells to Modulate Its Enzymatic Activity. FRONTIERS IN PLANT SCIENCE 2017; 8:1899. [PMID: 29163618 PMCID: PMC5682030 DOI: 10.3389/fpls.2017.01899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 05/21/2023]
Abstract
Most bacterial pathogens subvert plant cellular functions using effector proteins delivered inside plant cells. In the plant pathogen Ralstonia solanacearum, several of these effectors contain domains with predicted enzymatic activities, including acetyltransferases, phosphatases, and proteases, among others. How these enzymatic activities get activated inside plant cells, but not in the bacterial cell, remains unknown in most cases. In this work, we found that the R. solanacearum effector RipAY is phosphorylated in plant cells. One phosphorylated serine residue, S131, is required for the reported gamma-glutamyl cyclotransferase activity of RipAY, responsible for the degradation of gamma-glutamyl compounds (such as glutathione) inside host cells. Accordingly, non-phosphorylable mutants in S131 abolish RipAY-mediated degradation of glutathione in plant cells and the subsequent suppression of plant immune responses. In this article, we examine our results in relation to the recent reports on the biochemical activities of RipAY, and discuss the potential implications of phosphorylation in plant cells as a mechanism to modulate the enzymatic activity of RipAY.
Collapse
Affiliation(s)
- Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Alberto P. Macho,
| |
Collapse
|
39
|
Kaur A, Gautam R, Srivastava R, Chandel A, Kumar A, Karthikeyan S, Bachhawat AK. ChaC2, an Enzyme for Slow Turnover of Cytosolic Glutathione. J Biol Chem 2016; 292:638-651. [PMID: 27913623 DOI: 10.1074/jbc.m116.727479] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/30/2016] [Indexed: 11/06/2022] Open
Abstract
Glutathione degradation plays an important role in glutathione and redox homeostasis, and thus it is imperative to understand the enzymes and the mechanisms involved in glutathione degradation in detail. We describe here ChaC2, a member of the ChaC family of γ-glutamylcyclotransferases, as an enzyme that degrades glutathione in the cytosol of mammalian cells. ChaC2 is distinct from the previously described ChaC1, to which ChaC2 shows ∼50% sequence identity. Human and mouse ChaC2 proteins purified in vitro show 10-20-fold lower catalytic efficiency than ChaC1, although they showed comparable Km values (Km of 3.7 ± 0.4 mm and kcat of 15.9 ± 1.0 min-1 toward glutathione for human ChaC2; Km of 2.2 ± 0.4 mm and kcat of 225.2 ± 15 min-1 toward glutathione for human ChaC1). The ChaC1 and ChaC2 proteins also shared the same specificity for reduced glutathione, with no activity against either γ-glutamyl amino acids or oxidized glutathione. The ChaC2 proteins were found to be expressed constitutively in cells, unlike the tightly regulated ChaC1. Moreover, lower eukaryotes have a single member of the ChaC family that appears to be orthologous to ChaC2. In addition, we determined the crystal structure of yeast ChaC2 homologue, GCG1, at 1.34 Å resolution, which represents the first structure of the ChaC family of proteins. The catalytic site is defined by a fortuitous benzoic acid molecule bound to the crystal structure. The mechanism for binding and catalytic activity of this new enzyme of glutathione degradation, which is involved in continuous but basal turnover of cytosolic glutathione, is proposed.
Collapse
Affiliation(s)
- Amandeep Kaur
- From the Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, S.A.S. Nagar, Punjab 140306, India and
| | - Ruchi Gautam
- the CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| | - Ritika Srivastava
- the CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| | - Avinash Chandel
- From the Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, S.A.S. Nagar, Punjab 140306, India and
| | - Akhilesh Kumar
- From the Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, S.A.S. Nagar, Punjab 140306, India and
| | - Subramanian Karthikeyan
- the CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| | - Anand Kumar Bachhawat
- From the Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, S.A.S. Nagar, Punjab 140306, India and
| |
Collapse
|
40
|
Popa CM, Tabuchi M, Valls M. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells. Front Cell Infect Microbiol 2016; 6:73. [PMID: 27489796 PMCID: PMC4951486 DOI: 10.3389/fcimb.2016.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 12/16/2022] Open
Abstract
Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding.
Collapse
Affiliation(s)
- Crina M Popa
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| | - Mitsuaki Tabuchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University Kagawa, Japan
| | - Marc Valls
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
41
|
Popa C, Li L, Gil S, Tatjer L, Hashii K, Tabuchi M, Coll NS, Ariño J, Valls M. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway. Sci Rep 2016; 6:27058. [PMID: 27257085 PMCID: PMC4891724 DOI: 10.1038/srep27058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/12/2016] [Indexed: 01/31/2023] Open
Abstract
Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation.
Collapse
Affiliation(s)
- Crina Popa
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Liang Li
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Sergio Gil
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Tatjer
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Keisuke Hashii
- Laboratory of Applied Molecular and Cell Biology, Kagawa University, Kagawa, Japan
| | - Mitsuaki Tabuchi
- Laboratory of Applied Molecular and Cell Biology, Kagawa University, Kagawa, Japan
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
42
|
Popa C, Coll NS, Valls M, Sessa G. Yeast as a Heterologous Model System to Uncover Type III Effector Function. PLoS Pathog 2016; 12:e1005360. [PMID: 26914889 PMCID: PMC4767418 DOI: 10.1371/journal.ppat.1005360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type III effectors (T3E) are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. “Favourite” targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK) signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure–function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations of S. cerevisiae as a model system and its most promising future applications.
Collapse
Affiliation(s)
- Crina Popa
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Marc Valls
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
- * E-mail: (GS); (MV)
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (GS); (MV)
| |
Collapse
|