1
|
Wang J, Zhao Y, Wei Y, Li T, Huang T, Pan T, Wu J, Bai L, Zhu D, Zhao Q, Wang Z, Feng F, Zhou X. Mai-wei-yang-fei decoction protects against pulmonary fibrosis by reducing telomere shortening and inhibiting AECII senescence via FBW7/TPP1 regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156682. [PMID: 40215816 DOI: 10.1016/j.phymed.2025.156682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/17/2024] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a fatal disease associated with ageing. The senescence of alveolar epithelial type II cells (AECIIs) can drive PF. Therefore, reducing AECII senescence is a promising treatment to prevent PF. Mai-wei-yang-fei decoction (MWYF) has shown significant clinical efficacy in the treatment of patients with PF. However, its mechanism of action remains unclear. PURPOSE To investigate the role and underlying mechanism of MWYF in protecting against PF. METHODS The main chemical components of MWYF were identified using UPLC-MS. The mouse and in vitro cell models of PF were established using BLM. Micro-CT, H&E, and Masson staining were used to observe the protective effect of MWYF on mice with PF. Immunohistochemistry, β-galactosidase staining, and IF-FISH were used to observe the inhibitory effect of MWYF on senescence and telomere shortening in mouse lung tissue or A549 cells. The Transwell assay and cell co-culture method were used to observe the effect of MWYF on the migration and activation of lung fibroblasts by inhibiting AECII senescence. Finally, lentiviral vector was used to overexpress FBW7 gene in A549 cells in vitro to observe the mechanism pathway of MWYF inhibiting AECII senescence and telomere shortening. RESULTS MWYF was effective in protecting against bleomycin (BLM)-induced PF. Furthermore, MWYF alleviated cellular senescence by reducing the DNA damage response (DDR) and shortening of the telomere in AECⅡs in mouse lung tissues. Mechanistically, genes related to telomere disorders were detected in BLM-induced PF mouse models using q-PCR. MWYF mainly inhibited telomere shortening by regulating FBW7 and reducing the degradation of TPP1. In vitro, MWYF reduced BLM-induced senescence in A549 cells, as well as proliferation and migration of MRC5 cells, by inhibiting DDR and telomere shortening via regulation of the FBW7/TPP1 axis. CONCLUSION MWYF is a potential therapeutic agent against PF, as it inhibits telomere shortening and reduces AECII senescence by regulating FBW7/TPP1.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Wei
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingyuan Li
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tongxing Huang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingyu Pan
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jieyu Wu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Bai
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongwei Zhu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Zhao
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Fanchao Feng
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xianmei Zhou
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
3
|
O'Reilly S, Tsou PS, Varga J. Senescence and tissue fibrosis: opportunities for therapeutic targeting. Trends Mol Med 2024; 30:1113-1125. [PMID: 38890028 DOI: 10.1016/j.molmed.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Cellular senescence is a key hallmark of aging. It has now emerged as a key mediator in normal tissue turnover and is associated with a variety of age-related diseases, including organ-specific fibrosis and systemic sclerosis (SSc). This review discusses the recent evidence of the role of senescence in tissue fibrosis, with an emphasis on SSc, a systemic autoimmune rheumatic disease. We discuss the physiological role of these cells, their role in fibrosis, and that targeting these cells specifically could be a new therapeutic avenue in fibrotic disease. We argue that targeting senescent cells, with senolytics or senomorphs, is a viable therapeutic target in fibrotic diseases which remain largely intractable.
Collapse
Affiliation(s)
- Steven O'Reilly
- Bioscience Department, Durham University, South Road, Durham, UK.
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Wang SM, Chang HH, Chang YH, Tsai TY, Chen PS, Lu RB, Wang TY. Shortening of telomere length may be associated with inflammatory cytokine levels in patients with bipolar disorder. J Affect Disord 2024; 365:155-161. [PMID: 39153550 DOI: 10.1016/j.jad.2024.08.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is hypothesized to be associated with accelerated biological aging. Telomere length (TL) is a biomarker of aging, and although TL decreases with each cell division, the rate of telomere shortening may be affected by inflammation. We aimed to investigate whether TL is decreased in BD patients and to determine the association between TL and inflammatory markers in such patients. METHODS 137 BD patients and 118 healthy controls (HCs) were recruited. Leukocyte TL and plasma levels of cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-8, IL-6, IL-10, transforming growth factor (TGF)-β1], C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF) were assessed. RESULTS TL did not differ significantly between the BD patients and HCs after adjustment for potential confounding factors (P = 0.79). TL was significantly negatively associated with age (β = -0.007, P < 0.001). In addition, log TNF-α levels were significantly negatively associated with TL (P = 0.009), in both the BD patients (P = 0.02) and HCs (P = 0.05). CONCLUSION We found a significant association between TNF-α levels and TL shortening in both BD patients and HCs. However, BD patients did not display increased TL shortening relative to HCs. Studies that involve larger sample sizes and control for the heterogeneity of BD participants will be needed.
Collapse
Affiliation(s)
- Shao-Ming Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Yun-Hsuan Chang
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychology, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, Douliu Branch, Yunlin, Taiwan; Graduate Institute of Genomics & Bioinformatics, National Chung Hsin University, Taichung, Taiwan
| | - Tsung-Yu Tsai
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychology, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Yanjiao Furen Hospital, Hebei, China
| | - Tzu-Yun Wang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Fu C, Tian X, Wu S, Chu X, Cheng Y, Wu X, Yang W. Role of telomere dysfunction and immune infiltration in idiopathic pulmonary fibrosis: new insights from bioinformatics analysis. Front Genet 2024; 15:1447296. [PMID: 39346776 PMCID: PMC11427275 DOI: 10.3389/fgene.2024.1447296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by unexplained irreversible pulmonary fibrosis. Although the etiology of IPF is unclear, studies have shown that it is related to telomere length shortening. However, the prognostic value of telomere-related genes in IPF has not been investigated. Methods We utilized the GSE10667 and GSE110147 datasets as the training set, employing differential expression analysis and weighted gene co-expression network analysis (WGCNA) to screen for disease candidate genes. Then, we used consensus clustering analysis to identify different telomere patterns. Next, we used summary data-based mendelian randomization (SMR) analysis to screen core genes. We further evaluated the relationship between core genes and overall survival and lung function in IPF patients. Finally, we performed immune infiltration analysis to reveal the changes in the immune microenvironment of IPF. Results Through differential expression analysis and WGCNA, we identified 35 significant telomere regulatory factors. Consensus clustering analysis revealed two distinct telomere patterns, consisting of cluster A (n = 26) and cluster B (n = 19). Immune infiltration analysis revealed that cluster B had a more active immune microenvironment, suggesting its potential association with IPF. Using GTEx eQTL data, our SMR analysis identified two genes with potential causal associations with IPF, including GPA33 (PSMR = 0.0013; PHEIDI = 0.0741) and MICA (PSMR = 0.0112; PHEIDI = 0.9712). We further revealed that the expression of core genes is associated with survival time and lung function in IPF patients. Finally, immune infiltration analysis revealed that NK cells were downregulated and plasma cells and memory B cells were upregulated in IPF. Further correlation analysis showed that GPA33 expression was positively correlated with NK cells and negatively correlated with plasma cells and memory B cells. Conclusion Our study provides a new perspective for the role of telomere dysfunction and immune infiltration in IPF and identifies potential therapeutic targets. Further research may reveal how core genes affect cell function and disease progression, providing new insights into the complex mechanisms of IPF.
Collapse
Affiliation(s)
- Chenkun Fu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xin Tian
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shuang Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaojuan Chu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yiju Cheng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The Fourth People’s Hospital of Guiyang, Guiyang, China
| | - Xiao Wu
- Department of Critical Care Medicine, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Wengting Yang
- Department of Critical Care Medicine, The Second People’s Hospital of Guiyang, Guiyang, China
| |
Collapse
|
6
|
Tao X, Zhu Z, Wang L, Li C, Sun L, Wang W, Gong W. Biomarkers of Aging and Relevant Evaluation Techniques: A Comprehensive Review. Aging Dis 2024; 15:977-1005. [PMID: 37611906 PMCID: PMC11081160 DOI: 10.14336/ad.2023.00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
The risk of developing chronic illnesses and disabilities is increasing with age. To predict and prevent aging, biomarkers relevant to the aging process must be identified. This paper reviews the known molecular, cellular, and physiological biomarkers of aging. Moreover, we discuss the currently available technologies for identifying these biomarkers, and their applications and potential in aging research. We hope that this review will stimulate further research and innovation in this emerging and fast-growing field.
Collapse
Affiliation(s)
- Xue Tao
- Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Ziman Zhu
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China.
| | - Liguo Wang
- Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Liwei Sun
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Lipskaia L, Breau M, Cayrou C, Churikov D, Braud L, Jacquet J, Born E, Fouillade C, Curras-Alonso S, Bauwens S, Jourquin F, Fiore F, Castellano R, Josselin E, Sánchez-Ferrer C, Giovinazzo G, Lachaud C, Gilson E, Flores I, Londono-Vallejo A, Adnot S, Géli V. mTert induction in p21-positive cells counteracts capillary rarefaction and pulmonary emphysema. EMBO Rep 2024; 25:1650-1684. [PMID: 38424230 PMCID: PMC10933469 DOI: 10.1038/s44319-023-00041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024] Open
Abstract
Lung diseases develop when telomeres shorten beyond a critical point. We constructed a mouse model in which the catalytic subunit of telomerase (mTert), or its catalytically inactive form (mTertCI), is expressed from the p21Cdkn1a locus. Expression of either TERT or TERTCI reduces global p21 levels in the lungs of aged mice, highlighting TERT non-canonical function. However, only TERT reduces accumulation of very short telomeres, oxidative damage, endothelial cell (ECs) senescence and senile emphysema in aged mice. Single-cell analysis of the lung reveals that p21 (and hence TERT) is expressed mainly in the capillary ECs. We report that a fraction of capillary ECs marked by CD34 and endowed with proliferative capacity declines drastically with age, and this is counteracted by TERT but not TERTCI. Consistently, only TERT counteracts decline of capillary density. Natural aging effects are confirmed using the experimental model of emphysema induced by VEGFR2 inhibition and chronic hypoxia. We conclude that catalytically active TERT prevents exhaustion of the putative CD34 + EC progenitors with age, thus protecting against capillary vessel loss and pulmonary emphysema.
Collapse
Affiliation(s)
- Larissa Lipskaia
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, 94010, Créteil, and Université Paris-Est Créteil (UPEC), Paris, France
| | - Marielle Breau
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Christelle Cayrou
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Dmitri Churikov
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Laura Braud
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Juliette Jacquet
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| | - Emmanuelle Born
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| | - Charles Fouillade
- Institut Curie, Inserm U1021, CNRS UMR 3347, University Paris-Saclay, PSL Research University, Orsay, France
| | - Sandra Curras-Alonso
- Institut Curie, PSL Research University, CNRS UMR3244, Sorbonne Université, Telomeres and Cancer, 75005, Paris, France
| | - Serge Bauwens
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculty of Medicine, Nice, France
| | - Frederic Jourquin
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Frederic Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Rémy Castellano
- Marseille Cancer Research Centre (CRCM), TrGET Preclinical Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Emmanuelle Josselin
- Marseille Cancer Research Centre (CRCM), TrGET Preclinical Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | | | - Giovanna Giovinazzo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
| | - Christophe Lachaud
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Team DNA Interstrand Crosslink Lesions and Blood Disorders, Marseille, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculty of Medicine, Nice, France
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Arturo Londono-Vallejo
- Institut Curie, PSL Research University, CNRS UMR3244, Sorbonne Université, Telomeres and Cancer, 75005, Paris, France
| | - Serge Adnot
- Institute for Lung Health, Justus Liebig University, Giessen, Germany.
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, 94010, Créteil, and Université Paris-Est Créteil (UPEC), Paris, France.
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France.
| |
Collapse
|
8
|
Luo L, An X, Xiao Y, Sun X, Li S, Wang Y, Sun W, Yu D. Mitochondrial-related microRNAs and their roles in cellular senescence. Front Physiol 2024; 14:1279548. [PMID: 38250662 PMCID: PMC10796628 DOI: 10.3389/fphys.2023.1279548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Aging is a natural aspect of mammalian life. Although cellular mortality is inevitable, various diseases can hasten the aging process, resulting in abnormal or premature senescence. As cells age, they experience distinctive morphological and biochemical shifts, compromising their functions. Research has illuminated that cellular senescence coincides with significant alterations in the microRNA (miRNA) expression profile. Notably, a subset of aging-associated miRNAs, originally encoded by nuclear DNA, relocate to mitochondria, manifesting a mitochondria-specific presence. Additionally, mitochondria themselves house miRNAs encoded by mitochondrial DNA (mtDNA). These mitochondria-residing miRNAs, collectively referred to as mitochondrial miRNAs (mitomiRs), have been shown to influence mtDNA transcription and protein synthesis, thereby impacting mitochondrial functionality and cellular behavior. Recent studies suggest that mitomiRs serve as critical sensors for cellular senescence, exerting control over mitochondrial homeostasis and influencing metabolic reprogramming, redox equilibrium, apoptosis, mitophagy, and calcium homeostasis-all processes intimately connected to senescence. This review synthesizes current findings on mitomiRs, their mitochondrial targets, and functions, while also exploring their involvement in cellular aging. Our goal is to shed light on the potential molecular mechanisms by which mitomiRs contribute to the aging process.
Collapse
Affiliation(s)
- Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiguang Sun
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yingzhao Wang
- Department of Neurology, Qianwei Hospital of Jilin Province, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Stock AJ, Ayyar S, Kashyap A, Wang Y, Yanai H, Starost MF, Tanaka-Yano M, Bodogai M, Sun C, Wang Y, Gong Y, Puligilla C, Fang EF, Bohr VA, Liu Y, Beerman I. Boosting NAD ameliorates hematopoietic impairment linked to short telomeres in vivo. GeroScience 2023; 45:2213-2228. [PMID: 36826621 PMCID: PMC10651621 DOI: 10.1007/s11357-023-00752-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Short telomeres are a defining feature of telomere biology disorders (TBDs), including dyskeratosis congenita (DC), for which there is no effective general cure. Patients with TBDs often experience bone marrow failure. NAD, an essential metabolic coenzyme, is decreased in models of DC. Herein, using telomerase reverse transcriptase null (Tert-/-) mice with critically short telomeres, we investigated the effect of NAD supplementation with the NAD precursor, nicotinamide riboside (NR), on features of health span disrupted by telomere impairment. Our results revealed that NR ameliorated body weight loss in Tert-/- mice and improved telomere integrity and telomere dysfunction-induced systemic inflammation. NR supplementation also mitigated myeloid skewing of Tert-/- hematopoietic stem cells. Furthermore, NR alleviated villous atrophy and inflammation in the small intestine of Tert-/- transplant recipient mice. Altogether, our findings support NAD intervention as a potential therapeutic strategy to enhance aspects of health span compromised by telomere attrition.
Collapse
Affiliation(s)
- Amanda J Stock
- Laboratory of Genetics and Genomics, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Saipriya Ayyar
- Translational Gerontology Branch, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Amogh Kashyap
- Translational Gerontology Branch, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Yunong Wang
- Laboratory of Genetics and Genomics, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Hagai Yanai
- Translational Gerontology Branch, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Matthew F Starost
- Division of Veterinary Resources, Building 14E, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Mayuri Tanaka-Yano
- Translational Gerontology Branch, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Monica Bodogai
- Laboratory of Molecular Biology and Immunology, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Chongkui Sun
- Laboratory of Genetics and Genomics, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Yajun Wang
- Laboratory of Genetics and Genomics, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Yi Gong
- Laboratory of Genetics and Genomics, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Chandrakala Puligilla
- Laboratory of Genetics and Genomics, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Evandro F Fang
- DNA Repair Section, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Vilhelm A Bohr
- DNA Repair Section, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA
| | - Yie Liu
- Laboratory of Genetics and Genomics, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA.
| | - Isabel Beerman
- Translational Gerontology Branch, Biomedical Research Center, National Institute On Aging/National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA.
| |
Collapse
|
10
|
Suelves N, Saleki S, Ibrahim T, Palomares D, Moonen S, Koper MJ, Vrancx C, Vadukul DM, Papadopoulos N, Viceconte N, Claude E, Vandenberghe R, von Arnim CAF, Constantinescu SN, Thal DR, Decottignies A, Kienlen-Campard P. Senescence-related impairment of autophagy induces toxic intraneuronal amyloid-β accumulation in a mouse model of amyloid pathology. Acta Neuropathol Commun 2023; 11:82. [PMID: 37198698 DOI: 10.1186/s40478-023-01578-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is the main risk factor for Alzheimer's disease (AD) and other neurodegenerative pathologies, but the molecular and cellular changes underlying pathological aging of the nervous system are poorly understood. AD pathology seems to correlate with the appearance of cells that become senescent due to the progressive accumulation of cellular insults causing DNA damage. Senescence has also been shown to reduce the autophagic flux, a mechanism involved in clearing damaged proteins from the cell, and such impairment has been linked to AD pathogenesis. In this study, we investigated the role of cellular senescence on AD pathology by crossing a mouse model of AD-like amyloid-β (Aβ) pathology (5xFAD) with a mouse model of senescence that is genetically deficient for the RNA component of the telomerase (Terc-/-). We studied changes in amyloid pathology, neurodegeneration, and the autophagy process in brain tissue samples and primary cultures derived from these mice by complementary biochemical and immunostaining approaches. Postmortem human brain samples were also processed to evaluate autophagy defects in AD patients. Our results show that accelerated senescence produces an early accumulation of intraneuronal Aβ in the subiculum and cortical layer V of 5xFAD mice. This correlates with a reduction in amyloid plaques and Aβ levels in connecting brain regions at a later disease stage. Neuronal loss was specifically observed in brain regions presenting intraneuronal Aβ and was linked to telomere attrition. Our results indicate that senescence affects intraneuronal Aβ accumulation by impairing autophagy function and that early autophagy defects can be found in the brains of AD patients. Together, these findings demonstrate the instrumental role of senescence in intraneuronal Aβ accumulation, which represents a key event in AD pathophysiology, and emphasize the correlation between the initial stages of amyloid pathology and defects in the autophagy flux.
Collapse
Affiliation(s)
- Nuria Suelves
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Shirine Saleki
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Tasha Ibrahim
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Debora Palomares
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Vlaams Instituut Voor Biotechnologie (VIB) Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Vlaams Instituut Voor Biotechnologie (VIB) Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Céline Vrancx
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Laboratory for Membrane Trafficking, Department of Neurosciences, Vlaams Instituut Voor Biotechnologie (VIB) Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Devkee M Vadukul
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Nicolas Papadopoulos
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nikenza Viceconte
- Genetic and Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium
- CENTOGENE GmbH, 18055, Rostock, Germany
| | - Eloïse Claude
- Genetic and Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Unit, de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford University, Oxford, UK
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium.
| |
Collapse
|
11
|
Liu S, Nong W, Ji L, Zhuge X, Wei H, Luo M, Zhou L, Chen S, Zhang S, Lei X, Huang H. The regulatory feedback of inflammatory signaling and telomere/telomerase complex dysfunction in chronic inflammatory diseases. Exp Gerontol 2023; 174:112132. [PMID: 36849001 DOI: 10.1016/j.exger.2023.112132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Inflammation is believed to play a role in the progression of numerous human diseases. Research has shown that inflammation and telomeres are involved in a feedback regulatory loop: inflammation increases the rate of telomere attrition, leading to telomere dysfunction, while telomere components also participate in regulating the inflammatory response. However, the specific mechanism behind this feedback loop between inflammatory signaling and telomere/telomerase complex dysfunction has yet to be fully understood. This review presents the latest findings on this topic, with a particular focus on the detailed regulation and molecular mechanisms involved in the progression of aging, various chronic inflammatory diseases, cancers, and different stressors. Several feedback loops between inflammatory signaling and telomere/telomerase complex dysfunction, including NF-κB-TERT feedback, NF-κB-RAP1 feedback, NF-κB-TERC feedback, STAT3-TERT feedback, and p38 MAPK-shelterin complex-related gene feedback, are summarized. Understanding the latest discoveries of this feedback regulatory loop can help identify novel potential drug targets for the suppression of various inflammation-associated diseases.
Collapse
Affiliation(s)
- Shun Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Weihua Nong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533300, China
| | - Lin Ji
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China
| | - Xiuhong Zhuge
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Huimei Wei
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Min Luo
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Leguang Zhou
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shenghua Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Shun Zhang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China.
| |
Collapse
|
12
|
Heat-Killed Staphylococcus aureus Induces Bone Mass Loss through Telomere Erosion. Int J Mol Sci 2023; 24:ijms24043179. [PMID: 36834587 PMCID: PMC9960843 DOI: 10.3390/ijms24043179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The mechanism of systemic osteoporosis caused by chronic infection is not completely clear, and there is a lack of reasonable interventions for this disease. In this study, heat-killed S. aureus (HKSA) was applied to simulate the inflammation caused by the typical clinical pathogen and to explore the mechanism of systemic bone loss caused by it. In this study, we found that the systemic application of HKSA caused bone loss in mice. Further exploration found that HKSA caused cellular senescence, telomere length shortening, and telomere dysfunction-induced foci (TIF) in limb bones. As a well-known telomerase activator, cycloastragenol (CAG) significantly alleviated HKSA-induced telomere erosion and bone loss. These results suggested that telomere erosion in bone marrow cells is a possible mechanism of HKSA-induced bone loss. CAG may protect against HKSA-induced bone loss by alleviating telomere erosion in bone marrow cells.
Collapse
|
13
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 554] [Impact Index Per Article: 184.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
14
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
15
|
Immunosenescence, Inflammaging, and Lung Senescence in Asthma in the Elderly. Biomolecules 2022; 12:biom12101456. [PMID: 36291665 PMCID: PMC9599177 DOI: 10.3390/biom12101456] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Prevalence of asthma in older adults is growing along with increasing global life expectancy. Due to poor clinical consequences such as high mortality, advancement in understanding the pathophysiology of asthma in older patients has been sought to provide prompt treatment for them. Age-related alterations of functions in the immune system and lung parenchyma occur throughout life. Alterations with advancing age are promoted by various stimuli, including pathobionts, fungi, viruses, pollutants, and damage-associated molecular patterns derived from impaired cells, abandoned cell debris, and senescent cells. Age-related changes in the innate and adaptive immune response, termed immunosenescence, includes impairment of phagocytosis and antigen presentation, enhancement of proinflammatory mediator generation, and production of senescence-associated secretory phenotype. Immnunosenescence could promote inflammaging (chronic low-grade inflammation) and contribute to late-onset adult asthma and asthma in the elderly, along with age-related pulmonary disease, such as chronic obstructive pulmonary disease and pulmonary fibrosis, due to lung parenchyma senescence. Aged patients with asthma exhibit local and systemic type 2 and non-type 2 inflammation, associated with clinical manifestations. Here, we discuss immunosenescence’s contribution to the immune response and the combination of type 2 inflammation and inflammaging in asthma in the elderly and present an overview of age-related features in the immune system and lung structure.
Collapse
|
16
|
Venuti A, Romero-Medina MC, Melita G, Ceraolo MG, Brancaccio RN, Sirand C, Taverniti V, Steenbergen R, Gheit T, Tommasino M. Lyon IARC Polyomavirus Displays Transforming Activities in Primary Human Cells. J Virol 2022; 96:e0206121. [PMID: 35770990 PMCID: PMC9327700 DOI: 10.1128/jvi.02061-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Several studies reported the presence of a recently discovered polyomavirus (PyV), Lyon IARC PyV (LIPyV), in human and domestic animal specimens. LIPyV has some structural similarities to well-established animal and human oncogenic PyVs, such as raccoon PyV and Merkel cell PyV (MCPyV), respectively. In this study, we demonstrate that LIPyV early proteins immortalize human foreskin keratinocytes. LIPyV LT binds pRb, accordingly cell cycle checkpoints are altered in primary human fibroblasts and keratinocytes expressing LIPyV early genes. Mutation of the pRb binding site in LT strongly affected the ability of LIPyV ER to induced HFK immortalization. LIPyV LT also binds p53 and alters p53 functions activated by cellular stresses. Finally, LIPyV early proteins activate telomerase reverse transcriptase (hTERT) gene expression, via accumulation of the Sp1 transcription factor. Sp1 recruitment to the hTERT promoter is controlled by its phosphorylation, which is mediated by ERK1 and CDK2. Together, these data highlight the transforming properties of LIPyV in in vitro experimental models, supporting its possible oncogenic nature. IMPORTANCE Lyon IARC PyV is a recently discovered polyomavirus that shows some structural similarities to well-established animal and human oncogenic PyVs, such as raccoon PyV and Merkel cell PyV, respectively. Here, we show the capability of LIPyV to efficiently promote cellular transformation of primary human cells, suggesting a possible oncogenic role of this virus in domestic animals and/or humans. Our study identified a novel virus-mediated mechanism of activation of telomerase reverse transcriptase gene expression, via accumulation of the Sp1 transcription factor. In addition, because the persistence of infection is a key event in virus-mediated carcinogenesis, it will be important to determine whether LIPyV can deregulate immune-related pathways, similarly to the well-established oncogenic viruses.
Collapse
Affiliation(s)
- Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | | | - Giusi Melita
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | - Maria Grazia Ceraolo
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | | | - Cecilia Sirand
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | - Valerio Taverniti
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | - Renske Steenbergen
- VU University Medical Center Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Tarik Gheit
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | | |
Collapse
|
17
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
18
|
Wang JY, Young LR. Insights into the Pathogenesis of Pulmonary Fibrosis from Genetic Diseases. Am J Respir Cell Mol Biol 2022; 67:20-35. [PMID: 35294321 PMCID: PMC9273221 DOI: 10.1165/rcmb.2021-0557tr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis is a disease process associated with significant morbidity and mortality, with limited therapeutic options owing to an incomplete understanding of the underlying pathophysiology. Mechanisms driving the fibrotic cascade have been elucidated through studies of rare and common variants in surfactant-related and telomere-related genes in familial and sporadic forms of pulmonary fibrosis, as well as in multisystem Mendelian genetic disorders that present with pulmonary fibrosis. In this translational review, we outline insights into the pathophysiology of pulmonary fibrosis derived from genetic forms of the disease, with a focus on model systems, shared cellular and molecular mechanisms, and potential targets for therapy.
Collapse
Affiliation(s)
- Joanna Y. Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Lisa R. Young
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Shrivastava R, Gandhi P, Gothalwal R. The road-map for establishment of a prognostic molecular marker panel in glioma using liquid biopsy: current status and future directions. Clin Transl Oncol 2022; 24:1702-1714. [PMID: 35653004 DOI: 10.1007/s12094-022-02833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022]
Abstract
Gliomas are primary intracranial tumors with defined molecular markers available for precise diagnosis. The prognosis of glioma is bleak as there is an overlook of the dynamic crosstalk between tumor cells and components of the microenvironment. Herein, different phases of gliomagenesis are presented with reference to the role and involvement of secreted proteomic markers at various stages of tumor initiation and development. The secreted markers of inflammatory response, namely interleukin-6, tumor necrosis factor-α, interferon-ϒ, and kynurenine, proliferation markers human telomerase reverse transcriptase and microtubule-associated-protein-Tau, and stemness marker human-mobility-group-AThook-1 are involved in glial tumor initiation and growth. Further, hypoxia and angiogenic factors, heat-shock-protein-70, endothelial-growth-factor-receptor-1 and vascular endothelial growth factor play a major role in promoting vascularization and tumor volume expansion. Eventually, molecules such as matrix-metalloprotease-7 and intercellular adhesion molecule-1 contribute to the degradation and remodeling of the extracellular matrix, ultimately leading to glioma progression. Our study delineates the roadmap to develop and evaluate a non-invasive panel of secreted biomarkers using liquid biopsy for precisely evaluating disease progression, to accomplish a clinical translation.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Research, Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, M.P., 462038, India
| | - Puneet Gandhi
- Department of Research, Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, M.P., 462038, India.
| | - Ragini Gothalwal
- Department of Biotechnology, Barkatullah University, Bhopal, M.P., 462026, India
| |
Collapse
|
20
|
Zhang X, Shi M, Zhao X, Bin E, Hu Y, Tang N, Dai H, Wang C. Telomere shortening impairs alveolar regeneration. Cell Prolif 2022; 55:e13211. [PMID: 35274784 PMCID: PMC9055893 DOI: 10.1111/cpr.13211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Objectives Short telomeres in alveolar type 2 (AT2) cells have been associated with many lung diseases. The study aimed to investigate the regeneration capacity of AT2 cells with short telomeres by knocking out Tert in mice (G4 Tert−/−) from the whole to the cellular level. Materials and Methods The lung injury model of mice was established by left pneumonectomy (PNX). The proliferation and differentiation of AT2 cells were observed by immunofluorescence staining in vivo and in vitro. The difference of the gene expression between control and G4 Tert−/− group during the regeneration of AT2 cells was compared by RNA sequencing. The expression of tubulin polymerization promoting protein 3 (TPPP3) was reduced by adeno‐associated virus delivery. Results The alveolar regeneration in G4 Tert−/− mice was impaired after PNX‐induced lung injury. The regulation of cytoskeleton remodelling was defective in G4 Tert−/− AT2 cells. The expression of TPPP3 was gradually increased during AT2 cell differentiation. The expression level of TPPP3 was reduced in G4 Tert−/− AT2 cells. Reducing TPPP3 expression in AT2 cells limits the microtubule remodelling and differentiation of AT2 cells. Conclusion Short telomeres in AT2 cells result in the reduced expression level of TPPP3, leading to impaired regeneration capacity of AT2 cells.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital Affiliated to Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Diseases, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengting Shi
- National Institute of Biological Sciences, Beijing, China
| | - Xi Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Ennan Bin
- National Institute of Biological Sciences, Beijing, China
| | - Yucheng Hu
- Beijing Advanced Innovation Center for Imaging Theory and Technology & Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital Affiliated to Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Diseases, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital Affiliated to Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Diseases, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Hong X, Wang L, Zhang K, Liu J, Liu JP. Molecular Mechanisms of Alveolar Epithelial Stem Cell Senescence and Senescence-Associated Differentiation Disorders in Pulmonary Fibrosis. Cells 2022; 11:877. [PMID: 35269498 PMCID: PMC8909789 DOI: 10.3390/cells11050877] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary senescence is accelerated by unresolved DNA damage response, underpinning susceptibility to pulmonary fibrosis. Recently it was reported that the SARS-Cov-2 viral infection induces acute pulmonary epithelial senescence followed by fibrosis, although the mechanism remains unclear. Here, we examine roles of alveolar epithelial stem cell senescence and senescence-associated differentiation disorders in pulmonary fibrosis, exploring the mechanisms mediating and preventing pulmonary fibrogenic crisis. Notably, the TGF-β signalling pathway mediates alveolar epithelial stem cell senescence by mechanisms involving suppression of the telomerase reverse transcriptase gene in pulmonary fibrosis. Alternatively, telomere uncapping caused by stress-induced telomeric shelterin protein TPP1 degradation mediates DNA damage response, pulmonary senescence and fibrosis. However, targeted intervention of cellular senescence disrupts pulmonary remodelling and fibrosis by clearing senescent cells using senolytics or preventing senescence using telomere dysfunction inhibitor (TELODIN). Studies indicate that the development of senescence-associated differentiation disorders is reprogrammable and reversible by inhibiting stem cell replicative senescence in pulmonary fibrosis, providing a framework for targeted intervention of the molecular mechanisms of alveolar stem cell senescence and pulmonary fibrosis. Abbreviations: DPS, developmental programmed senescence; IPF, idiopathic pulmonary fibrosis; OIS, oncogene-induced replicative senescence; SADD, senescence-associated differentiation disorder; SALI, senescence-associated low-grade inflammation; SIPS, stress-induced premature senescence; TERC, telomerase RNA component; TERT, telomerase reverse transcriptase; TIFs, telomere dysfunction-induced foci; TIS, therapy-induced senescence; VIS, virus-induced senescence.
Collapse
Affiliation(s)
- Xiaojing Hong
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Kexiong Zhang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Jun Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, VIC 3181, Australia
- Hudson Institute of Medical Research, Monash University Department of Molecular and Translational Science, Clayton, VIC 3168, Australia
| |
Collapse
|
22
|
Rossiello F, Jurk D, Passos JF, d'Adda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol 2022; 24:135-147. [PMID: 35165420 PMCID: PMC8985209 DOI: 10.1038/s41556-022-00842-x] [Citation(s) in RCA: 351] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
Ageing organisms accumulate senescent cells that are thought to contribute to body dysfunction. Telomere shortening and damage are recognized causes of cellular senescence and ageing. Several human conditions associated with normal ageing are precipitated by accelerated telomere dysfunction. Here, we systematize a large body of evidence and propose a coherent perspective to recognize the broad contribution of telomeric dysfunction to human pathologies.
Collapse
Affiliation(s)
- Francesca Rossiello
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Fabrizio d'Adda di Fagagna
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy.
| |
Collapse
|
23
|
Usategui A, Municio C, Arias-Salgado EG, Martín M, Fernández-Varas B, Del Rey MJ, Carreira P, González A, Criado G, Perona R, Pablos JL. Evidence of telomere attrition and a potential role for DNA damage in systemic sclerosis. IMMUNITY & AGEING 2022; 19:7. [PMID: 35086525 PMCID: PMC8793167 DOI: 10.1186/s12979-022-00263-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Abstract
Background
To investigate the role of cell senescence in systemic sclerosis (SSc), we analyzed telomere shortening (TS) in SSc patients and the effect of targeting DNA damage in the bleomycin model of skin fibrosis.
Results
Telomere length (TL) in blood leukocytes of 174 SSc patients and 68 healthy controls was measured by Southern blot, and we found shorter age-standardized TL in SSc patients compared to healthy controls. TL was shorter in SSc patients with ILD compared to those without ILD and in anti-topoisomerase I positive compared to anti-centromere positive patients. To analyze the potential role of DNA damage in skin fibrosis, we evaluated the effects of the DNA protective GSE4 peptide in the bleomycin mouse model of scleroderma and the fibrotic response of cultured human dermal fibroblasts. Administration of GSE4-nanoparticles attenuated bleomycin-induced skin fibrosis as measured by Masson’s staining of collagen and reduced Acta2 and Ctgf mRNA expression, whereas transduction of dermal fibroblasts with a lentiviral GSE4 expression vector reduced COL1A1, ACTA2 and CTGF gene expression after stimulation with bleomycin or TGF-β, in parallel to a reduction of the phospho-histone H2A.X marker of DNA damage.
Conclusions
SSc is associated with TS, particularly in patients with lung disease or anti-topoisomerase I antibodies. Administration of GSE4 peptide attenuated experimental skin fibrosis and reduced fibroblast expression of profibrotic factors, supporting a role for oxidative DNA damage in scleroderma.
Collapse
|
24
|
Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev 2022; 73:101507. [PMID: 34736994 PMCID: PMC8920518 DOI: 10.1016/j.arr.2021.101507] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Short telomeres confer risk of degenerative diseases. Chronic psychological stress can lead to disease through many pathways, and research from in vitro studies to human longitudinal studies has pointed to stress-induced telomere damage as an important pathway. However, there has not been a comprehensive model to describe how changes in stress physiology and neuroendocrine pathways can lead to changes in telomere biology. Critically short telomeres or the collapse of the telomere structure caused by displacement of telomere binding protein complex shelterin elicit a DNA damage response and lead to senescence or apoptosis. In this narrative review, we summarize the key roles glucocorticoids, reactive oxygen species (ROS) and mitochondria, and inflammation play in mediating the relationship between psychological stress and telomere maintenance. We emphasis that these mediators are interconnected and reinforce each other in positive feedback loops. Telomere length has not been studied across the lifespan yet, but the initial setting point at birth appears to be the most influential point, as it sets the lifetime trajectory, and is influenced by stress. We describe two types of intergenerational stress effects on telomeres - prenatal stress effects on telomeres during fetal development, and 'telotype transmission" -the directly inherited transmission of short telomeres from parental germline. It is clear that the initial simplistic view of telomere length as a mitotic clock has evolved into a far more complex picture of both transgenerational telomere influences, and of interconnected molecular and cellular pathways and networks, as hallmarks of aging where telomere maintenance is a key player interacting with mitochondria. Further mechanistic investigations testing this comprehensive model of stress mediators shaping telomere biology and the telomere-mitochondrial nexus will lead to better understanding from cell to human lifespan aging, and could lead to anti-aging interventions.
Collapse
|
25
|
Zhang K, Xu L, Cong YS. Telomere Dysfunction in Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:739810. [PMID: 34859008 PMCID: PMC8631932 DOI: 10.3389/fmed.2021.739810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis is an age-dependent progressive and fatal lung disease of unknown etiology, which is characterized by the excessive accumulation of extracellular matrix inside the interstitial layer of the lung parenchyma that leads to abnormal scar architecture and compromised lung function capacity. Recent genetic studies have attributed the pathological genes or genetic mutations associated with familial idiopathic pulmonary fibrosis (IPF) and sporadic IPF to telomere-related components, suggesting that telomere dysfunction is an important determinant of this disease. In this study, we summarized recent advances in our understanding of how telomere dysfunction drives IPF genesis. We highlighted the key role of alveolar stem cell dysfunction caused by telomere shortening or telomere uncapping, which bridged the gap between telomere abnormalities and fibrotic lung pathology. We emphasized that senescence-associated secretory phenotypes, innate immune cell infiltration, and/or inflammation downstream of lung stem cell dysfunction influenced the native microenvironment and local cell signals, including increased transforming growth factor-beta (TGF-β) signaling in the lung, to induce pro-fibrotic conditions. In addition, the failed regeneration of new alveoli due to alveolar stem cell dysfunction might expose lung cells to elevated mechanical tension, which could activate the TGF-β signaling loop to promote the fibrotic process, especially in a periphery-to-center pattern as seen in IPF patients. Understanding the telomere-related molecular and pathophysiological mechanisms of IPF would provide new insights into IPF etiology and therapeutic strategies for this fatal disease.
Collapse
Affiliation(s)
- Kexiong Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
26
|
Yasutomo K. Genetics and animal models of familial pulmonary fibrosis. Int Immunol 2021; 33:653-657. [PMID: 34049386 PMCID: PMC8633634 DOI: 10.1093/intimm/dxab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 11/14/2022] Open
Abstract
Pulmonary fibrosis is caused by the interplay between genetic and environmental factors. Recent studies have revealed various genes associated with idiopathic pulmonary fibrosis, as well as the causative genes for familial pulmonary fibrosis. Although increased death or dysfunction of type 2 alveolar epithelial (AT2) cells has been detected in lung specimens from pulmonary fibrosis patients, it remains unclear whether and how AT2 cell death or dysfunction is responsible for the progression of pulmonary fibrosis. A recent study showed that increased AT2 cell necroptosis is the initial event in pulmonary fibrosis by analyzing patients with familial pulmonary fibrosis and an animal model that harbors the same mutation as patients. The contribution of AT2 cell necroptosis to the pathogenesis of pulmonary fibrosis has not been identified in animal model studies, which validates the effectiveness of genetic analysis of familial diseases to uncover unknown pathogeneses. Thus, further extensive genetic studies of pulmonary fibrosis along with functional studies based on genetic analysis will be crucial not only in elucidating the precise disease process but also, ultimately, in identifying novel treatment strategies for both familial and non-familial pulmonary fibrosis.
Collapse
Affiliation(s)
- Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
- The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|
27
|
Zhang K, Wang L, Hong X, Chen H, Shi Y, Liu Y, Liu J, Liu JP. Pulmonary Alveolar Stem Cell Senescence, Apoptosis, and Differentiation by p53-Dependent and -Independent Mechanisms in Telomerase-Deficient Mice. Cells 2021; 10:2892. [PMID: 34831112 PMCID: PMC8616483 DOI: 10.3390/cells10112892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary premature ageing and fibrogenesis as in idiopathic pulmonary fibrosis (IPF) occur with the DNA damage response in lungs deficient of telomerase. The molecular mechanism mediating pulmonary alveolar cell fates remains to be investigated. The present study shows that naturally occurring ageing is associated with the DNA damage response (DDR) and activation of the p53 signalling pathway. Telomerase deficiency induced by telomerase RNA component (TERC) knockout (KO) accelerates not only replicative senescence but also altered differentiation and apoptosis of the pulmonary alveolar stem cells (AEC2) in association with increased innate immune natural killer (NK) cells in TERC KO mice. TERC KO results in increased senescence-associated heterochromatin foci (SAHF) marker HP1γ, p21, p16, and apoptosis-associated cleaved caspase-3 in AEC2. However, additional deficiency of the tumour suppressor p53 in the Trp53-/- allele of the late generation of TERC KO mice attenuates the increased senescent and apoptotic markers significantly. Moreover, p53 deficiency has no significant effect on the increased gene expression of T1α (a marker of terminal differentiated AEC1) in AEC2 of the late generation of TERC KO mice. These findings demonstrate that, in natural ageing or premature ageing accelerated by telomere shortening, pulmonary senescence and IPF develop with alveolar stem cell p53-dependent premature replicative senescence, apoptosis, and p53-independent differentiation, resulting in pulmonary senescence-associated low-grade inflammation (SALI). Our studies indicate a natural ageing-associated molecular mechanism of telomerase deficiency-induced telomere DDR and SALI in pulmonary ageing and IPF.
Collapse
Affiliation(s)
- Kexiong Zhang
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Xiaojing Hong
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Hao Chen
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Yao Shi
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Yingying Liu
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Jun Liu
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
- Hudson Institute of Medical Research and Monash University Department of Molecular and Translational Science, Clayton, VIC 3168, Australia
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, VIC 3181, Australia
| |
Collapse
|
28
|
Gandhi P, Shrivastava R, Garg N, Sorte SK. Novel molecular panel for evaluating systemic inflammation and survival in therapy naïve glioma patients. World J Clin Oncol 2021; 12:947-959. [PMID: 34733616 PMCID: PMC8546655 DOI: 10.5306/wjco.v12.i10.947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation is crucial to tumor progression. A traumatic event at a specific site in the brain activates the signaling molecules, which triggers inflammation as the initial response within the tumor and its surroundings. The educated immune cells and secreted proteins then initiate the inflammatory cascade leading to persistent chronic inflammation. Therefore, estimation of the circulating inflammatory indicators kynurenine (KYN), interleukin-6 (IL-6), tissue-inhibitor of matrix-metalloproteinase-1 and human telomerase reverse transcriptase (hTERT) along with neutrophil-lymphocyte ratio (NLR) has prognostic value. AIM To assess the utility of chosen inflammatory marker panel in estimating systemic inflammation. METHODS The chosen markers were quantitatively evaluated in 90 naive, molecularly sub-typed plasma samples of glioma. A correlation between the markers and confounders was assessed to establish their prognostication power. Follow-up on the levels of the indicators was done 3-mo post-surgery. To establish the validity of circulating KYN, it was also screened qualitatively by dot-immune-assay and by immunofluorescence-immunohistochemistry in tumor tissues. RESULTS Median values of circulating KYN, IL-6, hTERT, tissue-inhibitor of matrix-metalloproteinase-1 and NLR in isocitrate-dehydrogenase-mutant/wildtype and within the astrocytic sub-groups were estimated, which differed from controls, reaching statistical significance (P < 0.0001). All markers negatively correlated with mortality (P < 0.0001). Applying combination-statistics, the panel of KYN, IL-6, hTERT and NLR achieved higher sensitivity and specificity (> 90%) than stand-alone markers, to define survival. The inflammatory panel could discriminate between WHO grades, and isocitrate-dehydrogenase-mutant/wildtype and define differential survival between astrocytic isocitrate-dehydrogenase-mutant/wildtype. Therefore, its assessment for precise disease prognosis is indicated. Association of KYN with NLR, IL-6 and hTERT was significant. Cox-regression described KYN, IL-6, NLR, and hTERT as good prognostic markers, independent of confounders. Multivariate linear-regression analysis confirmed the association of KYN and hTERT with inflammation marker IL-6.There was a concomitant significant decrease in their levels in a 3-mo follow-up. CONCLUSION The first evidence-based study of circulating-KYN in molecularly defined gliomas, wherein the tissue expression was found to be concomitant with plasma levels. A non-invasive model for assessing indicators of chronic systemic inflammation is proposed.
Collapse
Affiliation(s)
- Puneet Gandhi
- Department of Research, Bhopal Memorial Hospital and Research Centre, Bhopal 462038, Madhya Pradesh, India
| | - Richa Shrivastava
- Department of Research, Bhopal Memorial Hospital and Research Centre, Bhopal 462038, Madhya Pradesh, India
| | - Nitin Garg
- Department of Neurosurgery, Bhopal Memorial Hospital and Research Centre, Bhopal 462038, Madhya Pradesh, India
| | - Sandeep K Sorte
- Department of Neurosurgery, Bhopal Memorial Hospital and Research Centre, Bhopal 462038, Madhya Pradesh, India
| |
Collapse
|
29
|
Bazaz MR, Balasubramanian R, Monroy-Jaramillo N, Dandekar MP. Linking the Triad of Telomere Length, Inflammation, and Gut Dysbiosis in the Manifestation of Depression. ACS Chem Neurosci 2021; 12:3516-3526. [PMID: 34547897 DOI: 10.1021/acschemneuro.1c00457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Telomere length is an indispensable marker for cellular and biological aging, and it also represents an individual's physical and mental health status. Telomere shortening has been observed in chronic inflammatory conditions, which in turn accelerates aging and risk for psychiatric disorders, including depression. Considering the influence of inflammation and telomere shortening on the gut-brain axis, herein we describe a plausible interplay between telomere attrition, inflammation, and gut dysbiosis in the neurobiology of depression. Telomere shortening and hyperinflammation are well reported in depression. A negative impact of augmented inflammation has been noted on the intestinal permeability and microbial consortia and their byproducts in depressive patients. Moreover, gut dysbiosis provokes host-immune responses. As the gut microbiome is gaining importance in the manifestation and management of depression, herein we discuss whether telomere attrition is connected with the perturbation of commensal microflora. We also describe a pathological connection of cortisol with hyperinflammation, telomere shortening, and gut dysbiosis occurring in depression. This review summarizes how the triad of telomere attrition, inflammation, and gut dysbiosis is interconnected and modulates the risk for depression by regulating the systemic cortisol levels.
Collapse
Affiliation(s)
- Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Ramya Balasubramanian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez (NINN), Mexico City, Mexico, 14269
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| |
Collapse
|
30
|
Chang-Chien J, Huang JL, Tsai HJ, Wang SL, Kuo ML, Yao TC. Particulate matter causes telomere shortening and increase in cellular senescence markers in human lung epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112484. [PMID: 34237641 DOI: 10.1016/j.ecoenv.2021.112484] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Exposure to particulate matter (PM) has been associated with DNA damage, but the relationships between PM, telomere length and cellular senescence remain unclear. This study aimed to investigate the effects and potential mechanisms of PM on telomere length and cellular senescence in human lung epithelial cells. Human lung epithelial A549 cells were exposed to PM for 24 h. Cell viability and cytotoxicity were measured by the WST-1 assay and the lactate dehydrogenase release, respectively. Cellular uptake of PM was observed using transmission electron microscopy. Telomere length was measured using qPCR and expressed as T/S ratio. Cell cycle progression was analyzed by flow cytometry. Expression of human telomerase reverse transcriptase (hTERT) and cell cycle regulators was measured using mRNA by qPCR and protein levels by Western blot. Cellular senescence was determined by the expression of senescence-associated β-galactosidase (SA-β-Gal) with fluorescent microscopy and flow cytometry. Exposed to PM at the concentration of 200 μg/ml decreased cell viability and increased LDH levels in culture medium. Remarkably increased uptake of PM, shortening of telomere length, induction of G0/G1 phase arrest, and increased expression of senescence hallmarks were observed after exposure to PM in A549 cells. PM exposure induced upregulation of p21 and downregulation of proliferating cell nuclear antigen (PCNA) and hTERT expression, but no significant change in p53 expression, in A549 cells. Overall, exposure to PM may downregulate hTERT and PCNA through p53-independent induction of p21 expression, leading to telomere shortening, G0/G1 arrest and the onset of cellular senescence in human lung epithelial cells.
Collapse
Affiliation(s)
- Ju Chang-Chien
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan
| | - Jing-Long Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Ling Wang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan
| | - Ming-Ling Kuo
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Kweishan, Taoyuan 33302, Taiwan.
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan; School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| |
Collapse
|
31
|
Lopez-Bujanda ZA, Haffner MC, Chaimowitz MG, Chowdhury N, Venturini NJ, Patel RA, Obradovic A, Hansen CS, Jacków J, Maynard JP, Sfanos KS, Abate-Shen C, Bieberich CJ, Hurley PJ, Selby MJ, Korman AJ, Christiano AM, De Marzo AM, Drake CG. Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression. NATURE CANCER 2021; 2:803-818. [PMID: 35122025 PMCID: PMC9169571 DOI: 10.1038/s43018-021-00227-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Unlike several other tumor types, prostate cancer rarely responds to immune checkpoint blockade (ICB). To define tumor cell intrinsic factors that contribute to prostate cancer progression and resistance to ICB, we analyzed prostate cancer epithelial cells from castration-sensitive and -resistant samples using implanted tumors, cell lines, transgenic models and human tissue. We found that castration resulted in increased expression of interleukin-8 (IL-8) and its probable murine homolog Cxcl15 in prostate epithelial cells. We showed that these chemokines drove subsequent intratumoral infiltration of tumor-promoting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which was largely abrogated when IL-8 signaling was blocked genetically or pharmacologically. Targeting IL-8 signaling in combination with ICB delayed the onset of castration resistance and increased the density of polyfunctional CD8 T cells in tumors. Our findings establish a novel mechanism by which castration mediates IL-8 secretion and subsequent PMN-MDSC infiltration, and highlight blockade of the IL-8/CXCR2 axis as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Zoila A Lopez-Bujanda
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine, Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Michael C Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew G Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nivedita Chowdhury
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas J Venturini
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Radhika A Patel
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Corey S Hansen
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Joanna Jacków
- Department of Dermatology, Columbia University, New York, NY, USA
- St John's Institute of Dermatology, King's College London, London, England
| | - Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| | - Paula J Hurley
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Hematology/Oncology, Vanderbilt University, Nashville, TN, USA
| | - Mark J Selby
- Bristol-Myers Squibb, Redwood City, CA, USA
- Walking Fish Therapeutics, San Francisco, CA, USA
| | - Alan J Korman
- Bristol-Myers Squibb, Redwood City, CA, USA
- Vir Biotechnology, San Francisco, CA, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Division of Hematology/Oncology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
32
|
Pintado-Berninches L, Montes-Worboys A, Manguan-García C, Arias-Salgado EG, Serrano A, Fernandez-Varas B, Guerrero-López R, Iarriccio L, Planas L, Guenechea G, Egusquiaguirre SP, Hernandez RM, Igartua M, Luis Pedraz J, Cortijo J, Sastre L, Molina-Molina M, Perona R. GSE4-loaded nanoparticles a potential therapy for lung fibrosis that enhances pneumocyte growth, reduces apoptosis and DNA damage. FASEB J 2021; 35:e21422. [PMID: 33638895 DOI: 10.1096/fj.202001160rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Idiopathic pulmonary fibrosis is a lethal lung fibrotic disease, associated with aging with a mean survival of 2-5 years and no curative treatment. The GSE4 peptide is able to rescue cells from senescence, DNA and oxidative damage, inflammation, and induces telomerase activity. Here, we investigated the protective effect of GSE4 expression in vitro in rat alveolar epithelial cells (AECs), and in vivo in a bleomycin model of lung fibrosis. Bleomycin-injured rat AECs, expressing GSE4 or treated with GSE4-PLGA/PEI nanoparticles showed an increase of telomerase activity, decreased DNA damage, and decreased expression of IL6 and cleaved-caspase 3. In addition, these cells showed an inhibition in expression of fibrotic markers induced by TGF-β such as collagen-I and III among others. Furthermore, treatment with GSE4-PLGA/PEI nanoparticles in a rat model of bleomycin-induced fibrosis, increased telomerase activity and decreased DNA damage in proSP-C cells. Both in preventive and therapeutic protocols GSE4-PLGA/PEI nanoparticles prevented and attenuated lung damage monitored by SPECT-CT and inhibited collagen deposition. Lungs of rats treated with bleomycin and GSE4-PLGA/PEI nanoparticles showed reduced expression of α-SMA and pro-inflammatory cytokines, increased number of pro-SPC-multicellular structures and increased DNA synthesis in proSP-C cells, indicating therapeutic efficacy of GSE4-nanoparticles in experimental lung fibrosis and a possible curative treatment for lung fibrotic patients.
Collapse
Affiliation(s)
- Laura Pintado-Berninches
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ana Montes-Worboys
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Manguan-García
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Adela Serrano
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | | | - Rosa Guerrero-López
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura Iarriccio
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain
| | - Lurdes Planas
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Guillermo Guenechea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Susana P Egusquiaguirre
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Rosa M Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Maria Molina-Molina
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
33
|
Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos T, Maher TM, Tzouvelekis A, Ryerson CJ. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol Ther 2021; 222:107798. [PMID: 33359599 PMCID: PMC8142468 DOI: 10.1016/j.pharmthera.2020.107798] [Citation(s) in RCA: 338] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown cause characterized by relentless scarring of the lung parenchyma leading to reduced quality of life and earlier mortality. IPF is an age-related disorder, and with the population aging worldwide, the economic burden of IPF is expected to steadily increase in the future. The mechanisms of fibrosis in IPF remain elusive, with favored concepts of disease pathogenesis involving recurrent microinjuries to a genetically predisposed alveolar epithelium, followed by an aberrant reparative response characterized by excessive collagen deposition. Pirfenidone and nintedanib are approved for treatment of IPF based on their ability to slow functional decline and disease progression; however, they do not offer a cure and are associated with tolerability issues. In this review, we critically discuss how cutting-edge research in disease pathogenesis may translate into identification of new therapeutic targets, thus facilitate drug discovery. There is a growing portfolio of treatment options for IPF. However, targeting the multitude of profibrotic cytokines and growth factors involved in disease pathogenesis may require a combination of therapeutic strategies with different mechanisms of action.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| | | | - Mark G Jones
- NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Joyce S Lee
- University of Colorado, School of Medicine, Department of Medicine, Aurora, CO, United States
| | - Giulio Rossi
- Pathology Unit, AUSL della Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | | | - Toby M Maher
- National Heart and Lung Institute, Imperial College London and National Institute for Health Research Clinical Research Facility, Royal Brompton Hospital, London, UK; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| |
Collapse
|
34
|
Zhang K, Wang L, Chen H, Shi Y, Liu Y, Liu J, Hong X, Liu JP. Pulmonary alveolar stem cells undergo senescence, apoptosis and differentiation by p53-dependent and -independent mechanisms in telomerase deficient mice. Clin Exp Pharmacol Physiol 2021; 48:651-659. [PMID: 33634502 DOI: 10.1111/1440-1681.13472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Pulmonary senescence and fibrosis occur with deoxyribonucleic acid (DNA) damage response in the lungs deficient of telomerase. The molecular mechanism mediating pulmonary alveolar cell fates remains to be investigated. The present study shows that pulmonary alveolar epithelial type 2 cells (AEC2) (alveolar stem cells) undergo not only replicative senescence, but also apoptosis and differentiation in association with increased innate immune natural killer (NK) cells in telomerase knockout (KO) mice. Telomerase ribonucleic acid (RNA) component (TERC) deficiency results in increased senescence-associated heterochromatin foci marker HP1γ, p21, p16 and apoptosis-associated cleaved caspase-3 in AEC2. However, p53 deficiency in the Trp53-/- allele of the late generation of TERC KO mice attenuates the increased senescent and apoptotic markers significantly. Moreover, p53 deficiency has no significant effect on the increased gene expression of T1α (a marker of terminal differentiated alveolar epithelial type 1 cells [AEC1]) in AEC2 of the late generation of TERC KO mice. Collectively, our findings suggest that pulmonary senescence takes place in deficiency of telomerase RNA component with the alveolar stem cells undergoing p53-dependent senescence and apoptosis as well as p53-independent differentiation.
Collapse
Affiliation(s)
- Kexiong Zhang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Hao Chen
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yao Shi
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yingying Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Jun Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Xiaojing Hong
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Victoria, Australia
| |
Collapse
|
35
|
Venosa A. Senescence in Pulmonary Fibrosis: Between Aging and Exposure. Front Med (Lausanne) 2020; 7:606462. [PMID: 33282895 PMCID: PMC7689159 DOI: 10.3389/fmed.2020.606462] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
To date, chronic pulmonary pathologies represent the third leading cause of death in the elderly population. Evidence-based projections suggest that >65 (years old) individuals will account for approximately a quarter of the world population before the turn of the century. Genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, are described as the nine “hallmarks” that govern cellular fitness. Any deviation from the normal pattern initiates a complex cascade of events culminating to a disease state. This blueprint, originally employed to describe aberrant changes in cancer cells, can be also used to describe aging and fibrosis. Pulmonary fibrosis (PF) is the result of a progressive decline in injury resolution processes stemming from endogenous (physiological decline or somatic mutations) or exogenous stress. Environmental, dietary or occupational exposure accelerates the pathogenesis of a senescent phenotype based on (1) window of exposure; (2) dose, duration, recurrence; and (3) cells type being targeted. As the lung ages, the threshold to generate an irreversibly senescent phenotype is lowered. However, we do not have sufficient knowledge to make accurate predictions. In this review, we provide an assessment of the literature that interrogates lung epithelial, mesenchymal, and immune senescence at the intersection of aging, environmental exposure and pulmonary fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, UT, United States
| |
Collapse
|
36
|
FBW7 Mediates Senescence and Pulmonary Fibrosis through Telomere Uncapping. Cell Metab 2020; 32:860-877.e9. [PMID: 33086033 DOI: 10.1016/j.cmet.2020.10.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Tissue stem cells undergo premature senescence under stress, promoting age-related diseases; however, the associated mechanisms remain unclear. Here, we report that in response to radiation, oxidative stress, or bleomycin, the E3 ubiquitin ligase FBW7 mediates cell senescence and tissue fibrosis through telomere uncapping. FBW7 binding to telomere protection protein 1 (TPP1) facilitates TPP1 multisite polyubiquitination and accelerates degradation, triggering telomere uncapping and DNA damage response. Overexpressing TPP1 or inhibiting FBW7 by genetic ablation, epigenetic interference, or peptidomimetic telomere dysfunction inhibitor (TELODIN) reduces telomere uncapping and shortening, expanding the pulmonary alveolar AEC2 stem cell population in mice. TELODIN, synthesized from the seventh β strand blade of FBW7 WD40 propeller domain, increases TPP1 stability, lung respiratory function, and resistance to senescence and fibrosis in animals chronically exposed to environmental stress. Our findings elucidate a pivotal mechanism underlying stress-induced pulmonary epithelial stem cell senescence and fibrosis, providing a framework for aging-related disorder interventions.
Collapse
|
37
|
Stabilization of telomere by the antioxidant property of polyphenols: Anti-aging potential. Life Sci 2020; 259:118341. [PMID: 32853653 DOI: 10.1016/j.lfs.2020.118341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/28/2022]
Abstract
Aging is a form of a gradual loss of physiological integrity that results in impaired cellular function and ultimately increased vulnerability to disease and death. This process is a significant risk factor for critical age-related disorders such as cancer, diabetes, cardiovascular disease, and neurological conditions. Several mechanisms contribute to aging, most notably progressive telomeres shortening, which can be counteracted by telomerase enzyme activity and increasing in this enzyme activity associated with partly delaying the onset of aging. Individual behaviors and environmental factors such as nutrition affect the life-span by impact the telomerase activity rate. Healthy eating habits, including antioxidant intakes, such as polyphenols, can have a positive effect on telomere length by this mechanism. In this review, after studying the underlying mechanisms of aging and understanding the relationships between telomeres, telomerase, and aging, it has been attempted to explain the effect of polyphenols on reversing the oxidative stress and aging process.
Collapse
|
38
|
Dejene EA, Li Y, Showkatian Z, Ling H, Seto E. Regulation of poly(a)-specific ribonuclease activity by reversible lysine acetylation. J Biol Chem 2020; 295:10255-10270. [PMID: 32457045 DOI: 10.1074/jbc.ra120.012552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that plays an important role in regulating the stability and maturation of RNAs. Recently, PARN has been found to regulate the maturation of the human telomerase RNA component (hTR), a noncoding RNA required for telomere elongation. Specifically, PARN cleaves the 3'-end of immature, polyadenylated hTR to form the mature, nonpolyadenylated template. Despite PARN's critical role in mediating telomere maintenance, little is known about how PARN's function is regulated by post-translational modifications. In this study, using shRNA- and CRISPR/Cas9-mediated gene silencing and knockout approaches, along with 3'-exoribonuclease activity assays and additional biochemical methods, we examined whether PARN is post-translationally modified by acetylation and what effect acetylation has on PARN's activity. We found PARN is primarily acetylated by the acetyltransferase p300 at Lys-566 and deacetylated by sirtuin1 (SIRT1). We also revealed how acetylation of PARN can decrease its enzymatic activity both in vitro, using a synthetic RNA probe, and in vivo, by quantifying endogenous levels of adenylated hTR. Furthermore, we also found that SIRT1 can regulate levels of adenylated hTR through PARN. The findings of our study uncover a mechanism by which PARN acetylation and deacetylation regulate its enzymatic activity as well as levels of mature hTR. Thus, PARN's acetylation status may play a role in regulating telomere length.
Collapse
Affiliation(s)
- Eden A Dejene
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Yixuan Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Zahra Showkatian
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Hongbo Ling
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Edward Seto
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA .,George Washington University Cancer Center, Washington, D.C., USA
| |
Collapse
|
39
|
Insights from In Vivo Studies of Cellular Senescence. Cells 2020; 9:cells9040954. [PMID: 32295081 PMCID: PMC7226957 DOI: 10.3390/cells9040954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence is the dynamic process of durable cell-cycle arrest. Senescent cells remain metabolically active and often acquire a distinctive bioactive secretory phenotype. Much of our molecular understanding in senescent cell biology comes from studies using mammalian cell lines exposed to stress or extended culture periods. While less well understood mechanistically, senescence in vivo is becoming appreciated for its numerous biological implications, both in the context of beneficial processes, such as development, tumor suppression, and wound healing, and in detrimental conditions, where senescent cell accumulation has been shown to contribute to aging and age-related diseases. Importantly, clearance of senescent cells, through either genetic or pharmacological means, has been shown to not only extend the healthspan of prematurely and naturally aged mice but also attenuate pathology in mouse models of chronic disease. These observations have prompted an investigation of how and why senescent cells accumulate with aging and have renewed exploration into the characteristics of cellular senescence in vivo. Here, we highlight our molecular understanding of the dynamics that lead to a cellular arrest and how various effectors may explain the consequences of senescence in tissues. Lastly, we discuss how exploitation of strategies to eliminate senescent cells or their effects may have clinical utility.
Collapse
|
40
|
Ebert T, Pawelzik SC, Witasp A, Arefin S, Hobson S, Kublickiene K, Shiels PG, Bäck M, Stenvinkel P. Inflammation and Premature Ageing in Chronic Kidney Disease. Toxins (Basel) 2020; 12:E227. [PMID: 32260373 PMCID: PMC7232447 DOI: 10.3390/toxins12040227] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Persistent low-grade inflammation and premature ageing are hallmarks of the uremic phenotype and contribute to impaired health status, reduced quality of life, and premature mortality in chronic kidney disease (CKD). Because there is a huge global burden of disease due to CKD, treatment strategies targeting inflammation and premature ageing in CKD are of particular interest. Several distinct features of the uremic phenotype may represent potential treatment options to attenuate the risk of progression and poor outcome in CKD. The nuclear factor erythroid 2-related factor 2 (NRF2)-kelch-like erythroid cell-derived protein with CNC homology [ECH]-associated protein 1 (KEAP1) signaling pathway, the endocrine phosphate-fibroblast growth factor-23-klotho axis, increased cellular senescence, and impaired mitochondrial biogenesis are currently the most promising candidates, and different pharmaceutical compounds are already under evaluation. If studies in humans show beneficial effects, carefully phenotyped patients with CKD can benefit from them.
Collapse
Affiliation(s)
- Thomas Ebert
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Sven-Christian Pawelzik
- Karolinska Institutet, Department of Medicine Solna, Cardiovascular Medicine Unit, SE-171 76 Stockholm, Sweden; (S.-C.P.); (M.B.)
- Karolinska University Hospital, Theme Heart and Vessels, Division of Valvular and Coronary Disease, SE-171 76 Stockholm, Sweden
| | - Anna Witasp
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Samsul Arefin
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Sam Hobson
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Karolina Kublickiene
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Paul G. Shiels
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow G61 1QH, UK;
| | - Magnus Bäck
- Karolinska Institutet, Department of Medicine Solna, Cardiovascular Medicine Unit, SE-171 76 Stockholm, Sweden; (S.-C.P.); (M.B.)
- Karolinska University Hospital, Theme Heart and Vessels, Division of Valvular and Coronary Disease, SE-171 76 Stockholm, Sweden
| | - Peter Stenvinkel
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| |
Collapse
|
41
|
Liu RM, Liu G. Cell senescence and fibrotic lung diseases. Exp Gerontol 2020; 132:110836. [PMID: 31958492 PMCID: PMC7036279 DOI: 10.1016/j.exger.2020.110836] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fatal lung disorder with an unknown etiology and very limited therapeutic options. The incidence and severity of IPF increase with advanced age, suggesting that aging is a major risk factor for IPF. The mechanism underlying the aging-related susceptibility to IPF, however, remains unclear. Cellular senescence, a permanent arrest of cell growth, has been increasingly recognized as an important contributor to aging and aging-related diseases, including IPF. Senescent cells have been identified in IPF lungs and in experimental lung fibrosis models. Removal of senescent cells pharmacologically or genetically improves lung function and reverses pulmonary fibrosis induced by different stimuli in experimental fibrosis models. Treatment with senolytic drugs also improves clinical symptoms in IPF patients. These intriguing findings suggest that cellular senescence contributes importantly to the pathogenesis of fibrotic lung diseases and targeting senescent cells may represent a novel approach for the treatment of fibrotic lung disorders. In this mini review, we summarize the recent advance in the field regarding the role of cellular senescence in fibrotic lung diseases, with a focus on IPF.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
42
|
Abstract
The interstitial lung diseases (ILDs) are a group of progressive disorders characterized by chronic inflammation and/or fibrosis in the lung. While some ILDs can be linked to specific environmental causes (i.e., asbestosis, silicosis), in many individuals, no culprit exposure can be identified; these patients are deemed to have "idiopathic interstitial pneumonia" (IIP). Family history is now recognized as the strongest risk factor for IIP, and IIP cases that run in families comprise a syndrome termed "familial interstitial pneumonia" (FIP). Mutations in more than 10 different genes have been implicated as responsible for disease in FIP families. Diverse ILD clinical phenotypes can be seen within a family, and available evidence suggests underlying genetic risk is the primary determinant of disease outcomes. Together, these FIP studies have provided unique insights into the pathobiology of ILDs, and brought focus on the unique issues that arise in the care of patients with FIP.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- U.S. Department of Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
43
|
Wu L, Fidan K, Um JY, Ahn KS. Telomerase: Key regulator of inflammation and cancer. Pharmacol Res 2020; 155:104726. [PMID: 32109579 DOI: 10.1016/j.phrs.2020.104726] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
The telomerase holoenzyme, which has a highly conserved role in maintaining telomere length, has long been regarded as a high-profile target in cancer therapy due to the high dependency of the majority of cancer cells on constitutive and elevated telomerase activity for sustained proliferation and immortality. In this review, we present the salient findings in the telomerase field with special focus on the association of telomerase with inflammation and cancer. The elucidation of extra-telomeric roles of telomerase in inflammation, reactive oxygen species (ROS) generation, and cancer development further complicated the design of anti-telomerase therapy. Of note, the discovery of the unique mechanism that underlies reactivation of the dormant telomerase reverse transcriptase TERT promoter in somatic cells not only enhanced our understanding of the critical role of TERT in carcinogenesis but also opens up new intervention ideas that enable the differential targeting of cancer cells only. Despite significant effort invested in developing telomerase-targeted therapeutics, devising efficacious cancer-specific telomerase/TERT inhibitors remains an uphill task. The latest discoveries of the telomere-independent functionalities of telomerase in inflammation and cancer can help illuminate the path of developing specific anti-telomerase/TERT therapeutics against cancer cells.
Collapse
Affiliation(s)
- Lele Wu
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Kerem Fidan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
44
|
Schulte H, Mühlfeld C, Brandenberger C. Age-Related Structural and Functional Changes in the Mouse Lung. Front Physiol 2019; 10:1466. [PMID: 31866873 PMCID: PMC6904284 DOI: 10.3389/fphys.2019.01466] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023] Open
Abstract
Lung function declines with advancing age. To improve our understanding of the structure-function relationships leading to this decline, we investigated structural alterations in the lung and their impact on micromechanics and lung function in the aging mouse. Lung function analysis was performed in 3, 6, 12, 18, and 24 months old C57BL/6 mice (n = 7-8/age), followed by lung fixation and stereological sample preparation. Lung parenchymal volume, total, ductal and alveolar airspace volume, alveolar volume and number, septal volume, septal surface area and thickness were quantified by stereology as well as surfactant producing alveolar epithelial type II (ATII) cell volume and number. Parenchymal volume, total and ductal airspace volume increased in old (18 and 24 months) compared with middle-aged (6 and 12 months) and young (3 months) mice. While the alveolar number decreased from young (7.5 × 106) to middle-aged (6 × 106) and increased again in old (9 × 106) mice, the mean alveolar volume and mean septal surface area per alveolus conversely first increased in middle-aged and then declined in old mice. The ATII cell number increased from middle-aged (8.8 × 106) to old (11.8 × 106) mice, along with the alveolar number, resulting in a constant ratio of ATII cells per alveolus in all age groups (1.4 ATII cells per alveolus). Lung compliance and inspiratory capacity increased, whereas tissue elastance and tissue resistance decreased with age, showing greatest changes between young and middle-aged mice. In conclusion, alveolar size declined significantly in old mice concomitant with a widening of alveolar ducts and late alveolarization. These changes may partly explain the functional alterations during aging. Interestingly, despite age-related lung remodeling, the number of ATII cells per alveolus showed a tightly controlled relation in all age groups.
Collapse
Affiliation(s)
- Henri Schulte
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| |
Collapse
|
45
|
Liu JP. Aging mechanisms and intervention targets. Clin Exp Pharmacol Physiol 2019; 44 Suppl 1:3-8. [PMID: 29178613 DOI: 10.1111/1440-1681.12896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Premature aging occurs frequently to various tissues and organs resulting in the tissue-specific chronic diseases. The mechanisms of tissue-specific premature aging are largely unknown. In response to environmental cues, aging may originate from cytoplasm or the nucleus of a cell with cytoplasm aging in association with organelle degeneration in terminally differentiated cells and nuclear aging with dysfunctional telomeres and irreversible cell cycle arrest in stem and cancer cells. Either cytoplasm aging or nuclear aging may cause extracellular senescence-associated low-grade inflammation to spread aging. Referring to the recent findings in this special issue of Healthy Aging in CEPP and beyond, we describe the molecular and cellular mechanisms of physiological aging and tissue-specific pathological aging in chronic diseases.
Collapse
Affiliation(s)
- Jun-Ping Liu
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China.,Department of Immunology, Faculty of Medicine, Central Clinical School, Monash University, Prahran, VIC, Australia.,Hudson Institute of Medical Research and Department of Molecular and Translational Science, Faculty of Medicine, Monash University, Clayton, VIC, Australia
| |
Collapse
|
46
|
Lagunas AM, Francis M, Maniar NB, Nikolova G, Wu J, Crowe DL. Paracrine Interaction of Cancer Stem Cell Populations Is Regulated by the Senescence-Associated Secretory Phenotype (SASP). Mol Cancer Res 2019; 17:1480-1492. [PMID: 31043491 DOI: 10.1158/1541-7786.mcr-18-1356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
Dyskeratosis congenita is a telomere DNA damage syndrome characterized by defective telomere maintenance, bone marrow failure, and increased head and neck cancer risk. The Pot1b-/-;Terc+/- mouse exhibits some features of dyskeratosis congenita, but head and neck cancer was not reported in this model. To model the head and neck cancer phenotype, we created unique Pot1b- and p53-null-mutant models which allow genetic lineage tracing of two distinct stem cell populations. Loss of Pot1b expression depleted stem cells via ATR/Chk1/p53 signaling. Tumorigenesis was inhibited in Pot1b-/-;p53+/+ mice due to cellular senescence. Pot1b-/-;p53-/- tumors also exhibited senescence, but proliferated and metastasized with expansion of Lgr6+ stem cells indicative of senescence-associated secretory phenotype. Selective depletion of the small K15+ stem cell fraction resulted in reduction of Lgr6+ cells and inhibition of tumorigenesis via senescence. Gene expression studies revealed that K15+ cancer stem cells regulate Lgr6+ cancer stem cell expansion via chemokine signaling. Genetic ablation of the chemokine receptor Cxcr2 inhibited cancer stem cell expansion and tumorigenesis via senescence. The effects of chemokines were primarily mediated by PI3K signaling, which is a therapeutic target in head and neck cancer. IMPLICATIONS: Paracrine interactions of cancer stem cell populations impact therapeutic options and patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Jianchun Wu
- University of Illinois Cancer Center, Chicago, Illinois
| | - David L Crowe
- University of Illinois Cancer Center, Chicago, Illinois.
| |
Collapse
|
47
|
Liu T, Gonzalez De Los Santos F, Zhao Y, Wu Z, Rinke AE, Kim KK, Phan SH. Telomerase reverse transcriptase ameliorates lung fibrosis by protecting alveolar epithelial cells against senescence. J Biol Chem 2019; 294:8861-8871. [PMID: 31000627 DOI: 10.1074/jbc.ra118.006615] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/11/2019] [Indexed: 11/06/2022] Open
Abstract
Mutations in the genes encoding telomerase reverse transcriptase (TERT) and telomerase's RNA components as well as shortened telomeres are risk factors for idiopathic pulmonary fibrosis, where repetitive injury to the alveolar epithelium is considered a key factor in pathogenesis. Given the importance of TERT in stem cells, we hypothesized that TERT plays an important role in epithelial repair and that its deficiency results in exacerbation of fibrosis by impairing this repair/regenerative process. To evaluate the role of TERT in epithelial cells, we generated type II alveolar epithelial cell (AECII)-specific TERT conditional knockout (SPC-Tert cKO) mice by crossing floxed Tert mice with inducible SPC-driven Cre mice. SPC-Tert cKO mice did not develop pulmonary fibrosis spontaneously up to 9 months of TERT deficiency. However, upon bleomycin treatment, they exhibited enhanced lung injury, inflammation, and fibrosis compared with control mice, accompanied by increased pro-fibrogenic cytokine expression but without a significant effect on AECII telomere length. Moreover, selective TERT deficiency in AECII diminished their proliferation and induced cellular senescence. These findings suggest that AECII-specific TERT deficiency enhances pulmonary fibrosis by heightening susceptibility to bleomycin-induced epithelial injury and diminishing epithelial regenerative capacity because of increased cellular senescence. We confirmed evidence for increased AECII senescence in idiopathic pulmonary fibrosis lungs, suggesting potential clinical relevance of the findings from our animal model. Our results suggest that TERT has a protective role in AECII, unlike its pro-fibrotic activity, observed previously in fibroblasts, indicating that TERT's role in pulmonary fibrosis is cell type-specific.
Collapse
Affiliation(s)
| | | | | | - Zhe Wu
- From the Departments of Pathology and
| | | | - Kevin K Kim
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | |
Collapse
|
48
|
Yoon YS, Jin M, Sin DD. Accelerated lung aging and chronic obstructive pulmonary disease. Expert Rev Respir Med 2019; 13:369-380. [PMID: 30735057 DOI: 10.1080/17476348.2019.1580576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The prevalence of chronic obstructive pulmonary disease (COPD) increases exponentially with aging. Its pathogenesis, however, is not well known and aside from smoking cessation, there are no disease-modifying treatments for this disease. Areas covered: COPD is associated with accelerating aging and aging-related diseases. In this review, we will discuss the hallmarks of aging including genomic instability, telomere attrition, epigenetic alteration, loss of proteostasis, mitochondrial dysfunction, deregulated nutrient sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication, which may be involved in COPD pathogenesis. Expert commentary: COPD and the aging process share similar molecular and cellular changes. Aging-related molecular pathways may represent novel therapeutic targets and biomarkers for COPD.
Collapse
Affiliation(s)
- Young Soon Yoon
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,b Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine , Dongguk University Ilsan Hospital , Goyang , South Korea
| | - Minhee Jin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada
| | - Don D Sin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,c Division of Respiratory Medicine (Department of Medicine) , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
49
|
Liu J, Wang L, Wang Z, Liu JP. Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing. Cells 2019; 8:E54. [PMID: 30650660 PMCID: PMC6356700 DOI: 10.3390/cells8010054] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/07/2023] Open
Abstract
Telomeres with G-rich repetitive DNA and particular proteins as special heterochromatin structures at the termini of eukaryotic chromosomes are tightly maintained to safeguard genetic integrity and functionality. Telomerase as a specialized reverse transcriptase uses its intrinsic RNA template to lengthen telomeric G-rich strand in yeast and human cells. Cells sense telomere length shortening and respond with cell cycle arrest at a certain size of telomeres referring to the "Hayflick limit." In addition to regulating the cell replicative senescence, telomere biology plays a fundamental role in regulating the chronological post-mitotic cell ageing. In this review, we summarize the current understandings of telomere regulation of cell replicative and chronological ageing in the pioneer model system Saccharomyces cerevisiae and provide an overview on telomere regulation of animal lifespans. We focus on the mechanisms of survivals by telomere elongation, DNA damage response and environmental factors in the absence of telomerase maintenance of telomeres in the yeast and mammals.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Lihui Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
- Department of Immunology, Monash University Faculty of Medicine, Melbourne, Vitoria 3004, Australia.
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
50
|
Squassina A, Pisanu C, Vanni R. Mood Disorders, Accelerated Aging, and Inflammation: Is the Link Hidden in Telomeres? Cells 2019; 8:cells8010052. [PMID: 30650526 PMCID: PMC6356466 DOI: 10.3390/cells8010052] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/26/2022] Open
Abstract
Mood disorders are associated with an increased risk of aging-related diseases, which greatly contribute to the excess morbidity and mortality observed in affected individuals. Clinical and molecular findings also suggest that mood disorders might be characterized by a permanent state of low-grade inflammation. At the cellular level, aging translates into telomeres shortening. Intriguingly, inflammation and telomere shortening show a bidirectional association: a pro-inflammatory state seems to contribute to aging and telomere dysfunction, and telomere attrition is able to induce low-grade inflammation. Several independent studies have reported shorter telomere length and increased levels of circulating inflammatory cytokines in mood disorders, suggesting a complex interplay between altered inflammatory–immune responses and telomere dynamics in the etiopathogenesis of these disorders. In this review, we critically discuss studies investigating the role of telomere attrition and inflammation in the pathogenesis and course of mood disorders, and in pharmacological treatments with psychotropic medications.
Collapse
Affiliation(s)
- Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato Cagliari, Italy.
- Department of Psychiatry, Dalhousie University, Halifax, NS B3H 2E2, Canada.
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato Cagliari, Italy.
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, 752 39 Uppsala, Sweden.
| | - Roberta Vanni
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Monserrato Cagliari, Italy.
| |
Collapse
|